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On Connecting the Microscopic and Macroscopic Theories of 
Type II Superconductivity 

Gene I. Rochlin 

Department of Physics, University of California, 
and 

Inorganic Materials Research Division, 
Lawrence Berkeley Laboratory 
Berkeley, California 94720 

ABSTRACT 

We present a simplified derivation of approximate 

solutions for the magnitude of, and the relations between, 

the three critical fields of a Type II superconductor.done in 

the spirit of the Ginzburg-Landau equations. The appearance 

of an unexpected equation restricting the free choice of 

macroscopic parameters is shown to be a direct consequence 

of the "correctness" of Ginzburg-Landau theory, I.e., its 

derivability from the microscopic theory of Bardeen, Cooper, 

and Schtieffer. 
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INTRODUCTION 

In most introductory courses dealing with superconductivity, the 

behavior of Type II superconductors is discussed entirely within the 

framework of the macroscopic semiphenomenological theory. as developed 

I 2 3 by Ginzburg and Landau and later extended by Abrikosov , and Gor'kov 

(hereafter referred to collectively as (GLAG».4 In undergraduate 

survey courses, particularly, neither the microscopic theory of Bardeen, 

Cooper, and Schrieffer (BCS)5 nor the Gor'kov proof of the derivability of 

the macroscopic parameters of Ginzburg and Landau from microscopic 

theory can be. treated in sufficient detail to adequately bring out the 

6 physical eqtdvalenc::e of the BCS and GLAG treatments. We have developed 

a particularly simple method for deriving a set of excellent approximations 

to the exact GLAG solutions for the relationships between the several 

critical fields of Type II superconductors by simple physical arguments 

which proceeds on the level of most introductory solid state physics' 

texts. In addition to deriving expressions for the upper and lower 

critical fields Hcl and Hc2 ' we also obtain a fundamental equation 

relating the thermodynamic critical field H , and therefore the condensa­
c 

tion energy, to the two characteristic lengths in the problem, the 

coherence iength l; and the penetration depth A. The apparently para-

doxical appearance of this "new" fundamental equation is clarified by 

appealing to the microscopic (BCS) definitions of A and l;,by which 

means it is quickly shown that the "new" equation reduces to the BCS 

equation for the condensation energy. The re-introduction of the micro-

scopic theory at this unexpected point in an otherwise purely macroscopic 

treatment is both elegant and satisfying, and serves well the purpose 

of emphasizing the physical unity of the GLAG and BCS .theories. 
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TYPE II SUPERCONDUCTORS: A SIMPLIFIED GLAG APPROACH 

The GLAG theory was originally developed by Ginzburg and Landau to 

, 7 
extend the macroscopic London theory to correctly treat the behavior of 

superconductors in a magnetic field. Although, as discussed below, the 

original theory accounted well for the retention of the perfect diamag-

netism of most elemental superconductors even in fields approaching the 

critical field H , it remained for Abrikosov to show that their theory 
c 

also provided an explanation for the behavior of Type II superconductors, 

which retained their superconductivity up to very high fields while 

showing perfect diamagnetism only for quite small applied fields. The 

GLAG approach remains the favored way to treat the properties of Type II 

8 superconductors. In this section we shall develop a set of approxima-

tions to the exact GLAG solutions by arguing from experimental observations 

in the spirit of their original derivation. 

We begin with the usual definition of a Type I, superconductor as 

being a zero-dc-:-resistance material exhibiting perfect diamagnetism 

(Meissner effect)? In the presence of an externally applied magnetic 

field H, the internal magnetic field B = H + 4mM = 0 everywhere except 

at the surface, where the field dies away exponentially with a characteristic 

length A. This behavior persists until H .. H , the critical field, 
c 

at which point the superconductivity vanishes, and the field penetrates, 

so that B ~ H for H ~ H. For 0 < H < H, the free energy density 
c c 

:tS(H) of the superconductor will be raised above ,its zero-field value 

~SO by the energy cost of excluding the external field. Taking the 

usual London model of the Meissner effect, the perfect diamagnetism 

is considered to be a superposition on the external field of a precisely 
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equal but opposite magnetic field generated by the solenoidal current 

flowing within a penetration depth of l the surface. Since this field must 

just cancel the homogeneous external field, its magnitude is H, and the 

increased energy per unit volume of the sample associated with the 

cancelling field is just H
2/8rr. Therefore, as a consequence of the 

Meissner effect, the free energy density of the sample in an external 

field H must be 

~S(H) = ~O + ~: (1) 

per unit volume. Since B ~ H in the normal state,the free energy density, 

~n' of the sample when normal is nearly independent' of H. At the critical 

field H a transition to the normal state occurs; therefore 
c 

j:'S(Hc) = ~ = ~o + Hc
2

/ 8rr , or 

H 2 
ff7 _)- _c 
J SO n - 8rr (2) 

2 " 
The quantity H /8rr, then, measures the condensation energy, Le., the 

c 

free energy density difference between the superconducting and normal 

states in zero applied field. 

Type II superconductors, although having the same fundamental 

mechanism for superconductivity, behave somewhat differently in a 

magnetic field: B = 0 for all H < Hcl' the lower critical field, and 

only here is the Meissner effect complete. For H ~Hc2' the upper 

critical field (which may be several orders of magnitude larger than 

Hcl) , the sample is normal. However, for H 1 < H < H 2' B '* 0 even c ' c 

though the sample is superconducting; the Meissner effect is incomplete. 
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The great power of the GLAG treatment of this case lies first in the 

idea that forH
cl 

< H < Hc2 the flux penetrates in the form of quantized 

flux lines or vortices, and second in the separation of all superconduc-

tors into Type I or Type II according to the single parameter K :: A/~ 

where A is the magnetic field penetration depth and ~ is the coherence 

10 length, first used by Pippard to introduce long r~nge non-local 
, , 

effects into the strictly local London theory. The parameter K 

was in fact one of the goals of the Ginzburg-Landau theory, originally 

derived to provide a positive surface energy to prevent the formation 

of a normal-superconducting boundary when a magnetic field is applied. 

The necessity for this is made apparent by considering Eqs. (1) and (2) 

and the definition of A. 

Clearly the superconductor can lower its free ene:rgy by allowing 

the field to penetrate via a thin sheet of normal ,phase whose thickness 

is d ~ A. 
" ,2 

The cost in condensation energy is only (H' /8rr) x A per unit 
c 

, 2 
area, while the gain in energy due to field penetration is -(H 18rr) x 21... 

If the length of the superconducting block is L, and n sheets of normal 

phase enter, the free energy per unit area can be approximated by 

, H 2 , H2 
~'S (H) x L =1. x L + n(_c_ x d - -' x 2') .:r SO 8rr 8rr 1\ • 

(3) 

For d/"A ~ 1, the free energy is minimized by maximizing n (within the 

restrictions of the boundary conditions) even for moderate values of H; 

this implies a reduced or even a vanishing Meissner effect. As this 

effect was demonstrably an experimental fact for many superconductors, 

Ginzburg and Landau sought a solution containing a positive interface 
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energy which made the perfectly diamagnetic state stable against the 

formation of such normal intrusions. They did so by defining the 

11 
coherence length, ~, as the range of the supercondticting interacti(:m, 

i.e., the minimum distance over which superconductivity could be destroyed. 

Therefore, the minimum thickness of a normal sheet would be ~, and Eq. (3) 

becomes 

H 2 

L = ~o x L + n (8~ x ~ 
. 2 . 
H 

-- x 
8'IT 

2),,) (3 ') 

and for ~ > 2A the Meissner solution (n = 0, B = 0) clearly has the 

lowest energy for all H< H . 
C 

An exactGLAG calculation shows that 

for K < 1/1:2 the superconductor will be Type I .arid have a complete 

Meissner effect for all H < H , while for K > 1/1:2 there is some range 
c 

of field over which it is favorable for the field to penetrate and the 

superconductor is Type II. 

We can now derive Hcl in the standardl2 manner. As is well known, 

the flux will enter in the form of "vortices" or flux lines (properly 

flux tubes). Since Hcl is the minimum field for the breakdown of the 

Meissner effect, it must be just energetically favorable at H = Hcl for 

the first line to enter. For such a flux line, we approximate the field 

distribution by a cylindrical tube of radius A. The ~ecrease in ~SH per 

unit length of line due to the penetration of this flux is, from Eq. (1), 

FMAG (4) 

Similarly we approximate the normal core accompanying this flux by a 

cylinder of radius~. From Eq. (2), the free energy cost per unit length 
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of producing .. this normal core in the vortex is 

H 2 

FCORE = 8~ x ~~2. (5) 

The total energy of the line per unit length is then 

(6) 

For FLINE < 0 the vortex is stable. The threshold field for stability 

is, by definition, 'Hcl ' so that we have 

H ~1H 
cl A c 

H 
c =-

K 
(7) 

For Hcl < H < Hc2 ' the sample is in the vortex state; as H is increased, 

more and more flux enters in the form of vortices. One of the most 

important results of the GLAG theory is that each flux line is identical 

to the first, and that the flux enters by the creation of more and more 

of such identical vortices in the superconductor. We now introduce the 

Abrikosov condition that the flux in the flux line is quantized and 

equal to ~o= ~~. The identity of vortices reduces to the statement 

that all flux lines contain one quantum of flux ~. By our previous o 
2 

assumption, the field in the vortex is ~ Hcl' while its area is ~ TIl.. ; 

therefore 

(8) 
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As we approach the upper critical field H c2' B ::i::: H, although zero dc 

resistance persists until Hc2 is reached. Within our simple model we 

can say that the superconductivity will vanish at the field where the 

flux 1ihesare packed so closely that the normal cores start to overlap, 

and there is no longer any continuous superconducting path through the 

material. Let us examine one of the normal cores in this case. The core 

,has cross-sectional area TI~2. . 2 
As the area of the flux tube is TIA , the 

selected core will have a flux contribution from every tube whose center 

lies within a distance A. The number of tubes within Ais just the 
.. 2 2· .. 

packing factor PF ~ (TIA /TI~ ) by our initial assumption, while the core 

intercepts a fractional flux 4> ~ <P (TI~2/TIA2) of each of these tubes. 
··0· 

The total flux through the core is then PF x 4> 

= <P , and the field in the core is therefore B 
o 

2 = <P. /TI~ • o 
Since B ~ H at 

Hc2 ' .the field is nearly homogeneous throughout and,· therefore, 

(9) 

EQUATIONS RELATING THE CRITICAL FIELDS 

We may now obtain the equations which relate the several critical 

fields by using the definition of K; K == )../E". We may use Eq. (7) to 

rewrite Eq. (9) in terms of K as 

(10) 

Taking thIs equation together with Eq. (7), 
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H 
H ~--S. 
cl K' 

we obt~in the geometrical mean field rule 

(H H )1/2 ~ H . 
cl c2 c 

(ll) 

We still have; n.ot adequately defined H in this case, for in the vortex 
c 

state Hcl <H < Hc2 there is no observable effect at Hc (H H )1/2 
cl c2 

Therefore,. we take a thermodynamic definition of Has being a measure c·· . 

of the condensation energy density, that is 

where H is now the thermodynamic critical field. From the usual thermo­
c 

13 
dynamic considerations, the magnetic contribution to the free energy 

density is given by 

2 
H 

C 

81T = 

H 
1 i c2 - ~ (B-H)dH. 
1T 0 

(12) 

So far we have merely performed a simple derivation of the relation-

ship between the several critical fields for a large K superconductor. 

Equations (8) and (9) are not surprising; the first is a consequence 

of the free energy consideration for penetration of the first fluxoid, 

and the second follows from the geometry of the vortex state and the 

definition of Hc2 ' However, substituting Eqs. (8) and (9) into Eq. (11) 

we obtain 
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(13) 

which appears to be a totally "new" equation restricting the allowed 

values of A and S by connecting them via the condensation energy. Thus 

of the three parameters H , A and S (or H 1,H 2,H) only two can be . c . c c c 

chosen independently. However, at no point in the preceding derivation 

was such a restriction explicitly imposed, nor does there appear to be 

any reason for doing so. The question then becomes: what physics have 

we overlooked,' i.e., what have we been implicitly assuming about the 

nature of the superconducting state which, if stated, will supply us with 

a physical understanding of the nature and origin of Eq. (13)? It is 

at this point -that one appeals to a "higher authority", the BCS micro-

scopic theory of superconductivity. 

AN APPEAL TO MICROSCOPIC THEORY 

In the BCS pairing model of superconductivity, the superconducting 

charge carriers are taken to be electron pairs bound together by a pair-

ing energy 6. per electron. The superconductivity arises from the binding 

of e1ectrons.within R::: 6. of the Fermi energy into pairs, resulting in an 

energy gap E = 26. for the creation of excitations which would damp the 
g 

supercurrent.Taking N(O) to be the density of electrons of one spin 

at the Fermi energy, the number density of paired electrons is R::: N(O)LL 

The pairing energy per electron is R::: 6., so that the pairing results in 

a lowering of the energy density of the superconducting state below that 

of the normal state by an amount IS E R::: N(0.}6.2 . By our previous definition 

of the thermodynamic critical field Hc (c.f. Eq. (12» this must just be 
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H 2 
OE = ~ -~= _c_ so that we obtain 

n . SO·.. 8rr 

(14) 

Let us compaJ:"e this with Eq. (13) for H. We take·the penetration depth 
c 

to be just the LondonpertetrationClepth >{ =(~c2 14tl
s

q2) • According··. 

to the pairingmodeLn will be just half the number of conduction e1ec-... . s 

trons. while q is twice the electronic charge, so that· 

.' .[ 3c2·· ...... jl/2 .. 
AL " . 2·. 2 

.. 8 e vF N(O) ......... . 

. '",. 

(15) 

.: . 
, .. 

where v
F 

is the' velocity oian electron at the Fermi, energy. ;, on the 

. other hand,·· arises· directly from the pairing theory and the. uncertainty 

principle, and tnust he independently derived. 

Using a free-electron model, we define EF .. p;2l2f!1' where PF is the 

. momentum of ~n~lectron at the Fermi energy E
F

• As a paired electron 
.' . 

must be localized to within an energy 6. of EF,it wil.l have a maximum 

momentu~ op given by 6. ~ PFop/tn ~ VFo~, or op ~ 6./vF~ . From the uncertainty 

principle, the minimum range or for the pairing inte~a'ction must then 

be or ~ hlop ~·hvF/6.. .Recalling our original definition of the coherence 

length, we ia~ritify Or with ; by noting that or wil~~e the characteristic 

length for the superconductin,g behavior to decay at .. an interface. Thus 

we obtain 

.. ::.,' .. 

(16) 
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Substituting Eqs. (15) and (16) for A and ~ into our. macroscopically 

derived relation forH , Eq. (13), gives us 
c 

(17) 

which should be compared with the purely microscopic expression given by 

Eq. (14). 

SUMMARY AND CONCLUSION 

The paradox of the surprising appearance of Eq. (13) in the macro-

scopic treatment, which restricts our ability to choose Hc' ;>.,. and ~ 

independentl~ can be resolved only by an appeal to microscopic theory. 

We conclude, therefore, that the physics which was overlooked in our 

derivation of Eq. (13) was the correct microscopic theory of the super-
.J 

conducting st~te. Although GLAG theory appears quite satisfying as a 

purely macroscopic, thermodynamic, semiphenomenological approach to super-

conductivity it must, if it is a correct theory, be equivalent to, and 

. therefore derivable from, the microscopic BCStheory. From this point of 

view, the equivalence of Eq. (13) and Eq. (14) gives us the connection 

between the microscopic and macroscopic theories as expressed in Eq. (17). 

;>.,.-2 is a normalized measure of the density of conduction electron states 

at the Fermi energy but is essentially a macroscopic parameter governing 

~2 
the penetration of the macroscopic magnetic field.~ isa normalized 

measure of the square of the energy gap and is an entirely microscopic 

parameter governing the range over which the superconductivity can be 

destroyed • Their appropriately normalized product gives the 'condensation 

energy correctly since the gap enters twice in the BeS model--once for 
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counting the number of paired electrons and once for the binding energy 

of the pair. The appearance of their product in Eq. (17) is what informs 

us that the apparently purely macroscopic derivation of Eq. (13) is an 

illusion. Equation (13) in fact expresses the fundamental connection 

between the microscopic and macroscopic theories and thus the equivalence 

of the BCS and .GLAG approaches. 
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APPENDIX 

In the preceding derivation we have tried to becortsistent in our 

approach to the rough physical approximations. One can, of course, 

use more accurate values or estimates' of Hc' 1;, or the BCS pairing 

energy. This will shift the coefficients of Eqs. (14) and (17) about 

somewhat, but it is extremely difficult to make the values differ by 

much more' than the factor of 3 we obtain, and quite simple to manipulate 

the approximations to improve the comparison. We have obviously made 

no such attempt at convergence. It may also be (correctly!) pointed 

out that in a straightforward derivation of the GLAG equations following 

the original second-order phase transition method of Ginzburg and Landau, 

the parameter K is actually defined by the equation K 2 ';;2" ,2 /t ·· 1,4,6 = vL. eH A 1 C, 
C 

which is the exact formula corresponding to Eq. (13). In fact, as the 

Ginzburg-Landau equation for the free energy is expanded in terms of 

only two parameters, it follows necessarily that only two of the quan­

tities H
C

,A,1; ~anbe chosen independently. This ~xplanation is physically 

far from satisfactory unless Gor.'kov's microscopic derivation of the 

Ginzburg-Landau' parameters in terms of the BCS theory is also invoked. 

Although the'proof of the equivalence of the two theories then becomes 

satisfactory, the connection between the macroscopic derivation of 

Eq. (13) and the microscopic ", theory is thereby rende'red somewhat, more 

remote than is necessary. It is far more elegant and satisfying to derive 

the connection directly. 
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