
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
General and Efficient Cognitive Model Discovery Using a Simulated Student

Permalink
https://escholarship.org/uc/item/267572ft

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 35(35)

ISSN
1069-7977

Authors
Li, Nan
Stampfer, Eliane
Cohen, William
et al.

Publication Date
2013
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/267572ft
https://escholarship.org/uc/item/267572ft#author
https://escholarship.org
http://www.cdlib.org/


General and Efficient Cognitive Model Discovery Using a Simulated Student
Nan Li (nli1@cs.cmu.edu)

Eliane Stampfer (estampfe@cs.cmu.edu)
William W. Cohen (wcohen@cs.cmu.edu)

Kenneth R. Koedinger (koedinger@cs.cmu.edu)
School of Computer Science , Carnegie Mellon University

5000 Forbes Ave., Pittsburgh PA 15213 USA

Abstract

In order to better understand how humans acquire knowledge,
one of the essential goals in cognitive science is to build a
cognitive model of human learning. Moreover, a cognitive
model that better matches student behavior will often yield bet-
ter instruction in intelligent tutoring systems. However, man-
ual construction of such cognitive models is time consuming,
and requires domain expertise. Further, manually-constructed
models may still miss distinctions in learning which are impor-
tant for instruction. Our prior work proposed an approach that
finds cognitive models using a state-of-the-art learning agent,
SimStudent, and we demonstrated that, for algebra learning,
the agent can find a better cognitive model than human experts.
To ensure the generality of that proposed approach, we further
apply it to three domains: algebra, stoichiometry, and frac-
tion addition. To evaluate the quality of the cognitive models
discovered, we measured how well the cognitive models fit to
student learning curve data. In two of those domains, SimStu-
dent directly discovers a cognitive model that predicts human
student behavior better than the human-generated model. In
fraction addition, SimStudent supported discovery of a better
cognitive model in combination with another automated cog-
nitive model discovery method.
Keywords: cognitive model, machine learning, simulated stu-
dent

Introduction
One of the fundamental goals in cognitive science is to un-
derstand human knowledge acquisition. A cognitive model of
human learning that fits data would be a significant achieve-
ment. This goal also complements with another goal in edu-
cation, which is to provide individualized instruction based
on students’ abilities, learning styes, etc. Cognitive mod-
els provide intelligent tutoring systems with useful informa-
tion on the learning task difficulties and transfer of learning
among similar problems. A better cognitive model often leads
to more effective tutoring. A cognitive model is a system that
can solve problems in the various ways human students can.
One common way of representing a cognitive model is a set
of knowledge components (KC) (Koedinger & McLaughlin,
2010). The set of KCs includes the component skills, con-
cepts, or percepts that a student must learn to be successful
on the target tasks. For example, a KC “divide” in algebra
encodes how to proceed given problems of the form Nv = N
(e.g., −3x = 6), where N stands for a number, and v stands
for a variable.

Nevertheless, manual construction of cognitive models re-
mains time consuming and error prone. Traditional ways
to construct cognitive models include structured interviews,
think-aloud protocols, and rational analysis. Manual con-
struction of cognitive models requires domain expertise, and

important instructional details may still be overlooked. Au-
tomated search methods such as Learning Factor Analysis
(LFA) (Cen, Koedinger, & Junker, 2006) are more objective:
the algorithm searches through the space of human-provided
factors to find a cognitive model that best matches with hu-
man data. Although automated search methods have found
better models than manual construction, the quality of the dis-
covered model depends on the quality of the human-provided
factors. If there is a better model that can not be expressed by
known factors, LFA will not be able to uncover it.

In Li, Matsuda, Cohen, and Koedinger (2011), we have
proposed to use the state-of-the-art learning agent, SimStu-
dent (Matsuda, Lee, Cohen, & Koedinger, 2009), to auto-
matically discover cognitive models without depending on
human-provided factors. SimStudent learns skill knowledge
from demonstration and problem solving experience. Each
skill SimStudent acquires corresponds to a KC in the cogni-
tive model. To demonstrate the generality of this approach,
we present evaluations of the SimStudent-generated models
in three domains: algebra, stoichiometry, and fraction addi-
tion. We validate the quality of the cognitive models using hu-
man student data as in Koedinger and MacLaren (1997). In-
stead of matching with performance data, we use the discov-
ered cognitive model to predict human learning curve data.
Experimental results show that for algebra and stoichiometry,
SimStudent directly finds a better cognitive model than hu-
mans. For fraction addition, SimStudent results assist LFA
in finding a better cognitive model than a domain expert. We
have also carried out an in-depth study using Focused Bene-
fits Investigation (FBI) (Koedinger, McLaughlin, & Stamper,
2012) to better understand this machine learning approach,
and discussed possible ways of further improvements.

A Brief Review of SimStudent
SimStudent is an intelligent agent that inductively learns
skills to solve problems from demonstrated solutions and
from problem solving experience. It is a realization of pro-
gramming by demonstration (Lau & Weld, 1998) using a
variation of the version space algorithm (Mitchell, 1982), in-
ductive logic programming (Muggleton & Raedt, 1994), and
iterative-deepening depth-first search as underlying learning
techniques. For more details, please refer to Matsuda et al.
(2009). Recently, in order to build a more human-like in-
telligent agent, we have developed a model of representation
learning, and integrated it into SimStudent’s skill acquisition
mechanism.

894



•  Original: 
•  Skill divide (e.g. -3x = 6) 
•  Perceptual information: 

•  Left side (-3x) 
•  Right side (6) 

•  Precondition: 
•  Not has-constant-term 

(-3x) 
•  Operator sequence: 

•  Get coefficient (-3) of left 
side (-3x) 

•  Divide both sides with the 
coefficient (-3) 

•  Extended: 
•  Skill divide (e.g. -3x = 6) 
•  Perceptual information: 

•  Left side (-3, -3x) 
•  Right side (6) 

•  Precondition: 
•  Not has-constant-term 

(-3x) 
•  Operator sequence: 

•  Get coefficient (-3) of left 
side (-3x) 

•  Divide both sides with the 
coefficient (-3) 

Figure 1: Original and extended production rules for divide
in a readable format.

Tutoring Strategy
To learn, SimStudent interacts with a tutor (human or auto-
mated). Given a problem, if SimStudent does not know how
to solve it, it will ask the tutor to demonstrate a next step. If
SimStudent knows how to proceed, it will propose the next
step, and ask for feedback from the tutor. For each demon-
strated step, the tutor specifies a tuple of 〈selection, action,
input〉 (SAI tuple) for a skill along with a skill label (e.g., di-
vide). For instance, a demonstrated step for skill “divide” is
〈(−3x,6), input text,(divide−3)〉.

SimStudent learns skills as production rules. The left side
of Figure 1 shows an example production rule for skill di-
vide in a readable format. A production rule shows “where”
to look for useful information (i.e., perceptual information),
“when” to apply the skill (i.e., precondition), and “how” to
proceed (i.e., operator sequence). To illustrate, consider the
rule on the left side of Figure 1. It states that given an equa-
tion (e.g., -3x = 6), if the left side does not have a constant
term, then first get the coefficient of the left side (-3), and
divide both sides by that coefficient.

Each skill corresponds to a KC. During training, the tutor
can provide an initial set of KCs to SimStudent by labeling
each demonstrated step with a skill name. The label given to
SimStudent in the example production rule (i.e., the left side
of Figure 1) is “divide”. If no such initial KC is known, the tu-
tor can simply label all of the steps with the same skill name.
SimStudent’s learning algorithm will automatically create the
cognitive model as needed.

Skill Learning
SimStudent has three learning components - each acquires
one part of the production rules. The first component is a
perceptual information (i.e., “where”) learner that acquires
the path to identify the useful information from its environ-
ment. In our case, the environment is a graphical user inter-
face, but it could also be a physical world or an educational
game. The elements in the environment are organized in a
tree structure. SimStudent learns perception by moving from
specific to general. That is, SimStudent tries to find the least
general path in the perceptual hierarchy that covers all of the
selections in the demonstrated steps. In the example skill ”di-
vide,” the left and right sides of the equation can be found in

the last row that SimStudent entered input.
The second part of the learning mechanism is a precondi-

tion (i.e., “when”) learner, which acquires the descriptions of
desired situations in applying the skill. The learner is given
a set of feature predicates to get a basic understanding of the
problem. Each predicate is a boolean function that describes
relations among objects in the domain (e.g. (has-coefficient
−3x)). The precondition learner utilizes FOIL (Quinlan,
1990), an inductive logic programming system that learns
Horn clauses from both positive and negative examples. The
learning process is general to specific, where the precondi-
tion learner starts by considering all situations applicable, and
then gradually narrows down the condition based on negative
examples. The precondition acquired for the example skill
divide is (not (has-constant ?var-left)), which returns true if
the left side does not have a constant.

The last component is the operator sequence (i.e., “how”)
learner. The learner is given a set of operator functions as
prior knowledge. Operator functions specify (ideally) basic
manipulations (e.g. (add 1 2), (get-coefficient−3x)) that Sim-
Student can apply to the problem. Given all of the demon-
strated steps, the learning mechanism searches for the shortest
operator sequence that could explain all of the records, using
iterative-deepening depth-first search. For example, given a
demonstrated step 〈(−3x, 6), (divide −3)〉, the shortest ex-
planation sequence is (bind ?coef (get-coefficient ?left-var))
(bind ?output (divide ?coef)).

There are two groups of operator functions, domain-
independent operator functions and domain-specific opera-
tor functions. Domain-independent operator functions (e.g.
(add 1 2)) are basic skills applicable across multiple do-
mains. Human students often have knowledge of these simple
skills prior to class. Domain-specific operator functions (e.g.
(add-term 5x− 2 5), (get-coefficient −3x)) are more compli-
cated skills that human students may not know before class.
Thus providing such operators to SimStudent may produce
learning behavior that is distinctly different from human stu-
dents (Matsuda et al., 2009). As we will explain in the next
subsection, by integrating representation learning with skill
learning, we can reduce or remove SimStudent’s dependency
on domain-specific operator functions.

Finally, let’s talk about how the KCs are discovered. Sim-
Student starts with a given set of skill labels associated with
demonstrated steps. SimStudent tries to learn one rule for
each label. It will fail when the perceptual information learner
cannot find one path that covers all demonstrated steps, or the
operator sequence learner cannot find one operator function
sequence that explains all records. In that case, SimStudent
learns a disjunctive rule just for the last record. This effec-
tively splits the examples into two clusters. Later, for each
new record, SimStudent tries to acquire a rule for each of the
clusters with the new record, and stops whenever it success-
fully learns a rule with one of the clusters. If the new record
cannot be added to any of the existing clusters, SimStudent
creates another new cluster. By the end of learning, the set of

895



3 x

MinusSign Number

SignedNumber

Expression

Variable

x

MinusSign

Expression

Variable

Figure 2: Different parse trees for -3x and -x.

clusters defines a new cognitive model.

Integrating Representation Learning with Skill
Learning
As we can see, the prior knowledge given to SimStudent
(e.g., the perceptual hierarchy, the operator functions) largely
affects the cognitive model it discovers. The more knowl-
edge engineering needed, the less human-like SimStudent is.
Therefore, to get a better cognitive model, we need to reduce
the amount of knowledge engineering required in construct-
ing SimStudent. Previous studies (Chase & Simon, 1973)
have shown that one of the key differences between experts
and novices is their different representations of the world.
Recently, we have extended SimStudent to support represen-
tation learning, and integrated it into skill learning. It has
been shown that by integrating representation learning and
skill learning, we can automatically learn the tree-structured
representation of the problem, and reduce or remove the need
of domain-specific operator functions.

The representation learner extends a grammar induction
technique to acquire a probabilistic context-free grammar
(pCFG) for the problems based on a set of observations (e.g.,
−3x, 2x+ 5). To integrate representation learning with skill
learning, we extend the perceptual hierarchy to further in-
clude the most probable parse trees from the learned pCFG
in the contents of the leaf nodes. For example, the left side
of Figure 2 is a subtree for parsing “−3x” and is connected
to the node associated with −3x in the perceptual hierarchy.
This subtree ensures that the coefficient −3 is explicitly rep-
resented in the perceptual hierarchy. Then, the perceptual in-
formation learner and the operator function sequence learner
determine how to extract the coefficient from the perceptual
hierarchy. This path for identifying the coefficient is added to
the perceptual information part of the production rules (See
Figure 1, right side). Then, the operator function sequence
part no longer needs the domain-specific operator function
“get-coefficient”. For more details, please refer to Li, Cohen,
and Koedinger (2012).

Cognitive Model Discovery Study
In Li et al. (2011), we demonstrated the effectiveness of us-
ing SimStudent to discover cognitive models in an algebra
domain. In order to evaluate the generality of the proposed

approach, in this paper, we tested SimStudent in three do-
mains, algebra, stoichiometry, and fraction addition.

Method
In each domain, we compared the SimStudent model with the
best human-generated model available, made by domain ex-
perts. To generate the SimStudent model, SimStudent was
trained by interacting with automated tutors that simulate the
automated tutors used by human students in the studies. The
video demonstration in the original study was not used in
training SimStudent. SimStudent was trained on problems
used by humans students. Then, for each step a human stu-
dent performed, we assigned the applicable production rule
as the KC associated with that step. In cases where there
was no applicable production rule, we coded the step using
the human-generated cognitive model. Each time a student
encounters a step using some KC is considered as an oppor-
tunity for that student to show mastery of that KC.

To evaluate the quality of the cognitive model, we mea-
sured how well the cognitive model fits with human student
data using the Additive Factor Model (AFM) (Cen et al.,
2006) to validate the coded steps. AFM is an instance of
logistic regression that predicts the probability of a student
making an error on the next step given each student, each
KC, and the KC by opportunity interaction as independent
variables.

ln
pi j

1− pi j
= θi +∑

k
βkQk j +∑

k
Qk j(γkNik).

Where:

i represents a student i.

j represents a step j.

k represents a skill or KC k.

pi j is the probability that student i would be correct on step
j.

θi is the coefficient for proficiency of student i.

βk is coefficient for difficulty of the skill or KC k

Qk j is the Q-matrix cell for step j using skill k.

γk is the coefficient for the learning rate of skill k;

Nik is the number of practice opportunities student i has had
on the skill k;

Domains
We carried out our study in three domains: algebra, stoi-
chiometry, and fraction addition. The domains as well as the
setup in each domain vary from one to another. This ensures
that the experiment tests the generality of the proposed ap-
proach.

In algebra, we analyzed data from 71 students who used an
Carnegie Learning Algebra I Tutor unit on equation solving.
The students were typical students at a vocational-technical
school in a rural/suburban area outside of Pittsburgh, PA. A

896



Table 1: AIC on SimStudent-Generated models and Human-Generated Models.
Human-Generated
Model

SimStudent-Discovered
Model

Algebra 6534.07 6448.1
Stoichiometry 17380.9 17218.5
Fraction Addition 2112.82 2202.02

total of 19,683 transactions between the students and the Al-
gebra Tutor were recorded, where each transaction represents
an attempt or inquiry made by the student, and the feedback
given by the tutor. We selected 40 problems that were used to
teach students as the training set for SimStudent.

The stoichiometry dataset contains data from 3 studies.
510 high school and college students participated in the stud-
ies, and generated 172,060 transactions. Instructional videos
on stoichiometry were intermingled with the problems. In-
structional materials were provided via the Internet. It took
students from 1.5 hours to 6.5 hours to complete the study. 8
problems in this study were used in training SimStudent.

In fraction addition, we analyzed data from 24 students
who used an intelligent tutoring system as part of a larger
study. Approximately half of the students were recruited
from local schools. Students were given immediate correct-
ness feedback on each step, and were offered on-demand text
hints. Each interaction was logged through Datashop, and
the 24 students yielded 4558 transactions. SimStudent was
tutored with 20 problems from this study.

Measurements
We used Akaike Information Criterion (AIC) and a 10-fold
cross validation (CV) to test how well the generated model
predicts the correctness of human student behavior. AIC mea-
sures the fit to student data and penalizes over-fitting. We did
not use BIC (Bayesian Information Criterion) as the fit met-
ric, because based on past analysis across multiple DataShop
datasets, it has been shown that AIC is a better predictor of
cross validation than BIC is. The cross validation was per-
formed over ten folds with the constraint that each of the
training sets must have data points for each student and KC.
We reported the root mean-squared error (RMSE) averaged
over ten test sets.

Results
As shown in Table 1 and Table 2, in algebra and stoichiom-
etry, the SimStudent-discovered models that have lower
AICs and RMSEs (p < 0.001) than the human-generated
models. This means the SimStudent models better match
the data (without over-fitting). However, in fraction addi-
tion, the human-generated model performs better than the
SimStudent-discovered ones.

A closer look at the models reveals that in algebra, the
SimStudent-discovered model splits some of the KCs in the
human-generated model into finer grain sizes. For exam-
ple, SimStudent creates two KCs for division, one for prob-
lems of the form Nv = N, and one for problems of the form

−v = N. This is caused by the different parse trees for Nv and
-v as shown in Figure 2. Due to this split, the SimStudent-
generated model predicts a higher error rate on problems
of the form −v = N than problems of the form Nv = N.
It matches with human student error rates better than the
human-generated model, which does not differentiate prob-
lems of these two forms.

In stoichiometry, instead of finding splits of existing KCs,
SimStudent discovers new KCs that overlap with the origi-
nal KCs. There are three basic sets of skills in this domain.
Within each set, the human-generated KCs are assigned based
on the location of the input, while the SimStudent-discovered
KCs are associated with the goals of the input. Hence, sup-
pose in two different problems, there are two inputs at the
same location in the interface. If they are associated with
different goals, the human-generated model will not differen-
tiate them, while the SimStudent-discovered model will put
them into two KCs. This indicates that SimStudent not only
splits existing KCs, but also discovers totally different KCs.

The fraction addition problem set consists of three types
of problems in increasing difficulty: 1) addends have equal
denominators; 2) the denominator of one addend is a mul-
tiple of the other; 3) addends have unrelated denominators.
The human-generated model differentiates these three types
of problems in calculating the common denominators and the
scaled numerators, and ends up having six KCs. SimStudent,
however, associates all of the numerator scaling steps with
one KC and associates the common denominator calculations
with two KCs. In other words, in this domain, SimStudent
partially recovered three out of six KCs, but did not further
split them into six KCs. SimStudent did discover the other
three KCs, but eventually removed them when they were su-
perseded by more generalized rules. This bias towards more
general production rules over specific ones regardless of com-
putational cost appears to be a limitation of SimStudent as
a cognitive model. Perhaps if we had let SimStudent keep
a utility function for each production rule and retrieve them
based on the computational cost, last retrieval time, and cor-
rectness, SimStudent may have arrived at all six KCs in the
human-generated model.

FBI Analysis and LFA on Fraction Addition
The differences of AIC and RMSE between the models are
small. This is partially because the difference between the
models is small. FBI, a recently developed technique, is de-
signed to analyze which of these differences improves the
model, and by how much. We applied FBI to the SimStudent
and human-generated models in each domain to determine

897



Table 2: CV RMSE on SimStudent-Generated models and Human-Generated Models.
Human-Generated
Model

SimStudent-Discovered
Model

Algebra 0.4024 0.3999
Stoichiometry 0.3501 0.3488
Fraction Addition 0.3232 0.3343

why the SimStudent models are better in two of the three
cases. In the analysis, we set the human-generated models
as the base.

FBI shows that in algebra, splitting “divide” reduces the
RMSE of those steps by 1.02%. Further, splitting subtraction
and addition decreases the RMSE of those steps by 3.78%
and 3.10%, respectively. This also indicates that SimStudent
is able to discover KCs of finer grain sizes that match with
human data well.

The stoichiometry results are different. SimStudent dis-
covered new KCs that were not part of any existing KCs.
Given the 40 KCs in the human-generated model, SimStu-
dent improved 26 of them. The biggest improvement is on
skill molecular weight (4.60%), since there are sometimes
more than one skill applicable to the same step. The human-
generated model misses the additional skill, while the Sim-
Student model successfully captures both skills.

As described previously, SimStudent did not differenti-
ate the numerator-scaling and common-denominator steps by
problem type. This hurts the RMSE of the associated KCs in
the SimStudent-generated model. Nevertheless, SimStudent
considers finding the common denominator to be a different
KC than copying it to the second converted addend. This
split decreases by 7.43% for problems with unrelated denom-
inators, and and by 0.12% for denominator steps of problems
where one addend denominator was a multiple of the other.

Given the above results, we carried out a third study on
fraction addition to test that whether the new KCs created
by SimStudent can be used to discover better cognitive mod-
els. We used LFA to discover cognitive models given two
sets of factors. The baseline LFA model was generated based
on the factors (KCs) in the human-generated model. The
other LFA model was discovered using both the factors (KCs)
in the human-generated model and those in the SimStudent-
generated model. Both LFA models were better than the orig-
inal human-generated model in terms of AIC and RMSE.
Moreover, the LFA model using both human-generated and
SimStudent-generated factors had better AIC (2061.4) and
RMSE (0.3189) than the baseline LFA model (AIC: 2111.96,
RMSE 0.3226). In other words, with the help of SimStudent,
LFA discovered better models of human students.

Related Work
The objective of this paper is to evaluate the generality of the
proposed cognitive model discovery approach. Conati and
VanLehn (1999) also applied machine learning techniques
to generate cognitive models that fit with human data, but

they focused on assessing self-explanation instead of student
learning. Additionally, there has been considerable work on
comparing the quality of alternative cognitive models. LFA
automatically discovers cognitive models, but is limited to the
space of the human-provided factors. Other works such as
Pavlik, Cen, and Koedinger (2009); Villano (1992) are less
dependent on human labeling, but the models generated may
be hard to interpret. In contrast, the SimStudent approach has
the benefit that the acquired production rules have a precise
and usually straightforward interpretation.

Other systems (e.g., Tatsuoka, 1983; Barnes, 2005) use a
Q-matrix to find knowledge structure from student response
data. Baffes and Mooney (1996) apply theory refinement to
the problem of modeling incorrect student behavior. In ad-
dition, some research (e.g., Langley & Ohlsson, 1984) uses
artificial intelligent techniques to construct models that ex-
plain student’s behavior in math domains. Besides SimStu-
dent, there has also been considerable research on models
of high-level learning (e.g., Laird, Rosenbloom, & Newell,
1986; Anderson, 1993; Taatgen & Lee, 2003; Sun, 2007;
Tenenbaum & Griffiths, 2001; Schmid & Kitzelmann, 2011).
Other research on creating simulated students (e.g., Chan &
Chou, 1997) is also closely related to our work. Nevertheless,
none of the above approaches focused on modeling how rep-
resentation learning affects skill learning. Moreover, none of
them compared the system with human learning curve data.
To the best of our knowledge, our work is the first combina-
tion of the two whereby we use cognitive model evaluation
techniques to assess the quality of a simulated learner, and
demonstrate it across multiple domains.

Conclusion
In this paper, we evaluated the generality of an automatic cog-
nitive model discovery method, and carried out an in-depth
analysis to better understand the proposed approach. To avoid
over-generalization of KCs, we would like to further extend
the skill learning component to maintain utilities associated
with each production rule. Further, we plan to investigate dis-
covery of cognitive models for individual students, to provide
more personalized learning. Finally, we plan to further inte-
grate the perceptual learning component into skill learning,
so that the representation acquired by the learner is refined
during the process learning.

In the study, we show that the integration of the repre-
sentation learning component into skill learning is key to
the success of SimStudent in discovering cognitive mod-
els. Results indicate that in two out of three domains,

898



SimStudent-generated models are better predictors of hu-
man students’ learning performance than human-coded mod-
els. For the third domain, when given the SimStudent- and
human-generated KCs, LFA finds a better model than the
human-generated one. A closer analysis shows that SimStu-
dent is able to split existing KCs into finer grain sizes, dis-
cover new KCs, and uncover expert blind spots.

Acknowledgments
The authors would like to thank Hui Cheng for running the
experiments. This work was supported by the Pittsburgh Sci-
ence of Learning Center, NSF Grant #SBE-0836012.

References
Anderson, J. R. (1993). Rules of the Mind. Hillsdale, New

Jersey: Lawrence Erlbaum Associates.
Baffes, P., & Mooney, R. (1996). Refinement-based stu-

dent modeling and automated bug library construction.
Journal of Artificial Intelligence in Education, 7(1),
75–116.

Barnes, T. (2005). The Q-matrix method: Mining student re-
sponse data for knowledge. In Proceedings aaai work-
shop educational data mining (pp. 1–8). Pittsburgh,
PA.

Cen, H., Koedinger, K., & Junker, B. (2006). Learning fac-
tors analysis - a general method for cognitive model
evaluation and improvement. In Proceedings of the 8th
international conference on intelligent tutoring systems
(pp. 164–175).

Chan, T.-W., & Chou, C.-Y. (1997). Exploring the design
of computer supports for reciprocal tutoring. Interna-
tional Journal of Artificial Intelligence in Education, 8,
1–29.

Chase, W. G., & Simon, H. A. (1973, January). Perception
in chess. Cognitive Psychology, 4(1), 55–81.

Conati, C., & VanLehn, K. (1999). A student model to as-
sess self-explanation while learning from examples. In
Proceedings of the seventh international conference on
user modeling (pp. 303–305). Secaucus, NJ: Springer-
Verlag New York, Inc.

Koedinger, K. R., & MacLaren, B. A. (1997). Implicit
strategies and errors in an improved model of early
algebra problem solving. In Proceedings of the nine-
teenth annual conference of the cognitive science soci-
ety (p. 382-387). Hillsdale, NJ: Erlbaum.

Koedinger, K. R., & McLaughlin, E. A. (2010). Seeing
language learning inside the math: Cognitive analysis
yields transfer. In Proceedings of the 32nd annual con-
ference of the cognitive science society (pp. 471–476).
Austin, TX.

Koedinger, K. R., McLaughlin, E. A., & Stamper, J. C.
(2012). Automated student model improvement. In
Proceedings of the 5th international conference on ed-
ucational data mining (p. 17-24). Chania, Greece.

Laird, J. E., Rosenbloom, P. S., & Newell, A. (1986). Chunk-

ing in soar: The anatomy of a general learning mecha-
nism. Machine Learning, 1, 11–46.

Langley, P., & Ohlsson, S. (1984). Automated cognitive
modeling. In Proceedings of the fourth national con-
ference on artificial intelligence (p. 193-197). Austin,
TX: Morgan Kaufmann.

Lau, T., & Weld, D. S. (1998). Programming by demon-
stration: An inductive learning formulation. In Pro-
ceedings of the 1999 international conference on intel-
ligence user interfaces (pp. 145–152).

Li, N., Cohen, W. W., & Koedinger, K. R. (2012). Efficient
cross-domain learning of complex skills. In Proceed-
ings of the eleventh international conference on intelli-
gent tutoring systems (pp. 493–498). Berlin: Springer-
Verlag.

Li, N., Matsuda, N., Cohen, W. W., & Koedinger, K. R.
(2011). A machine learning approach for automatic
student model discovery. In Proceedings of the 4th
international conference on educational data mining,
eindhoven (p. 31-40).

Matsuda, N., Lee, A., Cohen, W. W., & Koedinger, K. R.
(2009). A computational model of how learner errors
arise from weak prior knowledge. In Proceedings of
conference of the cognitive science society.

Mitchell, T. (1982). Generalization as search. Artificial In-
telligence, 18(2), 203–226.

Muggleton, S., & Raedt, L. de. (1994). Inductive logic pro-
gramming: Theory and methods. Journal of Logic Pro-
gramming, 19, 629–679.

Pavlik, P. I., Cen, H., & Koedinger, K. R. (2009). Learn-
ing Factors Transfer Analysis: Using Learning Curve
Analysis to Automatically Generate Domain Models.
In Proceedings of 2nd international conference on ed-
ucational data mining (pp. 121–130).

Quinlan, J. R. (1990). Learning logical definitions from rela-
tions. Mach. Learn., 5(3), 239–266.

Schmid, U., & Kitzelmann, E. (2011, September). Inductive
rule learning on the knowledge level. Cognitive System
Research, 12(3-4), 237–248.

Sun, R. (2007, September). Cognitive social simulation in-
corporating cognitive architectures. IEEE Intelligent
Systems, 22(5), 33–39.

Taatgen, N. A., & Lee, F. J. (2003). Production compilation:
A simple mechanism to model complex skill acquisi-
tion. Human Factors, 45(1), 61–75.

Tatsuoka, K. K. (1983). Rule space: An approach for deal-
ing with misconceptions based on item response the-
ory. Journal of Educational Measurement, 345-354.

Tenenbaum, J. B., & Griffiths, T. L. (2001). Generaliza-
tion, similarity, and bayesian inference. Behavioral and
Brain Sciences, 24, 629–640.

Villano, M. (1992). Probabilistic student models: Bayesian
belief networks and knowledge space theory. In Pro-
ceedings of the 2nd international conference on intelli-
gent tutoring systems (p. 491-498). Heidelberg.

899




