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Abstract

Estimation of the tail index of stationary, fat-tailed return distributions is non-
trivial since the well-known Hill estimator is optimal only under iid draws from
an exact Pareto model. We provide a small sample simulation study of recently
suggested adaptive estimators under ARCH-type dependence. The Hill estima-
tor’s performance is found to be dominated by a ratio estimator. Dependence
increases estimation error which can remain substantial even in larger data sets.
As small sample bias is related to the magnitude of the tail index, recent standard
applications may have overestimated (underestimated) the risk of assets with low
(high) degrees of fat-tailedness.

Key Words: fat-tails, tail index of stationary marginal distributions, Hill esti-
mator, minimal AMSE
JEL Classification: C13, C14



1. Introduction

Early empirical studies on the behavior of speculative asset prices document fat-
tails in unconditional return distributions; see for example Blattberg and Gonedes
(1974). The effects of non-normality of the distribution of returns regularly gets
public attention at the time of events such as the market crash of 1987', the
so-called mini-crash in 1989, the Asian crisis in 1997 and the financial crisis in
Russia in 1998. Also, various recent cases of individual financial distress add
yet more evidence that the “once in a hundred year”-events according to the
normal model have in fact been occurring much more frequently. This observation
has re-emphasized how important careful modelling of extreme financial returns
is to financial risk management applications. Extreme value theory provides a
statistical framework characterizing the asymptotic extremal characteristics of
stationary distributions. The theory allows us to make inferences about return
distributions not only within, but also beyond, the observed range of sample
returns and to obtain an adequate characterization of the extremal behavior of
returns. To this end, estimation of the so-called tail index is essential, for which
theory offers a variety of different approaches.? The present paper contributes to
the modelling of fat-tailed financial distributions by examining the small sample
properties of semi-parametric estimators of the tail index.

The tail index estimation approaches which we examine here are based on
the seminal work of Hill (1975). The Hill estimator is established as one of the
most suitable for financial applications: the semi-parametric estimation approach
is based on the assumption that the underlying distribution is in the maximum
domain of attraction of the Fréchet extreme value distribution. This generally
holds for fat-tailed distributions as analyzed in finance. Unlike for example the
estimation approach based on the generalized extreme value distribution, the as-
sumption does not require that exact asymptotic limits are met. However, the
Hill estimator is only optimal under independent draws from an exact Pareto dis-
tribution. In financial applications the estimator has to be robust with respect
to deviations from the Pareto model and the choice of an appropriate subsample

! As Rubinstein (1994) and subsequent authors suggest, such events have led market partic-
ipants to adjust their perceptions of stock return distributions which had a substantial impact
on derivatives market prices.

2Extreme value theory together with financial applications is outlined in Embrechts et al.
(1997). Studies of the tail index of return distributions include Koedijk et al. (1990), Dacorogna
et al. (1995), Danielsson and de Vries (1997a), Huisman et al. (1997), Jondeau and Rockinger
(1999), Lux (2000), and McNeil and Frey (2000).



of observations from the tail of the return distribution is essential to the estima-
tor’s bias/variance trade-off. Furthermore, as returns typically display nonlinear
dependence, it is desirable that the estimator is also robust with respect to the
independence assumption. Along with deviations from the Pareto model and de-
pendence in returns, the results of recent applications of the Hill estimator in
finance leave some room for interpretation. The optimal choice of the number of
tail observations is subject to a variety of different adaptive approaches and rela-
tively little is known about the small sample properties of the tail index estimators
under ARCH-type dependence. Considering these points, our paper provides a
simulation study of the small sample performance of recently suggested adaptive
estimation procedures.

Previous pioneering simulation studies on tail index estimation in finance,
including Dewachter and Gielens (1994) and Kearns and Pagan (1997), did not
address adaptive selection criteria. However, such objective criteria for the choice
of the number of tail observations are helpful for judging estimation performance,
as for example in Dacarogna et al. (1995) and Huisman et al. (1997). Also,
although the generalized autoregressive conditional heteroskedasticity (GARCH)
model is prominent for time varying conditional variance in finance, results on
the behavior of estimates of the tail index under this type of dependence are
sparse (see Danielsson and de Vries (1997b) for an exception). The studies of the
performance of bootstrap versions of the Hill estimator given in Dacarogna et al.
(1995) are based on independent data. Drees and Kaufmann (1998) and Drees
et al. (2000) derive a sequential and a Hill plot-based adaptive estimator and
simulate sampling properties under independent random variables.

In this paper, the behavior of three different adaptive versions of the Hill esti-
mator and a moment ratio estimator are studied under three different base models
of the return generating process. The chosen return models include stationary sta-
ble and student-t distributions as well as the GARCH(1,1) model. Our results
indicate that: (i) semi-parametric tail index estimation fails for all stable return
models considered, not only for the normal distribution where failure is natural
since the latter is not in the maximum domain of attraction of the Fréchet dis-
tribution. Hence, the tail index estimation techniques should be used under the
a priori assumption of the existence of the second moment of the underlying dis-
tribution but not in order to make inferences about the existence of moments in
the first place; (ii) the bias/variance trade-off is generally important in tail index
estimation because unless all data are generated by an exact Pareto model, the
Hill estimator is far from optimal in a best unbiased estimator sense. In fact,



our simulation results indicate that, even in a mean squared error sense, the Hill
estimator is not the best available alternative to semi-parametric tail index esti-
mation for financial applications; (iii) mean squared estimation error can remain
substantial even in relatively large data sets when the data are not independent,
so that the use of high frequency data sampling intervals may come at a cost
when high frequency data show stronger deviations from the iid case than lower
frequency data; (iv) the superiority of single approaches to adaptive tail index
estimation depends on the magnitude of the tail index of the underlying return
model and the related estimation bias. No single adaptive approach uniformly
dominates in the settings studied, which makes it difficult to give straightforward
recommendations, but the bootstrap and the Hill plot-based methods seem to be
the most promising candidates; (v) GARCH effects increase estimator variance
(which one expects due to the effect of volatility clustering), but surprisingly do
not substantially increase mean squared estimation error since estimation bias
happens to be reduced under the models studied; (vi) the results show that the
magnitude and the sign of the estimation bias is related to the size of the tail
index — in particular under GARCH, there is a tendency to overestimate small
tail indices and to underestimate large tail indices. In view of this result, we
believe that empirical investigations in the literature indicating a relatively small
range of estimated tail indices should be reinterpreted: instead of taking the small
range as evidence of quite similar tail characteristics, the finding may simply be
due to the statistical tendency to underestimate the difference between the true
tail indices.

The organization of the remainder of the paper is as follows. Section 2 gives the
methodological background. This includes a review of extreme value asymptotics,
the Hill estimator, a selection of adaptive methods for Hill estimation and results
on the tail index of ARCH-type return models. The adaptive methods used in our
study include sequential, bootstrap and Hill plot-based approaches. The chosen
return models and the results of the simulation study are presented in Section 3.
The paper ends with concluding remarks in Section 4.

2. The Methodological Background

2.1. Extreme Value Theory

Classical extreme value theory is concerned with the asymptotic distribution of
standardized maxima from a series of independent and identically distributed



(iid) random variables (R;)1<;<r with a common distribution function F. For
given normalizing constants, ar > 0, by € R, and My = max(Ry, ..., Ry), the
classical result by Fisher/Tippett and Gnedenko states that if H exists as the
non-degenerate distributional limit of the standardized maximum

Pr{a;'(Mr —bp) <7} = F'(agr + by) — H(r) as T — oo, (1.1)

then H(r) is equal to one of three different types of extreme value distributions.
The latter are nested within the so-called generalized extreme value distribution

o] oew (—(1 +§T)_1/5) , for £#0
He(r) = { exp (—exp(—r)), for £€=0" (1.2)

where 1 + &r > 0. The shape parameter, ¢ € R, also denoted as tail index,
characterizes the extremal behavior of the distribution function.

Condition (1.1) states that F' belongs to the maximum domain of attraction
of He, F € MDA(H;). Fat-tailed distribution functions, which are of interest in
financial applications, particularly belong to the maximum domain of attraction
of the Fréchet type extreme value distribution, ' € M DA(®¢), where: ®¢(r) =
exp(—r~Y¢), r >0, ¢ > 0. From a theorem by Gnedenko, it is well-known that
the condition F' € MDA(®¢) is satisfied if and only if the tail F(r) = 1 — F(r)
of the distribution function F' is regularly varying at infinity with parameter
—1/¢ <0, ie.

F(r) = L(r)r Y r>0, (1.3)
where the function L(r) is slowly varying at infinity:

lim L(tr)
BT

=1, t>0.

2.2. Semi-parametric Tail Index Estimation

The above result demonstrates that the upper® tail of a fat-tailed distribution
function /' behaves asymptotically like the tail of the Pareto distribution G given
by G(r) = cr='¢, ¢ > 0, ¢ > 0. Based on the order statistics, Ry < -+ - <

3The focus on the upper tail is an arbitrary choice. The results of Section 2.1 hold equivalently
for the lower tail since min(Ry, ..., Rr) = —max(—Ry, ..., —Rp).



Ryr <--- < Ry r, the maximum likelihood estimator (MLE) of ¢ is given by the
so-called Hill estimator

k
-~ 1
S = A Z In R; 7 — In Ry, 7, (1.4)

=1

with k=1T.

2.2.1. Asymptotic Tail Behavior: Where does the Tail begin?

As the (R;)1<t<r have a common distribution function F, not G, the usual opti-
mality of the MLE (1.4) does not apply. A subsample fraction k = k(7T') < T has
to be selected, i.e. only large observations will be used in the calculation of E The
number k(T') of order statistics used should increase with the overall sample size
T, while on the other hand, it should be small relative to the overall sample size
T'. In the literature this is frequently made precise by the asymptotic condition

k(T) — oo, k(T)/T — 0, as T — oo. (1.5)

Under model (1.3) and condition (1.5), the Hill estimator can be shown to
have following properties: (i) the estimator is consistent (see Embrechts et al.
(1997), Example 4.1.12); (ii) under additional assumptions on the asymptotic
tail behavior of F, asymptotic normality follows (see de Haan and Peng (1998),
Theorem 1)

VEEer — €) —5 N(Bg; €), (1.6)

where B¢ denotes some asymptotic bias term; (iii) the Hill estimator obtains a
theoretically derived optimal rate of convergence, being superior to other popular
estimators proposed in the literature (Drees (1998)).

Several approaches to the automated determination of an optimal sample frac-
tion k(T") for the Hill estimator have been studied. Theoretical results on an op-
timal bias/variance trade-off can be derived using the asymptotic mean squared
error (AMSE) as the optimality criterion. The results are based on the so-called
Hall model, which forms a generalization of the Pareto model. It imposes a second
order condition on the asymptotic behavior of the tail of the distribution function
F. By assuming L(r) = ¢; (1 + cor /¢ + o(r=/%)) in (1.3) it follows that

F(r) = 617’71/5 (1 + CQT7P/£ + O(Tip/g)) ) as r — o0, (17)



where ¢; > 0, co € R and p > 0. The above model gives an asymptotic character-
ization of the tail of the underlying distribution and at the same time robustifies
the semi-parametric estimation approach against deviations from the exact Pareto
tail. The model quite generally holds for the well-known distribution functions
such as the Fréchet, the student-t and the symmetric a stable.

We consider three Hill-based and one moment ratio approach to adaptive tail
index estimation. The first three proposals rely on model (1.7), while the fourth is
a formalized heuristical criterion supported by theoretical results. The estimation
approaches are briefly presented in the following.

e Drees and Kaufmann (1998) derive a sequential estimator of the optimal &k by
extending previous theoretical work on the asymptotic bias and variance of
the Hill estimator. A stopping time criterion for a sequence of Hill estimators
is used in order to approximate the number of upper order statistics & under
which the bias in the Hill estimator starts to dominate the maximum random
fluctuation of the series Vi )5 ir— & ‘ , 2 <1 < k, given some threshold

ur > 0:

k(ur) = min {k: €{2,..,T}: max <\/;

Ei,T _Zlc,TD > UT} .

The second order parameter p in (1.7) is either set equal to a constant or
given by a consistent estimator such as

gi,T - f[)\E(uT)],T D

—~ )

fi,T - fE(uT),TD

max (\/5

—~ 1 2<i<[Nk(ur)]
A\) = 1
pT (uT’ ) ln )\ ! max <\/;

2<i<k(ur)

(1.8)

where A € (0,1) and [z] denotes the largest integer smaller or equal to
x. Then, for a given p and a consistent initial estimator of £, a consistent
estimator of the optimal k is derived. The procedure yields a Hill estimator
with minimal asymptotic MSE (Drees and Kaufmann (1998), Theorem 1).

e Dacarogna et al. (1995) as well as Danielsson et al. (1997) and Danielsson
and de Vries (1997a, b) use a subsample bootstrap approach by Hall (1990)
to estimate the optimal sample fraction. The approach is based on boot-
strap subsamples of size 177 < T. The estimate of the optimal subsample
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fraction can be derived from

- o =
ky = arg g,glgnTlE <(£k,T1 Er)

(Ry, .., RT)) : (1.9)

where * denotes estimates based on resamples drawn from (Ry, ..., Rr). &
denotes a consistent initial Hill estimator. The expectation operator is ap-
proximated by a given number of bootstrap runs. Instead of applying the
bootstrap to the MSE of the Hill estimator directly as in (1.9), an asymptot-
ically equivalent criterion which does not depend on the choice of an initial
estimator is proposed in Danielsson et al. (1997). Their bootstrap estimate
is given by*

by = arg min B <(]\/[[§,T1 — 2(22,T1)2>2

1<k<Ty

(R, ... RT)> : (1.10)

where My 7, k < T, is a second order moment estimator of the form:

My =

|

k
> _(nRiz —In Rypr)”
=1

The estimate for the optimal overall sample fraction k., can then (most
simply as in Hall (1990) and Danielsson and de Vries (1997a)) be derived
from:

Fopt = El(T/T1)2”/(2”“)] . (1.11)

Again, the second order parameter p is either estimated by equation (1.8)
or set equal to a constant.

e Various generalizations of the Hill estimator have been proposed in the lit-
erature. The moment ratio estimator

1

EZ,LT = §<Mk,T/Ek,T)> (1-12>

4In case the maximum sample realization is drawn at least twice in a bootstrap resample,
the MSE equivalent criterion (1.10) yields a zero value for & = 1 (and possibly for & > 1),
whereas the MSE criterion (1.9) yields the squared initial estimator. We enter the squared
initial estimator value in this case.



may be a useful approach for financial applications. Danielsson et al. (1996)
~m
point out that &, ;- has lower asymptotic (absolute) bias than the Hill estima-

tor Ek’T. Evaluated at their respective AMSE-minimizing k’s, the moment
ratio estimator can not only have lower bias but also lower AMSE than the
Hill estimator, depending on the tail index and the second order parameter
of the underlying distribution function (de Haan and Peng (1998)). We pro-
pose the subsample bootstrap approach and estimate the optimal sample

fraction k), for the moment ratio estimator by equation (1.9).

e Guided by the frequently recommended approach of choosing an estimate of
the tail index within a “stable” region of the Hill plot {(k, &, r) : 1 <k < T},
Drees et al. (2000) propose a maximal occupation time Hill estimator. It can
be shown that the so-called alternative Hill plot, {(G,E[To]’T) 10 <6< 1},
yields superior results if the underlying distribution is not exactly Paretian.
The proposed consistent maximal occupation time estimator is given by

Z
£p = arg 1?30}(/0 1{[T9W2’Z[Te},T—dSmET}de’ (1.13)
with an upper boundary 0 < 0 < 1 and a scaling constant m > 0. The
parameter £, denotes a consistent initial Hill estimator which is used as an
estimate of the standard deviation of the Hill plot.

2.2.2. The Tail Index for ARCH-type Return Series

We now consider the case where the (R;);<;<7 are not necessarily independent
but have a stationary marginal distribution function F'. GARCH is a well-known
model class for non-linear dependence in financial time series. Assuming a con-
stant return expectation and excess returns with a conditional time-varying vari-
ance o2, the prominent GARCH(1,1) process has the representation:

Ry = 0474, UtQ = 50 + 51R3—1 + ﬁzUtQ—h ﬁmﬁuﬁz > 0. (1-14)

The random variables Z; are standardized iid draws from some symmetric, possi-
bly fat-tailed, distribution function with density g(z) : R — R". As outlined for
example in Mikosch and Stdricad (1998), a stationary marginal distribution F' for
the GARCH(1,1) process (1.14) exists if:

/OO In |3,2° + 85| g(2)dz <0, 3, > 0. (1.15)



It can then be shown that the tail index of F' is given as a solution to an integral
equation under which it follows that: F(r) ~ cr=/¢ as r — co. For the ARCH(1)
process, analytical solutions are obtainable. For the GARCH(1,1) process, the
tail index can be determined numerically as a solution to

16 = / 18,2 +ﬁg|i g(z)dz—1=0, £>0. (1.16)

Under condition (1.5), consistency of the Hill estimator can be maintained the-
oretically under ARCH-type models; see Resnick and Starica (1998). Also, the
results by Hsing (1991) indicate that the Hill estimator is asymptotically quite
robust with respect to deviations from independence. However, there remain
open questions: the sampling behavior of the Hill estimator in small samples un-
der ARCH-type dependence is unknown. Hence, the asymptotic normality result
(1.6) only gives a crude approximation to its bias and standard error. In partic-
ular, ARCH effects cause clustering in the extremes of the process (1.14). This
potentially causes the estimation error for a given sample size to be larger than
it would be under independence. Also, little is known about how ARCH-type
dependence influences the bias component of the estimator and the bias/variance
trade-off under the adaptive subsample selection criteria.

3. Simulation Study

In order to characterize the small sample properties of the various adaptive Hill
estimators presented above, we study the estimators’ error distributions and par-
ticularly their root mean squared error in a series of Monte Carlo simulations.

Without loss of generality, the sample size T will be defined as the number of
positive sample observations. We exploit the property that all our return models
are based on distribution functions which are symmetric around zero by simulating
T observations and taking absolute values. The corresponding overall sample size
is then on average N = 2T This refers to the typical application, where, observing
a sample of N returns from a distribution which is not necessarily symmetric, one
is interested in separate inferences about each of both tails of the underlying
return distribution.

3.1. Estimator Settings and Definitions

The adaptive estimators that were outlined in Section 2.2 require the choice of
several variables, where we rely on the suggestions made in the literature as far

9



as possible. Following Drees and Kaufmann (1998), we choose a threshold value
up = ggp VT ’TTl/ * for the sequential Hill estimator. The second order parameter
p in the asymptotic tail expansion (1.7) is either set equal to 1, giving the Hill
estimator “H-DKC”, or estimated by (1.8) with A = 0.6, giving the estimator
“H-DKE”. Setting p equal to a constant is advisable for moderate sample sizes
as, on the one hand, the estimators of the second order parameter tend to be
rather unstable (see Danielsson and de Vries (1997a) and Drees and Kaufmann
(1998)) and, on the other hand, do not seem to have a large influence on the
results (see Dacarogna et al. (1995)). For the bootstrap approach we choose the
subsample sizes 17 = [T'/10] as in Danielsson and de Vries (1997a) and in Jondeaux
and Rockinger (1999). The asymptotically MSE-equivalent criterion proposed by
Danielsson et al. (1997) is chosen, which yields an optimal subsample fraction
according to (1.10). Handling the second order parameter p as in the Drees and
Kaufmann approach, (1.11) gives the estimated optimal sample fraction and the
estimators “H-BSC” for constant p = 1 and “H-BSE” for p according to (1.8).
For the Drees et al. (2000) maximum occupation time estimator, the continuous
parameter 6 is approximated by a grid with stepsize 0.05, where the upper bound
0 = In([T/2])/ In(T) corresponds to k < [T'/2]. Together with the scaling constant
m = 1, this defines the “H-MOT” estimate. The initial estimator, ET = 2[2 VT
is given as a naive, asymptotically suboptimal, alternative estimator labelled “H-
INI”.

We also consider simulation results for the moment ratio estimator (1.12). The
initial moment ratio estimator “M-INI" is chosen as ?Tn = EZﬁ},T' “M-BSHC”
and “M-BSHE” represent the moment ratio estimators based on the optimal k
from the bootstrap results for the Hill estimator (“H-BSC” and “H-BSE”). These
two estimates allow a comparison of the Hill and the moment ratio estimators
given an identical selection of the number of upper order statistics. The MSE
bootstrap (1.9) with E;Z as consistent initial estimator provides “M-BSMC” for
constant p = 1 and “M-BSME” for p according to (1.8). The maximum occu-
pation time estimator is calculated as above with E and E replaced by Em and
Em, respectively. Altogether, twelve different estimators are calculated; six Hill
estimators: H-INI, H-DKC, H-DKE, H-BSC, H-BSE, H-MOT and six moment
ratio estimators: M-INI, M-BSHC, M-BSHE, M-BSMC, M-BSME, M-MOT.

10



Table 1

Return model parameters and the corresponding tail index of the stationary marginal

distributions.
Parameter 19 Qlsas v B o3 B
Model: Label:
I iid sas sas/0.67 | 0.67 1.50 — — — —
sas/0.53 0.53 1.90 — — — —
sas/0 0 2 — — —
IT: iid student-t(v) stud/0.17 | 0.17 — — — —

stud/0.25 | 0.25 —
stud/0.33 | 0.33 | —
III: GARCH(1,1)-t(v) arch/0.17 | 0.17 —
arch/0.25 | 0.25 —
arch/0.33 | 0.33 —

107% | 0.05 | 0.92
107% | 0.03 | 0.94
107% | 0.03 | 0.93

ool o8
|
|
|

3.2. Return Models

Our simulations are based on N = 1000, 2000 and 3000 observations from three
different return models with zero return expectation.” Table 1 contains an overview
of the return models. The models include: (I) the iid symmetric a-stable return
model by Mandelbrot (see also Janicki and Weron (1993)) labelled “sas/&”, as
well as (II) the iid symmetric student-t(v) return model by Clark (“stud/¢”).
The latter two fat-tailed classes include Bachelier’s thin-tailed normal model as
a special case for « = 2 or v — o0, respectively. As a third model class (III),
GARCH(1,1) return generating processes (1.14) are simulated under innovations
from a student-t(v) distribution (“arch/£”).

The tail indices £ for the marginal GARCH-t(v) distributions are calculated
by solving equation (1.15) with g(z) denoting a student-t density with v degrees
of freedom. Note that the model parameters are chosen such that the tail in-
dices are approximately equal to those of the iid student models. When studying
the properties of the tail index estimators, this allows us to distinguish between
the effects of the magnitude of the tail index on the one hand and ARCH-type
dependence on the other hand.

® Although the Hill estimator is not location invariant (see Drees (1998)), adding a positive
constant to each return realization in earlier unreported simulations did not have a notable effect
on the estimation results.

11



The focus of our simulation study is on the performance of the tail estimators
under the GARCH-t model class. Based on the early evidence by Blattberg and
Gonedes (1974) and more recent findings, finite variance models seem to dominate
a-stable models for most studied return series. The GARCH models also capture
volatility clustering, a phenomenon which is widely documented in the literature.
Referring to empirical evidence from GARCH estimation, the parameters (3; and
B, are chosen such that 3, + (5, < 1, i.e. the models are what is called “nearly
integrated”.

3.3. Simulation Results

All our simulation results are based on 500 independent simulation runs, under
each of which 100 bootstrap runs are performed for calculating the bootstrap es-
timators. The statistics reported are mean error (ME), standard deviation (STD)
and root mean squared error (RMSE). Results for the Hill estimators are given
in Table 2 for sample size N = 1000 and in Table 4 for sample size N = 3000.
Tables 3 and 5 give the results for the moment ratio estimators and corresponding
sample sizes. Our conclusions from the simulations are as follows.

3.3.1. Stable versus Non-Stable Models

Estimates of the tail index of the symmetric a-stable model (sas) turn out to
be unreliable, particularly when « is close to 2 which is the case of interest in
financial applications. There is a large negative estimation bias for a < 2 and a
large positive estimation bias for o = 2 as can be seen from the ME statistics in
Tables 2 through 5. For example, when the true sas model tail index is € = 0.53,
negative estimation bias relates to an expected value of the tail index estimator
around 0.3, the bias being almost half the magnitude of the true tail index. These
findings do not significantly change for the sample sizes and estimation procedures
considered. In contrast, Tables 2 through 5 also demonstrate that the estimation
bias is much lower when returns are generated by the student-t or the GARCH
models.

Thus, although theoretically justified for symmetric stable laws with a < 2,
applications of Hill-type estimators do not seem promising for stable laws in small
samples. An explanation for this finding is that, under the limiting normal model,

6The simulation results for N = 2000 conform to the findings from the two other sample
sizes and hence were not tabulated separately.
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the tail F' is not regular varying and the Hill estimator is therefore inappropriate.
The finding of substantial bias under the sas model with o < 2 implies that,
without a priori knowledge about the underlying distribution, it will be difficult
to distinguish between stable and non-stable underlying distributions solely based
on estimates of the tail index. Furthermore, statements about the existence of
certain moments of the underlying distribution should only be made conditional
on the a priori assumption that the underlying distribution is not stable under

addition. In the following we limit our discussion to the non-stable student-t and
GARCH models.

3.3.2. Magnitude of the Tail Index and Estimation Precision

Turning to the Hill and the moment ratio estimators for student-t and GARCH
models, we observe in Tables 2 through 5 that higher degrees of fat-tailedness (i.e.
larger values of £) frequently show quite stable or even decreased RMSE statistics
for the estimators. For example, in Table 4, the RMSE for the bootstrap estimator
H-BSC is 0.080 for the student-t model with £ = 0.17 and 0.071 for the student-t
model with £ = 0.33. The RMSE for the initial Hill estimator (H-INT) is 0.091 for
the student-t model with £ = 0.17 and declines by roughly a third to 0.063 when
the tail index is nearly doubled to & = 0.33.

The decrease in RMSE with an increase in £ deserves further consideration
recalling that MSE = STD? + ME? and that the asymptotic bounds, &/+/k(T),
to the standard deviation of the Hill estimator from equation (1.6) are linearly
increasing in £&. With, for example k(T) = [2/T] and sample size N = 3000, the
asymptotic standard deviations are 0.019 for ¢ = 0.17, 0.028 for & = 0.25 and 0.038
for £ = 0.33. In Table 4, the corresponding simulated standard deviations for the
initial estimator H-INI are 0.028, 0.033 and 0.041 respectively, i.e. especially under
the smaller tail indices, the standard deviations have not reached their asymptotic
bounds, even with a sample size of 3000. Nevertheless, the standard deviations
do increase with the tail index £ and estimation variance is high especially for the
models with & = 0.33.

The observation that the RMSE remains stable or even decreases for increas-
ing tail index ¢ is partly explainable by a slower convergence to the asymptotic
standard deviations for models with small tail index. This reduces the increase in
sampling variance for estimation under models with larger tail indices. The main
explanation of our findings, however, is the behavior of the sample bias (ME):
decreases in absolute bias tend to more than compensate for increasing estima-
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Table 2
Hill estimators; mean error (ME), standard deviation (STD), and root mean squared
error (RMSE), N = 1000

| HINI | H-DKC | H-DKE | H-BSC | H-BSE | H-MOT |

ME ME ME ME ME ME
STD STD STD STD STD STD
RMSE RMSE RMSE RMSE RMSE RMSE
Model: | | | | | | |
—0.078 —0.096 —0.090 —0.090 —0.098 —0.25
sas/0.67 0.093 0.074 0.069 0.079 0.069 0.066
0.12 0.12 0.11 0.12 0.12 0.26
—0.25 —0.26 —0.25 —0.26 —0.26 —0.25
sas/0.53 0.047 0.062 0.061 0.067 0.063 0.068
0.25 0.26 0.26 0.27 0.27 0.26
0.20 0.16 0.17 0.15 0.16 0.16
sas/0 0.027 0.036 0.048 0.042 0.045 0.043
0.21 0.16 0.18 0.16 0.16 0.16
0.12 0.088 0.10 0.077 0.081 0.074
stud/0.17 0.039 0.052 0.061 0.060 0.062 0.059
0.12 0.10 0.12 0.098 0.10 0.095
0.093 0.076 0.092 0.067 0.072 0.066
stud/0.25 0.050 0.063 0.068 0.073 0.074 0.068
0.11 0.099 0.11 0.099 0.10 0.094
0.072 0.061 0.079 0.053 0.057 0.038
stud/0.33 0.057 0.069 0.072 0.081 0.083 0.069
0.092 0.092 0.11 0.097 0.10 0.079
0.14 0.11 0.12 0.092 0.096 0.081
arch/0.17 0.055 0.072 0.084 0.079 0.083 0.070
0.15 0.13 0.15 0.12 0.13 0.11
0.086 0.057 0.074 0.040 0.046 0.036
arch/0.25 0.055 0.070 0.079 0.076 0.081 0.069
0.10 0.090 0.11 0.086 0.093 0.078
0.049 0.025 0.038 0.011 0.015 —0.0097
arch/0.33 0.065 0.084 0.098 0.090 0.093 0.072
0.081 0.088 0.11 0.090 0.094 0.072
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Table 3
Moment ratio estimators; mean error (ME), standard deviation (STD), and root mean
squared error (RMSE), N = 1000.

| M-INI | M-BSHC | M-BSHE | M-BSMC | M-BSME | M-MOT |

ME ME ME ME ME ME
STD STD STD STD STD STD
RMSE RMSE RMSE RMSE RMSE RMSE
[ Model: | | | | | | |
—0.074 —0.064 —0.072 —0.089 —0.082 —0.26
sas/0.67 0.099 0.12 0.11 0.084 0.079 0.062
0.12 0.14 0.13 0.12 0.11 0.26
—0.23 —0.22 —0.23 —0.25 —0.24 —0.24
sas/0.53 0.057 0.12 0.11 0.066 0.065 0.084
0.24 0.25 0.25 0.25 0.25 0.25
0.21 0.12 0.13 0.17 0.17 0.14
sas/0 0.018 0.034 0.037 0.024 0.029 0.033
0.21 0.13 0.13 0.17 0.17 0.14
0.12 0.046 0.050 0.083 0.089 0.050
stud/0.17 0.028 0.058 0.059 0.039 0.044 0.053
0.12 0.074 0.077 0.092 0.099 0.073
0.094 0.038 0.044 0.066 0.073 0.040
stud/0.25 0.037 0.075 0.075 0.051 0.054 0.073
0.10 0.084 0.087 0.083 0.091 0.083
0.069 0.021 0.027 0.046 0.056 0.018
stud/0.33 0.046 0.083 0.082 0.060 0.063 0.078
0.083 0.086 0.086 0.076 0.084 0.080
0.14 0.050 0.055 0.096 0.10 0.054
arch/0.17 0.046 0.066 0.071 0.052 0.059 0.059
0.15 0.083 0.090 0.11 0.12 0.080
0.087 —0.0019 0.0034 0.044 0.051 0.0055
arch/0.25 0.044 0.067 0.071 0.052 0.057 0.066
0.097 0.067 0.071 0.068 0.076 0.066
0.048 —0.039 —0.032 0.0063 0.014 —0.038
arch/0.33 0.053 0.078 0.083 0.067 0.067 0.078
0.071 0.087 0.089 0.062 0.069 0.086
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Table 4

Hill estimators; Mean error (ME), standard deviation (STD), and root mean squared

error (RMSE), N = 3000

| HINI | H-DKC | H-DKE | H-BSC | H-BSE | H-MOT |
ME ME ME ME ME ME
STD STD STD STD STD STD
RMSE | RMSE | RMSE | RMSE RMSE | RMSE
Model: | | | |
—0.061 | —0.092 | —0.097 | —0.091 | —0.098 | —0.26
sas/0.67 | 0.068 0.045 0.038 0.043 0.040 0.065
0.092 0.10 0.10 0.10 0.11 0.27
—0.26 —0.25 —0.26 —0.26 —0.26 —0.23
sas/0.53 | 0.040 0.043 0.038 0.038 0.038 0.060
0.26 0.26 0.26 0.26 0.26 0.23
0.17 0.14 0.13 0.12 0.12 0.13
sars /0 0.017 0.023 0.031 0.033 0.035 0.068
0.17 0.14 0.14 0.13 0.13 0.15
0.087 0.073 0.080 0.065 0.067 0.053
stud/0.17 | 0.028 0.035 0.041 0.046 0.047 0.046
0.091 0.081 0.090 0.080 0.082 0.070
0.064 0.057 0.067 0.050 0.052 0.039
stud/0.25 | 0.033 0.041 0.045 0.055 0.056 0.058
0.072 0.070 0.081 0.075 0.077 0.070
0.048 0.048 0.060 0.046 0.048 0.030
stud/0.33 | 0.041 0.044 0.047 0.055 0.056 0.064
0.063 0.065 0.076 0.071 0.074 0.070
0.10 0.085 0.090 0.070 0.069 0.049
arch/0.17 | 0.043 0.055 0.063 0.066 0.069 0.058
0.11 0.10 0.11 0.096 0.098 0.075
0.069 0.054 0.060 0.039 0.041 0.016
arch/0.25 | 0.052 0.062 0.069 0.075 0.078 0.066
0.086 0.082 0.092 0.084 0.088 0.067
0.030 0.020 0.027 | —0.0009 | 0.0001 | —0.030
arch/0.33 | 0.062 0.081 0.087 0.097 0.098 0.071
0.069 0.084 0.092 0.096 0.098 0.077
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Table 5
Moment ratio estimators; Mean error (ME), standard deviation (STD), and root mean
squared error (RMSE), N = 3000.

| M-INI | M-BSHC | M-BSHE | M-BSMC | M-BSME | M-MOT |

ME ME ME ME ME ME
STD STD STD STD STD STD
RMSE | RMSE | RMSE | RMSE RMSE | RMSE
| Model: | | | |
—0.059 [ —0.063 | —0.073 | —0.085 [ —0.078 | —0.27
sas/0.67 | 0.075 0.070 0.059 0.049 0.048 0.065
0.095 0.095 0.094 0.098 0.092 0.27
-0.23 | —0.20 | -0.21 —0.24 —-0.24 | —0.21
sas/0.53 | 0.056 0.081 0.074 0.045 0.045 0.077
0.23 0.21 0.22 0.24 0.24 0.22
0.17 0.10 0.10 0.14 0.14 0.14
sas /0 0.011 0.028 0.029 0.015 0.019 0.092
0.17 0.11 0.11 0.14 0.14 0.17
0.088 0.044 0.045 0.067 0.070 0.035
stud/0.17 | 0.021 0.047 0.048 0.029 0.031 0.047
0.090 0.064 0.066 0.073 0.076 0.059
0.063 0.031 0.033 0.049 0.053 0.014
stud/0.25 | 0.028 0.059 0.059 0.038 0.040 0.067
0.069 0.067 0.067 0.062 0.066 0.069
0.047 0.027 0.030 0.038 0.044 | 0.0081
stud/0.33 | 0.036 0.060 0.059 0.044 0.044 0.073
0.059 0.066 0.066 0.058 0.063 0.074
0.10 0.041 0.042 0.075 0.076 0.029
arch/0.17 |  0.037 0.059 0.062 0.042 0.046 0.049
0.11 0.072 0.075 0.086 0.089 0.057
0.065 | 0.0048 [ 0.0071 0.040 0.042 | —0.011
arch/0.25 | 0.046 0.068 0.071 0.052 0.054 0.063
0.079 0.068 0.071 0.065 0.069 0.064
0024 | —0.039 | —0.036 | —0.0021 | 0.0021 | —0.057
arch/0.33 | 0.058 0.087 0.089 0.059 0.062 0.075
0.063 0.095 0.096 0.059 0.062 0.095
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tion variance. For example, in the case mentioned above, when RMSE falls from
0.091 to 0.063, we see that the bias falls from 0.087 to 0.048, more than offset-
ting the increase in standard deviation from 0.028 to 0.041. Interestingly, for the
maximum occupation time estimator (MOT), this compensation effect weakens
and absolute bias even increases for the GARCH models with & = 0.33 in Tables
3 trough 5. In this case, a larger tail index yields reduced estimation precision
measured by the STD and the RMSE statistic.

Overall, our results indicate that the bias/variance trade-off is complex and
hence one should be careful with simple rules relating overall estimation precision
to the magnitude of the tail index. Figures 1a and 1b give a graphical illustration
of the findings for two of the GARCH models. Figure 1a shows the error densities
for the Hill and the moment ratio estimators under the GARCH model with
¢ = 0.17, while Figure 1b shows the respective error densities under the GARCH
model with & = 0.33.

3.3.3. Hill versus Moment Ratio Estimators

Comparing the performance of the Hill versus the moment ratio estimators, the
simulation results show that the moment ratio estimators’ mean squared error
statistics are in general substantially smaller than those of the Hill estimators. The
results for the bootstrap estimators demonstrate that the moment ratio estimators
give superior RMSE performance for an identical subsample size k. This can be
seen by comparing the Hill bootstrap estimators H-BSC and H-BSE in Tables 2
and 4 with the moment ratio estimators M-BSHC and M-BSHE in Tables 3 and
5. Under the estimates of the optimal moment ratio subsample fraction k7, and a
sample size of N = 3000, the performance of the moment ratio estimator further
improves for the models with £ = 0.25 and £ = 0.33, but not for £ = 0.17; see the
standard errors for the M-BSM estimator as compared to the M-BSH estimator
in Table 5. But even for £ = 0.17 the moment ratio estimators’ RMSE statistics
still dominate those of the Hill estimators.

The results for the maximum occupation time estimator (MOT) are not as
straightforward as those for the bootstrap estimators. It turns out that for models
with & = 0.33 the moment ratio estimator M-MOT has slightly larger RMSE than
the Hill estimator H-MOT while the RMSE is lower for models with £ = 0.17
and £ = 0.25. This suggests that the moment ratio estimators are particularly
appropriate for larger tail indices and subsample selection based on the bootstrap
estimator.

18



Hill Estimator Moment Ratio Estimator

Z0p 1202 ]
=
L L L L L L L L L L L L L L

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
1) T T T T T T T Q T T T T T T T
X0.2 B %o D B
" /\_L o
T L L L L L L = L L /\ L L

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
w T T T T T T T w T T T T T T T
X0.p %o D
Q0 T i
T | | | | | | | = | | /\ | I

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
U T T T T T T T LE) T T T T T T T
),
,:PO.E R go.z R
T I I 4/\ I = I I I I I I I

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 w -0.6 -0.4 -0.2 0 0.2 0.4 0.6

T T T T T T T T T T T T T T

% 23 (% 23
E,IJO. E qJO._ /—\_‘ ]
o Il N | R ‘

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
= T T T T T T T = T T T T T T T
So.p 1S0p ]
* I | A | = I | I I I

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

Figure 1la: Epanechnikov kernel densities of the Hill and the moment ratio
estimation errors under the GARCH-t model with £ = 0.17, N = 3000.
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Figure 1b: Epanechnikov kernel densities of the Hill and the moment ratio
estimation errors under the GARCH-t model with £ = 0.33, N = 3000.
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Overall, we conclude that the best RMSE statistics under the student-t and
GARCH models for all sample sizes are always obtained with a moment ratio
estimator. Also, for both the Hill and the moment ratio estimators, setting the
second order parameter p from equation (1.7) equal to one yields better results
than estimating the coefficient (even though it is known that p = 2/v for the
student-t(v) distribution): for all simulations, the RMSE under the fixed param-
eter is smaller or equal to the RMSE under the estimated parameter. A graphical
illustration of the error densities of the Hill and the moment ratio estimators using
the two GARCH models with & = 0.17 and £ = 0.33 is given in Figures la and
1b.

3.3.4. Performance of the Adaptive Subsample Selection Approaches

A comparison of the results of the adaptive estimation approaches with those of
the initial estimator shows that the optimal choice of k in the former involves
a trade-off between reduced estimation bias and increased estimation variance.
This is illustrated for example in Figure 2a, where a shift of the Hill estimators’
error density to the left, i.e. a reduction in estimation bias, is accompanied by an
increase in estimation variance, i.e. a widening of the density.

In comparing the adaptive estimation approaches, the RMSE-optimal ap-
proach depends on the magnitude of the tail index £. For example, the MOT
estimator dominates the BS estimator for ¢ = 0.17 while the BS estimator dom-
inates the MOT for ¢ = 0.33. This is mostly due to a different bias structure for
the two estimation approaches. While the MOT estimator has lowest absolute
bias for the GARCH model with £ = 0.25, the bootstrap estimator reaches this
point around £ = 0.33. Assuming one has a priori knowledge about the general
magnitude of the tail index, it seems advisable to use the M-MOT estimator for
smaller tail indices and the M-BSMC estimator for larger tail indices. Overall, the
moment ratio estimators together with the bootstrap (M-BSMC) and the maxi-
mum occupation time estimation approach (M-MOT) tend to perform best (see
Tables 3 and 5).
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Figure 2a: Epanechnikov kernel densities of the Hill and the moment ratio
estimation errors for £ = 0.25 under the iid student-t model, N = 3000.
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Figure 2b: Epanechnikov kernel densities of the Hill and the moment ratio
estimation errors for £ = 0.25 under the GARCH-t model, N = 3000.
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Interestingly, it turns out that all the approaches to optimal subsample selec-
tion show a common tendency to be positively biased for smaller values of the tail
index (see Tables 2 through 5). For the GARCH models which are of particular
interest regarding financial applications, there is also some tendency towards neg-
ative bias for larger values of the tail index especially for the MOT estimator in
Tables 3 and 5.7 In sum, bias as a function of ¢ appears to be a critical issue in
tail index estimation in that it causes the estimated degree of fat-tailedness to be
systematically biased. Our evidence is that small tail indices (below 0.25) tend
to be overestimated and large GARCH model tail indices (0.33 and above) tend
to be underestimated.

3.3.5. GARCH versus iid Student Models

In comparing the results for the iid student-t and GARCH models, a first glance
at the tables may lead to the conclusion that there is a relatively high over-
all mean squared error-robustness of the tail index estimators with respect to
heteroskedasticity. Interestingly, volatility clustering under the GARCH models
hardly increases the mean squared error of the optimal adaptive estimation ap-
proaches. For the sample size N = 1000 the RMSE criterion yields even smaller
values for the GARCH-t model than under the iid student-t model; for N = 3000
the RMSE results for the two model classes are roughly identical. Again, as in
the case of increases in the magnitude of the tail index £ in Section 3.3.2., quite
unchanged or even improved RMSE results come from the compensating effect of
a reduction in estimation bias.

Although ARCH-type dependence does not necessarily increase mean squared
estimation error in the simulation results, we know that ARCH-type volatility
clustering leads to clustering in the extremes which should obviously increase
estimation error for the tail index. This is confirmed by our results when we look
at the STD statistics of the estimators which mostly show a notable increase in
estimation variance under GARCH (Tables 2 through 5).

The estimators’ error densities for both the iid student-t and the GARCH-
t model with & = 0.25 are illustrated in Figures 2a and 2b, respectively. It is
apparent that the error distributions in Figure 2b have a larger dispersion than
those in Figure 2a. Note that although estimation variance apparently increases

"Unreported results on return models with & > 0.33 showed that negative, increasing bias
for increasing £ is not specific to the MOT estimator as documented in Table 5, but is also a
characteristic of the bootstrap estimator.
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under time series dependence in simulated returns, the overall RMSE results for
the adaptive estimation approaches in Figure 2a and 2b are mostly quite similar
due to reduced estimation bias under dependence. Figure 2 also suggests that
the MOT estimator variance is relatively large under iid student-t data, but is
hardly affected by ARCH-type dependence. This robustness characteristic under
dependence appears to be due to the construction of the MOT estimator which,
in contrast to the other estimators, is based on a Hill plot criterion.

3.3.6. Increasing the Sample Size

Comparing the results for the sample size N = 1000 (Tables 2 and 3) with those
for the sample size N = 3000 (Tables 4 and 5) indicates that the relative per-
formance ranking of the estimation approaches under the student-t and GARCH
models is basically unaffected by an increase in the sample size; M-MOT and
M-BSMC achieve the best RMSE results irrespective of sample size. Apart from
that, the results suggest that an increased sample size yields larger performance
improvements for the bootstrap (M-BSMC) as compared to the maximum occu-
pation time (M-MOT) estimator (Tables 3 and 5).

Considering estimation precision as measured by STD, an increase in the sam-
ple size causes improvements in the estimators’ standard deviations, especially
under the iid student-t model with a small tail index (where the distance to the
asymptotic bounds for the standard deviations is larger, see Section 3.3.2). In-
terestingly, there is a notable difference in the reduction of estimator variance
between the GARCH and the iid student-t models. Under the GARCH models
with £ = 0.25 and ¢ = 0.33 the standard deviation of the Hill as well as the mo-
ment ratio estimators can hardly be improved by increasing the sample size from
N = 1000 to N = 3000. This shows that the convergence to the asymptotic lower
bounds for the estimator’s standard deviation can be very slow under ARCH-type
dependence.
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4. Conclusion

By the very nature of extreme value theory, estimation bias and variance play
an important role in studies of the tail index of return distributions. Upper
order observations which typically deviate from an exact Pareto-tail cause the
well-known bias/variance trade-off. Also, robustness with respect to assumptions
about the underlying return model is important in financial applications.

Our small sample simulation results show that estimation bias will depend
on the approach to adaptive subsample selection and the magnitude of the tail
index itself. Small tail indices tend to be overestimated and large tail indices tend
to be underestimated; thus, when tail indices are estimated for a cross-section
of distributions, there is the tendency to underestimate the true range of tail
index values. Such estimation bias is relevant to applications; e.g. too large
holdings of high risk assets (based on underestimating their extremal risk) and
too little holdings in low risk assets (where the risk estimate is upward biased)
yield an inefficient allocation of capital. It also appears that large sample sizes are
a necessary although not sufficient condition for a successful application of tail
estimation procedures in finance. Our results indicate that convergence to the
asymptotic lower bounds for the estimator’s standard deviation can be very slow
under ARCH-type dependence. Hence, when dependence is stronger for shorter
return intervals, as often seems to be the case, the additional amount of data from
higher frequency observations will not necessarily significantly reduce estimation
variance.

In general, proper assumptions about the underlying return model and its
time series properties are vital to the interpretation of the estimation results
gained from extreme value analysis. What the tail index estimation results tell
us about the extremal behavior of the returns cannot be separated from a priori
assumptions about the return distribution. Our results suggest the following
prudent steps in tail index estimation:

e Pay attention to the questions of sum-stability of the underlying distribution
and potential time-series dependence in the dataset.

e Assuming a fat-tailed distribution with a finite second moment, apply the
moment ratio estimator. Make Hill-type plots for a graphical illustration of
the range of potential tail index estimates.

e Use at least two different adaptive estimation approaches. Our results sug-
gest that the maximum occupation time estimator and the bootstrap ap-
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proach perform well. Both approaches may be further refined as suggested
in the literature.

e Assuming that GARCH-t is a suitable model for the return data, the es-
timation results may be interpreted using our results as a benchmark. In
particular, the findings may be helpful in quantifying potential tail index
estimation bias and error variance.
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