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CHARGE CARRIER TRANSPORT IN ARTIFICIALLY STRUCTURED 
TWO-DIMENSIONAL SEMICONDUCTOR SYSTEMS 

W. Walukiewicz 
Center for Advanced Materials, Materials Sciences Division 

Lawrence Berkeley Laboratory, University of California 
1 Cyclotron Road, Berkeley, California 94720 USA 

ABSTRACT 

Transport of electrons and holes in two-dimensional and quasi-three­
dimensional semiconductor systems is reviewed. Contributions of different 
scattering processes to the total electron and hole mobilities in various 
types of modulation doped heterostructures are calculated. It is shown that 
in a wide temperature range phonon scattering is the principal scattering 
mechanism limiting electron and hole mobilities in high quality 
AlGaAs/GaAs modulation doped heterostructures. The importance of 
nonspecular scattering from rough walls in wide parabolic wells is 
emphasized. Also, several unresolved or poorly understood aspects of 
charge transport in two-dimensional semiconductor systems are discussed. 

L INTRODUCTION 

1 

The last decade has witnessed an unprecedented growth of research on 
low dimensional semiconductor systems. Sophisticated epitaxial techniques such 
as Molecular Beam Epitaxy, Metalorganic Chemical Vapor Deposition and 
numerous variations of these two growth methods allow atomic scale control of 
the growth process and are widely used to grow these complex semiconductor 
structures. Since all the epitaxial techniques provide excellent control of 
composition and doping only along the growth direction, they are used most 
successfully to fabricate two dimensional structures. Additional confinement in 
the growth plane is much more difficult to achieve and control. Therefore, 
although substantial progress has been made in the last few years, studies of truly 
one- and zero-dimensional semiconductor systems are still quite rare. 

Low dimensional semiconductor systems have become fertile ground for 
basic research. The discovery of the Quantum Hall Effect [1] and the Fractional 
Quantum Hall Effect [2] were major developments in fundamental solid state 
physics in the last several years. Flexibility with which various structures could 
be designed and practically realized has led to new concepts of charge transport 
in mesoscopic systems. Also, a wealth of new linear and nonlinear optical effects 
has been observed in semiconductor quantum wells [3]. 

One of the most basic characteristics of a semiconductor system is its 
response to the external fields. This response is determined by the properties of 



in mesoscopic systems. Also, a wealth of new linear and nonlinear optical effects 
has been observed in semiconductor quantum wells [3]. 

One of the most basi~ characteristics of a semiConductor system is its 
response to the external fields. This response is determined by the properties of 
the semiconductor material as well as by specifics of the interaction of the charge 
carriers with collective excitations and imperfections of the crystal lattice. 
Studies of the electronic transport in three-dimensional (3D) semiconductors 
have provided invaluable information on a variety of semiconductor band 
structure parameters [4]. In addition, in many instances an analysis of the free 
carrier mobility has been used to determine the strength of the charge carrier 
scattering potentials [5,6]. · 

It was evident from the beginning that the introduction of artificially 
structured 2D systems would open an opportunity to study basic transport 
phenomena in a new and in many respects unusual material systems [7]. Using 
the concept of modulation or selective doping it has been possible, for the frrst 
time, to separate charge carriers from the parent impurities [7 ,8]. This concept 
led to a very substantial reduction of impurity scattering and allowed the study of 
charge transport in almost perfectly pure semiconductors where phonon 
scattering plays a dominant role down to very low temperatures. 

There are several review papers on properties of 2D systems. Ando et al. 
[9] have reviewed the progress in the field of 2D systems until.the early 1980's. 
Understandably, at that time most of the work was limited to studies of 2D 
inversion layers in Si and InAs. However, the main theoretical concepts 
presented in the review can be easily adopted to any 2D system. Recently, 
various aspects of modulation doped semiconductor systems were reviewed in a 
series of articles covering basic properties of modulation doped structures [ 1 0] as 
well as their applications for electronic [11] and optoelectronic devices [12,13]. 

The main objective of this review is to present recent theoretical and 
experimental results on electronic transport in 2D and quasi-3D modulation 
doped heterostructures. We will focus our attention on 20 electron or hole gases 
confmed at heterointerfaces of different semiconductors. However, many of the 
concepts and results will be directly applicable to charge transport in any two 
dimensional system. The basic theoretical concepts will be illustrated with 
experimental results on the most extensively studied material systems. Due to the 
_limited scope of the review, we will refr:ain from 4iscussing lattice mismatched 
systems where str:tin plays a significant role in determining electronic structure 
and transport properties [ 14]. 

The material in this chapter is structured as follows: The background 
information on the electronic structure of electron and hole gases confined in 
thin 20 films is presented in section 2. In section 3 and 4 the scattering processes 
limiting carrier mobilities are introduced and the differences in carrier 
scattering in 20 and quasi-3D systems are discussed. Calculated electron and 
hole mobilities in various modulation doped materials systems are compared with 
representative experimental data in section 5. Finally the discussion of currently 
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actively studied, and possible future research areas are discussed in the closing 
section 6. · 

2. ELECTRONIC STRUCTURE 

Quantum confinement of electrons and holes in 2D planes can be achieved 
by several methods. Charge carriers can be confined in an accumulation or 
inversion layer at a semiconductor surface [15]. The carriers can also be 
confined by an attractive electrostatic potential created by () or planar doping 
[16]. However, the method most widely used to produce 2D systems utilizes band 
offsets at semiconductor heterointerfaces [17]. The band offsets can be used to 
confine electrons or holes in a thin square quantum well or at a interface between 
two different semiconductors. Modem epitaxial techniques provide an atomic 
scale control over the thickness of the films and the smoothness of the interfaces. 
The value of the available band offset depends on the semiconductor materials 
and for ID-V compounds may be as large as 1.3 eV [18]. 

In order to achieve 2D confinement the system has to satisfy certain 
conditions. First, the thickness of the well has to be smaller than the electron or 
hole de Broglie wavelength. For a 3D electron or hole gas of concentration n the 
de Broglie wavelength at the Fermi energy is Ap = 21t/kp, where kp=(31t 2n)1/3. 
Hence the condition to observe 2D confinement of such gas is that the thickness w 
of the well satisfies the condition 

l/3 

w < 2(;:) (1) 

It should be emphasized that this is a universal condition which does not depend 
on any semiconductor material parameters. 

Another characteristic length for an electron or hole gas is the mean free 
path, i.e., the distance an electron or a hole can travel between momentum 
randomizing scattering events. For a 2D gas the mean free path lP has to satisfy 
the condition, 

~ = Vp • 't = ti kp f.l/e = ti (31t2 n)1!3f.1/e > w (2) 
where vp is the carrier velocity at the Fermi level, 't is the relaxation time and J.1 

· the mobility. The above condition has a simple physical interpretation: it states 
that in ·a 2D system electrons or holes interact with the confinement walls more 
frequently than with random scattering centers. 

In general, for low effective mass high mobility carriers, condition ( 1) is 
more restrictive than condition (2). For example, to observe a 2D gas in GaAs 
with 1017 cm-3 charge carriers Ap = 440 A and a plane confinement of a width 
smaller than 400 A is required. On the other hand, for a carrier concentration 
of 1017 cm-3 the low temperature electron mobility easily exceeds 104 cm2Ns. 
Therefore, in this case the condition (2) is satisfied for w<1000 A. It can be 
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shown that in most semiconductor systems a confinement of the order of 100 A 
is necessary to clearly observe quantum effects. Such a degree of confinement is 
easily accessible and can be practically realized in many semiconductor systems. 

Recently a new type of structure which connects 2D with 3D limits bas 
been proposed and practically realized. In so-called parabolic quantum wells a 
wide well can be obtained by a combination of proper design of the alloy 
composition in the well with remote doping [19,20]. The width of such wells can 
be of the order of 1000 A, i.e., it is larger than the de Broglie wavelength. 
Therefore, although the carrier motion is not quantized the mean free path in 
such structure can be larger than the width of the well. Consequently, one has to 
account for an interaction of free carriers with the confinement walls. 
# Among the variety of possible 2D semiconductor systems the single 

quantum well modulation doped heterostructures (SQW-MDH) are the 
semiconductor structures most frequently used to study transport of 2D 

·electrons and/or hole gases. In such structures, schematically shown in Fig. 1, 
the shallow donors or acceptors are located in the barrier forming 
semiconductor S2. The carriers are transferred from the parent dopants into the 
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well forming semiconductor S1. The 
resulting electric field confines the 
mobile charges in a narrow quasi­
triangular well at the heterointerface. 
By changing the distanced separating 
the dopants from the quantum well 
one can control the concentration of 
the electrons or holes in the well. 
Also, by increasing the separation 
one is able to very substantially 
enhance the carrier mobility by 
reducing the effectiveness of the 
ionized impurity scattering. 
Practical implementation of this idea 
has resulted in n-type AlGaAs/GaAs 
MDHs with low temperature electron 
mobilities exceeding 107 cm2/V •S 

[21,22] and p-type structures with 
hole mobilities approaching 

Fig. 1:Schematic representation of (a) the 4x105 cm2N·s [23]. The principal 
doping profile and (b) the energy. objective of all theoretical 
configuration for a n-type, single quantum calculations of the 2D transport is to 

. well modulation doped heterostructure. understand the scattering mechanisms 
(After ref. [26]) limiting electron and hole mobilities 

in such structures. The starting point 
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of the theory is to provide an accurate description of the electronic structure of 
electrons or holes confined in a quasi-triangular quantum well at the 
heterointerface. 

2.1 Electronic Structure of n-type MDH 

The wavefunction of an electron gas confined in the z-direction can be 
written in the form; 

'I' n,k{r,z} = _!_ Xn (z) exp (i k · r} 
L2 (3) . 

where R = (r,z}, r = (x, y) and k = (~, ky) . The wavefunction Xn (z) is 
given by the solution of coupled Schrooinger and Poisson equations [24,25], 

tf d
2 

---Xn(z) +[Vo9(-z)-ect>(z)]XJ.z) = EnXn(z) (4) 
2m* 2 

dL 

d
2 

4 2[ m ] -«!» (z) = 1te L NiXi(z)+NA(z)-No(z) (5) 
m2 Eo i =0 

Here En (k) = En + ti 2 k 2 /2m* is the dispersion relation for the n-th subband. 
V0e (-z) represents a step-like band offset at z=O. N0 (z) and NA (z) are the 
functions representing the distribution of shallow donors and . acceptors 
respectively, Ni is the density of electrons in the i-th subband. In the present 
approximation the exchange-correlation potential has been neglected. It has 
been shown that this potential does not play a significant role in AlGaAs/GaAs 
like MDHs [24]. The distribution of localized charges is schematically 
represented in Fig. 1 and is given by, 

N~ 
1 z>O 

No(z)-NA(z) = N~ 
1 -d<z<O (6) 
r 

Ni .,..L<z<O 

Here we assume a constant, z-independent concentration of dopants in each of the 
considered regions. In general, solutions of Eqs. (4) and (5) require numerical 
calculations. However, it has been shown that in the case of heterostructures 
shown in Fig. 1, an approximate variational solution can be obtained. The wave 
function of the ground subband can be represented by [25], 
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Xo (z) = 
Bb 

112 
(bz + J3) exp{- b /2) z> 0 

B' b'
112 exp(+ b~) z<O (7) 

where B, b, B', b' and J3 are variational parameters related to each other through 
the boundary conditions at the heterointerface, and the normalization condition 
for Xo (z). Therefore the parameters B, B' and J3 can be expressed in terms of b 
and b' [27]. The corresponding energy Eo of the bottom of the ground subband 
depends in a complex way on the variational parameters and the details of the 
carrier and impurity distribution in the MDH [27]. 

The part of the wavefunction for z < 0 represents the finite penetration of 
the electron gas into the barrier. Incorporation of the penetration is important 
for calculations of the alloy disorder and surface roughness scatterings in 
GaAlAs/GaAs MDHs. The variational wavefunction (7) is very frequently used 
in the calculations of the electronic transport at low electron densities when only 
the ground subband is occupied [25,27]. At higher electron densities or at 
elevated temperatures one needs to consider also the transport in higher lying 
excited subbands [26]. An exact treatment of such a problem is rather difficult 
and requires extensive numerical calculations. An approximate description of the 
two band transport will be discussed later. 

In numerous attempts to calculate the electron mobility in MDHs, an even 
simpler approach has been used in which the penetration of the wavefunction into 
the barrier is ignored. In such a case the ground state subband wavefunction 
takes the form [9 ,28], 

X0 (z) = z>O 
(8) 

z<O 

The parameter b0 has a simple form [28], 

2 

b
3 _ 331t m* e N 
o-- efi 

2 e0 ti 
where Neff= Ns + (32/ll)Ndep. Ns is the electron density in the well, 

b . 

Ndep = Ni I W d, and W d is the width of the depletion region in the well-
forming semiconductor. For very high purity well-forming semiconductors, the 
concentration of dopants is very small and therefore very often the term 
32/11 Ndep can be neglected in comparison with N8• 
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f 
In thermal equilibrium the charge transfer across the interface is governed 

by the condition [25], · 

4ne
2 

(Ns+Ndep)
2 

4m? ( ' 4ne
2 

B'
2 

E0 +Ep = V0-Eb--- -- N8 +Ndep(d+--N8-, ( 9) 
2£o N~ £o £o b 

I 

where Eb is the donor binding energy in the doped region of the barrier-forming 
semiconductor. For large enough band offsets the last term, representing the 
charge penetrating the barrier, is very small and can be safely ignored. Eq. (9) 
has been obtained using the neutrality condition, 

N8 + Ndep + N~(L-d) (10) 

where L - d is the depletion width of the intentionally doped region of the 
barrier. 

2.2 Electronic Structure ofp-type MDH 

Transport of a 2D hole gas has been much less extensively studied both 
theoretically and experimentally. The complex nature of the valence r 8 band 
maxima in group III-V semiconductors makes a detailed analysis of the 
electronic structure of 2D holes difficult and numerically involved. The main 
difference in the description of electron and hole electronic structures is that in 
the case of holes one has to consider the four-fold degenerate valence band. 
Therefore, the Schrodinger equation (Eq. (4)) is replaced by, 

[H(k.! !)+V(z)] Xnk(z) = Enk(z) (11) 

... -
where H is a 4x4 k • p matrix with kz replaced by the operator o/ioz, V (z) is the 
potential including band offsets and electrostatic interactions with charged 
impurities. Eq. (11) has to be solved for each pair of (kx,ky)· 

Numerical calculations of the band structure for specific p-type MDHs 
have been performed by several groups [29-31]. The main conclusion of these 
calculations was that the electronic structure of the four-fold degenerate r 8 

valence.band splits into a number of subbands. For kx-ky=O these subbands :;rre 
two-fold spin degenerate. Also, as is shown in Fig. 2, for the case of a p-type 
AlGaAs/GaAs MDH, the energy dispersion relations for the light and heavy holes 
are described by nonparabolic energy dependent effective masses [31]. Also, it 
has been demonstrated that the constant energy surfaces are warped, therefore 
the effective masses depend on a crystallographic direction. A detailed 
description of the hole transport in such systems would require extensive 
numerical calculations. However, under certain conditions, one can use an 
approximation which ·can significantly simplify the problem. As is seen in 
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Fig. 2:Calculated hole subband energies of 
p-type AlGaAs/GaAs MDH as functions of 
the k wavevector for two different 
directions, [10] and [11]. Note that the 
sign of the hole energy is reversed. 
(After ref. [31]) 

Fig. 2, the first excited subband is 
located at about 10 meV below the 
ground subband. Therefore, for all 
practically achievable hole 
concentrations, the Fermi energy is 
low enough so that only the ground 
subbands are occupied. 
Consequently, at low temperatures 
one has to consider transport within 
the ground spin-up and spin-down 
subbands only. Under such 
approximations one can use an 
approach previously described for 
electrons in n-type MDHs. 
Therefore, we can write the hole 
wave function in the form [32], 

( 3)~ Xb(z) = ~h zexp{-bhr;) (12) 

where 
(13) 

(14) 

Pi (i=1,2) is the concentration of holes in spin-up and spin-down subbands, 
respectively. The wavefunction (12) is used to calculate hole scattering rates 
for different scattering potentials. 

3. CHARGE SCATTERING MECHANISMS IN 2D MDH 

Most of the theoretical descriptions of charge transport are based on the 
solution .of the Boltzman ·equation .[4,6,33,34]. · For elastic,· momentum 
randomizing scattering processes, the solution of the Boltzman equation can be 
expressed in terms of an energy dependent relaxation time. For inelastic 
scattering processes, i.e., the processes in which the electron or hole loses or 
gains energy comparable or larger than kBT, a different method to solve the 
Boltzman equation has to be used. The most frequently used approach is based 
on either the variational principle [33] or an iterative method used e.g. by Rode 
[34]. 
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All the major scattering processes limiting the electron and hole mobilities 
in compound semiconductors are now well established [4,34]. In 3D compound 
semiconductors the low temperature mobility is determined by ionized impurity 
scattering and in the case of alloys also by the alloy disorder scattering. In ultra­
high purity materials additional contributions from neutral impurities have to be 
taken into account. With increasing temperature, scattering by phonons comes 
into play. This scattering mechanism is especially important in lightly doped 
semiconductors. There are several different ways phonons can scatter charge 
carriers. The acoustic phonons can scatter electrons or holes via the deformation 
potential mechanism. Also, since compound semiconductors lack the center of 
inversion symmetry, the carriers can be scattered by acoustic phonons via the 
piezoelectric mechanism. Finally, the carriers can be scattered by optical 
phonons. The major contribution to the scattering of electrons by optical 
phonons comes from the interaction of electrons with electrostatic Frohlich 
potential. In addition to the polar interaction the holes can be scattered by 
optical phonons via the optical phonon deformation potential. 

Among those different scattering mechanisms, only the scattering by 
ionized impurities and by alloy disorder can be considered as strictly elastic 
processes. Scattering by phonons always results in an exchange of energy. 
However, in the case of acoustic phonons the energy of phonons for small 
phonon wavevectors is very low. Therefore, for all practical purposes the 
scattering by acoustic phonons can be treated as an elastic process for the 
temperatures higher than -4 K. A high wavevector independent optical phonon 
energy leads to strongly inelastic scattering in the whole, practically important 
temperature range. It should be noticed, however, that the optical phonon 
scattering is strongly reduced at low temperatures. Therefore, in most instances 
this scattering process can be neglected at temperatures below -40 K. 

There are certain features which distinguish electron transport in two and 
three dimensions. In the case of ionized impurities there are two distinctly 
different types of scattering in the 2D case: Electrons can be scattered by remote 
impurities located within the doped region of the S2 semiconductor as well as by 
residual impurities and/or charged defects in the S 1 semiconductor. Also, there 
is the possibility of charge scattering by structurally rough interfaces. 

For elastic scattering processes the electron or hole mobility can be 
expressed in terms of energy dependent relaxation times. In general, the total 
relaxation time is given by the expression, 

1 =:L-1 
'ttot(E) i 'ti (E) ( 15) 

where 'ti (E) are microscopic relaxation times associated with the different 
scattering processes. The macroscopic relaxation time, and thus also 
macroscopic mobility, is given by averaging of Eq. (15) over the energy E. 
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_ f t(E) E{df0 / ()E) dE 

t(E) = j E(df
0

/ aE)dE 
(16) 

where fo (E) = [1 + exp [(E- Ep) l kn T]-1 is the Fermi-Dirac distribution 
function and Ep is the Fermi energy. In many instances Eq. (16) can be 
significantly simplified. At low temperatures, when the electron or hole gases 
are degenerate, Ep > kn T, one has to consider only the electrons or holes on the 
Fermi surface, and the integration in (16) gives a simple result, 

t (E) :: t(Ep) (17) 

For example, in the case of n-type AlGaAs/GaAs, MDH with Ns = 3x1Qll cm-2 
the condition kn T < Ep is satisfied for T < 70 K. However, for very lightly 
doped heterostructures or for p-type MDHs with larger effective masses the 
degeneracy condition is satisfied at much lower temperatures and therefore a 
numerical evaluation of expression (16) is necessary. · 

3 .1. Scattering by charged centers 

Although the objective of modulation doping is to reduce the scattering 
from Coulomb potentials associated with ionized impurities, nevertheless, the 
scattering by remote impurities in the barrier and residual background 
impurities and defects in the well still play a major role in limiting the electron 
or hole mobilities at low temperatures. The relaxation time for the scattering of 
charge carriers from a Coulomb potential is given by [9,25], 

-1 21C 
'tc =-

ti 

2 . 

dz Ni (z) I[2
1Ce

2

] IFc{q, 2)j2x{1-cos e) B(Et-Et-q) (18) 
q q £(q) 

where q = 2k sin (e/2), a is the scattering angle, £ (q) is the static dielectric 
function, 

2 2 * 
e(q) = 1+ em F(q) (19) 

£oqtf 
and £o is the static dielectric constant. The form factors are given by, 

Fe (q,z) = J dz' lxo (z')j
2 

exp (-q)z-z'l) (20) 

and 
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Expression (19) for the static dielectric function is valid only for T = 0. At 
T -:~; 0 a more complex equation including the polarizability of 2D ·gas at finite 
temperatures has to be included. A simple expression for the temperature 
dependent dielectric function has been obtained and used to calculate the mobility 
in AlGaAs/GaAs MDHs [26], 

(22) 

where 
2 . ~ 

q8 = 2~~e k~T {[1+exp(-Ep/kBT)]tn[1+exp(Ep/kBT)J} (23) 

An inspection of Eqs. (18) and (20) provides an insight into how the remote 
impurity scattering is reduced by the separation of the impurities from the 
quantum well. For the impurities located in the z' < -d region of the barrier and 
for 2D gas located at z=O the scattering rate is reduced by an exponential factor 
exp(-2kpd). Therefore, for typical Fermi wavevectors of 106 cm-1, a large 
enhancement of the remote impurity mobility is expected ford> 1()-6 em. 

3.2. Acoustic phonon scattering 

. An acoustic wave propagating in a crystal can couple to electrons and 
holes by deforming the crystal and affecting the positions of the conduction and 
valence band edges. In binary, partly ionic compounds an additional coupling 
between acoustic phonons and the carriers stems from the piezoelectric effect 
produced by the deformation of the unit cell. Both deformation potential and 
piezoelectric coupling of charge carriers to acoustic phonons are well known and 
were extensively studied in 3D compound semiconductors [4]. 

In 2D MDHs it is customarily assumed that the phonons can freely 
propagate in all directions. Therefore one considers a confined electron or hole 
gas which interacts with phonons which are 3D in nature [35-41]. Under such 
assumptions the relaxation times due to deformation potential and piezoelectric 
acoustic phonon scattering are given by [40], 

* 2 
'to~ = 3 me 3c ~oks T i X S2(l-Clll fl) d fJ (24) 

161ttf c. 0 

and 
-1 -1 -1 

'tpE = 'tL + 2 'tT 
(25) 

where 

-1 l\aLT J 2 
'tL.T = ' qS fr..T(q) d9 

kBTk
2 (26) 
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The screening factor S has the form, 
2 

s2 = q 
. 2 

(q +qsH) 
(27) 

where 
91 3/ 2 

H = 1 + /gr + lgr ' r = _9_ 

(1 +r)3 bo 
(28) 

ac is the deformation potential constant and c1 is the elastic constant. The 
functions fL,T(Q) and constants aL,T are given in ref. [40]. The factorS in Eqs. 
(24) and (26) represents the screening by free electrons. When the screening is 
neglected for the short range deformation potential coupling, one obtains the 
following simple result, 

* 2 
-1 3 me~ka Tbo 

'top= 
16 Cftf 

(29) 

From this expression one finds that the electron mobility is inversely 
proportional to the temperature T and the parameter bo. Therefore, for the 
deformation potential limited mobility one expects a very weak dependence on 
the electron density, 

-1 ( 32 r~ 
'top - b0 - Ns + li Ncq,J 

(30) 

The piezoelectric coupling limited mobility shows a more complex dependence 
on the electron density. However, in most instances the deformation potential is 
the predominant scattering process which determines the total acoustic phonon 
scattering. 

The expressions (24) and (26) were obtained under the assumption that the 
thermal energy kBT is larger than the energy of acoustic phonons participating 
in the scattering process, kaT> tiroq. Under such conditions the phonon 
distribution function can be approximated by, 

Nq= (til ) 
exp ~ -1 

kaT 

(31) 

At low temperatures this equipartition condition is not satisfied. Also, at such 
low temperatures the scattering by acoustic phonons cannot be treated as an 
elastic process. This temperature range corresponds to the so-called Bloch -
Griineisen (B-G) regime. [42,43]. Theoretical studies have shown that in this 
regime the acoustic phonon mobility is very rapidly increasing with decreasing 
temperature [43,44]. Recently, a strong increase of the acoustic phonon limited 
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mobility has been experimentally observed by subtracting the temperature 
independent part of the electron mobility in high quality AlGaAs/GaAs MDHs 
(43]. It should be noted, however, that at very low temperatures the scattering 
by charged centers is the dominant process limiting electron and hole mobilities 
and that the B-G regime cannot be clearly distinguished from direct 
measurements of the electron or hole mobilities. 

3.3. Optical phonon scattering 

A proper treatment of optical phonon scattering is by far the most 
complex problem of charge transport in 2D systems. The large optical phonon 
energy (30 me V to 40 me V) makes the scattering process highly inelastic even at 
room temperature. In addition, since the typical energy separation between 
electric subbands is of the order of 10 meV, an optical phonon can couple several 
subbands. Any theoretical treatment of this problem requires an accurate 
knowledge of the energies and wave-functions for all those subbands [45]. 
Numerical calculation of the optical phonon scattering rates for AlGaAs/GaAs 
MDH have shown that although the 2D confinement leads to reduction· of the 
optical phonon mobility at 77 K, the room temperature mobilities in the 2D and 
.3D cases are practically the same [45]. This finding is consistent with the 
experimental results which demonstrated that the optical phonon limited mobility 
does not depend on the size of the 2D confinement or on the density of 2D 
electrons [ 46]. 

These results provide justification for another approach proposed in , 
Ref. (26) where it has been argued that since the optical phonons probe a wide 
range of subbands, therefore, the density of states participating in transport is an 
average over all those subbands. It can be shown that the total density of states 
for several subbands resemble the density of state of 3D gas. Consequently, one 
can use a 3D approximation to calculate the optical phonon scattering in 2D 
MDHs. 

3.4. Alloy disorder scattering 

For MDH involving ternary compounds, an additional scattering from 
random alloy-disorder potential has to be included [47]. Two distinctly different 
types of :MDHs containing ternary compounds are.possible [48,26]. In the frrst 
one the well is formed by a binary compound and the barrier is formed by a 
ternary alloy. In such MDH there is no significant alloy scattering. The only 
c~ntribution to this scattering process is through the scattering of the charge 
carriers penetrating into the barrier. In the other type of structure with the well 
formed by the ternary alloy _the charge carriers are very efficiently scattered by 
the disordered alloy in the well. 

Since the alloy disorder scattering results from a potential, localized to 
within one unit cell, there is a formal similarity between this scattering 
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mechanism and the deformation potential, acoustic phonon scattering. In the case 
of the quantum well formed by the ternary compound the relaxation time is 
given by Eq. (24) with ac2 ksT/CI replaced with x(l-x)Q(V)2 where xis the 
alloy composition, Q is the unit cell volume and (V} is the alloy disorder 
parameter. In order to evaluate the carrier mobility for 2D gas confined within 
the binary semiconductor, the scattering rate has to be reduced by the additional 
factor [26], 

2 4 2 
641t e t1(N8 /2 + Ndep} . 

3 ~(2 m*} 112 V~f2b0 
(32) 

For a very large band offset, Vo, the penetration of the wavefunction into the 
barrier is very small and, as is seen from Eq. (32), the contribution of alloy­
disorder scattering is very low. 

3.5. Interface roughness scattering 

Despite the atomic scale precision of the modern epitaxial growth 
techniques, most of the epitaxially grown interfaces exhibit some degree of 
structural roughness. A rough interface can scatter the carriers confined in the 
well. The interface roughness plays a very significant role in scattering of 
electrons in Si metal-oxide-semiconductor structures [49]. The scattering process 
is especially significant at higher electron densities. The theoretical expression 
originally obtained for Si inversion layers [9] has been adopted to 2D gas in 
MDHs [25], 

2 

· 't; = 
2
: t[ d ~;elf] exp(-! q 

2 
A 

2
}x(l-oo;9) O(Ek-E k-ii) (33) 

Here, A represents the mean square deviation of the height and A is a 
measurement of the lateral spatial decay rate of the roughness, respectively. The 
effective field is given by 

. . 2 

F = 4 1t e (.!. N + N \ (34) 
eff £o 2 s dep' 

One finds from Eq. (33) that the interface-roughness ~cattering rate is greatly 
·reduced for A gre;1ter than ··the carrier wavelength; 21t/kp. ·This can be 
contrasted with the case of nonspecular scattering of a quasi-3D electron gas in 
wide-parabolic quantum wells [50], where the largest contribution comes from 
large size fluctuations. The interface-roughness has been frequently invoked to 

. explain lower than usual mobilities in MDHs [51,52]. However, since there is no 
independent way to measure the parameters A and A, it is difficult to ascertain 
the relative importance of this scattering compared with the other low 
temperature scattering processes. 

·t 
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3 .6. Intersubband scattering 

All the above considerations of the elastic scattering process were 
restricted to the case of carrier transport within a ground electric subband. This 
approximation is strictly applicable only to the transport at low temperatures and 
low carrier densities when only the lowest subband is occupied. In heavily doped 
MDHs one has to account for the occupation of higher lying subbands [45, 53]. 
A proper treatment of multisubband transport is difficult since one has to 
consider the momentum randomizing events within all occupied subbands, as 
well as the scattering between the subbands. Such a problem, in general, 
requires solving of a set of coupled Boltzman equations which can be done only 
numerically. Numerical solutions of multisubband transport was presented in 
Refs. [45, 53, 54]. 

In Ref. [26] a simplified approach to the transport in the two lowest 
subbands has been proposed. Instead of solving two coupled Boltzman equations 
it has been assumed that since the concentration and momentum of the carriers in 
the upper subband is much smaller than those in the ground subband, therefore, 
one can neglect the contribution of the upper subband to the total conductivity. 
The only effect of this subband is that it provides additional channel for the 
carrier scattering. Since there is a large momentum change for the carriers 
which are scattered from the ground to the excited subband, therefore, such 
scattering processes will lead to a substantial reduction of mobility of the 
carriers. The intersubband scattering rates for various scattering potentials were 
derived in Ref. [26] and were used to calculate scattering rates in AlGaAs/GaAs 
and InAIAs/lnGaAs MDHs. 

3 .7. Scattering mechanisms in p-type MDH 

As has been discussed in Section 2, the transport of holes in p-type MDHs 
has attracted much less attention. The available experimental data is restricted to 
AIGaAs/GaAs MDHs [23,55-57]. Also, the only existing theoretical treatment of 
the 2D hole transport is limited to a simple approach proposed by the present 
author and based on the assumption of decoupled spin-up and spin-down 
subbands [32,38,58]. It has been argued that since the light holes in the spin­
down subband are very efficiently scattered by the heavy holes in spin-up 
subband, the mobility of holes in spin-down states is much lower. This, 
combined with a much smaller concentration of light holes in spin-down band , 
provides justification for neglecting the light hole contribution to the total 
conductivity. Under such circumstances the mobility of a 2D hole gas can be 
described in terms of carrier transport in a single subband. This allows use of 
the methods previously developed for a single parabolic electronic subband with 
one important modification which takes into account the p-type symmetry of the 
valence band Bloch wavefunctions. The scattering rates for long range 
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interactions (Coulomb and piezoelectric acoustic phonon scatterings) given by 
Eqs. (18) and (26) have to be multiplied by a factor of 1/4(1+3 cos2_9). 

In the case of the deformation potential interaction the deformation 
potential constant ac in Eq. (24) is replaced by an effective valence band 
deformation potential, Edp, which has been shown to have the form [38], 

2 2 2 . 
Edp = Eintra + Einter (35) 

where 

E2 . Ct + Ct [(t )2 2l Ct 2 
intra= +m +n j+--m 

4CL 4Ct 
(36) 

and 
* 

E~te = m2 Ct m2 
m r * C 

3mt t 

(37) 

represent intra and inter subband scattering, respectively, Ct is the transverse 
* * elastic constant, m 1 and m2 are heavy (spin-up) and light (spin-down) hole 

effective masses, and I, m and n are the valence band deformation potential 

parameters [59]. 
As is shown in section 3.4., the strength of the alloy-disorder scattering is 

determined by the parameter, {V). For the conduction band electrons 
{V) = {S IV IS) where {S I is the conduction band Bloch amplitude and V is the 

difference of the core potentials of two elements in the alloy. For the valence 
band hole the alloy-disorder parameter {V) is replaced by {V v), given by, 

(vv) =(X IV IX) (38) 
where X is the Bloch amplitude for the rs valence band. The parameters {V) 
and {V v> can be related to the conduction band and valence band offsets for the 
binary compounds forming the alloy. 

4. SCATTERING MECHANISMS IN WIDE PARABOLIC WELLS 

So far we have considered 2D systems in which charge carriers are 
Confined in one direction, and can freely move in a 2D plane. Such systems 
satisfy both conditions .(1) and (2), necessary for a fully quantized 2D motion of 
the charge. Also, modulation (or remote) doping allows for a dramatic 
reduction of ionized impurity scattering. In standard 3D structures the ionized 
impurities and charge carriers are not spatially separated and ionized impurity 
scattering is the dominant process limiting the mobility at low temperatures. 

Recent progress in the epitaxial growth of AlGaAs films allowed a 
realization of a new t¥Pe of structure which has all the basic features of 3D 
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z_ 
(a:) empty 

-
(b) partially full 

systems and still has impurities removed from 
the immediate vicinity of the charge carriers 
[19,20]. In modulation (or remotely) doped 
wide parabolic wells the composition of 
AlxGal-xAs in the well is parabolically varied 
with the distance. As shown in Fig. 3, for the 
case n-type AlGaAs/GaAs structure, this 
creates a well with the conduction band edge 
parabolically dependent on the distance [60]. If 
such a structure is doped in the regions outside 
the well, the electrons are transferred to the 
well. The resulting electrostatic potential 
flattens the bottom of the well. Consequently, 
one obtains a structure in which electrons are 

n(z)j 

. (c) electron-density profile 

' confined in a wide well and are separated from 
their parent donors. This design allows 
preparation of wells with a thickness of the 
order of 1000 A and with the electron 

Fig. 3 :Schematic illustration of 
the conduction-band edge in (a) 
an empty parabolic well, (b) a 
partially full well. The electron 
density profile is shown in (c). 
(After ref [60]). ---· 

concentration of about 1016 cm-3 [60]. 
From condition ( 1) we find that the de 

Broglie wavelength of the electron gas in such 
systems is smaller than the well width. 
Therefore, the electron motion in the well is 
not quantized. Such system can be considered 
a model of modulation doped 3D electron gas, 
which should exhibit an enhanced low tempera­

ture electron mobility. In fact, mobilities as high as 3x105 cm2fV·s were 
observed in AlGaAs/GaAs wide parabolic wells [50]. Although such mobilities 
are much higher than those observed in standard 3D semiconductors, they are 
still much lower than mobilities in 2D MDH or what one would expect in any 
modulation doped system. 

The reason for this lower than expected mobility lies in nonspecular 
scattering of the electrons from rough confinement walls. As has been discussed 
in Section 1, in addition to the condition (1), one also has to consider condition 
(2), which in general is less restrictive than Eq. (2), and is easily satisfied in 2D 
MDHs. In wide parabolic wells with::: 3x105 cm2N·s and n::: 3x1Ql6 cm~3N·s, 

lp ::: 104 A> We = 103 A 
This means that although the electron motion is not quantized in the parabolic 
well the mean free path of the electron is much larger than the well width. The 
transport of electrons in the well will be affected by the interaction with the 
confining walls. 

The conditions resemble the situation frequently observed in thin metallic 
films characterized by a small de Broglie wavelength and high electron mobility. 
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The interaction of the electrons with the confinement walls reduces the electron 
conductivity in the plane of the well. This effect was extensively studied in 
metals and is known as the size effect in thin metallic films [61,62]. The effects 
of electron interaction with the confinement walls in wide parabolic wells has 
been considered in Ref. [50]. Adopting the approach previously developed for 
thin metallic films [63], it can be shown that the conductivity in parabolic wells is 
given by, 

3 crb cr = --
4 

0 

n 

d 6 sin3 (6) 

1 + 1~(6) 
(40) 

where <Jb = neJ.lb is the bulk conductivity, lb is the bulk mean free path, 15(6) is 
the effective electron mean free path associated with electron scattering from the 
confining wells, and 6 is the angle of incidence at a wall. It was shown that [63], 

ls(S) = -we/{loo;(6)lln[p(6)]} (41) 

where p(6) is the specularity parameter representing the probability that an 
electron will be specularly reflected from a wall, and we is the well width. 

For randomly rough walls the sTecularity
2 
parameter takes the form [64.], 

p(O) = expl-[4~a] =2a] . (42) 

where a. is the roughness parameter, and A. is the electron wavelength. It has 
been argued that the parameter a. should be of the order of Thomas-Fermi 
screening length [50], 

where F -1/2 ( ·) is the Fermi-Dirac integral of the order -1/2. Substitution of 
· Eqs. (41) and (42) into Eq. (40), and integration over 6 yields an analytic 

expression for the electron mobility in the parabolic quantum well, 

J1 = J.lb G(c) (44) 

where 
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• (45) 

where c = 4 lb kp2 a.2 I we. For perfectly smooth walls a ~ 0 or for a very 
wide well we~ oo, c ~ 0 and, as expected, J.L ~ flb. 

5. CALCULATED MOB.LITY AND COMPARISON WITH 
EXPERIMENT 

Lattice matching at heterointerfaces is one of the principal requirements to 
achieve high quality, high mobility MDHs. To date the AlxGal-xAs/GaAs 
heterointerface is the system most often used to fabricate MDHs. Since AlAs is 
quite well lattice matched to GaAs, therefore, there is the possibility of preparing 
MDHs with variable composition of AI in AlGaAs barriers. This adds a degree 
of freedom in creating MDHs with variable band offsets or to taylor the barrier 
height for specific applications. Other possible lattice matched systems do not 
offer such flexibility. For example, lnxGal-xAs is lattice matched to InP only 
for x = 0.53. Also, lnyAll-yAs is lattice matched to either lnP or 
Ino.s3Gao.47As only for y = 0.48. Recently, there has been significant progress 
in improving the quality of the lattice mismatched pseudomorphic hetero­
systems. However, the electron or hole mobilities in strained systems are still 
much lower than those in the lattice matched MDHs [14]. 

In this section we shall present results of calculations of electron and hole 
mobilities in various MDHs and in wide parabolic wells. T~e results will be 
compared with existing experimental data. We will also discuss several aspects 
of carrier transport in artificially structured systems which are still controversial 
and not fully understood. Here we present results of calculations of electron 
mobility in MDHs in which the electron gas is confined in GaAs or in 
Ino.s3Gao.47As with the barrier formed by either AlGaAs, in the former, or by 
lnP or Ino.4sAlo.s2As in the latter case. 

5.1. N-type AlxGaJ-xAs!GaAs MDH 

The parameters describing the band structure of AlxGal-xAs/GaAs 
MDHs, along with the coupling parameters for electron-phonon interactions, are 
known from studies of electron transport in bulk GaAs. Here we adopt the 
parameters listed in Ref. [38]. We also assume a value of 0.26 eV for the 
conduction band offset at the Alo.3sGao.6sAs/GaAs interface and a value of 
{V) = 0.5 e V for the alloy disorder parameter in AlGaAs. This value of {V) is 
smaller than the previously used {V) = 1 eV {25,26]. However, it should be 
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pointed out that the alloy disorder scattering contribution to the total scattering is 
negligibly small with the possible exception of the MDHs with high 2D electron 
densities, approaching 1012 cm-2 [26]. 
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The calculated temperature 
dependence of the electron mobility 
in Alo.3Gao.1As/GaAs MDH is 
shown in Fig. 4. Comparison of 
these calculations with available 
experimental data [21,22] on high 
quality MDHs indicates that in the 
wide temperature range of 4 K to 
300 K the electron mobility is 
determined by phonon scattering. 
The optical phonons dominate at 
T > 70 K and the acoustic phonon 
scattering plays a major role in the 
range 4 K to 40 K. At even lower 
temperatures the mobility levels off 
due to the scattering from remote 
impurities in the barrier and 
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Fig. 4:Theoretical temperature dependence scattering of the electrons 
of the electron mobility in AlGaAs/GaAs penetrating the AlGaAs barrier is 
MDH with a spacer width of 700 A. very small and amounts to about 4% 
Points are experimental data of ref. [21] ( of the total scattering in MDHs with 
D) and ref. [22] (•) for the spacer width an electron mobility of 
700 A and 750 A, respectively. 107 cm2N•s. 

The mobility in Fig. 4 has been obtained assuming the equipartition 
condition for the acoustic phonons. As has been shown previously [43] this 
condition is valid only for T ~ 4 K. At lower temperatures the acoustic phonon 
mobility drastically increases with decreasing temperature, J.lac- T-s, where the 
exponent s depends on the type of coupling. Mobility calculations in the B-G 

· regime ·show that s=5 for piezoelectric scattering [43]. Also, it has been found 
that for the screened deformation potential, s=7, whereas it is reduced to s=5 
when the screening is not included [43]. As is seen in Fig. 4, the B-G regime 
cannot be clearly observed in the experimental data because of the onset of 
temperature independent scattering from charged centers. 

The electron mobility due to optical phonons was calculated using the 3D 
approximation [26]. The justification for the approximation has been discussed 
in Section 4.4. It is also seen in Fig. 4 that this approximation quite well 
describes the 2D electron mobility for T > 100 K, supporting the conclusion 
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about insensitivity of optical phonon scattering to electron gas confinement [46]. 
Since the ionized impurity scattering contributes only at low temperatures 
where the 2D electron gas is degenerate, the mobility due to this scattering is 
independent of the temperature forT< 40 K. In high-quality MDHs the ionized 
impurity mobility is temperature dependent only at higher temperatures where 
the ionized impurity contribution to the total scattering is insignificant. 

The calculated total mobility in Fig. 4 has been obtained using the 
Matthiessen's rule, i.e., instead of averaging the total microscopic relaxation 
time over energy using equation (15), one performs the averaging for each of 
the scattering mechanisms separately and then combines all the relaxation 
times to obtain the total mobility. Using both methods we find that for the MDH 
shown in Fig. 4, the error of using Matthiessen's rule does not exceed a few 
percent. 

As seen in Fig. 4, simple model calculations account extremely well for 
the temperature dependence of the electron · mobility in high-quality 
AlGaAs/GaAs MDHs. In the structures reported in Refs. [21] and [22] the 
low temperature mobility exceeds 107 cm2N ·sand is mostly determined by 
scattering from remote impurities. In the MDH measured in Ref. [22] with a 
spacer width of 750 A additional scattering from the background impurities with 
concentrations of only 2x1013 cm-3 is required to account for the maximum 
mobility of 1.05x1 07 cm2N •S. 

The early studies of AlGaAs/GaAs MDH have demonstrated that the 
mobility of 2D electrons depends on the growth sequence of the epitaxial layers 
forming the heterostructure [65]. The very high mobilities can be achieved only 
in so-called normal-MDH (N-MDH) in which high purity well-forming GaAs is 
grown first, followed by the growth of the barrier forming, doped AlGaAs. In 
an inverted-MDHs (1-MDH) in which the growth sequence is reversed the 
mobilities are typically about one order of magnitude lower than in a normal 
MD H. 

Several explanations have been put forward to understand the reduced 
mobility in 1-MDHs. It has been proposed that the inverted heterointerfaces are 
less structurally perfect [65]. These imperfections would scatter the electrons 
resulting in lower mobility [65]. It has also been suggested that a diffusion of 
impurities from heavily doped regions in AlGaAs towards the well can be 
responsible for an increased ionized impurity scattering [ 66]. 

Most recently a new explanation for the mobility reduction in 1-MDH has 
been advanced [67]. It has been shown that there is a significant difference in the 
native defect incorporation in 1- and N-MDHs. In 1-MDH the well-forming 
GaAs layer is grown in the presence of electrons transferred from heavily doped 
barriers forming AlGaAs. The electrons enhance the incorporation of native 
charged defects [68]. These defects act as scattering centers reducing the electron 
mobility in the well. The effect of scattering by the charged defects in the well 
of a typical AlGaAs/GaAs 1-MDH is shown in Fig. 5. The electron mobility is 
found to be at least one order of magnitude lower than that expected in an 
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equivalent N-MDH. The 
proposed explanation is 
supported by studies which 
indicate that a long range 
Coulomb potential, rather than 
short range interface roughness, 
is responsible for the low 
mobilities observed in I-MDHs 
[69]. 

In most high-quality 
MDHs, the 2D electron density is 
very low when the structure is 
measured in the dark. However, 
one can increase the density by 
illumination of heavily doped 
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Fi2. 5:Electron mobility as a function of 2D 
electron gas density in inverted AlGaAs/GaAs 
MDH at 4K. The native defect scattering is 
the dominant mechanism limiting the 
mobility. 

DX-like donors into a shallow 
donor configuration leading to 
much ·more efficient charge 
transfer to the well. A typical 
light induced 2D density is 
- 2x10ll cm-2 to 3x10ll cm-2 
[21,22]. It has been also shown 

that the concentration of electrons can be controlled with an external electric 
field applied to the backside of MDH [71]. By increasing the electron density one 
can reach conditions where the higher lying excited subbands are occupied. 
Experimental results indicate that the onset of the occupation of the frrst excited 
subband is always associated with a decrease of the measured electron mobility. 
Systematic studies have shown that in AlGaAs/GaAs MDH, the mobility decreases 
by about 30% when the fHst excited subband is occupied [71,73]. Simple 
theoretical calculations in Ref. [26] are consistent with these results. It has been 
found that the onset of the intersubband scattering reduces the electron mobility 
due to acoustic phonons and background ionized impurities by about 28%. It has 
been also shown that,the remote·ionized impurities contribute very little to the 
intersubband scattering due to an ·exponential reduction of the scattering rates at 
large momentum transfers. 

5.2. N-type Ino53Gao.47As based heterostructures 

In InP/InGaAs and InAIAs/lnGaAs MDHs the well-forming InxGa1_xAs is 
lattice matched to InP and InAlAs for x=0.53. There is one important difference 
between the charge transport in GaAs and in InGaAs. In the latter case the 
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electrons are very efficiently scattered by the alloy-disorder potential in the well. 
Early experimental results on the 2D electron gas mobilities have shown that the 
mobility is independent of temperature for T <50 K [74]. Also, the highest 
reported mobilities were limited to about 105 cm2/V•s. These results were 
confrrmed on both InAlAs/lnGaAs [75] and on lnP/InGaAs [76] MDHs. 
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Fig. 6:Electron mobility vs. temperature in 
Ino.4sAlo.52As/ln0.53Gao.47As MDH with 80 A 
spacer. Experimental points are from ref. [74]. 
The upper and lower background impurity 
mobilities correspond to Nib= 5xtots cm-3 
and 1016 cm-3, respectively. Alloy disorder 
potential (V} was used as a fitting parameter. 
(After ref. 26) 

5.3. P-type AlGaAs!GaAs MDH 

Theoretical calculations 
have demonstrated that the 
mobility at these low 
temperatures is determined by 
alloy disorder scattering in the 
well [26,48,77]. Fig. 6 shows 
the comparison of the 
theoretical calculation with the 
experimental data of Ref. [74]. 
The material parameters used 
in the calculations are given in 
Ref. [26]. Because of high 
electron density in the MDH 
studied [74], the calculations 
included the effects of the frrst 
excited subband using the 
approximate approach outlined 
in Section 3.6. An analysis of 
the low temperature mobility 
data was used to determine the 
alloy-disorder parameter (V}. 
It has been found that the 
experimental results can be 
explained assuming (V} to be in 
the range of 0.55 eV to 
0.63 e V. This value very 
favorably compares with the 
independent determination of 
(V} = 0.6 eV reported in 
Ref. [78]. 

As has been discussed in Section 3.7, there is only a very limited amount 
of experimental data on transport properties of 2D holes in MDHs. Practically 
all of the data is restricted to the AlGaAs/GaAs system [23,55,56]. Similarly, as 
in the case of electrons, modulation doping leads to a large increase of the 2D 
hole mobilities. A low temperature mobility as high as 3.8x1Q5 cm2N·s was 
measured at T = 0.3 K [23]. The only theoretical calculations of the 2D hole 
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mobilities are based on the model of decoupled electric subbands [32,38',58]. It 
has been shown in these calculations that only the heavy holes contribute 
significantly to the total conductivity in a MDH. The contribution of the light 
holes is much smaller since they are very efficiently scattered by the heavy holes. 
Therefore, the transport in p-type MDHs can be described in terms of single 
heavy hole electric subband. Theoretical calculations of the hole mobility in a p­
type AIGaAs/GaAs MDH with the hole density of 2xl011 cm-2 are shown in 
Fig. 7 ·[58]. Very good agreement between the calculated mobility and the 
experimental data of Ref. [57] is obtained. In the temperature range 4 K to 
80 K the mobility is determined by phonon scattering. The largest contribution 
to the scattering is coming from the acoustic phonon scattering which is the 
dominant scattering mechanisms up to the temperature of - 60 K. The 
discrepancy between theory and experiment for T < 4 K can be attributed to 
the background ionized impurity scattering. This scattering mechanism has not 
been included in the calculations. 

L&J ..... 
0 
::c 

TEMPERATURE (K) _ 

Fig. ?:Temperature dependent hole mobility in 
p-type Alo.sGao.5As/GaAs MDH. The points 
represent experimental data of ref. [57] for the 
hole density P == 2x1011 cm-2. (Mter ref.[58]) 

in the calculations [79 ,80]. 

The theoretical results in 
Fig. 7 were obtained for an 
unscreened acoustic phonon 
deformation potential scattering. 
This is consistent with the 
calculations of the electron 
mobility where the screening of 
the deformation potential has 
not been included. The problem 
of the proper screening of the 
short range potentials has been 
discussed in several papers. It 
has been shown recently that the 
electron energy loss rates [27]~ 
as well as phonon-drag 
contribution to the 
thermoelectric power [39] in 2D 
electron systems, can be 
explained assuming the 
unscreened deformation 
pptential. However,. it has .. also 
been argued by others that the 
dependence of the - phonon 
scattering on the electron 
density can be better understood 
when the screening is included 

It has been found that to explain experimentaly observed mobilities with a 
screened deformation potential very high values of deformation potential 
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constants are required. Thus, in AlGaAs/GaAs MDH, deformation potentials as 
high as 13.5 eV were used to explain the value of the acoustic phonon limited 
mobility [80]. Such a high value is at variance with the results on electron 
mobility in high purity GaAs [81] and is much higher than the value of 
ac = -9.3 eV directly determined by an independent experiment [82]. Also, 
theoretical calculations has provided even a lower value of ac = -7.3 eV [83]. 

The analysis of 
x 1 o-7 1 .-----.---~-~--,----,---, x 10-s electron and hole mobilities in 

ts • high quality MDH provides an 
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12 5 deformation potentials [58]. 
./ /, en As is shown in Fig. 8, the 

1 _ / 10 2:. temperature dependences of 
~· / >- inverse electron and hole 
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. ~ mobilities are well explained 
•' / E by calculations in which .; / 

I / acoustic phonon deformation 
/ potential interaction is not 
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.~ .o" ~ The best fit is obtained for 
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• ~ a c = -9.3 eV and 

Temperature (K) 

Fig. 8:Temperature dependence of the inverse 
electron and hole mobilities in AlGaAs/GaAs 
MDHs. The experimental points are from r((fs 

av = -0.7 e V. These values 
of the deformation potentials 
were- independently 
determined from other 
experiments [82]. It is also . 
seen in Fig. 8 that 
incorporation of screening 
very significantly reduces the 
acoustic phonon scattering 
rates which are much lower 
than those determined 
experimentally. Therefore, 
the results in Fig. 8 . support 
the notion that a simple 

[57]; (o) and ref. [84]; (•). The solid and broken 
lines represent the calculated mobilities for 
unscreened and screened deformation potentials, 
respectively. (After ref. [38]) 

Fermi-Thomas screening of the short range deformation potential cannot be used 
in 2D systems. 

J 
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5.4. Wide parabolic A/GaAs/GaAs wells 

The wide parabolic wells were designed to simulate quasi-3D systems with 
reduced ionized impurity scattering. It has been proposed that such systems 
could exhibit Wigner crystallization at very low temperatures. Although the 
crystallization has not ever been clearly observed, it has been shown that wide­
parabolic wells exhibit other interesting and· ul)ique properties. It has been 
demonstrated that the maximum mobility in AlGaAs wells was limited to about 
3xl05 cm2Ns. This value of mobility was lower than that expected for a 
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quasi-3D degenerate electron gas. 
It has been proposed in ref. [50] 
that the value of electron 
mobility in wide parabolic wells 
is affected by nonspecular 
scattering of electrons from 
rough confining walls. As has 
been shown in Section 3, the 
electron mean free path is larger 
than the well width. 
Consequently, the electrons are 
reflected from the rough walls 
more often than they interact 
with scattering centers in the 
well. In order to calculate the 
effect of the nonspecular 
reflection, a model theory which 

0 L--L--_.l..,_---1---1..----'----' has been previously developed to 
o 10 20 30 40 60 calculate the size effect in thin 

Temperature (K) metallic films has been adopted to 

Fig. 9:Temperature-dependent inverse 
mobility in wide-parabolic AlGaAs/GaAs 
wells. (_), scattering from rough walls 
included, ionized impurity concentration Nib 

= 2.3xl 014 cm-3; ( -·-·-) , no scattering from 
the walls, Nib = 2.3xl014 cm-3; (-----) no 
scattering from the walls, Nib = 1015 cm-3. 
(After ref. [50]) 

evaluate electron mobility in 
parabolic wells. Results of the 
calculations are shown in Fig. 9. 
The results indicate that the 
nonspecular scattering reduces 
the electron mobility by a factor 
of 2 to- 3. It is also seen in Fig. 9 
that incorporation of nonspecular 
scattering accounts for the 
experimentally observed temper'" 
ature dependence of the mobility. 
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6. CONCLUSIONS 

In this chapter we have reviewed basic aspects of electron and hole 
transport in artificially structured 2D systems. The concept of modulation (or 
selective) doping has provided structures with extremely high electron and hole 
mobilities. Very significant reductions of impurity scattering in modulation 
doped systems allowed extensive studies of phonon scattering down to very low 
temperatures. These studies raise several issues concerning the free carrier 
screening of acoustic phonon deformation potential. It is now quite evident that 
the reduced dimensionality is clearly observed only at low temperatures. At 
higher temperatures of T > 100 K charge transport in 2D systems is very 
similar to that observed in 3D high purity semiconductors. For example, it has 
been demonstrated that charge confinement does not affect highly inelastic 
scattering by optical phonons. 

Although this review was restricted to lattice matched semiconductor 
systems, most of the concepts and methods can be easily adopted to lattice 
mismatched and pseudomorphic systems. At strained semiconductor interfaces 
an important complication arises from the fact that one has to consider the effect 
of planar strain on the electronic structure. The effects of the strain are 
especially complex in the case of the degenerate valence ·bands. Also, the 
electronic transport depends on whether the strained layer is unrelaxed, partially, 
or fully relaxed, since it can be affected by structural defects at the interfaces. 
All these issues are of great importance for strained GaAs/lnGaAs and Si/SiGe 
heterostructures which are considered the most promising systems for a high 
performance heterjunction bipolar transistors. 

Spectacular improvements in electron and hole mobilities found in 
AlGaAs/GaAs MDHs are not matched by other semiconductor systems. 
Interesting and potentialy very promising heterostructures are based on lll-V 
and ll-VI narrow band gap compounds Because of very small electron effective 
mass in these materials one should, in principle, be able to achieve electron 
mobilities much higher than those in GaAs based heterostructures. The progress 
in this area will, however, depend on further improvements in the quality of the 
epitaxial layers of these materials. One of the main problems· is still much lower 
purity of the narrow gap materials compared with GaAs or AlGaAs thin films. 
In narrow gap II-VI semiconductors, lower than expected mobilities can be also 
attributed to the difficulty in preparing high quality abrupt heterointerfaces. 
Reducing of the heterointerface intermixing will be necessary to take full 
advantage of HgTe or HgSe based modulation doped heterostructures. 

Charge transport in 2D systems is now a mature research area with well 
developed experimental and theoretical methods. Progress in material 
preparation techniques have made possible to study charge transport in lD 
(quantum wires), as well as unusual properties of OD (quantum dot) systems. 
An intense effort in several laboratories into development of these new methods 
of preparation of strongly confined low-dimensional systems has already 
produced a wealth of new results and certainly will be the research area actively 
pursued in the future. 
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