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Abstract

Requirements specification is an important part of the software, indeed the
system, development process. It is critical that this effort be started early.
This work suggests an early model for software developers to incorporate a
systems viewpoint in their process. This model is an attempt to formalize
an approach that will include a systematic representation of essentials of the
external interface for software that is embedded within a larger system. The
model is useful for early analysis of the software system and environment for
such things as consistency, completeness, and safety.





1 Prologue

Recently the notion of a systems approach to software development has become

popular. This can be employed during the requirements specification process to

help alleviate some ofthe productivity problems in the frontier software development

domain. There are two perspectives from which to view this. The first one is the

viewpoint of the systems developer, who is outside the system and, with that focus,

should look at software considerations much earlier in the development process than

is the current practice. It is not enough to say that software will be there; software

is not infinitely flexible!

The other perspective is the one of concern in this work. It is the perspective of

the software developer, who can include a model of parts of the. system external to

the embedded software sub-system—include this model from the beginning of the

software development effort.

The interface between embedded software and other components of the systemis

an important part of this model. Careful consideration of this interface can do much

to enable a systems viewpoint for software developers. There is concern for speci

fying parts of this interface, concern for the process and for what can be specified.

The military standard established by the Department of Defense for development of

its software [DoD85] states that "the contractor must define and analyze the inter

face qualification requirements for each computer software configuration item," for

example. The embedded computer system requirements workshop held a few years

ago cited methods for modeling the environment of the software sub-system as one

of the most important issues that should be addressed by research [WL85].

2 Models and their uses

What we are always doing in modeling is describing a system other than the actual

one, with compromises between what is real and what we can describe. As figure 1



illustrates,

. reality
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Figure 1

a system is modeled here at the left that approximates some real system on the

right. The useful model is necessarily an abstraction that is simpler than the real

system, else the modeling effort is not effective.

According to Cho [Cho87], "Modeling is the activity of understanding the prob

lems under construction. A model is a representation of an existing or conceptual

object, an abstraction of a real world phenomenon that will be the basis for devel

opment of a piece of software." Indeed, this is true for development of the entire

system.

A model may illustrate components in a general sense only, although sometimes it

may include components' most basic elements as well. It also shows the relationships

(or lack of them) between the parts of the model. Each model is an example for

some future effort; sometimes a model can illustrate how other systems should be

described. For example, the A-7operational flight software specification ([HKPS78])

has been used as a model of how to specify software requirements. A model is also

a guideline for essential elements; it shows the essence of what is being developed.

Concrete models can demonstrate the existence/non-existence of certain properties

and can serve to document the existence of some features. A wind tunnel aircraft

model, for example, can demonstrate the stability of the aircraft in turbulence.

The model suggested in this paper has all these motivations. It is an attempt to



formalize an approach that will include a natural, systematic way to represent the

essentials of the external interface of software in a useful way and then include it in

analysis of the requirements specification.

The implemented, working system must have certain properties which are spec

ified in the requirements for the system and have been delegated to the software.

Sometimes the properties are dynamic and they must be ensured, checked, and

maintained by monitoring, feedback loops, real-time checking, analysis, whatever.

These properties can only be achieved by preparing the system under development,

systematically from the onset, to satisfy them.

A further motivation, then, for the interface model is to better enable the soft

ware to control component interaction, both static and dynamic, to ensure system

safety. Even for elements of the system that are not the responsibility of software,

additional monitoring may be desired if their failure affects monitored or controlled

elements. System reliability and safety are greatly affected by the interaction of

system components. In order to ajialyze this interaction during the requirements

specification process as far as the influence of software goes, a model of the inter

action must be available. Others have called for such a model; Leveson and Harvey

[LH83] have said: "[Ajssertions which involve the state of parts of the system exter

nal to the logic of the software, e.g., the environment in which the software operates

such as hardware or support systems, will be necessary. Environmental failures or

interfacing problems cannot be prevented by a purely software analysis of safety."

The term component is being used here to mean the smallest part capable of

performing a function. One can think of each component as a black-box module that

has some pre-determined functionality (from the software point of view). However,

the particular pieces labeled as components may change as development continues,

since the specifics of a given function may change and more details (further subdivi

sions) of components will be necessary to reflect these considerations. The process is

iterative. Most information about other components must be provided, but software



analysts may ask questions and develop a standardized approach to the information

provided so that the software may be more adequately prepared for its role in the

system.

3 Interface definition

The Dictionary of Science and Engineering [Par84] describes an interface as "some

form of electronicdevice that enables one pieceof gear to communicate with or con

trol another; a device linking two incompatible devices, such as an editing terminal

of one manufacturer to the typesetter of another; ... or a shared boundary." The

model proposed here, then, is of an interface in the first and last of these senses.

This is a systemlevel model, for a top down approach to software development.

It is the viewpoint or framework within which to begin; the interface is the "con

text model" for the software development effort. The interface model describes the

interaction of black-box components; it is a part of the environment and a part of

the software. The focus, then, is on inputs and outputs at the systemlevel between

all the system components, for they are the interaction. The computer interface

between the software sub-system and other components is a subset of the interface

described here, which includes interaction between all components.
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3.1 Views of Interaction

The relationship of this element to the rest of the system model can be viewed in

multiple ways. Figure 2 depicts one view. It portrays the software as the "brain"

of the system; all interactions are controlled by the software sub-system. A process

control system would probably be of this type. The other picture, figure 3, takes the

view that the software is just one of the components. Some manufacturing plants are

of this type. It may have control over certain interaction, but some of the interface

(that may/may not be included in the model) is totally out of the control of the



software. The first view is that of total control; i.e., mappings between inputs and

outpus will have software as a source or destination for each match. The other is

for partial control of interface functions. The model and ensuing analysis can work

for either intent, however the greater control results in a more thorough analysis for

the first view.

Subsystem
1 System Environment

Subsystem

Software

subsystem , f^^bsystem 3

ubsvstem 2

Figure 3

Interface deals with inputs and outputs; it describes a layer "between" the envi

ronment components and the embedded software. As this is a model for use during

the earliest phase of development, it is appropriate to include only the form of the

data exchange, not how it is exchanged.

The computer will need to acquire data (status, measurements) from, as well

as provide data (instructions, commands) to, other system elements. The interface

model is a description of the essentials of that acquisition process—both ways. The

actual computer interface (i.e., the exchanges between software and other compo-
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nents) is part of the software requirements interface (a subset if you will). The

software requirements interface also contains information about how other compo

nents interface; this information is necessary if the software is to have any (or can

have any) monitoring functionality for system safety.

Most of the environment model is not at the discretion of the software devel

opers. Rather this model is for the purpose of analyzing the appropriateness of

the software requirements to meet the system requirements and to see how changes

there (in the system requirements) may affect the software being developed and to

minimize these effects, within the realm of the software control. Again, this demon

strates the need for a system view from both perspectives. Software is not infinitely

flexible, and it is not operating in a vacuum. Changes will, of course, be made

throughout development as an iterative process will develop the model—and the

eventual system.

3.2 Model concerns

The interface model is a place to deal with various concerns. Lamport [Lam85] has

stated that "misunderstandings in these [(interface)] low-level concerns is likely to

be a lot more disastrous than the failure to correctly implement some subtle aspects

of [communication] protocol."

Too often, issues of timing and value accuracy have been avoided during require

ments specification. This is because there is no place or discipline to address these

in any current techniques or languages for requirements specification. With the in

terface model, there is a place to specify these, and the discipline that it provides

will increase the precision and correctness of the software specification.

The interface describes a mapping between outputs of the system components

and inputs of system components. It is a model to show the "relationship" between

the parts of the system. It can be used to demonstrate the existence/non-existence

of certain safety properties and may even document the existence of some features.



A subset of these inputs and outputs is directly controlled or monitored by the

software. For these the mapping will be between software I/O and another compo

nent O/I. Other mappings besides these may be interesting for their safety impli

cation, however. Developing the interface model is not just scaling up of interface

problems encountered within software; interaction problems of "unknown" compo

nents, those whose control is from outside the system and perhaps not according to

any particular function, does not exist at lower levels.

Inputs and outputs have certain characteristics that may be assumptions. Some

may be likely to change; this model attempts to allow isolation of these likely to

change features which include capacity, capability, mode, undesired event require

ments. A place is needed in the requirements specification model to document

assumptions about components. This is not easy as these assumptions may be im

plicit instead of explicitly stated in previous documentation. Some analysis tools

can draw out hidden requirements; others can uncover the need for omitted require

ments. Requirements specification is the appropriate time to acknowledge these and

to determine the desired responses if they are violated'. It makes sense to isolate

these assumptions and the checks for their violation in a separate level, away from

component functionality, as they are likely to change over the lifetime of the system.

Fussell has said "A potential problem is that the analyst is seldom aware of all the

assumptions he has made."[FA79]

Constraints will need to be included in this model. These may be forced on the

model by the system constraints, or are the results of analysis on the model that

shows certain constraints to be necessary here. They are expressed as rules for the

mapping of inputs to outputs (or vice versa) to obey.

Also of concernare failureevents that includefailure to follow specified I/O maps

or failure to meet constraints placed on them, and failures of individual components

in the system. These two sources represent failure in the interface and failure in the

environment. They usually will be handled differently: Failure in the environment



is something to react to; failure in the interface indicates another source of fault.

3.3 Use of the Model

The interface model is an organization that can allow for recovery from undesired

events; can isolate changeable parts; and can have safety concerns and considera

tions built-in to facilitate analysis. The recovery from undesired events or exceptions

belongs here, since this recovery is not a absolute part of the software functionality.

Analysis should be included that augments this model so that undesired events are

dealt with or prevented altogether. There is a need to "plan for the unexpected";

failures cannot be prevented altogether, especially when failure occurs due to dis

turbances in the environment.

In some systems, it may be desirable to have the interface be a watchdog for

overall system performance, since it can have access to the necessary information

to do this. This could be thought of as adding to the mission of the software sub

system, or it may already be included as part of the software interface.

Example components that might be included in the interface model are sensors,

displays, the software sub-system, controlled components, and even humans. Ex

ample concerns for the model are accuracy, scheduling, volume, timing, proper and

improper modes of operation.

4 Notation and Definitions

States, events, and conditions of the finite state machines are suitable for describing

the software sub-system. The language of Statechaxts [Har87] is an extension of

finite state machines that includes such features as modularity, hierarchy, structur

ing, orthogonality, and generalized transitions. [Mel88] contains a more thorough

description of the language and a comparison of its features to other state machine

based languages as well as a discussion of some experience with its use. Statecharts

provides a graphical language that may be suitable to describe the aspects of system
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components that are relevant to the interface model. However, it does not provide

a straightforward notation for assigning attributes to the inputs and outputs to and

from the components without introducing considerable clutter to the description.

So, these will be described separately, with input and output declarations charts to

augment the Statecharts. Properties will be declared for various inputs/outputs and

mappings between them allowed/disallowed according to given, implied, or derived

constraints.

The model is made up of a set of Statecharts showing the relevant states of

components, input and output declarations for each data exchange, and a mapping

between these. These mappings make explicit the assumptions that are made at

this level and time. Analysis on the model may then be performed to examine

the mappings and declarations for safety, consistency, etc. Descriptions of the norr

mal (desired) behavior and defective (undesired) behavior are included. Required

behaviors should undesired events occur can then be specified.

The model is developed along with the charts. When an exchange is called for,

the I/O details are outlined in an exchange chart. This will show the need for a

matching (under the mapping M) exchange to supply or receive the data and what

its characteristics must be.

An input declaration, for example, must include declaration of the assumed

acceptable range(s) for its value. The declaration must indicate what is to be done

if this range is violated. Safety-critical variables may include a waxning range or

boundary, that does not violate safety constraints but is close to unacceptable, and

an acceptable range.

The specification of ranges for values of inputs and outputs constitutes the spec

ification of certeiin constraints. Some constraints are inviolable; others, like safety,

are violable, but with undesired consequences. The process specifies constraints

which the functioning system must not violate. If it does, then it will cause an

exception. ,
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When the constraint is violated, whether it be an exception to a given input or

output range, an exception condition will be in force. This may occur for example

when an outside disturbance such as wind causes an airborne system to encounter

undesired turbulence. Exception correction may then call for operator assistance,

backups, or fail safe procedures.

Some definitions will be helpful in the specific description of the model. Most of

these relate to specifying timing properties.

According to Lowe, "The qualifications 'continuous' and 'discontinuous' as ap

plied to control systems and elements refer to the magnitudes of certain signals in

the system." [Low71]. Discontinuous here implies that the values jump. These may

also be discontinuous in time, implying that monitoring, controlling, whatever has

gaps in it timewise. It is called a sampling control system if it is not continuous in

time. That is, it must rely on sampling data at intervals. Note that both manual

and computer control are of necessity sampling systems. We cannot really read

or do two things at once; computers cannot provide either continuous or continual

output. If continuous monitoring (information) is required, then the intervals have

to be made very small to simulate continuous control. To distinguish between these

two continuity concepts and to emphasize the continual availability of certain val

ues, continuous in time will be referred to as continual. That is, continual = time

continuous and continuous = magnitude continuous.

On the other hand, components in the environment of the software are not

necessarily, indeed not usually, discrete or sampling. It is often difficult to adequately

represent the continuous nature of these with finite state machines.

From the operating systems domain (see, for example, Deitel [Dei84]), we can

surmise definitions for the capacity or load of a certain declared input. Capacity

is the measure of the maximum work per unit of time that a system or data line

may possibly accomplish. That is, it is the rate at which the load from all can be

handled by this one. Load is the measure of the actual amount of work that has
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been submitted and must be processed in order to be functionally acceptable. For

our purposes, work is the acceptance or submittal of information, i.e., the only work

we are considering is an exchange.

Note that load here is different from the pure systems engineering sense. Load

will not cause the software to "wear out early", as with physical, mechanical com

ponents. Rather load may cause the software component to react in an unsafe way

when it is violated (overloaded).

A process control system is defined by Lowe as an arrangement of elements that

are interconnected to maintain, or to affect in some specified manner, some physical

quantity or condition of the process which forms part of the system [Low71]. The

product or condition that results may be thought of as attaining a certain state in

this model. Then any product is just an output; both inputs and outputs may be

physical quantities. To paraphrase Johnson, "Control events occur in a sequence

for which an output state produces a change in the input state, which than causes a

change in the output state. The process continues until some overall objective has

been met. The present output is dependent on the sequence of previous states of

the system." [Joh84]. For the builders of softwaxe systems, this objective may be a

certain state; for some components it may be a physical output, like a certain flow

rate.

Disturbances and time lags are features of the process and control elements or

components and defined as follows: Disturbances are the effects of influences on

the process, besides the controller. (Ifserious enough, they may require an exception

procedure. Time lags are delays in the response (output) to a certain change or

input. Note that these delays are not always unwelcome, but might be beneficial in

that they restrict the speed with which disturbances can affect the system.

As a required response time is specified, that input must match with other ex

changes, and the system level requirement is then affirmed throughout the interface

model.
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5 Interface Model

There are common, essential elements to the external software interface, no matter

what the functionality of the system being developed. It is possible to discuss a

"generic" interface model because, no matter what the specific requirements for

the black-box software component (or any other component, for that matter), the

interface basically has the same functionality: data exchange through inputs and

outputs of system components. Anything that deals with passing information from

one component to another, including exceptions to the normal, is a concern of the

interface model.

5.1 Exchanges

A basic Statechart description of the system is derived from the system specification.

These charts describe the states and sub-states of the system and how transition is

accomplished from one to the other. The actual state of the system will be many

orthogonal (or parallel) states. A particular component will probably be described

as well by several states. The term exchange will be used here to indicate either

an input or an output. The declarations for characteristics of exchanges are similar

to abstract data types for interface components. An input or output is declared

in relation to a particular condition, event, occurrence, or component state. The

event/condition/state will be said to result in the output oy or input ix, for example.

A declaration exchange chart will include the following for input:

value{ix) e ValuRange

timeiix) e TimeRange

timetype{ix) e TT

sourceiix) e C

capacity

exceptions

13



An output declaration will include:

value{oy) t ValuRange

time{oy) e TimeRange

timetype{oy) e TT

destination{oy)eC

load

ValuRange and TimeRange are sets. Their elements declaxe a range of accept

able values for input (output) and acceptable times for input (output) occurrence,

respectively. Note that these do not prevent other values not in range from be

ing generated, but rather notices that they have occurred. These ranges may be

absolute, i.e., they may be definite numerical limits, or they may depend on some

previous event or value. The example included in the next section illustrates both

cases. These limiting ranges are appropriately documented in this model. Actually,

there may need to be several layers of limits for a particular time or value; needs

watching, getting closer, warning, danger is imminent, boundary line violated, or

alarm, for example.

environment
output to

continua

S-R

periodic

software
input

match

periodic
S-R (on demand)

S-R

periodic
sj

software environment
output to input

continua
continual^e^iodic

S-R S-R

periodic S-R

periodic

Figure 4

The set of all timetypes (TT) is an ordered set.
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TT = {continual, periodic, S-R}

Figure 4 shows the relationship between the various elements. Mappings between

intended outputs and inputs will not be allowed to violate the chart. Often "details"

of what kinds of interface will be required are omitted from the software specification

because they are not known yet. Sometimes, however, there is some assumption

made about how this will occur, such as it will be periodic or it will be done strictly

by interrupt, etc. There must be some view or forum for documenting and expressing

these "details."

C is the set of all components included in the model. These will generally be

system components, although for some particular applications it may be appropriate

to break up the system components at this time and represent each sub-component

in the set C.

There are some differences between the two kinds of declarations. An output

will not have a source; rather it will have a destination. An input source may be

the component that is accepting this input, and, similarly, the destination may be

the same component that results in the output. Exceptions are included with input

declarations only and are discussed in section 5.3.

5.2 Mappings and Rules

According to Parnas [PvSK88], there is some type of mapping from the environment

{env) to itself: f{env) —>• env. Then within that is a mapping (function) /(/) —>• 0

where I and O are input and output to and from the software respectively. The

interface model also describes a mapping: M{0) —> /, but in a very different sense

from the previous one, where / represents the internal function of the software.

Here the mapping represents an intended exchange of information; i.e., 0 is the

"supplier" for I.

To model the interface requires an awareness of incompatibilities between the

exchange declarations. To provide compatibility, inputs and outputs are checked
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according to rules. Some rules for checking are generic, such as:

capacity: Every input has a capacity rate which is

max # of inputs that can be handled

(per) time unit

load: Every non-continual output has a max load declared as a rate which is

max # of outputs that may be sent

(per) time unit

To match these, the following rule is used:

3 some mapping M 3 "iiel 3 some output a \ M{o) —»• i

load{oy) < capacity{ix)
{oy\M(oy)-i-ix}

(Note that this constraint is conservative.)

compatible timetypes: These help define a certain consistency for the declared

assumptions under the mapping M:

timetype{M{y)) < timetype{y)

Then the following must hold true:

yinput{ix)\{source(ix) = B,

3{oy)\destination{oy) = D AM{oy) = ix

It is clear that ix must be generated within component D, and likewise, oy within

component B.

Other generic rules are possible for time and value ranges.
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Other specific rules are derived from the particular application systems being

developed. These are actually statements of the requirements constraints that may

be assumed with the information provided at this time. For example: 'iinput{ix)

generated within component B, time{ix) > 50; or 3input{ix)\time{ix) < 10.

External completeness in this model means that the closure property discussed in

[JL89] holds for all system inputs and outputs included in the model. The attempt

to define a "complete" system is an attempt to cover all possible situations that

may arise in the environment components and in the software controller, even if

these situations are highly unlikely. Of course, external completeness also implies

the specified software system meets the allocated system specification.

Within the exchange descriptions is the information to establish this closure

property. There is also more information. In paxticulax there is information to

perform certain safety analyses. These will be discussed in a forthcoming report.

5.3 Exceptions

This modeling activity is probably just the first in majiy layers towards a robust

design for software that can handle undesired activity in the system. Component

outputs have declared value and time ranges, and exception transitions should be

defined for their violation within the component.

The software component knows exactly when output from it will occur, i.e., it

has a way to directly control it within a range, but not so for input to the software

component. Software can checkfor adherence to certain declared (assumed) ranges,

but it cannot force input to software to occur as specified. These relate specifically

to time and value exceptions.

Exceptions in the model are declared only for the inputs, i.e., exceptions are a

characteristic of softwaxe inputs. Exception handlers of several types are needed to

handle them, based on the severity. Examples are correct, alert human, replace,

or ignore. Note that the middle two, alert hurnan and replace, are from errors.

17



This work does not discuss all the various possibilities for exception handling. The

interested reader is referred to [Goo75] for a thorough treatment. Exceptions are

caused by some error in the output that is supplying this input through mapping

M. It may denote a failure of the source component for this input. The following

relation AF, affects, can be defined:

if [source[ix) = c] A [M(oy) = ix\ A [destination[oy) = d] A [faUure{c)t Error],

then cAFd.

Some variables (inputs) are noninteractive; i.e., their measurement, evaluation, and

feedback can go on for each without worrying about affecting values of the other

variables. When components and their outputs are noninteractive, they would be

seen to have no relationship in the AF relation.

So then component descriptions including the software are black-box descriptions

as far as possible. There are also input and output descriptions that belong to each

component because they result from one of its states, events, or conditions. Most

components have failure states that result in incorrect, or perhaps lack of, output.

Those states can affect other inputs (i.e., the ones that match the outputs in the

above mapping M). In order to limit the amount of analysis necessary, it is sufficient

to analyze for failure consequences on affected subsets where a failure{x) = / AF

component B \i f => {B fails) or {B degrades) Perhaps one can say that:

source{ix) = B Afailure{B)e(Unsaft)

Analysis for safety in the interface model is being developed using this affects rela

tion.

18



5.4 Example

An example of this interface model is given for the following system:

Invasive

ECG/

Resp

CRT

VDisplay

Power

Supply

Body

Temp,

software

controller

Figure 5

Diff

Body
Temp

Other

Unit

Alaxm

Nurses

Station

A patient monitoring system is being developed for a hospital ward. Each pa
tient will be monitored by a separate unit with collectors for such factors as body
temperature, differential body temperature, invasive blood pressure, and heart and
breathing rate (ECG and Resp). The software updates these factors on a periodic
basis and stores them in the data base for the patient being monitored. Invasive
blood pressure wiU be reported whenever there is a significant change in the pres
sure; temperature and differential will interrupt with an update every minute; and
ECG and Resp will be read continuously. Particular safe ranges for each factor will
be specified individually for each patient as part of the patient data provided before
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start-up. If a factor falls outside of the safe range for the patient being monitored,
a patient alarm will be sounded on the unit and in the nurses' station. This alarm,
as well as an alarm for possible system malfunction, may be'disabled with a manual
button push if need be, for example, during patient transfer. This unit may accept
data from and send data to a central data base, or it may receive updated informa
tion from the nurses' station. The monitor display will indicate whether or not the
unit is on AC or batteries, and if on batteries, the amount of power left. There is
enough memory in the unit to monitor the patient for 8 hours only. After that time
the data base should be downloaded to central and the unit restarted.

Figure 5 shows a first view of how this system must interact.

There should be some notion of building the system. Begin with a null system

and add components one at a time. If it is known what kind of analysis will be

desired, it can then be done in stages, provided the properties are hierarchical,

i.e., provided the properties are not lost once they have been proven for separate

components which are now joined together. Consistency is this type of property.

It is unfortunate that safety is not a hierarchical property. Figure 6 shows how

the specification process begins for the output ajid input exchanges required for

BT, body temperature. All times are in seconds. [Ranges] denote inclusive real

ranges. Inputs will be named with "i" appended, outputs with "o" appended;

"VAR"' will indicate the previous occurrence of VAR. Other abbreviations used

are straightforward. The charts (state and exchange) will evolve as the interface is

further specified. Each iteration requires the developer to check for adherence to the

given rules or constraints. Note that some consistency checking is done on the fly as

the inputs and outputs can be matched as they are defined and the corresponding

elements seen to be consistent.
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outputexchanqe(Bodytemp); BTo
value(BTo) - (60,120]
time(BTo) - [tiine(BTo') +59, time(BTo')+61J
tinietype( BTo) - periodic
destination(BTo) - Swcontrol
load - 1/60
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inputexchange(Swcontrol): BTi
value(BTi) - (60,120)
tiine(BTi) - (time) BTi ' ) + 50, time(BTi ' ) +70]
timetype(BTi) - periodic
source(BTi) - Bodytemp
capacity(BTi) is 100/60
exceptions; If value or time is out of range, system

malfunction alarm is to be set and nurses station
notified. Operation should continue.
If capacity is exceeded, data will be lost.

Figure 6

A system overview Statechart is provided in figure 7. Additional exchanges and

detailed Statecharts are given in figures 9 and 8, respectively. The mapping of

inputs and outputs in the system is shown in figure 10. In order to provide a simple

example, no startup elements have been included. To include the details of startup

(or shutdown) would add more states, but would not add to the relevant information

in the model. One particular element would be harder with startup included. That

is, there is no previous time of a previous such event and no value ofsame. The first

iteration could either be set to a physical time, or allowable default values could be

automatically used for startup states. In this particular example, only the previous

values and times are used. The problem would be handled similarly if more than

these were needed.
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Software functionality for the controller is not described in detail in this example.
The requirements specification model would have less abstraction, but this example
does not need that information. Afirst look at the interface for adeveloping system
may not need to focus on software functionality at all either. Details of startups and
internals of software control with aStatecharts model of asimilar patient monitor
are in [Mel88]).
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outputexchange(MeiT)oryload): OVLo
value(OVLo) - ((memload,t) 1 t6time(0VLo)}
time(OVLo) - (28600,28860)
timetype(OVLo) - S-R
destination{OVLo) • Swcontrol
load - 1/28800

outputexchange(ECG/Resp): ECGo
value(ECGo) - (0,150)
time(ECGo) - (time(ECGo')+.01,time(ECGo' )+ . 1)
timetype(ECGo) - continual
destination(ECGo) • Swcontrol
load - Not relevant (i.e., not interrupt driven)

inputexchange(Swcontrol): ECGi
value(ECGi) - (0,150)
time(ECGi) - [tijne(ECGi')+• 005, time(ECGi')♦• 105]
timetype(ECGi) - periodic
source(ECGi) - ECG/Resp
capacity - 500/1
exceptions: If data is not read fast enough, readout

will appear to have gaps. Values out of range
indicate possible equipment malfunction.

inputexchange(Swcontrol); INTi
value(INTi) - {(memload,t) ! 0<t<28900}
time(INTi) - (14400,28865)
tiinetype( INTi) - S-R
source(INTi) - Memoryload v powersupply
capacity - 5/60

U ((batlow,r) 1 0iri20)

exceptions: If time is < 4hrs, indication will be of
malfunction causing memoryovefload or malfunction
with battery. Recommend manual switch to battery.

outputexchange(Powersupply): PSo
value(PSo) - {(batlciw,r> I 0irs<20}
time(PSo) • (14400,28800)
timetype(PSo) - S-R
destination(PSO) - Swcontrol
load • 4/3600

outputexchange(Powersupply): ACo
value(ACo) - ("onAC")
time(ACo) - (0,28800)
timetype(ACo) - S-R
destination(ACO) - CRTdisplay
load(ACo) - 1/60

inputexchange(CRTdisplay): ACi
value(ACi) - ("onAC","offAC"]
time(ACi) - [0,28800]
timetype{ACi) - S-R
source(ACi) - Powersupply
capacity - 1/1
exceptions: no exceptions

outputexchange(Nursesstation): PDUo
value(PDUo) - [various patient data possible]
tiine(PDUo) - [0,28800]
timetype(PDOo) • S-R
destination(PIXJo) - Swcontrol
load(PDUO) - 1/30

outputexchange(Otherunit): PDTo
value(PDTo) - [patient data]
time(PDTo) - [0,32400]
timetype(PDTo) - S-R
destination(PDTo) - Swcontrol
load(PDTo) - 1/420

inputexchange(Swcontrol): DTi
value(DTi) - [patient data]
tinie(DTi) - [0,32400]
timetype(DTi) - S-R
source(DTi) - Nursesstation v Otherunit
capacity(DTi) - 3/60
exceptions: If capacity is exceeded, data will be lost.

Also, Otherunit input may cause loss of data currently
stored for patient. Patient data out of expected
ranges will not be accepted.

outputexchange!Swcontrol): PDo
value(PDo) - [patient data]
time(PDo) - [0,32400]
timetype(PDo) - S-R
destination(PDo) - Otherunit
load (PDo) - 1/420

inputexchange(Otherunit): PDi
value(PDi) - [patient data]
time(PDi) - [0,32400]
timetype(PDi) - S-R
source(PDi) - Swcontrol
capacity(PDi) - 1/60
exceptions: If capacity is exceeded, data will be lost.

Patient data out of expected ranges will not be
accepted.

outputexchange(ECG/Resp): RESPo
value(RESPo) - [(x,y) I 0<:xi25 A0iy<50]
tlme(RESPo) - (time(RESPo')+•01,time(RESPo')*.1)
timetype(RESPo) - continual
destination(ECGo) - Swcontrol
load - Not relevant (i.e., not interrupt driven)

inputexchange(Swcontrol): RESPi
value(RESPi) - l(x,y) | 0<x<25A0<y<50J
time(RESPi) - [time(RESPi')+.005,time(RESPi')+.105]
timetype(RESPi) - periodic
source(RESPi) - ECG/Resp
capacity - 500/1
exceptions: Values out of range indicate possible

equipment malfunction.

outputexohange(DifferentialBT): DBTo
value(DBTo) - [60,120]
time(DBTo) - [time(DBTo')+55,time(DBTo')+70]
timetype(DBTo) - periodic
destination(DBTo) - Swcontrol
load - 1/60

inputexchange(Swcontrol): DBTi
value(DBTi) - [60,120]
time(DBTi) - [time(DBTi')+45,time(DBTi')+75]
timetype(DBTi) - periodic
source(DBTi) - DifferentialBT
capacity(DBTi) - 10/60
exceptions: If capacity exceeded, data will be

lost and the integrity of all future inputs
will be suspect (because this implies the DBT
unit may have missed data).

outputexchange(Invasivepressure): BPo
value(BPo) - [(x,y) 1 80v<x4170 A50^y<110]
time(BPo) - [tiine(BPo') + .5, time(BPo')+10]
timetype(BPo) - S-R
destination(BPo) - Swcontrol
load - 2/1

inputexchange(Swcontrol): Bpi
value(BPi) - [(x,y) I 80<xf170 A50<y^110]
tinie(BPi) - [time(BPi') ,tiiiie(BPi' )+300]
timetype(BPi) - S-R
source(BPi) - Invasivepressure
capacity - 20/1
exceptions: If time is out of range, it may indicate

equipment malfunction. Unit should be queried.

outputexchange(Swcontrol): ALo
value(ALo) - ["onAL","offAL")
time(ALo) - [0,32400]
timetype(AIo) - S-R
destination(ALo) - Alarm
load(ALo) - 1/1

inputexchange(Alanii): ALi
value(ALi) - ["onAL","offAL"]
time(ALi) - [0,32400]
timetvpeiALo) - S-R
source(ALo) - Swcontrol
capacity(ALo) - 2/1
exceptions: If value(ALi)-value(ALi'), there may be

an error. This should toggle.

Figure 9
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Under mapping M;

BTo BTi

OVLo—^ INTi

ACo 3^ ACi

PSo ^ INTi

PDUo—3^ DTi

PDo ^ PDi

PDTo—3- DTi

ECGo—3^ ECGi

RESPo-^ RESPi

DBTo—3- DBTi

BPo ^ BPi

ALo ALi

Figure 10

6 Summary

The external interface model is used to describe the overall process of inputting and

outputting data in the system. This model begins at the system level and looks at

interaction there—top down.

The declaration of ranges for exchanges are frequently (usually) declarations of

assumptions that software developers must make early on about other components

in the system. This model allows those assumptions to be documented and changed

if need be as the system is developed. Even after development, certain components
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may be changed during maintenance. If assumptions and/or relevant information

about these components is documented in an interface level and if the software is

developed with this level used to hide those details from the rest of the software

details, changeability will indeed be enhanced. This last was suggested and imple

mented, on a somewhat different scale and view, by Parker and others in [PHPS80].

Since every undertaking must begin somewhere, certain assumptions will have to

be made at the beginning that may be erroneous, possibly even illogical. Without

documenting the assumed traits and interactions, there is no way to reliably ensure

their change at some later time.

It is frequently this beginning stage of software development that confuses those

who must go from system level descriptions to high-level software design. A common

desire is to have "something to throw over the wall" to the software designers that

will provide a system view from the software perspective. This model actually

represents a different viewpoint and approach to something that must have been

talked about or accomplished before. It's just that no one has formalized the process

or indeed identified it as a process that should be done. Ad hoc rules the day!

One way to describe systems at this level is with a technique such as that out

lined here, augmented with simple scenarios and pictures. Contractual wording can

also be available if that is wanted. The standard description for systems seems to

have information scattered all over such a document, however, with the relation

ship between components not shown in any clear way. It is very difficult, if not

impossible, to do a safety analysis on this type of description.

It is important to focus on analysis of system interaction during the software

requirements specification process. This can reduce the complexityof some analyses

because it eliminates non-essential details. It also makes it possible to visit some

critical decisions earlier in the development process and puts decision making at the

specification level, where it belongs—where decision makers still have a view of the

entire systeni. Analysis techniques that rely on the interface model described here
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are currently being developed.

This interface level model includes a Statecharts model with exchange charts.

It is an attempt at providing a different and simpler way of describing time, value,

capacity, etc. Categorization of inputs and outputs and consistency maps between

them are derived as part of the modeling process. More experience with this tech

nique on some larger examples will be necessary before its practicality can be de

termined. It is likely to be practical for a rough first cut at developing embedded

software for a system with a systems viewpoint.
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