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Abstract

The susceptibility of soil organic carbon (SOC) in tundra to microbial 
decomposition under warmer climate scenarios potentially threatens a 
massive positive feedback to climate change, but the underlying 
mechanisms of stable SOC decomposition remain elusive. Herein, Alaskan 
tundra soils from three depths (a fibric O horizon with litter and course roots,
an O horizon with decomposing litter and roots, and a mineral-organic mix, 
laying just above the permafrost) were incubated. Resulting respiration data 
were assimilated into a 3-pool model to derive decomposition kinetic 
parameters for fast, slow, and passive SOC pools. Bacterial, archaeal, and 
fungal taxa and microbial functional genes were profiled throughout the 3-
year incubation. Correlation analyses and a Random Forest approach 
revealed associations between model parameters and microbial community 
profiles, taxa, and traits. There were more associations between the 
microbial community data and the SOC decomposition parameters of slow 
and passive SOC pools than those of the fast SOC pool. Also, microbial 



community profiles were better predictors of model parameters in deeper 
soils, which had higher mineral contents and relatively greater quantities of 
old SOC than in surface soils. Overall, our analyses revealed the functional 
potential of microbial communities to decompose tundra SOC through a suite
of specialized genes and taxa. These results portray divergent strategies by 
which microbial communities access SOC pools across varying depths, 
lending mechanistic insights into the vulnerability of what is considered 
stable SOC in tundra regions.

Introduction

In response to climate change, soil carbon (C) at high latitudes is considered 
to be the single largest component of the terrestrial C pool susceptible to 
substantial loss over the century time-scale [1,2,3]. The potential release of 
previously frozen soil C in Arctic regions through microbial decomposition 
sparks widespread concern over positive feedbacks to climate change [4]. 
These concerns have been corroborated by recent findings. Rising summer 
temperatures correlated with high respiration rates during early winter 
periods, which tip tundra ecosystems into net atmospheric carbon dioxide 
(CO2) sources [5, 6]. This can be associated with soil microbial communities 
rapidly responding to warmer soil temperatures and increasing thaw depths 
[7]. Thaw can result in prolonged microbial exposure to unfrozen SOC and in 
some areas ice melt increases waterlogged and anaerobic conditions 
contributing to substantial methane release in addition to CO2 [8]. However, 
laboratory incubations indicated substantially greater (averaging 3.4 times 
more) SOC loss under aerobic than anaerobic conditions, suggesting that 
aerobic SOC decomposition plays a crucial role in permafrost thaw feedbacks
[9, 10]. In tundra soils, positive feedbacks to climate warming through 
enhanced mid- to long-term temperature sensitivity of respiration were 
observed with the strongest enhancing responses in soils with high C to 
nitrogen (N) ratios [11, 12]. Altogether, previous results indicated that tundra
SOC from varying depths, which represents a massive terrestrial SOC pool, is
vulnerable to enhanced decomposition under warmed conditions.

Many studies that assessed the influences of climate variables on tundra 
SOC loss focused on soil temperature and moisture and utilized only 
respiration and total soil microbial biomass data, which do not reflect 
underlying microbial community compositions and functions associated with 
SOC decomposition [13, 14]. The quality and quantity of SOC have been 
shown to be important drivers shaping microbial community composition, 
abundances of bacteria, archaea, and fungi [15, 16], and microbial C use 
efficiency (CUE) [17]. Additionally, in response to thaw, bacterial/archaeal 
and fungal community abundances and compositions exhibited significant 
shifts over depth profiles [18,19,20] and across landscapes [21]. Mineral-
organic associations, which increase with depth, can protect SOC from 
decomposition [22] and the proportion of the passive SOC pool has also been
shown to increase with depth and to be higher in mineral soils [12, 23]. 
Furthermore, colder temperatures and waterlogging potentially slow 



microbial SOC decomposition with depth and could explain higher 
percentages of old carbon in deeper tundra soils [24]. Hence, to better 
understand the temperature sensitivity of tundra SOC it is important to 
assess microbial SOC decomposition from soils of varying organic matter 
content and quality and depths and simultaneously assay changes in 
population dynamics and functional potentials of the soil microbiome.

We previously reported tundra SOC decomposition kinetics under aerobic 
conditions using 280-day laboratory incubations of soils obtained from the 
Alaskan tundra treated with experimental field warming or ambient 
conditions [23]. Bracho et al. [23] demonstrated the sensitivity of the slow 
SOC pool to microbial decomposition, which accounted for most of the 
respiration throughout the experiment. We continued the incubation for a 
total of 3 years without fresh C inputs and employed a three-pool C model to 
estimate parameters related to decomposition and respiration of fast, slow, 
and passive SOC pools. For each pool size, the following model parameters 
were estimated; cumulative CO2 respiration (CR), percentages of CR 
attributed to each pool, CO2 respiration rates (R), percentages of R from each
pool, and decomposition rate constants. The temperatures and time points in
the incubation were selected for SOC modeling purposes and do not reflect 
field temperatures at this site (mean annual temperature is −1 °C) or time 
points that signify important microbial community shifts in the field (i.e. 
seasonal variations or response feedbacks to environmental changes). 
Hence, most analyses focus on the linkages between the model parameters 
and community profiles. We identified the functional gene and taxonomic 
variations between microbial communities throughout the incubation and 
assessed community changes that correlated to the estimated SOC 
decomposition parameters. We hypothesized that shifts in community taxa 
and traits would correlate with SOC decomposition parameters and that 
these associations would be divergent across the depth gradient, owing to 
the varying C content and SOC pool sizes over depth. Our results indicated 
that microbial community profiles could predict model parameters for fast, 
slow and passive SOC pools and revealed a suite of specialized taxa and 
traits important for stable SOC decomposition.

Materials and methods

Site description and sample collection

Samples for this study were collected from the Carbon in Permafrost 
Experimental Heating Research (CiPEHR) project, after exposure to two 
consecutive winter seasons wherein warmed treatments were derived using 
snow fences. Details pertaining to field site characteristics and warming 
experiment design are detailed in SI methods and Fig. S1. Soil cores were 
collected to a depth of 60 cm from 6 control and 6 warmed soil plots. Soil 
cores were sectioned based on organic matter compositions (0–15; 15–25 
cm; and 35–58 cm). Measurement methods for determining soil moisture 
content, bulk density, mass-based N and C contents, and pH were previously 



described in Bracho et al. [23]. Soil collected from the plots had higher pH 
values with increasing depth (4.6–5.15; Table S1). The surface depth (0–15 
cm) was a fibric O horizon with litter and course roots and the mid-depth 
(15–25 cm) was an O horizon with decomposing litter and roots. The lowest 
depth range (35–58 cm) was composed of soils with a mineral-organic mix, 
laying just above the permafrost. Averaging all field plots (warming and 
control), the initial extracted soil properties showed declines in total C (TC) 
with depth and the highest total N (TN) within the middle depth (Table S1).

Incubation design

A total of 288 samples were analyzed for this study (6 plots × 2 field 
treatments × 3 depths × 2 incubation temperatures × 4 time points). Soil 
cores collected from each plot were sectioned by depth then split into ~10 g 
subsamples. Subsamples were put in open vials and eight of these vials were
placed in a single 1 L incubation jar. Incubation jars were incubated at either 
15 or 25 °C. At each time point one subsample was removed from each jar 
and destructively processed to obtain microbial community DNA. The 
accumulation of CO2 in each jar headspace was quantified using an infrared 
gas analyzer (IRGA, Li-820 Licor, Lincoln, Nebraska) at 0.9 L min−1 with 
constant flow maintained by a mass flow controller (Mass Flow meter GFM, 
Aalborg Instruments & Control) and data was recorded every 3 sec over 8 
min by a datalogger (CR1000, Campbell Scientific, Logan UT). The headspace
was purged when CO2 concentrations reached 10,000 ppm and C fluxes (Fc) 
were calculated as the rate of CO2 increase in the headspace of the jars over 
time after at least 4 cycles of 8.5 h each, expressed in μg CO2-C gCinitial

−1 d−1. 
Fluxes were measured every 48 h during the first 2 weeks, twice a week up 
to 45 days of incubation, biweekly up to 180 days, then at least once per 
month until 3 years. Thorough details on the measurement of soil C fluxes 
were reported by Bracho et al. [23] and photographs of the incubation set-up
are in Fig. S1.

Sampling and DNA extractions

After 2 weeks, 3 months, 9 months, and 3 years of incubation, subsample 
soils were removed from each incubation jar and stored at −80 °C until DNA 
extractions were performed for microbial analysis. To obtain total soil DNA, 
the PowerSoil® DNA isolation kit was used in accordance with the provided 
protocol (MoBio Laboratories, Inc, Carlsbad, California). In some samples, 
DNA of high purity (Nanodrop 260/280 and 260/230 absorbance ratios above 
1.70) could not be obtained via the kit alone so a freeze-grind method [25] 
was used to obtain DNA that was subsequently purified with the PowerSoil® 
kit.

16S and ITS amplicon library preparation and illumina sequencing

Community DNA extracts were analyzed using targeted sequencing of the 
V3–V4 hypervariable region of the bacterial and archaeal 16S ribosomal RNA 
(rRNA) genes [26] and internal transcribed spacers (ITS), between 5.8S and 



28S rRNA genes [27], for fungi. A total of 288 samples (3 depths, 6 field 
plots, warming and control field treatments, 15 and 25 °C incubations, 4-time
points) were analyzed. Sequencing was performed using a 2-step PCR 
protocol and Illumina MiSeq high-throughput sequencing platform (Illumina, 
San Diego, CA, USA) [28]. Details on the PCR and sequencing primers, 
conditions, reagents, and sequence processing are available in Supporting 
Information. De-multiplexed Sequencing reads are available for download 
from NCBI Sequence Read Archive under BioProject PRJNA522791, accession 
numbers SAMN11233799- 11234070 (16S reads) and SAMN11267340-
11267612 (ITS reads).

GeoChip analyses

We assessed the microbial functional gene structure using GeoChip 5.0, 
which contains over 60,000 probes targeting microbial functional genes 
relevant to environmental processes [29,30,31,32]. For this work, we focused
on probes targeting genes involved in C-degradation only (24,886 probes). 
To generate these data, high-quality DNA (A260/280 ≥ 1.7, A260/230 ≥ 1.3) 
was fluorescently labeled and hybridized to GeoChip 5.0 60K microarrays. 
Scanned images of individual microarrays were denoised and normalized to 
remove poor-quality spots and transform signal intensities into relative 
abundances. Detailed methodologies for DNA labeling and hybridization, 
feature extraction, and normalization are provided in SI methods. A data 
table of normalized GeoChip signal intensities for all probes is available at 
http://www.ou.edu/ieg/publications/datasets.

Three-pool carbon modeling

To model and partition the SOC into fast, slow, and passive SOC pools we 
used a three-pool SOC decomposition model, described previously [33] and 
detailed in the supporting information. It should be noted, that in these soils 
all depths have high organic matter content and the 0–15 cm depth is a fibric
O horizon, so slow and passive pools indicate recalcitrant chemical 
composition of organic matter and physical barriers to decomposition as well
as minerally protected SOC. Briefly, estimates of the proportions and 
decomposition rate constants of different SOC fractions were modeled using 
the following equation:

where R is CO2 respiration rate (g CO2-C g−1 SOC day−1) at time t, C0 is initial 
SOC content (g SOC g−1 soil), f1, f2, f3, k1, k2, and k3 are the relative pool sizes 
and decomposition rate constants of the fast, slow, and passive SOC 
components. From these values additional parameters describing the SOC 
respiration kinetics were calculated and included; CO2 respiration rate from 
the decomposition of fast, slow, or passive SOC pools (R1, R2, R3), with units 



of g CO2-C g−1SOC day−1, the proportion of CO2 respiration rate from the 
decomposition of fast, slow, or passive SOC pools (fR1, fR2, fR3); cumulative 
CO2 respiration from the decomposition of fast, slow, or passive SOC pool or 
total cumulative CO2 respired (CR1, CR2, CR3, CRTOT) at time t, with units of g 
CO2-C g−1 SOC; and the percentage of cumulative CO2 respired from the 
decomposition of fast, slow, and passive SOC pool relative to the cumulative 
CO2 respiration from the decomposition of total SOC (fCR1, fCR2, fCR3) at time
t. All calculations were based on the parameters estimated from the entire 3-
year incubation determined at each time t, corresponding to the DNA 
extraction time points (2 weeks, 3 months, 9 months, and 3 years). All 
calculated model parameters are available at 
http://www.ou.edu/ieg/publications/datasets and rounded values are 
presented in Tables S2–S4.

Statistical analyses

Prior analyses showed that field warming had a negligible effect on 
community composition (16S rRNA gene amplicons) and functional potential 
(GeoChip) [23]. Therefore, we pooled samples from the two field treatments. 
GeoChip data and 16S and ITS OTU tables were refined prior to analyses 
using correlation analyses to discard non-significant probes or OTU’s (SI 
methods). To assess how the SOC parameters varied based on depth and 
incubation temperatures, ANOVA’s were applied to data subset by depth and
incubation temperatures using R. To determine significance of variations 
between community profiles across soil depths and incubation temperatures 
non-metric multidimensional scaling (NMDS) plots and non-parametric 
multivariate dissimilarity tests based on distance matrices were employed 
(details in SI methods). Significant correlations between microbial community
profiles and SOC decomposition parameters were identified using Mantel 
tests with Pearson correlations and Multiple Regression on distance Matrices 
(MRM) analyses based on distance matrices (SI methods). Random Forest 
analyses were employed to identify whether estimated SOC decomposition 
parameters could be predicted by the 16S, ITS, or GeoChip profiles and to 
assign values of predictor importance for each OTU, microbial class, or 
GeoChip probe for each significant prediction based on %IncMSE (the 
increase in mean squared error of prediction resulting from that OTU, probe, 
or class being permuted; SI methods).

Results

Soil SOC pools and decomposition kinetics across depth

Estimated SOC parameters (Tables S2–S4) varied significantly in soils from 
different depths and incubated at different temperatures (ANOVA, P ≤ 0.01, 
Table S5 and S6) Additionally, cumulative respiration from the decomposition
of slow and passive SOC pools dominated the total soil respiration in all 
depths, under both incubation temperatures (15 °C data presented in Fig. 1 
is representative of trends found at both incubation temperatures). The total 
cumulative respiration and the cumulative respiration attributed to each SOC



pool were highest in the surface soil and decreased with soil depth (Fig. 1). 
Estimated SOC decomposition parameters exhibited significant differences 
over the depth profile for cumulative respiration, CO2 respiration rates, 
relative pools sizes, and decomposition rates for all three pools (ANOVA, P ≤ 
0.01, Table S5). The percentage of cumulative CO2 respiration (slow and 
passive pools) significantly varied across depth at the 25 °C incubation, but 
not the 15 °C incubation. There were higher portions of SOC in the passive 
pool in the lower depths, whereas the surface depths contained the highest 
proportions of fast SOC pools (ANOVA, P ≤ 0.01, Table S5). Model parameters
also varied in soils incubated at 15 °C compared to those incubated at 25 °C 
and were significantly different in the mid and lowest depths, but not at the 
surface depth (ANOVA, P ≤ 0.01, Table S6). For example, incubation 
temperature resulted in less variation in the surface soils with respect to fast
SOC pool size and decomposition kinetics, whereas incubation temperature 
exhibited the highest significant variation in passive SOC pool sizes and 
kinetics in the deepest layer (ANOVA, P ≤ 0.01, Table S6). Specifically, the 
CO2 respiration (slow and passive pools) were affected by incubation 
temperature in all depths, but the CO2 respiration rate from the 
decomposition of the fast SOC pool was not impacted at any depth (ANOVA, 
P ≤ 0.01, Table S6). Altogether, incubation temperature had a greater effect 
on slow and passive as opposed to fast SOC decomposition parameters. 
Model parameters exhibited high variances across depth with a lesser effect 
of incubation temperature (Table S5 and S6).



Community dissimilarity was significant across depth and incubation 
temperature

The 16S rRNA gene profiles were significantly different between the deepest 
and surface depths at both temperatures (Table 1). In all depths, a 
significant effect of the incubation temperature on 16S rRNA gene profiles 
was observed based on almost all dissimilarity tests (Table 1). ITS profiles 
significantly varied with depth and incubation temperature as well (Table 1). 
Ordination (NMDS) illustrated a clear contrast between incubation 
temperatures and reduced dissimilarity (tighter clustering) in the 3-year 16S 
rRNA gene profiles compared to the other time points (Fig. 2a). The 16S 
rRNA gene profiles did not cluster based on depths (NMDS). However, ITS 
profiles were distinctly clustered based on depth, but showed no trends 
relating to incubation time or incubation temperature (Fig. 2b). The stress 
tests for these plots indicated the data should be evaluated with caution. 
GeoChip-based functional gene profiles significantly varied with respect to 
incubation temperature for all depths, as well as between the surface and 



deepest depth, for most dissimilarity tests (Table 1). Ordination of GeoChip 
data indicated functional gene profiles were more similar for communities 
incubated at the same temperature, except for the 3-year samples, which 
were distinctly clustered with respect to incubation temperature, though in 
the opposing ordination direction (Fig. 2c).

Microbial community profiles correlate with some estimated SOC 
Decomposition parameters

Random Forest and MRM analyses were run to identify correlations between 
the variances of the SOC decomposition parameters and community profiles 
(16S, ITS, and GeoChip). Results indicated a higher number of associations 
between SOC decomposition parameters and community profiles in the 
lowest depth (compared to the upper depths), for slow and passive SOC 
decomposition parameters (as opposed to fast SOC decomposition 



parameters), and when GeoChip profiles (vs. 16S or ITS profiles) were used 
(Table 2).

Overall, there were significant correlations between 16S profiles and SOC 
decomposition parameters (both pool sizes and respiration from those 
pools), particularly those of slow and passive SOC (Tables 2 and 3). From the 
lowest depth 16S rRNA gene profiles predicted cumulative respiration from 
the slow SOC pool (55% variance was explained based on Random Forest, 
Table 3). In all depths, 16S rRNA gene profiles predicted the cumulative 
respiration from the passive SOC pool and total cumulative respiration 
(Random Forest, >30% variance explained, Table 3). At the surface, the 
proportion of respired SOC attributed to the decomposition of the passive 
and slow pools exhibited variation that could be predicted with the 16S rRNA 
gene profiles (Random Forest, >30% variance explained, Table 3). In the 
lowest depth, the pool sizes of fast, slow and passive SOC were explained by 
16S rRNA gene profiles (Random Forest, >30% variance explained). At the 
mid-depth only the variance of the slow pool was explained (Random Forest, 
43% variance explained), and no pool sizes were reasonably predicted in the 
surface depth (Random Forest, <30% variance explained, Table 3). 
Compared to Random Forest analyses, MRM analyses revealed fewer 
significant correlations between 16S rRNA gene profiles and SOC 
decomposition parameters (Table 3). MRM identified significant correlations 
that were primarily found at the lowest depths (MRM, P < 0.05, Table 3). 
Cumulative respiration from the passive SOC pool in the lowest depth was 
the only model parameter that could be significantly associated with 16S 
profiles by both MRM and Random Forest (MRM, P = 0.04, Random Forest 
variance explained = 48%). Without sub-setting the community profiles by 
depth, there were significant, but weak correlations with the distance 
matrices of 16S rRNA gene profiles and SOC decomposition parameters 
(Mantel, P = 0.113, MRM, P < 0.05).





ITS profiles exhibited more significant correlations with SOC model 
parameters than did the 16S rRNA gene profiles. When samples from all 
depths were combined, distance matrices of ITS profiles and model 
parameters exhibited significant associations (P < 0.001 for both Mantel and 
MRM tests). When subset by depth, a higher number of slow and passive 
SOC decomposition parameters were significantly associated with ITS 
profiles than fast SOC decomposition parameters (MRM and Random Forest 
analyses, Tables 2 and 3). Overall, ITS profiles were more closely associated 
with cumulative respiration (passive, slow, and total) than with SOC pool 
sizes or decomposition rates (Tables 2 and 3). The pool size of fast SOC could
be better explained by ITS profiles with increasing depth (Random Forest 18, 
31, 42% variance explained, respectively, Table 3). In all depths, the 
cumulative respiration from the passive and slow pools as well as the total 
cumulative respiration were all explained by the ITS profiles (Random forest, 
≥ 30% variance explained, Fig. S2, Table 3). In the surface soils, ITS profiles 
explained the variance in the proportion of cumulative respiration (passive 
pool), respiration rates (all pools), and the percentage of respiration from the
decomposition of the slow pool (Random forest, ≥30% variance explained, 
Table 3). In both lower depths, the ITS profiles explained variances of the 
fast SOC pool sizes and in the lowest depth the respiration rate of the fast 
SOC was explained (Random forest, ≥30% variance explained, Table 3). Plot 
variance explained by ITS profiles was as high as the most influential SOC 
decomposition parameters (Random forest, ≥35% variance explained, Table 
3). The cumulative respiration from the passive SOC pool and respiration rate
of the slow SOC pool (surface soil) as well as the proportion of cumulative 
respiration from the fast SOC pool (lowest depth) were the only parameters 
significantly associated with the ITS profiles using both MRM and Random 
Forest analyses (Table 3).

Functional gene profiles developed using GeoChip microarrays showed a 
higher number of significant associations with the model parameters, than 
did 16S and ITS profiles (Table 2). GeoChip-based functional community 
dissimilarity correlated with the dissimilarity of the model parameters 
(Mantel test, P < 0.001; MRM analysis, P < 0.01). Altogether, the passive SOC 
decomposition parameters were more significantly correlated (83%) with 
GeoChip-based functional profiles across depths than were the slow (44%) or
fast (28%) SOC decomposition parameters (Table 2). In all depths, there 
were significant associations between functional gene profiles and 
percentage of respiration, cumulative respiration, and the percentage of 
cumulative respiration attributed to the decomposition of the fast and 
passive SOC pools (MRM analyses, P ≤ 0.05, Table 3). Except for the fast SOC
pool size in the surface soil, all SOC pool sizes could be explained by the 
functional profiles from all depths (Random Forest analyses, ≥30% variance 
explained, Table 3). In the surface and deepest layers the decomposition 
rate of the slow pool corresponded with functional profiles (Random Forest 
analyses, ≥30% variance explained, Table 3). The cumulative respiration 



(slow and passive pools), total cumulative respiration, and the proportion of 
cumulative respiration from the fast and passive pools also corresponded to 
functional profiles in all layers (Random Forest analyses, ≥30% variance 
explained, Table 3). Respiration rates and the proportion of respiration from 
the slow and passive SOC pools also could be explained by the functional 
profile for different depths (Random Forest analyses, ≥30% variance 
explained, Table 3). Only the lowest two depths had SOC decomposition 
parameters associated with C decomposition gene profiles using both MRM 
and Random Forest and these were predominantly slow and passive SOC 
decomposition parameters, not fast SOC decomposition parameters 
(Random Forest ≥ 30% variance explained; MRM P ≤ 0.05, Table 3).

Community markers that explained variance of SOC decomposition 
parameters

Several bacterial classes were predictors of model parameters. Only SOC 
decomposition parameters associated with 16S profiles based on Random 
Forest analyses (≥30% variance explained) were investigated to further to 
determine OTUs and classes that contributed the most to this association. As
depth increased, the relative abundances of OTUs in the class 
Planctomycetes explained more variance of cumulative respiration (total, 
slow and passive pools) (heat map values increasing from 18.6–34.4, 2.9–
38.1, and 34.4–39.2, respectively, Fig. 3). Planctomycetes exhibited some of 
the highest explanatory power consistently across 16S profile-associated 
model parameters (top 5% of heatmap values, Fig. 3). Class level analyses 
revealed Proteobacteria, Actinobacteria, and Acidobacteria to be associated 
with model parameters (Random Forest, heat map values in the upper 10%). 
Notably, Chlamydiea, Planctomycetcia, and Opitutae classes, which all 
belong to the PVC (Planctomycetes, Verrucomicrobia, and Chlamydiae) 
superphylum, were predictors of slow and passive, but not fast SOC 
decomposition parameters in the upper two layers (Plancotmycetica), at the 
surface (Opitutae), and across all three depths (Chlamydiea) (Fig. 4a). 
Actinobacteria exhibited associations with model parameters for all pools in 
the lowest depth, but not upper depths, a trend unique to this class (Fig. 4a).
Deltaproteobacteria and Acidobacteria were identified as predictors of slow 
and passive SOC decomposition parameters, but not fast SOC decomposition
parameters (Fig. 4a).





Ascomycota, Basidiomycota, and Zygomycota were the primary phyla 
comprising the fungal community in the incubated tundra soils. Ascomycota 
had the highest relative abundance and the genus Helotiales exhibited 
consistent dominance over time and depth (read abundance ≥ 18%, Fig. S4).
Important OTUs, revealed by Random Forest were from of each of the 3 



dominant fungal phyla, Sodariomycetes, Leotiomycetes, and Eurotiomycetes,
and were important predictors of fast, slow, and passive SOC decomposition 
parameters (Random Forest, Fig. 4b and S3). Dothideomycetes and 
Mucoromycotina were predictors of slow and passive SOC decomposition 
parameters in the upper layers (Random Forest, Fig. 4b and S3). In the 15–
25 cm soils Tremellomycetes were associated with fast SOC decomposition 
parameters only (Random Forest, Fig. 4b and S3). In the mid depth 
Microbotryomycetes were good predictors of all SOC decomposition 
parameters and Agaricomycetes predicted slow and passive 
parameters(Random Forest, Fig. 4b and S3). Pezizomycotina were predictors 
of fast SOC decomposition parameters, only in the lowest depth (Random 
Forest, Fig. 4b and S3).

GeoChip probes targeting enzymes involved in the decomposition of simple 
sugars were not good predictors of any of the model parameters (Random 
Forest). However, probes related to the decomposition of starch, other 
aromatics, chitin, hemicellulose, and pectin were identified as good 
predictors for fast, slow, and passive SOC decomposition parameters in all 
depths (Random Forest, Fig. 4c and S3). Probes targeting enzymes involved 
in the decomposition of agar, pesticides, and lignin were associated with fast
SOC decomposition parameters whereas those involved in the decomposition
of heparin, pectin, aromatics, and cellulose were associated with slow and 
passive SOC decomposition parameters, exclusively (Random Forest, Fig. 4c 
and S3).

Discussion

The potential for a significant positive feedback to climate warming exists if 
C in Arctic soils is decomposed by soil microbial communities, but whether 
and how microbes access and respire tundra SOC was elusive. This study 
generated in-depth profiling of tundra microbial communities during SOC 
turnover that was dominated by the decomposition of slow and passive SOC 
pools. The estimated SOC decomposition parameters generated for this 
study provide unique information on identifying microbial community 
characteristics related to the decomposition kinetics of stable tundra SOC. 
Here we showed how microbial community profiles (bacterial/archaeal, 
fungal, and functional genes) associate with these parameters and we 
identify taxa and traits that were best predictors of fast, slow, and passive 
SOC decomposition parameters (summary diagrams are in Figs. 5 and 6).





Overall, 16S-, ITS-, and GeoChip-based profiles were better predictors of 
cumulative respiration than of respiration rates, pool sizes, and 
decomposition rates. Likely, the DNA-based profiles were better suited for 
predicting net outcomes, rather than rates and fluxes. Fungal communities 
were better predictors of cumulative respiration and respiration rate, which, 



according to the exponential decay relation of SOC decomposition, are 
negatively correlated [34]. Hence, it is not surprising that fungal profiles 
could predict both sets of parameters. The C decomposition functional gene 
profiles from GeoChip were better predictors of model parameters than the 
taxonomic profiles, and in particular could predict SOC pool sizes. From these
results, we could hypothesize that functional gene data could be more 
informative in predicting SOC quality or availability than community 
composition data. However, supplementation of functional gene data with 
fungal and bacterial/archaeal community composition profiles would be best 
for estimating SOC loss, as they explain divergent decomposition 
parameters.

The initial properties of the soil profile from the AK tundra site showed 
decreases in total SOC with increasing depth, with the highest N 
concentration and lowest C:N values residing in the 15–25 cm depth. Karhu 
et al. [11] found that higher soil C:N was related to enhanced microbial CO2 
respiration under warming conditions. The AK soils tested herein had high 
C:N ratios and slow and passive SOC dominated the respiration. Hence, we 
infer that in these soils, microbial communities were effective in 
decomposing what would be considered stable SOC. Unsurprisingly, 
respiration from soils taken from different depths and incubation 
temperatures varied during the 3-year incubation. The total cumulative 
respiration was much higher in the surface soils than at the lower depths, 
irrespective of incubation temperature. With depth there was reduced total 
cumulative respiration and increasing proportions of slow and passive SOC 
pools, potentially arising from increased water-filled pore spaces and slow, 
anaerobic processes dominating SOC turnover with depth [35]. Additionally, 
increased mineral-organic associations occur with depth and have been 
shown to be critical stabilizers of SOC in soil but were not directly tested here
[22, 36,37,38]. However, at all depths, the passive SOC pool offered a high 
contribution of cumulative respired CO2. Hence, the microbial mechanisms to
access these pools were present along the depth profile in soils with a range 
of SOC pool sizes.

Overall, the fungal community composition data exhibited more associations 
with estimated SOC decomposition parameters in the upper depth and to 
fast SOC in the lowest depths. In contrast, the bacterial/archaeal community 
composition and functional gene profiles were associated with the estimated 
SOC decomposition parameters in the deeper layers. This could be related to
biomasses of the communities, which were not tested here, but based on 
qPCR results from Blaud et al. [16], tundra soils exhibited greater bacterial 
and archaeal abundances when they had higher mineral content, whereas 
fungal abundances remained consistent.

Interestingly, the fast SOC decomposition parameters exhibited less relation 
to microbial community taxa and functional genes than the slow and passive 
SOC decomposition parameters (Figs. 5 and 6). This could reflect the 
ubiquity of genes and microbial taxa involved in fast SOC decomposition as 



opposed to specialized genes and taxa with the capacity to access slow and 
passive SOC. These “specialized” taxa and genes may be less consistently 
abundant but respond to SOC limitation with the ability to increase their 
prevalence in the community. Slow and passive SOC respiration was 
dominant across most of the incubation time. As such, the microbial 
communities appear to be able to access and respire what could be 
considered stable SOC. Estimated SOC parameters in the lowest depth 
frequently had closer associations to community metrics than the upper 
depths. Again, this may be indicating that as SOC is less easily accessible via
mineral associations or other SOC stabilizers, microbial communities are 
more specialized, thus correlations are more easily detected and can be 
better used to predict SOC decomposition kinetics.

Many of the bacterial classes with strong contributions to predicting model 
parameters were not the most abundant organisms, but were classes 
belonging to the PVC superphylum (Fig. 6). Members of this superphylum are
diverse in terms of habitat range, and lifestyles, and are grouped primarily 
owing to a shared evolutionary history [39]. Verrucomicrobia and 
Planctomycetes have been found in high-latitude peat bogs, which similar 
tundra, are characterized by high organic matter and water contents [40, 
41]. Using 16S rRNA gene sequencing in forest soils Bai et al. [42] found that
SOC temperature sensitivity (Q10) was positively related to copiotrophic guild 
relative abundances and inversely related to oligotrophic guilds. Here, the 
Q10 values calculated for the slow SOC pool was larger [23] and slow and 
passive SOC decomposition parameters were better predicted by 
Verrucomicrobia, likely K strategists [43] able to grow on low substrate 
concentrations. This may indicate ecotype variations in SOC decomposition 
driven by variations in soil edaphic properties and habitat. Interestingly, all 
Chlamydiae and some Verrucomicrobia are intracellular organisms, found in 
association with nematodes, ciliates, and amoebae [44,45,46]. The 
significance of these classes in predicting slow and passive SOC 
decomposition parameters could relate to essential nutrient cycling driven 
by soil invertebrates under low-nutrient conditions. Acidobacteria were 
abundant at all depths, are ubiquitous in soils, have been found broadly in 
Arctic soils with ranging properties, and have been assayed for their 
functional roles in SOC decomposition [20, 47]. In this study, Acidobacteria 
were found to be associated uniquely with slow and passive SOC 
decomposition parameters in the mid-layer and with fast SOC pool size in the
lowest layer. Additionally, Actinobacteria exclusively associated with model 
parameters for fast, slow, and passive SOC pools in the lowest depth soil, 
which had higher mineral content and a larger proportion of old C. In 
previous works metagenome assemblies from arctic soils highlighted SOC 
catabolic potentials of Actinobacterial taxa related to diverse SOC sources 
[48, 49]. This could indicate roles of Acidobacteria and Actinobacteria in 
decomposing stable SOC as well as mineral-associated labile SOC. 



Altogether, this provides insights into the specialization of many tundra 
bacterial classes to access and respire stable SOC.

A detailed presentation of the dominant and rare fungal taxa at the CiPHER 
site was previously published based on soil samples assayed directly after 
field collection [50]. Interestingly, the dominant genus, Helotiales, found at 
this site maintained its dominance throughout the incubation. Ascomycota, 
Basidiomycota, and Zygomycota were the primary phyla comprising the 
fungal community in the tundra soils, with Ascomycota showing strong 
dominance. This falls in line with previous findings wherein Ascomycota was 
the dominant phylum in tundra communities throughout three seasons [51].

The rare and abundant taxa of fungi exhibited essential roles in SOC and 
litter decomposition [52]. Here, fungal classes from each of the three 
dominant phyla contained OTUs that explained the variances of model 
parameters across all depths. Dothideomycetes and Mucoromycotina, which 
contain many saprobes, were predictors of slow and passive SOC 
decomposition parameters in the upper layers. This suggests the influence of
detritus, which was the primary component within the upper layers, on the 
decomposition kinetics of the fungal community. Mucoromycotina also 
contain many ectomycorrhizal taxa and tend to increase in diversity towards 
the poles [53, 54]. Members of the Mucoromycotina class have high 
extracellular enzyme production and have been well-studied with regards to 
lipases, a class of enzymes with efficient catalytic properties in hydrolyzing 
long chain C molecules [55]. Species richness within this class has been 
shown to be explained by soil C:N ratio [54], offering additional support that 
this class of fungi may be associated with SOC chemical composition and 
recalcitrance. In the 15–25 cm soils, TC remained high and TN was higher 
than in the other two depths. At this depth, Tremellomycetes were 
associated with fast SOC decomposition parameters. Members of this class 
have been previously detected in shallow tundra soils [56,57,58]. 
Microbotryomycetes were identified as good predictors of slow and passive 
SOC decomposition parameters and have been associated with mineral 
layers of tundra soil and increased in relative abundance in response to 
warming [59]. Hence, at the mid-depth, the fast SOC pool could be 
predicated by fungi within a class typically found in surface, organic matter 
rich soils. In contrast, the slow and passive SOC decomposition parameters 
were associated with fungi involved in accessing mineral-associated OM, 
highlighting the different strategies used by fungi within these classes to 
access different SOC pools. The class Agaricomycetes, was an important 
predictor of slow and passive SOC decomposition parameters at both lower 
depths and includes many ectomycorrhizal taxa. Diverse lineages within this 
class produce ligninolytic class II fungal peroxidases and other plant cell wall-
decaying enzymes, indicating potential roles in the decay of wood and 
detritus [60]. Pezizomycotina were predictors of fast SOC decomposition 
parameters, but only in the lowest depth. While the species richness of this 
class was previously explained by a positive response to soil pH (increasing 



with neutral pH) [54], there are less reports on extracellular enzymatic 
activity by this class than those reported for the aforementioned fungal 
classes. The pH increased from 4.6 to 5.15 with depth in these samples, 
which may indicate that the potential of Pezizomycotina to decompose fast 
SOC and predict fast SOC decomposition parameters is pH dependent. 
Altogether, the fungi identified with the Random Forest analyses broadly 
reflect a diverse range of classes that can putatively decompose different 
SOC pools.

Our analyses revealed associations with model parameters and GeoChip 
probes targeting enzymes involved in the decomposition of more complex C 
substrates as opposed to simple sugars, a finding that was consistent across 
depths. Similarly, using shotgun metagenomic sequencing Mackelprang et al.
[61] found cellulose, hemicellulose, and chitin decomposition genes to be 
significantly correlated with permafrost thaw and genes involved in simple 
sugar utilization to shift in response to thaw, but with a lesser fold change. 
Overall, probes targeting enzymes with extracellular activity and/or 
specialized capabilities had the greater predictive capacity for fast, slow, and
passive SOC decomposition parameters. Because extracellular enzymes are 
energetically expensive for soil microorganisms they are often associated 
with slow-growing, oligotrophic life strategists, so we expected to find these 
associated with slow and passive SOC decomposition parameters [62]. 
However, agarase enzymes, identified in the upper soils in association with 
fast SOC decomposition parameters, have been demonstrated to be 
extracellularly secreted [63]. Interestingly, enzymes involved in heparin and 
pectin degradation were important predictors of slow and passive SOC 
decomposition parameters in the surface soils, but not of the fast 
parameters. Heparin is a highly, negatively charged biomolecule, hence 
chemically recalcitrant and microorganisms with heparinases have been 
studied, owing to their potential importance in SOC decomposition [64]. 
Microbial enzymes acting on pectins and heparins often employ elimination 
mechanisms (lyases) rather than hydrolytic pathways (hydrolases), more 
commonly utilized to break C–O, C–H, and C–C bonds [65]. Hence, the 
associations between the slow and passive SOC decomposition parameters 
and these enzymes reflect potential unique strategies for SOC decomposition
processes in surface tundra soils. However, at lower depths, these enzymes 
no longer serve as the best predictors of slow and passive SOC 
decomposition parameters. Here, the deeper soils exhibit a stark contrast in 
functional gene predictive capacities for the fast and slow/passive SOC 
decomposition parameters. Lignin-targeting enzymes predicted fast SOC 
decomposition parameters. In contrast, the oxygenases, hydrolases, and 
aldolases, which are involved in aromatic compound-degradation, and 
cellulase and galactosidase enzymes, associated with cellulose degradation, 
were better predictors of the slow and passive SOC decomposition 
parameters and hence may become more important with increasing C-
limitation.



These novel findings are the first to relate estimated SOC decomposition 
parameters to microbial community composition, phyla, and functional 
genes, providing unique insights into the associations of microbial taxa and 
traits with stable SOC turnover across a depth profile. First, fungal 
communities, which are well known for their capacity to decompose 
chemically recalcitrant SOC types, were associated with model parameters in
surface layers. At lower depths, associations were more closely related to 
bacterial/archaeal and functional gene profiles, indicating that bacteria and 
archaea may play more strategic roles in accessing potentially mineral-
associated SOC and have greater mobility over depth, likely through water-
filled pore spaces, than do the fungal communities. Second, the PVC 
superphylum has not been reported as important to tundra SOC 
decomposition in the past, though classes within this superphylum were 
consistently indicated here by Random Forest analyses. This suggests that 
there is a previously overlooked role of this versatile superphylum in tundra 
SOC decomposition. Third, our analyses revealed that a suite of microbial 
classes and genes, associated with putative extracellular enzyme production,
correlated to model parameters for fast, slow, and passive carbon. In 
addition, microbial community composition and functional gene structure 
could be better correlated to slow and passive model parameters than to fast
model parameters, indicating an increased specialization of the microbial 
community to decompose SOC with increasing C-limitation. Altogether, in 
tundra soils microbial taxa and genes could predict SOC decomposition 
parameters and exhibited a potential of the community to decompose stable 
SOC. Provided that slow and passive SOC pools dominated the total soil 
respiration, we conclude that this functional potential was realized and is 
indicative of the vulnerability of old and stable tundra SOC to decomposition.
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