UCLA UCLA Previously Published Works

Title

Groups and fields with NTP 2 \operatorname {NTP}_{2}

Permalink

https://escholarship.org/uc/item/2663370f

Journal

Proceedings of the American Mathematical Society, 143(1)

ISSN 0002-9939

Authors

Chernikov, Artem Kaplan, Itay Simon, Pierre

Publication Date

2014-08-19

DOI

10.1090/s0002-9939-2014-12229-5

Peer reviewed

GROUPS AND FIELDS WITH NTP₂

ARTEM CHERNIKOV, ITAY KAPLAN AND PIERRE SIMON

ABSTRACT. NTP₂ is a large class of first-order theories defined by Shelah and generalizing simple and NIP theories. Algebraic examples of NTP₂ structures are given by ultra-products of *p*-adics and certain valued difference fields (such as a non-standard Frobenius automorphism living on an algebraically closed valued field of characteristic 0). In this note we present some results on groups and fields definable in NTP₂ structures. Most importantly, we isolate a chain condition for definable normal subgroups and use it to show that any NTP₂ field has only finitely many Artin-Schreier extensions. We also discuss a stronger chain condition coming from imposing bounds on burden of the theory (an appropriate analogue of weight), and show that every strongly dependent valued field is Kaplansky.

1. INTRODUCTION

The class of NTP₂ theories (i.e. theories without the tree property of the second kind) was introduced by Shelah [She80, She90]. It generalizes both simple and NIP theories and turns out to be a good context for the study of forking and dividing, even if one is only interested in NIP theories: in [CK12, Che12, BC12] it is demonstrated that the theory of forking in simple theories [Kim96] can be viewed as a special case of the theory of forking in NTP₂ theories over an extension base.

What are the known algebraic examples of NTP_2 theories?

Fact 1.1. [Che12]Let $\bar{K} = (K, \Gamma, k, v, ac)$ be a Henselian valued field of equicharacteristic 0 in the Denef-Pas language. Assume that k is NTP₂ (respectively, Γ and k are strong, of finite burden — see Section 4). Then \bar{K} is NTP₂ (respectively strong, of finite burden).

Example 1.2. Let \mathfrak{U} be a non-principal ultra-filter on the set of prime numbers P. Then:

- (1) $\bar{K} = \prod_{p \in P} \mathbb{Q}_p / \mathfrak{U}$ is NTP₂. This follows from Fact 1.1 because:
 - The residue field is pseudo-finite, so of burden 1 (as burden is bounded by weight in a simple theory by [Adl07]).
 - The value group is a Z-group, thus dp-minimal, and burden equals dp-rank in NIP theories by [Adl07].

We remark that, while \mathbb{Q}_p is dp-minimal for each p by [DGL11], the field \overline{K} is neither simple nor NIP even in the pure ring language (as the valuation ring is definable by [Ax65]).

The first author was partially supported by the [European Community's] Seventh Framework Programme [FP7/2007-2013] under grant agreement n° 238381.

The second author was supported by SFB 878.

(2) $K = \prod_{p \in P} F_p((t)) /\mathfrak{U}$ is NTP₂, of finite burden, as it has the same theory as the previous example by [AK65] (while each of $F_p((t))$ has TP₂ by Corollary 3.3).

Fact 1.3. [CH12] Let $\overline{K} = (K, \Gamma, k, v, ac, \sigma)$ be a σ -Henselian contractive valued difference field of equicharacteristic 0, i.e. σ is an automorphism of the field Ksuch that for all $x \in K$ with v(x) > 0 we have $v(\sigma(x)) > n \cdot v(x)$ for all $n \in \omega$ (see [Azg10]). Assume that both (K, σ) and (Γ, σ) , with the naturally induced automorphisms, are NTP₂. Then \overline{K} is NTP₂.

Example 1.4. Let $(F_p, \Gamma, k, v, \sigma)$ be an algebraically closed valued field of characteristic p with σ interpreted as the Frobenius automorphism. Then $\prod_{p \in P} F_p/\mathfrak{U}$ is NTP₂. This case was studied by Hrushovski [Hru] and later by Durhan [Azg10]. It follows from [Hru] that the reduct to the field language is a model of ACFA, hence simple but not NIP. On the other hand this theory is not simple as the valuation group is definable.

Moreover, certain valued difference fields with a value preserving automorphism are NTP₂. Of course, any simple or NIP field is NTP₂, and there are further conjectural examples of pure NTP₂ fields such as bounded pseudo real closed or pseudo *p*-adically closed fields (see Section 5.1).

But what does knowing that a theory is NTP_2 tell us about properties of algebraic structures definable in it? In this note we show some initial implications. In Section 2 we isolate a chain condition for normal subgroups uniformly definable in an NTP_2 theory. In Section 3 we use it to demonstrate that every field definable in an NTP_2 theory has only finitely many Artin-Schreier extensions, generalizing some of the results of [KSW11]. In Section 4 we impose bounds on the burden, a quantitative refinement of NTP_2 similar to SU-rank in simple theories, and observe that some results for type-definable groups existing in the literature actually go through with a weaker assumption of bounded burden, e.g. every strong field is perfect, and every strongly dependent valued field is Kaplansky. The final section contains a discussion around the topics of the paper: we pose several conjectures about new possible examples (and non-examples) of NTP_2 fields and about definable envelopes of nilpotent/soluble groups in NTP_2 theories. We also remark how the stabilizer theorem of Hrushovski from [Hru12] could be combined with properties of forking established in [CK12] and [BC12] in the NTP_2 context.

We would like to thank Arno Fehm for his comments on Section 5.1 and Example 5.5. We would also like to that the anonymous referee for many useful remarks.

Preliminaries. Our notation is standard. As usual, we will be working in a monster model \mathfrak{C} of the theory under consideration. Let G be a group, and H a subgroup of G. We write $[G:H] < \infty$ to denote that the index of H in G is bounded, which in the case of definable groups means finite. We assume that all groups (and fields) are finitary — contained in some finite Cartesian product of the monster.

Definition 1.5. We recall that a formula $\varphi(x, y)$ has TP₂ if there are tuples $(a_{i,j})_{i,j\in\omega}$ and $k\in\omega$ such that:

- $\{\varphi(x, a_{i,j}) | j < \omega\}$ is k-inconsistent, for each $i \in \omega$,
- $\{\varphi(x, a_{i, f(i)}) | i < \omega\}$ is consistent for each $f : \omega \to \omega$.

A formula is NTP_2 otherwise, and a theory is called NTP_2 if no formula has TP_2 .

Fact 1.6. [Che12] *T* is NTP₂ if and only if every formula $\varphi(x, y)$ with |x| = 1 is NTP₂.

We note that every simple or NIP formula is NTP_2 . See [Che12] for more on NTP_2 theories.

2. Chain conditions for groups with NTP_2

Lemma 2.1. Let T be NTP₂, G a definable group and $(H_i)_{i\in\omega}$ a uniformly definable family of normal subgroups of G, with $H_i = \varphi(x, a_i)$. Let $H = \bigcap_{i\in\omega} H_i$ and $H_{\neq j} = \bigcap_{i\in\omega\setminus\{j\}} H_i$. Then there is some $i^* \in \omega$ such that $[H_{\neq i^*} : H]$ is finite.

Proof. Let $(H_i)_{i \in \omega}$ be given and assume that the conclusion fails. Then for each $i \in \omega$ we can find $(b_{i,j})_{j \in \omega}$ with $b_{i,j} \in H_{\neq i}$ and such that $(b_{i,j}H)_{j \in \omega}$ are pairwise different cosets in $H_{\neq i}$. We have:

- $b_{i,j}H_i \cap b_{i,k}H_i = \emptyset$ for $j \neq k \in \omega$ and every *i*.
- For every $f: \omega \to \omega$, the intersection $\bigcap_{i \in \omega} b_{i,f(i)} H_i$ is non-empty. Indeed, fix f, by compactness it is enough to check that $\bigcap_{i \leq n} b_{i,f(i)} H_i \neq \emptyset$ for every $n \in \omega$. Take $b = \prod_{i \leq n} b_{i,f(i)}$ (the order of the product does not matter). As $b_{i,f(i)} \in H_j$ for all $i \neq j$, it follows by normality that $b \in b_{i,f(i)} H_i$ for all $i \leq n$.

But then $\psi(x; y, z) = \exists w (\varphi(w, y) \land x = z \cdot w)$ has TP₂ as witnessed by the array $(c_{i,j})_{i,j\in\omega}$ with $c_{i,j} = a_i \hat{b}_{i,j}$.

Problem 2.2. Is the same result true without the normality assumption? See also Theorem 4.12.

Corollary 2.3. Let T be NTP₂ and suppose that G is a definable group. Then for every $\varphi(x, y)$ there are $k_{\varphi}, n_{\varphi} \in \omega$ such that:

• If $(\varphi(x, a_i))_{i < K}$ is a family of normal subgroups of G and $k_{\varphi} \leq K$ then there is some $i^* < K$ such that $\left[\bigcap_{i < K, i \neq i^*} \varphi(x, a_i) : \bigcap_{i < K} \varphi(x, a_i)\right] < n_{\varphi}$.

 $\it Proof.$ Follows from Lemma 2.1 and compactness.

Theorem 2.4. Let G be NTP₂ and $\{\varphi(x, a) | a \in C\}$ be a family of normal subgroups of G. Then there is some $k \in \omega$ (depending only on φ) such that for every finite $C' \subseteq C$ there is some $C_0 \subseteq C'$ with $|C_0| \leq k$ and such that

$$\left| \bigcap_{a \in C_0} \varphi(x, a) : \bigcap_{a \in C'} \varphi(x, a) \right| < \infty.$$

Proof. Let k_{φ} be as given by Corollary 2.3. If $|C'| > k_{\varphi}$, by Corollary 2.3 we find some $a_0 \in C'$ such that $\left[\bigcap_{a \in C' \setminus \{a_0\}} \varphi(x, a) : \bigcap_{a \in C'} \varphi(x, a)\right] < \infty$. If $|C' \setminus \{a_0\}| > k_{\varphi}$, by Corollary 2.3 again we find some $a_1 \in C' \setminus \{a_0\}$ such that

$$\left\lfloor \bigcap_{a \in C' \setminus \{a_0, a_1\}} \varphi\left(x, a\right) : \bigcap_{a \in C' \setminus \{a_0\}} \varphi\left(x, a\right) \right\rfloor < \infty.$$

Continuing in this way we end up with $a_0, \ldots, a_m \in C'$ such that for all i < m,

$$\left[\bigcap_{a\in C'\setminus\{a_0,\ldots,a_{i+1}\}}\varphi\left(x,a\right):\bigcap_{a\in C'\setminus\{a_0,\ldots,a_i\}}\varphi\left(x,a\right)\right]<\infty,$$

and, letting $C_0 = C' \setminus \{a_0, \ldots, a_m\}$, we have that $|C_0| \leq k_{\varphi}$.

Corollary 2.5. Let G be a torsion-free group with NTP_2 and assume that $\varphi(x, y)$ defines a divisible normal subgroup for every y. Then $\varphi(x, y)$ is NIP.

Proof. Assume that $\varphi(x, y)$ has IP and let $\bar{a} = (a_i)_{i \in \mathbb{Z}}$ be an indiscernible sequence witnessing this. Taking $H_i = \varphi(\mathfrak{C}, a_i), H_{\neq 0} \setminus H_0 \neq \emptyset$. Let $H = \bigcap_{i \in \mathbb{Z}} H_i$, so it is divisible (here we used the assumption that G is torsion-free) as is $H_{\neq 0}$. But then $H_{\neq 0}/H$ is a divisible non-trivial group, so infinite. By indiscernibility $[H_{\neq i}:H] = \infty$ for all i — contradicting Lemma 2.1.

3. FIELDS WITH NTP_2

Let K be a field of characteristic p > 0. Recall that a field extension L/K is called an Artin-Schreier extension if $L = K(\alpha)$ for some $\alpha \in L \setminus K$ such that $\alpha^p - \alpha \in K$. L/K is an Artin-Schreier extension if and only if it is Galois and cyclic of degree p.

Theorem 3.1. Let K be an infinite field definable in an NTP_2 theory. Then it has only finitely many Artin-Schreier extensions.

Proof. We follow the proof of the fact that dependent fields have no Artin-Schreier extensions in [KSW11].

We may assume that K is \aleph_0 -saturated, and we put $k = K^{p^{\infty}} = \bigcap_{n \in \omega} K^{p^n}$, a type-definable perfect sub-field which is infinite by saturation (all contained in an algebraically closed \mathcal{K}).

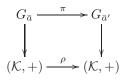
For a tuple $\bar{a} = (a_0, \ldots, a_{n-1})$, let

$$G_{\bar{a}} = \{(t, x_0, \dots, x_{n-1}) \in K^{n+1} : t = a_i \cdot \varrho(x_i) \text{ for } i < n\},\$$

where $\rho(x) = x^p - x$ is the Artin-Schreier polynomial. We consider it as an algebraic group (a subgroup of $(\mathcal{K}^{n+1}, +)$). As such, by [KSW11, Lemma 2.8], when the elements of \bar{a} are algebraically independent it is connected. If in addition \bar{a} belong to some perfect field k, then $G_{\bar{a}}$ is isomorphic by an algebraic isomorphism over kto $(\mathcal{K}, +)$ by [KSW11, Corollary 2.9].

By Theorem 2.4, there is some $n < \omega$, an algebraically independent (n + 1)-tuple $\bar{a} \in k$ and an *n*-subtuple \bar{a}' , such that $\left[\bigcap_{a \in \bar{a}'} a \cdot \rho(K) : \bigcap_{a \in \bar{a}} a \cdot \rho(K)\right] < \infty$. It follows that the image of the projection map $\pi : G_{\bar{a}}(K) \to G_{\bar{a}'}(K)$ has finite index in $G_{\bar{a}'}(K)$.

We have algebraic isomorphisms $G_{\bar{a}} \to (\mathcal{K}, +)$ and $G_{\bar{a}'} \to (\mathcal{K}, +)$ over k. Hence we can find an algebraic map ρ over k (i.e. a polynomial) which makes the following diagram commute:



As all groups and maps are defined over $k \subseteq K$, we can restrict to K. We saw that $[G_{\bar{a}'}: \pi(G_{\bar{a}}(K))] < \infty$ so $[K: \rho(K)] < \infty$ as well (in the group (K, +)). In the proof of [KSW11, Theorem 4.3], it is shown that there is some $c \in K$ such that, letting $\rho'(x) = \rho(c \cdot x)$, ρ' has the form $a \cdot \rho(x)$ for some $a \in K^{\times}$. The way it is done there is by choosing any $0 \neq c \in \ker(\rho) \subseteq k$, and then since ρ' is additive with kernel \mathbb{F}_p and degree p (as this is the degree of π), there exists such an $a \in k$. Since $\rho'(K) = \rho(K)$ has finite index in K, so does the image of $\rho = a^{-1}\rho'$.

By [KSW11, Remark 2.3], this index is finite if and only if the number of Artin-Schreier extensions is finite. $\hfill \Box$

Proposition 3.2. Suppose (K, v, Γ) is a valued field of characteristic p > 0 that has finitely many Artin-Schreier extensions. Then the valuation group Γ is p-divisible.

Proof. (This proof is similar to the proof of [KSW11, Proposition 5.4].) Recall that ρ is the Artin-Schreier polynomial. By Artin-Schreier theory (this is explained in [KSW11, Remark 2.3]), the index $[K : \rho(K)]$ in the additive group (K, +) is finite. Suppose $\{a_i \mid i < l\}$ are representatives for the cosets of $\rho(K)$ in (K, +). Let $\alpha \in \Gamma$ be smaller than $\alpha_0 = \min\{v(a_i) \mid i < l\} \cup \{0\}$. Suppose $v(x) = \alpha$ for $x \in K$. But then there is some i < l such that $x - a_i \in \rho(K)$, and since $v(x) = v(x - a_i)$, we may assume that $x \in \rho(K)$, so there is some y such that $y^p - y = x$. But then, v(y) < 0, so $v(y^p) = p \cdot v(y) < v(y)$, so

$$\alpha = v(x) = v(y^{p} - y) = v(y^{p}) = p \cdot v(y).$$

So α is *p*-divisible. Take any negative $\beta \in \Gamma$, then $\beta + p \cdot \alpha_0$ is *p*-divisible, so β is also *p*-divisible. Since this is true for all negative values, Γ is *p*-divisible. \Box

Corollary 3.3. $\mathbb{F}_p((t))$ is not NTP₂.

Proof. Follows from Theorem 3.1 and Proposition 3.2.

4. Strong theories and bounded burden

In this section we are going to consider groups and fields whose theories satisfy quantitative refinements of NTP_2 in terms of a bound on its burden (similar to the bounds on the rank in simple theories).

For notational convenience we consider an extension Card^{*} of the linear order on cardinals by adding a new maximal element ∞ and replacing every limit cardinal κ by two new elements κ_{-} and κ_{+} . The standard embedding of cardinals into Card^{*} identifies κ with κ_{+} . In the following, whenever we take a supremum of a set of cardinals, we will be computing it in Card^{*}.

Definition 4.1. Let T be a complete theory.

- (1) An inp-pattern of depth κ consists of $(\bar{a}_{\alpha}, \varphi_{\alpha}(x, y_{\alpha}), k_{\alpha})_{\alpha \in \kappa}$ with $\bar{a}_{\alpha} = (a_{\alpha,i})_{i \in \omega}$ and $k_{\alpha} \in \omega$ such that:
 - $\{\varphi_{\alpha}(x, a_{\alpha,i}) \mid i < \omega\}$ is k_{α} -inconsistent for every $\alpha \in \kappa$,
 - $\{\varphi_{\alpha}(x, a_{\alpha, f(\alpha)}) \mid \alpha < \kappa\}$ is consistent for every $f : \kappa \to \omega$.
- (2) An inp²-pattern of depth κ consists of $(\bar{a}_{\alpha}, b_{\alpha}, \phi_{\alpha}(x, y_{\alpha}, z_{\alpha}))_{\alpha < \kappa}$, where $\phi_{\alpha} \in L, \ \bar{a}_{\alpha} = (a_{\alpha,i})_{i < \omega}$, and $b_{\alpha} \subseteq \bigcup \{ \bar{a}_{\beta} \mid \beta < \alpha \}$, such that:
 - $(\bar{a}_{\alpha})_{\alpha < \kappa}$ are mutually indiscernible.
 - { $\phi_{\alpha}(x, a_{\alpha,i}, b_{\alpha}) | i < \omega$ } is inconsistent for every α ,
 - $\{\phi_{\alpha}(x, a_{\alpha,0}, b_{\alpha}) \mid \alpha < \kappa\}$ is consistent.

- (3) The burden (burden²) of T is the supremum (in Card^{*}) of the depths of inp-patterns (resp. inp^2 -patterns) with x a singleton.
- (4) It is easy to see by compactness that T is NTP_2 if and only if its burden is $< \infty$, equivalently $< |T|^+$. The same is true for burden², see [BC12, Proposition 5.5(viii)].
- (5) A theory T is called strong (strong²) if its burden $\leq (\aleph_0)_-$ (resp. burden² \leq $(\aleph_0)_{-}).$

Strong theories were introduced by Adler [Adl07] based on the notion of inppatterns of Shelah [She90, Ch. III], and were further studied in [Che12] where it was shown that burden is "sub-multiplicative". Strong² theories were introduced in [BC12] as a generalization of Shelah's strongly² dependent theories. Of course, every strong² theory is strong, and every strong theory is NTP_2 .

Fact 4.2. [Che12]Burden is "sub-multiplicative": if there is an inp-pattern of depth κ^n with |x| = n then there is an inp-pattern of depth κ with |x| = 1. In particular, in a strong theory there are no inp-patterns of infinite depth with x of arbitrary finite length (while the definition only requires this for |x| = 1).

Problem 4.3. Does the same hold for inp²-patterns?

- (1) For T simple, being strong corresponds to the fact that every Remark 4.4. finitary type has finite weight [Adl07]. Also, every supersimple theory is strong² [BC12, Section 5].
 - (2) In [She09], Shelah introduced strongly and strongly² dependent theories. For strong dependence, the definition is very similar to the one given: one asks that there is no pattern $(\bar{a}_{\alpha}, \varphi_{\alpha}(x, y_{\alpha}))_{\alpha < \omega}$ as above such that for every function $f: \omega \to \omega$, $\{\varphi_{\alpha}(x, a_{\alpha,\beta})^{\text{if }\beta = f(\alpha)} | \alpha < \kappa\}$ is consistent. One can easily show that T is strongly dependent if and only if it is strong and NIP.
 - (3) The definition of strongly² dependent is again similar to the definition of strong^2 , allowing parameters from other rows in the definition of strong dependence. For T dependent, being strong² is the same as being strongly² dependent (sometimes called strongly⁺ dependent)[BC12, Section 5].
 - (4) There are stable strong theories which are not $strong^2$ and there are stable strong² theories which are not superstable [BC12, Section 5].

4.1. Strong groups and fields. The following are taken from [KS11, Proposition 3.11, Corollary 3.12] with some easy modifications:

Proposition 4.5. Let G be a type-definable group and $G_i \leq G$ type-definable normal subgroups for $i < \omega$.

- (1) If T is strong, then there is some i₀ such that [∩_{i≠i₀} G_i : ∩_{i<ω} G_i] < ∞.
 (2) If T is of finite burden, then there is some n ∈ ω and i₀ < n such that [∩_{i≠i₀,i<n} G_i : ∩_{i<n} G_i] < ∞.

Proof. (1) Assume not. Then, for each $i < \omega$, we have an indiscernible sequence $(a_{i,j})_{j < \omega}$ (over the parameters defining all the groups) such that $a_{i,j} \in \bigcap_{k \neq i} G_k$ and for $j_1 < j_2 < \omega$, $a_{i,j_1}^{-1} \cdot a_{i,j_2} \notin G_i$. By compactness there is a formula $\psi_i(x)$ in the type defining G_i such that $\neg \psi_i \left(a_{i,j_1}^{-1} \cdot a_{i,j_2} \right)$ holds (by indiscernibility it is the same for all $j_1 < j_2$). We may assume, applying Ramsey, that the sequences

 $\left\langle (a_{i,j})_{j<\omega} \mid i < \omega \right\rangle$ are mutually indiscernible. Let ψ'_i be another formula in the type defining G_i such that $\psi'_i(x) \land \psi'_i(y) \vdash \psi_i(x^{-1} \cdot y)$. Let $\varphi_i(x,y) = \psi'_i(x^{-1} \cdot y)$.

Now we check that the set $\{\varphi_i(x, a_{i,0}) \mid i < n\}$ is consistent for each $n < \omega$. Let $c = a_{0,0} \cdots a_{n-1,0}$ (the order does not really matter, but for the proof it is easier to fix one). So $\varphi_i(c, a_{i,0})$ holds if and only if $\psi'_i(a_{n-1,0}^{-1} \cdots a_{i,0}^{-1} \cdots a_{0,0}^{-1} \cdot a_{i,0})$ holds. But since G_i is normal, $a_{i,0}^{-1} \cdots a_{0,0}^{-1} \cdot a_{i,0} \in G_i$, so the entire product is in G_i , so $\varphi_i(c, a_{i,0})$ holds. On the other hand, if for some $c', \varphi_i(c', a_{i,0}) \land \varphi_i(c', a_{i,1})$ holds, then $\psi_i(a_{i,0}^{-1} \cdot a_{i,1})$ holds — contradiction. So the rows are inconsistent which contradicts strength.

(2) Follows from the proof of (1) using Fact 4.2.

Corollary 4.6. If G is an abelian group type-definable in a strong theory and $S \subseteq \omega$ is an infinite set of pairwise co-prime numbers, then for almost all (i.e. for all but finitely many) $n \in S$, $[G:G^n] < \infty$. In particular, if K is a definable field in a strong theory, then for almost all primes p, $[K^{\times}:(K^{\times})^p] < \infty$.

Proof. Let $K \subseteq S$ be the set of $n \in S$ such that $[G : G^n] < \infty$. If $S \setminus K$ is infinite, we replace S with $S \setminus K$.

For $i \in S$, let $G_i = G^i$ (so it is type-definable). By Proposition 4.5, there is some n such that $\left[\bigcap_{i \neq n} G_i : \bigcap_{i \in S} G_i\right] < \infty$. Now it is enough to show that $\bigcap_{i \neq n} G_i / \bigcap_{i \in S} G_i \cong G/G_n$. For this we show that the natural map $\bigcap_{i \neq n} G_i \rightarrow G/G_n$ is onto. To show that, we may assume by compactness that S is finite. Let $r = \prod S \setminus \{n\}$, then since r and n are co-prime, there are some $a, b \in \mathbb{Z}$ such that ar + bn = 1 so for any $g \in G, g^{ar} \equiv g \pmod{G_n}$, and we are done. \Box

The proof of the following proposition is taken from [KP11, Proposition 2.3] so we observe that it goes through in larger generality.

Proposition 4.7. Any infinite strong field is perfect.

Proof. Let K be of characteristic p > 0, and suppose that $K^p \neq K$. Then there are $b_1, b_2 \in K$ linearly independent over K^p . Let $\langle a_i : i \in \mathbb{Q} \rangle$ be an indiscernible non-constant sequence over b_1, b_2 . By compactness we can find a and $(c_i)_{i < \omega}$ from K such that $c_0 = a$ and $c_i = b_1 c_{i+1}^p + b_2 a_i^p$. Since b_1, b_2 are linearly independent over K^p , we get that $a_i \in \operatorname{dcl}(b_1 b_2 a)$ for every $i < \omega$. For each $i < \omega$, let $\varphi_i(y, b_1, b_2, a)$ be a formula defining a_i . We may assume that $\forall x, y_1, y_2 \bigwedge_{j=1,2} \varphi_i(y_j, b_1, b_2, x) \rightarrow y_1 = y_2$. So:

- The sequences $I_i = (a_j)_{i-1/2 < j < i+1/2}$ where $i < \omega$ are mutually indiscernible over b_1, b_2 .
- $\{\varphi_i(a_j, b_1, b_2, x) \,|\, i 1/2 < j < i + 1/2 \}$ is 2-inconsistent.
- $\{\varphi_i(a_i, b_1, b_2, x) \mid i < \omega\}$ is consistent (realized by a).

Which contradicts strength.

Definition 4.8. A valued field (K, v) of characteristic p > 0 is *Kaplansky* if it satisfies:

- (1) The valuation group Γ is *p*-divisible.
- (2) The residue field k is perfect, and does not admit a finite separable extension whose degree is divisible by p.

Corollary 4.9. Every strongly dependent valued field is Kaplansky.

Proof. Combining Proposition 4.7, Proposition 3.2 and [KSW11, Corollary 4.4]. \Box

4.2. **Strong**² **theories.** The following is just a repetition of [KS11, Proposition 2.5]:

Proposition 4.10. Suppose T is strong², then it is impossible to have a sequence of type-definable groups $\langle G_i | i < \omega \rangle$ such that $G_{i+1} \leq G_i$ and $[G_i : G_{i+1}] = \infty$.

Proof. Without loss of generality, we shall assume that all groups are type-definable over \emptyset . Suppose there is such a sequence $\langle G_i | i < \omega \rangle$. Let $\langle \bar{a}_i | i < \omega \rangle$ be mutually indiscernible, where $\bar{a}_i = \langle a_{i,j} | j < \omega \rangle$, such that for $i < \omega$, the sequence $\langle a_{i,j} | j < \omega \rangle$ is a sequence from G_i (in \mathfrak{C}) such that $a_{i,j'}^{-1} \cdot a_{i,j} \notin G_{i+1}$ for all $j < j' < \omega$. We can find such an array because of our assumption and Ramsey.

For each $i < \omega$, let $\psi_i(x)$ be in the type defining G_{i+1} such that $\neg \psi_i\left(a_{i,j'}^{-1} \cdot a_{i,j}\right)$ for j' < j. By compactness, there is a formula $\xi_i(x)$ in the type defining G_{i+1} such that for all $a, b \in \mathfrak{C}$, if $\xi_i(a) \land \xi_i(b)$ then $\psi_i(a \cdot b^{-1})$ holds. Let $\varphi_i(x, y, z) =$ $\xi_i(y^{-1} \cdot z^{-1} \cdot x)$. For $i < \omega$, let $b_i = a_{0,0} \cdot \ldots \cdot a_{i-1,0}$ (so $b_0 = 1$).

Let us check that the set $\{\varphi_i(x, a_{i,0}, b_i) | i < \omega\}$ is consistent. Let $i_0 < \omega$, and let $c = b_{i_0}$. Then for $i < i_0, \varphi_i(c, a_{i,0}, b_i)$ holds if and only if $\xi_i(a_{i+1,0} \cdots a_{i_0-1,0})$ holds, but the product $a_{i+1,0} \cdots a_{i_0-1,0}$ is an element of G_{i+1} and ξ_i is in the type defining G_{i+1} , so $\varphi_i(c, a_{i,0}, b_i)$ holds. Now, if $\varphi_i(c', a_{i,0}, b_i) \land \varphi_i(c', a_{i,0}, b_i)$ holds for some c', then $\xi_i(a_{i,0}^{-1}b_i^{-1}c')$ and $\xi_i(a_{i,1}^{-1}b_i^{-1}c')$ hold, so also $\psi_i(a_{i,0}^{-1}a_{i,1})$ holds a contradiction. So the rows are inconsistent, contradicting strength².

We also get (exactly as [KS11, Proposition 2.6]):

Corollary 4.11. Assume T is strong². If G is a type-definable group and h is a definable homomorphism $h: G \to G$ with finite kernel then h is almost onto G, i.e., the index [G: h(G)] is bounded (i.e. $< \infty$). If G is definable, then the index must be finite.

Theorem 2.4 holds for type-definable subgroups without the normality assumption.

Theorem 4.12. Let G be strong² and $\{\varphi(x,a) \mid a \in C\}$ be a family of definable subgroups of G. Then there is some $k \in \omega$ such that for every finite $C' \subseteq C$ there is some $C_0 \subseteq C'$ with $|C_0| \leq k$ and such that

$$\left[\bigcap_{a\in C_{0}}\varphi\left(x,a\right):\bigcap_{a\in C'}\varphi\left(x,a\right)\right]<\infty.$$

Proof. The proof of Theorem 2.4 relied on Proposition 2.1. So we only need to show that this proposition goes through. Let $H_i = \varphi(x, a_i)$ for $i < \omega$. Consider $H'_i = \bigcap_{j < i} H_j$. At some point $[H'_j : H'_{j+1}] < \infty$. But then also $[H_{\neq j} : \bigcap_{i < \omega} H_i] < \infty$.

5. Questions, conjectures and further research directions

5.1. More pure NTP₂ fields. Recall that a field is pseudo algebraically closed (or PAC) if every absolutely irreducible variety defined over it has a point in it. It is well-known [Cha99] that the theory of a PAC field is simple if and only if it is bounded (i.e. for any integer n it has only finitely many Galois extensions of degree

n). Moreover, if a PAC field is unbounded, then it has TP_2 [Cha08, Section 3.5]. On the other had, the following fields were studied extensively:

- (1) Pseudo real closed (or PRC) fields: a field F is PRC if every absolutely irreducible variety defined over F that has a rational point in every real closure of F, has an F-rational point [Pre90, Pre81, Pre85].
- (2) Pseudo p-adically closed (or PpC) fields: a field F is PpC if every absolutely irreducible variety defined over F that has a rational point in every p-adic closure of F, has an F-rational point [Kün89a, Kün89b, Efr91, HJ88].

Conjecture 5.1. A PRC field is NTP_2 if and only if it is bounded. Similarly, a PpC field is NTP_2 if and only if it is bounded.

We remark that if K is an unbounded PRC field then it has TP₂. Indeed, since K is PRC then $L = K(\sqrt{-1})$ is PAC (because every finite extension of a PRC field is PRC and L has no real closures at all). By [FJ05, Remark 16.10.3(b)] L is unbounded. And of course, L is interpretable in K. But by the result of Chatzidakis cited above L has TP₂, thus K also has TP₂.

5.2. More valued fields with NTP_2 . Is there an analogue of Fact 1.1 in positive characteristic? A similar result for NIP was established in [Bél99, Corollaire 7.6].

Conjecture 5.2. Let (K, v) be a valued field of characteristic p > 0, Kaplansky and algebraically maximal. Then (K, v) is NTP₂ (strong) if and only if k is NTP₂ (resp. strong).

The following is demonstrated in [KSW11, Proposition 5.3].

Fact 5.3. Let (K, v) be an NIP valued field of characteristic p > 0. Then the residue field contains $\mathbb{F}_p^{\text{alg}}$ (so in particular is infinite).

Hrushovski asked if the following is true:

Problem 5.4. Assume that (K, v) is an NTP₂ (Henselian) valued field of positive characteristic. Does it follow that the residue field is infinite?

We remark that the finite number of Artin-Schreier extensions alone is not sufficient to conclude that the residue field is infinite:

Example 5.5. (Due to Arno Fehm) Let $\Omega = (\mathbb{F}_p((t)))^{\text{sep}}$, so the restriction map $\operatorname{Gal}(\Omega/\mathbb{F}_p((t))) \to \operatorname{Gal}(\mathbb{F}_p^{\operatorname{alg}}/\mathbb{F}_p)$ is onto. Let $\sigma \in \operatorname{Gal}(\mathbb{F}_p^{\operatorname{alg}}/\mathbb{F}_p)$ be the Frobenius automorphism, and let $\tau \in \operatorname{Gal}(\Omega/\mathbb{F}_p((t)))$ be such that $\tau \upharpoonright \mathbb{F}_p^{\operatorname{alg}} = \sigma$. Let F be the fixed field of τ . Then F has exactly one Artin-Schreier extension (as $\operatorname{Gal}(\Omega/F)$ is pro-cyclic and F is a regular extension of \mathbb{F}_p). Since $\mathbb{F}_p((t))$ is an Henselian valued field, its usual valuation extends uniquely to an Henselian valuation on F. Since every element of $\mathbb{F}_p^{\operatorname{alg}} \setminus \mathbb{F}_p$ is moved by σ , one can see that the residue field must be \mathbb{F}_p .

Example 5.6. (Due to the anonymous referee) Let Ω be the generalized power series $\mathbb{F}_p^{\mathrm{alg}}((t^{\mathbb{Q}}))$ — the field of formal sums $\sum a_i t^i$ with well-ordered support where $i \in \mathbb{Q}$ and $a_i \in \mathbb{F}_p^{\mathrm{alg}}$. This field is algebraically closed. Let $\tau \in \mathrm{Aut}(\Omega)$ be the map $\sum a_i t^i \mapsto \sum a_i^p t^i$. Let F be the fixed field of τ , so $F = \mathbb{F}_p((t^{\mathbb{Q}}))$. Then F is Henselian with residue field \mathbb{F}_p and (as in Example 5.5) has exactly one Artin-Schreier extension.

5.3. **Definable envelopes.** Assume that we are given a subgroup of an NTP_2 group. Is it possible to find a *definable* subgroup which is close to the subgroup we started with and satisfies similar properties?

- Fact 5.7. (1) [She09, Ald] If G is a group definable in an NIP theory and H is a subgroup which is abelian (nilpotent of class n; normal and soluble of derived length n) then there is a definable group containing H which is also abelian (resp. nilpotent of class n; normal and soluble of derived length n).
 - (2) [Mil] Let G be a group definable in a simple theory and let H be a subgroup of G.
 - (a) If H is nilpotent of class n, then there is a definable (with parameters from H) nilpotent group of class at most 2n, finitely many translates of which cover H. If H is in addition normal, then there is a definable normal nilpotent group of class at most 3n containing H.
 - (b) If H is a soluble of class n, then there is a definable (with parameters from H) soluble group of derived length at most 2n, finitely many translates of which cover H. If H is in addition normal, then there is a definable normal soluble group of derived length at most 3n containing H.

Thus it seems very natural to make the following conjecture.

Conjecture 5.8. Let G be an NTP₂ group and assume that H is a subgroup. If H is nilpotent (soluble), then there is a definable nilpotent (resp. soluble) group finitely many translates of which cover H. If H is in addition normal, then there is a definable normal nilpotent (resp. soluble) group containing H.

5.4. **Hrushovski's stabilizer theorem.** Let I be an ideal in the Boolean algebra of definable sets in a fixed variable x, with parameters from the monster model (i.e. $\emptyset \in I; \phi(x, a) \vdash \psi(x, b)$ and $\psi(x, b) \in I$ imply $\phi(x, a) \in I; \phi(x, a) \in I$ and $\psi(x, b) \in I$ imply $\phi(x, a) \lor \psi(x, b) \in I$). An ideal I is invariant over a set A if $\phi(x, a) \in I$ and $a \equiv_A b$ implies $\phi(x, b) \in I$. An A-invariant ideal is called S1 if for every sequence $(a_i)_{i \in \omega}$ indiscernible over A, $\phi(x, a_0) \land \phi(x, a_1) \in I$ implies $\phi(x, a_0) \in I$. A partial type q(x) over A is called wide (or I-wide) if it implies no formula in I.

In the following, \hat{G} is a subgroup of some definable group, generated by some definable set X.

Fact 5.9. [Hru12, Theorem 3.5] Let M be a model, μ an M-invariant S1 ideal on definable subsets of \tilde{G} , invariant under (left or right) translations by elements of \tilde{G} . Let q be a wide type over M (contained in \tilde{G}). Assume:

(F) There exist two realizations a, b of q such that tp(b/Ma) does not fork over M and tp(a/Mb) does not fork over M.

Then there is a wide type-definable over M subgroup S of G. We have $S = (q^{-1}q)^2$; the set $qq^{-1}q$ is a coset of S. Moreover, S is normal in \widetilde{G} , and $S \setminus q^{-1}q$ is contained in a union of non-wide M-definable sets.

In [CK12] it is proved that if M is a model of an NTP₂ theory and $q \in S(M)$, then it has a global strictly invariant extension $p \in S(\mathfrak{C})$ (meaning that p is an M-invariant type and for every $N \supseteq M$ and $a \models p|_N$ we have tp (N/Ma) does not fork over M). It thus follows that the assumption (F) is always satisfied in NTP₂ theories. In [BC12, Section 2 + discussion before Proposition 3.5] it is proved that in an NTP₂ theory, the ideal of formulas forking over a model M is S1. However, in general the ideal of forking formulas is not invariant under the action of the definable group. By [Hru12, Theorem 3.5, Remark (4)] the assumption of invariance under the action of \tilde{G} can be replaced by the existence of an f-generic extension of q. It seems interesting to find a right version of this result generalizing the theory of stabilizers in simple theories [Pil98].

References

- [Adl07] Hans Adler. Strong theories, burden, and weight. preprint, 2007.
- [AK65] J. Ax and S. Kochen. Diophantine problems over local fields i. American Journal of Mathematics, 87(3):605-630, 1965.
- [Ald] Ricardo de Aldama. A result on definable groups without the independence property. Bulletin of Symbolic Logic, to appear.
- [Ax65] James Ax. On the undecidability of power series fields. *Proc. Amer. Math. Soc.*, 16:846, 1965.
- [Azg10] Salih Azgin. Valued fields with contractive automorphism and Kaplansky fields. J. Algebra, 324(10):2757–2785, 2010.
- [BC12] Itaï Ben Yaacov and Artem Chernikov. An independence theorem for NTP2 theories. arXiv:1207.0289, 2012.
- [Bél99] Luc Bélair. Types dans les corps valués munis d'applications coefficients. Illinois J. Math., 43(2):410–425, 1999.
- [CH12] Artem Chernikov and Martin Hils. Valued difference fields and NTP₂. preprint, 2012.
- [Cha99] Zoé Chatzidakis. Simplicity and independence for pseudo-algebraically closed fields. In Models and computability (Leeds, 1997), volume 259 of London Math. Soc. Lecture Note Ser., pages 41–61. Cambridge Univ. Press, Cambridge, 1999.
- [Cha08] Zoé Chatzidakis. Independence in (unbounded) PAC fields, and imaginaries. http://www.logique.jussieu.fr/ zoe/papiers/Leeds08.pdf, 2008.
- [Che12] Artem Chernikov. Theories without the tree property of the second kind. arXiv:1204.0832, 04 2012.
- [CK12] Artem Chernikov and Itay Kaplan. Forking and dividing in NTP₂ theories. J. Symbolic Logic, 77(1):1–20, 2012.
- [DGL11] Alfred Dolich, John Goodrick, and David Lippel. Dp-minimality: basic facts and examples. Notre Dame J. Form. Log., 52(3):267–288, 2011.
- [Efr91] Ido Efrat. The elementary theory of free pseudo p-adically closed fields of finite corank. J. Symbolic Logic, 56(2):484–496, 1991.
- [FJ05] Michael D. Fried and Moshe Jarden. Field arithmetic, volume 11 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, second edition, 2005.
- [HJ88] Dan Haran and Moshe Jarden. The absolute Galois group of a pseudo p-adically closed field. J. Reine Angew. Math., 383:147–206, 1988.
- [Hru12] Ehud Hrushovski. Stable group theory and approximate subgroups. J. Amer. Math. Soc., 25(1):189–243, 2012.
- [Kim96] Byunghan Kim. Simple first order theories. ProQuest LLC, Ann Arbor, MI, 1996. Thesis (Ph.D.)–University of Notre Dame.
- [KP11] Krzysztof Krupiński and Anand Pillay. On stable fields and weight. J. Inst. Math. Jussieu, 10(2):349–358, 2011.
- [KS11] Itay Kaplan and Saharon Shelah. Chain conditions in dependent groups. arXiv:1112.0807, 12 2011.
- [KSW11] Itay Kaplan, Thomas Scanlon, and Frank O. Wagner. Artin-Schreier extensions in NIP and simple fields. Israel J. Math., 185:141–153, 2011.
- [Kün89a] Urs-Martin Künzi. Corps multiplement pseudo-p-adiquement clos. C. R. Acad. Sci. Paris Sér. I Math., 309(4):205–208, 1989.

- [Kün89b] Urs-Martin Künzi. Decidable theories of pseudo-p-adically closed fields. Algebra i Logika, 28(6):643–669, 743, 1989.
- [Mil] Cédric Milliet. Definable envelopes in groups with simple theory. http://hal.archivesouvertes.fr/hal-00657716/fr/.
- [Pil98] Anand Pillay. Definability and definable groups in simple theories. J. Symbolic Logic, 63(3):788–796, 1998.
- [Pre81] Alexander Prestel. Pseudo real closed fields. In Set theory and model theory (Bonn, 1979), volume 872 of Lecture Notes in Math., pages 127–156. Springer, Berlin, 1981.
- [Pre85] Alexander Prestel. On the axiomatization of PRC-fields. In Methods in mathematical logic (Caracas, 1983), volume 1130 of Lecture Notes in Math., pages 351–359. Springer, Berlin, 1985.
- [Pre90] Alexander Prestel. Pseudo real closed fields. In Séminaire sur les Structures Algébriques Ordonnées, Vol. I, volume 32 of Publ. Math. Univ. Paris VII, pages 33–35. Univ. Paris VII, Paris, 1990.
- [She80] Saharon Shelah. Simple unstable theories. Ann. Math. Logic, 19(3):177–203, 1980.
- [She90] S. Shelah. Classification theory and the number of nonisomorphic models, volume 92 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam, second edition, 1990.
- [She09] Saharon Shelah. Dependent first order theories, continued. Israel J. Math., 173:1–60, 2009.