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Abstract

Access to phosphoproteins with stoichiometric and site-specific phosphorylation status is key for 

understanding the role of protein phosphorylation. Here we report an efficient method to generate 

pure, active phosphotyrosine-containing proteins by genetically encoding a stable phosphotyrosine 

analogue that is convertible into native phosphotyrosine. We demonstrate its general compatibility 

with proteins of various sizes, phosphotyrosine site and function, and reveal a possible negative 

regulation role of tyrosine phosphorylation in ubiquitination.

Protein phosphorylation is a major post-translational modification (PTM) that plays a pivotal 

role for signal transduction and in regulating cellular events1,2. In particular, 

phosphorylation of tyrosine is involved in many processes including cell proliferation, cell 

cycle progression, metabolic homeostasis, transcriptional activation, neural transmission, 

differentiation, development, and aging1,3. Conversely, dysfunction of tyrosine 

phosphorylation results in various diseases, most prominently in cancer4–6. Limited access 

to site-specifically phosphorylated proteins hampers the investigation of this major PTM in 

disease-relevant proteins7.
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Many methods have been developed to study protein phosphorylation. A generally useful 

approach is to substitute glutamate or aspartate for phosphoserine or phosphothreonine, 

despite the charge difference between carboxylate and phosphate mono-ester. A mimic of 

phosphotyrosine (pTyr) however is challenging since there are no negatively charged 

aromatic residues in the 20 amino acids. Proteins can be phosphorylated with kinases, but in 
vitro kinase phosphorylation has limited site-specificity and often results in sub-

stoichiometric phosphorylation8. To overcome this limitation, chemical approaches, 

including native chemical ligation, semisynthetic and cell-free methods, have been 

developed to introduce pTyr site selectively, but these methods are technically challenging 

and cannot be generally applied to all proteins9–13. Through the expansion of the genetic 

code14, a chemical analogue of pTyr has been incorporated into proteins in E. coli15, yet the 

analogue cannot faithfully mimic the phosphate group and its negative charges. Direct 

incorporation of phosphorylated amino acids in live cells also encounters multiple 

challenges16–20: the phosphorylated amino acid enters cells poorly due to its negative 

charge, is unstable inside cells, and is incompatible with the elongation factor Tu (EF-Tu) 

for translation. Despite feeding excessive amount of phosphorylated amino acids to cells, 

engineering EF-Tu, and reducing cellular phosphatase activity, these challenges still result in 

low incorporation efficiency and other amino acids at the phosphorylation site. To date, there 

is no general, efficient system available to prepare proteins with native pTyr introduced site-

specifically.

Here we developed an efficient and easily accessible method for the production of pure 

tyrosine-phosphorylated proteins. Our strategy circumvents the aforementioned critical 

problems: A charge-neutral and stable phosphotyrosine analogue was genetically 

incorporated into proteins at the target phosphorylation site through the expansion of the 

genetic code, which was subsequently converted into a native pTyr by a facile pH shift (Fig. 

1a). Using this approach we prepared multiple proteins with pTyr site-specifically 

introduced at the phosphorylation site, with good yields and without disrupting protein 

activity. We also investigated the effect of tyrosine phosphorylation on ubiquitin (Ub) 

structure and function, revealing a possible negative regulatory role of Ub phosphorylation.

Because the phosphate group of pTyr is labile to cellular phosphatases and its negative 

charge limits cell permeability, we genetically encoded the pTyr analogue 1 containing a 

phosphoramidate group (Fig. 1a), which is stable, neutral, and can be cleaved under acidic 

conditions to generate the native pTyr21. We synthesized unnatural amino acid (Uaa) 1 in 

82% yield and high purity without the need for column chromatography (Supplementary 

Results, Supplementary Note 1). To optimize a cleavage condition suitable for proteins, we 

used low concentrations of HCl to remove the protecting group in 1. Already, at 0.04 M HCl 

(pH ~2), the protecting group was cleaved completely within 36 h at room temperature to 

generate pTyr (Supplementary Fig. 1).

To genetically encode Uaa 1 in E. coli, we evolved the Methanosarcina mazei /

PylRS pair22 to be specific for this Uaa. A mutant library of PylRS was generated with 

residues 302, 309, 322, 346, 348, 401, 417, and 419 mutated as previously described23,24. 

From this library we identified a clone showing phenotypic dependence on Uaa 1 
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(Supplementary Fig. 2), which harbored a mutant (named MmNpYRS) containing Ser302, 

Met309, Leu322, Ala346, Gly348, Val401, Thr417, and Gly419.

To investigate the efficiency and fidelity of MmNpYRS to incorporate 1, we expressed in E. 
coli a gene for Xenopus calmodulin (CaM) that contained an amber codon TAG at site 

Met76 and a C-terminal His×6 tag, together with the /MmNpYRS. CaM consists 

mainly of α-helices and has low molecular weight (18 kDa) to facilitate MS characterization 

with high accuracy. Full-length CaM was obtained in good yield (ca. 1.0 mg L−1) in the 

presence of Uaa 1 (1 mM), but was undetectable in its absence (Supplementary Fig. 3). 

Analysis of the expressed CaM by electrospray ionization ion trap mass spectrometry (ESI-

MS) confirmed incorporation of 1 into CaM (Fig. 1b). An observed peak at 18,103.8 Da 

corresponds to intact CaM containing Uaa 1 at site 76 (expected [M+H]+ = 18,104.0 Da); a 

second peak corresponds to the Uaa 1-containing CaM lacking the initiator Met (expected 

[M-Met+H]+ = 17972.8 Da, measured 17972.7 Da). No peaks were observed corresponding 

to CaM containing a natural amino acid at the TAG site. In addition, the high fidelity of 

MmNpYRS was also confirmed by incorporating 1 into another protein, myoglobin 

(Supplementary Fig. 4). In contrast to the need of an engineered EF-Tu for incorporating 

phosphoserine16, incorporation of 1 into proteins in E. coli suggests that WT E. coli EF-Tu 

is compatible with Uaa .

To convert 1 into pTyr within proteins, we treated CaM solution (0.6 mg mL−1) with HCl 

(final conc. 0.4 M, pH~1) for 48 h at 4 °C. The sample was lyophilized to remove the acid 

and then dissolved in water. ESI-MS measurements clearly demonstrated the removal of the 

protecting group and formation of pTyr within CaM: A peak at 18,049.2 Da (Fig. 1c) 

corresponds to intact CaM with pTyr at site 76 (pYCaM, expected [M+H]+ = 18,049.9 Da). 

A second peak corresponds to the pTyr-containing CaM lacking the initiator Met (expected 

[M–Met+H]+ = 17,918.7 Da, measured 17,918.2 Da).

We next introduced pTyr into green fluorescent protein (GFP), which has a different 

secondary structure β-sheet from the largely helical CaM. A GFP gene containing a TAG 

codon at Tyr182 and a C-terminal His×6 tag was expressed with the /MmNpYRS 

in E. coli. The mutant GFP was purified, yielding 1.25 mg L−1, corresponding to 31% of 

WT GFP purified under the same conditions. HCl (final conc. 0.4 M, pH~1) was added to a 

diluted (0.1 mg mL−1) solution of the mutant GFP; the mixture was incubated at 4 °C for 16 

h, and then readjusted to pH 7.5 with NaOH. Western-blot analysis using anti-His×6 

antibody showed that full-length GFP was expressed only in the presence of Uaa 1 

(Supplementary Fig. 5), confirming specific incorporation of Uaa 1 by the /

MmNpYRS. The GFP band upshifted after HCl treatment, suggesting that deprotection 

generated pTyr whose negative charge slowed phosphoprotein movement in SDS-PAGE. 

The pTyr-specific antibody detected a band in the HCl-treated GFP only, at the position co-

localizing with the up-shifted GFP band in the anti-His×6 blot, indicating the conversion of 

Uaa 1 into pTyr. The pTyr conversion efficiency was ~90% based on band intensities. Before 

and after acidic cleavage of Uaa 1, the GFP proteins were both green fluorescent 

(Supplementary Fig. 6), indicating that Uaa 1 and conversion into pTyr did not prevent GFP 
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from folding into the correct fluorescent structure. To maximize deprotection of Uaa 1, 

exposure time to HCl may depend on protein concentration and structure. While we found 

16 h sufficient for GFP and others (vide infra), CaM needed 48 h.

We next generated pTyr-containing ubiquitin (Ub) and investigated the impact of tyrosine 

phosphorylation on Ub conformation and function. While serine phosphorylation has been 

extensively studied for Ub, phosphorylation of Tyr59, the only tyrosine residue of WT Ub, 

has been exclusively observed in cancerous tissue though its biological relevance remains 

unknown25,26. In WT Ub, the hydroxyl of Tyr59 hydrogen bonds with the backbone amide 

of Glu51, forming a loop that is disrupted by mutation of Tyr5927. To provide direct 

evidence whether phosphorylation of Tyr59 alters the Tyr59–Glu51 loop in Ub and affects 

Ub function, we incorporated Uaa 1 into Ub at site 59 and generated phosphotyrosine by 

acid cleavage followed by lyophilization. SDS-PAGE and MS confirmed the successful 

preparation of Tyr59-phosphorylated Ub (Supplementary Fig. 7). ESI-MS analysis of acid-

treated Ub showed a peak at 9468.1774 Da, corresponding to intact Ub with pTyr at site 59 

lacking the initial methionine (expected [M+H–Met]+ = 9468.6856 Da); trypsin digest and 

MS/MS sequencing of this protein confirmed that pTyr was incorporated at the TAG site 59.

To examine a potential conformational change induced by pTyr59, we measured the HSQC 

NMR spectra of WT Ub and the Tyr59-phosphorylated Ub (pTyrUb). The signals of Tyr59 

and Glu51 as well as other relevant amino acids in the loop shifted dramatically in pTyrUb 

compared to WT Ub (Fig. 2a). Most notably, the Glu51 signal showed a similar large shift as 

observed previously in the Y59F Ub mutant27. In addition, most of the assigned and shifted 

residues were located in or near the Y59–E51 loop (Fig. 2b). To exclude possible shifts 

brought by the acid treatment, we also subjected the WT Ub to the same treatment and 

detected no difference in the HSQC NMR spectra before and after treatment (Supplementary 

Fig. 8). These NMR data thus indicate that the Y59–E51 loop was indeed altered after 

phosphorylation of Tyr59.

To investigate whether pTyr59 would interfere with thioester formation between Ub and E2 

conjugating enzyme, we studied the conjugation of pTyrUb to the E2 enzyme UBE2D3. In 

contrast to Ser65-phosphorylated Ub, which exhibits enhanced Ub–E2 conjugation18,26, we 

found that pTyrUb dramatically decreased the Ub–E2 conjugation (Fig. 2c). To exclude any 

potential interference from the acid treatment, we subjected WT Ub to the same treatment as 

the Uaa 1-incorporated Ub, and found that the treated WT Ub still conjugated to UBE2D3 

(Supplementary Fig. 9). Therefore, Tyr59 phosphorylation altered Ub conformation and 

decreased its ability to conjugate with the E2 enzyme UBE2D3, suggesting that Tyr59 

phosphorylation on Ub could play a negative regulatory role in the ubiquitination process.

In summary, we have developed a new method to prepare phosphorylated proteins with 

phosphotyrosine site-specifically introduced in high quality and good yields. Combining 

genetic incorporation with facile pH conversion, this method enables phosphotyrosine to be 

introduced in different secondary structures of various proteins with broad compatibility of 

protein type, size, and phosphorylation site. The method does, however, require the target 

protein to withstand low acid treatment and to refold into the functional state upon acid 

removal. As the tRNAPyl/MmNpYRS was derived from the tRNAPyl/PylRS, which is 
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orthogonal in prokaryotic and eukaryotic cells, we expect that the tRNAPyl/MmNpYRS can 

also be used in eukaryotic cells for preparing proteins difficult to express in bacteria. The 

technical simplicity of this approach should allow general adoption, affording a robust 

method to facilitate the investigation of tyrosine phosphorylation in biology and diseases.

Online Methods

General Methods

(S)-2-(((9H-fluoren-9-yl)methoxy)carbonylamino)-3-(4(bis(dimethylamino)phosphoryloxy) 

phenyl)propanoic acid (Fmoc-Tyr(PO(NMe2)2) was obtained from EMD Millipore. All 

other chemicals were obtained from commercial sources and used without further 

purification. Mass spectrometric analysis of proteins was performed by Jadebio (San Diego) 

using methods previously described28,29. LC-MS measurement of Uaa 1 was performed on 

AGILENT 1200 series LC system in combination with an Advion Expression CMS mass 

spectrometer. Oligonucleotides and primers were obtained from IDT. His-tag antibody 

(HRP) was from Invitrogen (MA-1–21315-HRP), Phospho-Tyrosine Mouse mAb (P-

Tyr-100) was from Cell Signaling Technology (9411S) and IgG mouse secondary antibodies 

were from Santa Cruz Biotechnology (sc-2314). Ub-antibody (MAB1510) was from 

Millipore. All antibodies were used in a dilution 1:2000. NMR spectra of Uaa 1 were 

recorded on Bruker 300 MHz. 1H-15N HSQC spectra for 15N labeled WT and pTyr59 

ubiquitin were acquired on a Bruker 800 MHz spectrometer and processed with Bruker 

Topspin. Samples were suspended at a concentration of 100 μM in 20 mM Na-phosphate 

(pH 6.0) 10% D2O/90% H2O buffer in a total volume of 300 μL. For all experiments, sample 

temperature was set to 300.7 K. Spectra and assignments were carried out in CcpNMR 

analysis by comparison to a standard assigned by HNCACB experiments. Chemical shift 

differences between WT and pTyr59 were calculated by taking the root-mean-square of 

differences for a given residue.

Cleavage of the phosphoramidate group in Uaa 1

To a solution of 1 (1 mg mL−1) in water was added hydrochloric acid to reach a final 

concentration of 0.04 M HCl (pH~2). The reaction mixture was incubated at 25°C and the 

reaction was followed over time by successive LC-MS measurements at 1 h, 18 h and 36 h. 

After 36 h, ~95% of pTyr 2 had been formed confirming that even very low hydrochloric 

acid concentrations allowed cleaving the phosphoramidate group in 1.

Selection for MmNpYRS

The library CRIZ previously designed for bulky amino acids was electroporated into 

DH10βT1 competent cells harboring pREP selection plasmid. Selection was carried out on 

GMM-L plates containing 12.5 μg mL−1 tetracycline, 50 μg mL−1 kanamycin, 100 μg mL−1 

chloramphenicol, and 1 mM Uaa 1 as previously described23,24. Single green colonies were 

picked and re-streaked on LB/tetracycline/kanamycine and on LB/tetracycline/kanamycine/

chloramphenicol. One clone (B1) was sensitive to chloramphenicol selection in the absence 

of the Uaa on the LB/T/K/Cm plate, but was viable and nonfluorescent on the LB/T/K plate. 

This clone was characterized in detail and named as MmNpYRS.
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Genetic encoding of Uaa 1 into proteins

To genetically incorporate Uaa 1 into proteins (calmodulin, myoglobin, GFP, ubiquitin) in E. 
coli, BL21 cells were transformed with corresponding plasmids (pTak-CaM76TAG, pTak-

Myo4TAG, pTak-GFP182TAG, or pTak-Ub59TAG with pBK-MmNpYRS). All the pTak 

plasmids22 have a His-tag at the C-terminus of the target protein. For the E2 charging assay, 

N-terminal His-tagged Ub was expressed. One colony was picked and grown overnight in 5 

mL 2xYT supplemented with 30 μg mL−1 chloramphenicol and 50 μg mL−1 kanamycin at 

37 °C. This starter culture was used to inoculate 100 mL of 2xYT containing antibiotics. 

When OD600 reached 0.5, 1 mM of Uaa 1 was added, and cells were induced for protein 

expression by adding 0.5 μM IPTG. After 16 h, cells were lysed and sonicated in 5 mL lysis 

buffer (50 mM TrisHCl, pH 8.0, 500 mM NaCl, 20 mM imidazole pH 8.0, 1% (v/v) Tween 

20, 10% (v/v) glycerol and 0.5 mg mL−1 lysozyme). Lysed cells were centrifuged for 30 min 

at 14,000 g, and clarified supernatant was passed through a 0.1 mL column of Ni2+-NTA 

agarose resin (Qiagen). The column was washed with 10 column volumes of wash buffer 

(lysis buffer without Tween 20 and lysozyme). Protein was eluted with 400 μL of elution 

buffer (wash buffer containing 250 mM imidazole, pH 8.0). The sample was concentrated 

using a Microcon Ultracel YM-10 (CaM, myoglobin, GFP) and YM-3 (ubiquitin) spin 

column (Millipore) yielding concentrations of 1.0 mg L−1 of CaM, 1.25 mg mL−1 

myoglobin, 1.25 mg mL−1 GFP, and 1.75 mg L−1 ubiquitin. SDS-PAGE was 15% 

polyacrylamide, and His-tag or pTyr specific antibodies were used for immunoblotting with 

a dilution of 1:2000.

General procedures for acidic cleavage and formation of pTyr in proteins

To a diluted protein solution (0.1–1.0 mg mL−1) in Tris buffer (50 mM Tris, 150 mM NaCl, 

pH 7.5) was added HCl (4 M) to reach a final HCl concentration of 0.4 M and a pH ~1–2, 

respectively. Protein solutions of myoglobin, GFP, ubiquitin were incubated at 4°C for 16 h. 

Protein solution of CaM was incubated at 4°C for 48 h. For Western blot analysis, the pH of 

the samples was readjusted to pH 7.5 using NaOH (0.5 M). Subsequently, samples were 

loaded onto 15% gel for SDS-PAGE, blotted, and visualized using His-tag or pTyr specific 

antibodies. Alternatively, HCl was removed by lyophilization of the reaction mixture. For 

recording MS spectra of CaM, HCl was removed by lyophilization and samples were re-

dissolved in water. In addition, either C-terminally or N-terminally His-tagged Ub were 

freeze dried after HCl treatment and re-dissolved in water.

15N labeling and ubiquitin expression (C-terminal His-tagged)

To prepare 15N labeled ubiquitin with pTyr at position 59 in E. coli, BL21 cells were 

transformed with plasmids pTak-Ub59TAG and pBK-MmNpYRS. One colony was picked 

and grown overnight in 5 mL 2xYT supplemented with 30 μg mL−1 chloramphenicol and 50 

μg mL−1 kanamycin at 37 °C. This starter culture was used to inoculate 1400 mL of 2xYT 

containing antibiotics. When OD600 reached 0.6, cells were centrifuged for 5 min at 5,000 g 

and resuspended in 700 mL M9 media with antibiotics, 1 mM Uaa 1 and induced for protein 

expression by adding 0.5 μM IPTG. After 6 h, cells were lysed and sonicated in 10 mL lysis 

buffer (50 mM TrisHCl, pH 8.0, 500 mM NaCl, 20 mM imidazole pH 8.0, 1% (v/v) Tween 

20, 10% (v/v) glycerol and 0.5 mg mL−1 lysozyme). Lysed cells were centrifuged for 50 min 
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at 14,000 g, and clarified supernatant was passed through a 1.4 mL column of Ni2+-NTA 

agarose resin (Qiagen). The column was washed with 10 column volumes of wash buffer 

(lysis buffer without Tween 20 and lysozyme). Protein was eluted with 1400 μL of elution 

buffer (wash buffer containing 250 mM imidazole, pH 8.0). The sample was concentrated 

using a Microcon Ultracel YM-3 spin column (Millipore). After diluting to a concentration 

of 0.5 mg mL−1 in Tris-buffer (50 mM Tris, 150 mM NaCl, pH 7.5), the ubiquitin was 

treated with HCl (0.4 N) o/n, freeze dried and the buffer was exchanged to phosphate buffer 

(pH 5.8) yielding 1 mg mL−1 labeled ubiquitin pTyr59. Labeled WT ubiquitin was prepared 

accordingly. In brief, plasmid pTakWTUb was electroporated into BL21 cells and one 

colony was picked and grown overnight in 5 mL 2xYT supplemented with 30 μg mL−1 

chloramphenicol at 37 °C. This starter culture was used to inoculate 600 mL of 2xYT 

containing antibiotic. When OD600 reached 0.6, cells were centrifuged for 5 min at 5,000 g 

and resuspended in 300 mL M9 media with antibiotic and induced for protein expression by 

adding 0.5 μM IPTG. After 6 h, cells were lysed and sonicated in 10 mL lysis buffer (50 mM 

TrisHCl, pH 8.0, 500 mM NaCl, 20 mM imidazole pH 8.0, 1% (v/v) Tween 20, 10% (v/v) 

glycerol and 0.5 mg mL−1 lysozyme). Lysed cells were centrifuged for 50 min at 14,000 g, 

and clarified supernatant was passed through a 0.6 mL column of Ni2+-NTA agarose resin 

(Qiagen). The column was washed with 10 column volumes of wash buffer (lysis buffer 

without Tween 20 and lysozyme). Protein was eluted with 600 μL of elution buffer (wash 

buffer containing 250 mM imidazole, pH 8.0) yielding 15 mg mL−1 WT ubiquitin after 

buffer was exchanged to phosphate buffer (pH 5.8). As a control, we also treated the WT 

ubiquitin with hydrochloric acid (0.4 N) for 16 h, freeze dried the sample, re-dissolved in 

buffer and measured HSQC NMR.

Ubiquitin expression (N-terminal His-tagged)

To genetically incorporate Uaa 1 into ubiquitin in E. coli, BL21 cells were transformed with 

plasmids pTak-Ub59TAG_N-His and pBK-MmNpYRS. One colony was picked and grown 

overnight in 5 mL 2xYT supplemented with 30 μg mL−1 chloramphenicol and 50 μg mL−1 

kanamycin at 37 °C. This starter culture was used to inoculate 200 mL of 2xYT containing 

antibiotics. When OD600 reached 0.5, 1 mM of Uaa 1 was added, and cells were induced for 

protein expression by adding 0.5 μM IPTG. After 3 h, cells were lysed and sonicated in 10 

mL lysis buffer (50 mM TrisHCl, pH 8.0, 500 mM NaCl, 20 mM imidazole pH 8.0, 1% 

(v/v) Tween 20, 10% (v/v) glycerol and 0.5 mg mL−1 lysozyme). Lysed cells were 

centrifuged for 50 min at 14,000 g, and clarified supernatant was passed through a 0.2 mL 

column of Ni2+-NTA agarose resin (Qiagen). The column was washed with 10 column 

volumes of wash buffer (lysis buffer without Tween 20 and lysozyme). Protein was eluted 

with 400 μL of elution buffer (wash buffer containing 250 mM imidazole, pH 8.0). The 

sample was concentrated using a Microcon Ultracel YM-3 spin column (Millipore) yielding 

1.0 mg L−1 of Ub. Buffer was exchanged to Tris-buffer (50 mM Tris, 150 mM NaCl, pH 7.5) 

before HCl treatment. Trypsin digest and MS/MS sequencing confirmed the pTyr at 

appropriate site.

E2 charging assay

Human E1 (UbE1) was obtained from Fisher Scientific (part number E304050). UBE2D3 

(from addgene 15784) was prepared by standard cloning procedures with His-tag. Reaction 
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mixtures in Tris-buffer (50 mM Tris, 150 mM NaCl, pH 7.5) contained UBE1 (0.5 μM), 

UBE2D3 (2 μM), MgCl2 (10 mM), ATP (10 mM) and the pTyrUb (10 μM) or WTUb (10 

μM) at a total volume of 40 μL. As negative control, the same reaction was carried out 

without ATP. The mixture was incubated at 37 °C for 20 h. For SDS-PAGE, to 8 μL of each 

reaction 2 μL of non-reducing Lämmli buffer (Bio-Rad) was added, loaded onto a 15% SDS 

gel and stained with coomassie. For Western blot 1 μL of each reaction mixture was diluted 

with 5 μL Tris and 1.5 μL of non-reducing Lämmli buffer and loaded on 15% SDS gel, 

transferred to a membrane and visualized with His-tag (HRP) antibody. Subsequently, the 

membrane was stripped under mild conditions and visualized with anti-Ub (mouse) and 

IGg-mouse antibody in 1:2000 dilution. In parallel, sample were treated at 100 °C with 

reducing Laemmli buffer containing 2-mercaptoethanol, loaded onto SDS gel, transferred 

and immunoblotted with His-tag (HRP) antibody in 1:2000 dilution. In addition, control 

experiments were conducted to exclude any interference of the E2 charging assay with acid 

treatment. WT ubiquitin in Tris-buffer (50 mM Tris, 150 mM NaCl, pH 7.5) was diluted to 

0.6 mg mL−1 and treated with hydrochloric acid (0.4 N) at 4 °C for 16 h. The sample was 

freeze fried and reconstituted with water. Western blot immunoblotted with His-tag (HRP) 

antibody shows that the Ub-E2 thioester is formed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Site-specific incorporation of phosphotyrosine into proteins
(a) Genetic encoding of the stable and neutral phosphotyrosine analogue 1 into proteins and 

subsequent deprotection results in site-specific formation of a native phosphotyrosine. (b) 

ESI-MS spectrum of CaM confirming the incorporation of Uaa 1 at site 76. (c) ESI-MS 

spectrum of CaM protein after HCl treatment confirming the conversion of Uaa 1 into 

phosphotyrosine.
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Figure 2. Phosphorylation of Tyr59 in Ub impacts its conformation and function
(a) Overlay of 1H–15N HSQC spectra for WT Ub (black contours) and pTyr59 Ub (magenta 

contours). The amides located in the Lys48–Tyr59 loop of Ub are labeled. The resonance for 

the Glu51 shift is indicated in red. (b) Heatmap indicating residues shifted due to 

phosphorylation of Tyr59 in Ub. White contours, residues not assigned; black contours, 

residues with no shift; blue contours, residues that shifted. Tyr59 and Glu51 in the loop are 

shown in stick. (c) E2 charging is negatively regulated by phosphorylation of Tyr59 in Ub. 

SDS-PAGE of the E2-Ub conjugation assay showed that pTyrUb did not form the E2-Ub 

thioester while WT Ub did (red arrow), which was also confirmed by corresponding Western 

blots immunoblotted (IB) with His-tag antibody and Ub-antibody. All samples were loaded 

using non-reducing buffer to preserve the E2-Ub thioester linkage. In contrast, when the 

conjugated samples were treated with 2-mercaptoethanol under reducing conditions, the E2-

Ub thioester is unstable and the corresponding E2-Ub band disappeared in the Western blot 

(Supplementary Fig. 9), supporting its identity of E2-Ub.
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