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RESEARCH ARTICLE
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America, 4 Metabolon, Durham, North Carolina, United States of America, 5 Division of Neonatology,
University of California San Francisco, San Francisco, California, United States of America, 6 Department of
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Abstract
There is increasing interest in the potential for metabolic profiling to evaluate the progres-

sion of pulmonary hypertension (PH). However, a detailed analysis of the metabolic

changes in lungs at the early stage of PH, characterized by increased pulmonary artery

pressure but prior to the development of right ventricle hypertrophy and failure, is lacking in

a preclinical animal model of PH. Thus, we undertook a study using rats 14 days after expo-

sure to monocrotaline (MCT), to determine whether we could identify early stage metabolic

changes prior to the manifestation of developed PH. We observed changes in multiple path-

ways associated with the development of PH, including activated glycolysis, increased

markers of proliferation, disruptions in carnitine homeostasis, increased inflammatory and

fibrosis biomarkers, and a reduction in glutathione biosynthesis. Further, our global meta-

bolic profile data compare favorably with prior work carried out in humans with PH. We con-

clude that despite the MCT-model not recapitulating all the structural changes associated

with humans with advanced PH, including endothelial cell proliferation and the formation of

plexiform lesions, it is very similar at a metabolic level. Thus, we suggest that despite its limi-

tations it can still serve as a useful preclinical model for the study of PH.

Introduction
Pulmonary hypertension (PH) is a disease characterized by increased proliferation of the vas-
cular wall leading to increased pulmonary artery pressure that results in right ventricle hyper-
trophy and subsequent heart failure. However, these symptoms become pronounced only at
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the late stage of the disease when available treatments already have a modest effect on disease
progression. Therefore, the discovery of early markers that predict the development of pulmo-
nary hypertension has important clinical utility. While several pre-clinical models are available
to study PH in rodents (induced by chronic hypoxia [1], chronic hypoxia in combination with
the VEGFR2 inhibitor SU5416 [2] and the injection of monocrotaline [3]) and in lambs and
calves (models of increased pulmonary flow), the underlying concern with all animal models is
how well they recapitulate the effects of human disease. One of the most published models is
the induction of PH in rats is the monocrotaline model, where a single administration of the
plant toxin crotaline induces increased pulmonary pressure and right ventricle hypertrophy
within 4-weeks. However, several differences in disease progression (compared to observations
in PH patients) has raised to concerns regarding the utility of this model, including the prolifer-
ation of mainly smooth muscle cells (without significant endothelial cell proliferation) and the
development of concentric lesions in the lung (without the characteristic plexiform lesions
seen in the later stages of human PH [4, 5]). However, we postulated that since early changes in
the monocrotaline model are similar to those that occur during the initial steps of human dis-
ease, this model would be amenable to a metabolic profiling analysis to search for potential bio-
markers of early stage PH.

Recent work has utilized metabolomic profiling of PH patients to try and identify useful bio-
markers [6, 7]. In this study, we undertook a metabolomic profiling study to determine
whether it is possible to identify biomarkers that are present prior to the development of PH,
but that have known linkages to pathways that are deranged as the pulmonary hypertensive
phenotype progresses. In addition, we wished to see how the metabolomics profile of the rat
MCT model of PH compared to previously reported metabolic data for PH patients. Our data
indicate that 14 days after MCT injection, and before obvious PH has developed, we could
clearly identify significant changes in glycolysis, carnitine homeostasis, alterations in biomark-
ers related to cell proliferation, inflammation and fibrosis, and reductions in glutathione syn-
thesis, all of which are known to be associated with the progression of PH [8–13]. Further, we
identified significant similarities between our data and published data on the global metabolic
profile obtained from patient’s lungs with PH, suggesting that despite its failure to recapitulate
all the structural characteristics of human PH, the MCT model recapitulates much of the meta-
bolic changes occurring during the development of PH.

Methods

Metabolic studies
A total of 20 male Sprague Dawley rats (SD; 220-270g) were used in this study (n = 10 per
group). Control group received vehicle for monocrotaline (MCT). Pre-pulmonary hyperten-
sion (PH) group received a single injection of MCT (60 mg/kg i.p.) to induce and were sacri-
ficed after 14 days. For this purpose rats were anesthetized (Inactin, 100 mg/kg i.p.), a PE-240
polyethylene tube was inserted into the trachea and connected to a Harvard Rodent Ventilator
(Model 683; Harvard Apparatus, South Natick, MA) to facilitate breathing. The thorax was
opened, the cut in ascending aorta was made and the lungs were flashed with saline (0.9%
sodium chloride) via the needle inserted into right ventricle to remove the blood from pulmo-
nary vessels. Animals were euthanized by an anesthetic overdose, lungs were removed and
snap frozen in liquid nitrogen then stored at -80°C until being sent to Metabolon for analysis.

Acute measurement of hemodynamic parameters
An additional set of animals (n = 8 per group) consisting of control rats, rats injected with MCT
and sacrificed after 14 days (pre-PH group), and rats injected with MCT and sacrificed after 28
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days (PH group) were used to measure right ventricle (RV) hemodynamics and RV hypertro-
phy. Briefly, a PE-240 polyethylene tube was inserted into the trachea to facilitate breathing. A
customized pressure transducer catheter (SPR-513, Millar Instruments, Houston, TX), con-
nected to a Millar Transducer Control Unit TC-510 and PL3504 PowerLab 4/35 data acquisition
system (ADInstruments, Inc., Colorado Springs, CO) was inserted into the RV via the right jug-
ular vein and right atrium. A 30min stabilization period was permitted before a 30min recording
of the right ventricular pressure was conducted. At the end of pressure recording, the animals
were euthanized by an anesthetic overdose, and the heart and lungs were dissected and weighed.
The right ventricle free wall (RV) was separated from the left ventricle and septum (LV+S) to
determine the wet weights and the RV to LV+S weight ratio (RV/LV+S).

Ethics Statement
Animals were housed in the Georgia Regents University animal care facility for at least 1 week
before being used in the experiments. Animals were kept in a 12-hour light/dark cycle at an
ambient temperature of 22°C and received standard rodent food and water ad libitum. Animals
were housed in the Georgia Regents University animal care facility for at least 1 week before
being used in the experiments. Animals were kept in a 12-hour light/dark cycle at an ambient
temperature of 22°C and received standard rodent food and water ad libitum. All experimental
procedures were approved by the Institutional Animal Care and Use Committee at Georgia
Regents University. Animals were euthanized by an anesthetic overdose.

Sample Accessioning
Each lung sample was accessioned into the Metabolon laboratory management information
system (LIMS) system and assigned a unique identifier associated with the original source
identifier only. This identifier was used to track all sample handling, tasks, results, etc. The
samples were tracked by the LIMS system. All portions of any sample were automatically
assigned their own unique identifiers by LIMS when a new task was created; the relationship of
these samples was also tracked. All samples were maintained at -80C until processed.

Sample Preparation
Samples were prepared using the automated MicroLab STAR1 system from the Hamilton
Company. A recovery standard was added prior to the first step in the extraction process for QC
purposes. To remove protein, dissociate small molecules bound to protein or trapped in the pre-
cipitated protein matrix, and to recover chemically diverse metabolites, proteins were precipi-
tated with methanol under vigorous shaking for 2 min (Glen Mills GenoGrinder 2000) followed
by centrifugation. The resulting extract was divided into five fractions: one for analysis by
UPLC-MS/MS with positive ion mode electrospray ionization, one for analysis by UPLC-MS/
MS with negative ion mode electrospray ionization, one for analysis by UPLC-MS/MS polar
platform (negative ionization), one for analysis by GC-MS, and one sample was reserved for
backup. Samples were placed briefly on a TurboVap1 (Zymark) to remove the organic solvent.
For LC, the samples were stored overnight under nitrogen before preparation for analysis. For
GC, each sample was dried under vacuum overnight before preparation for analysis.

QA/QC
Several types of controls were analyzed in concert with the experimental samples: a pooled
matrix sample generated by taking a small volume of each experimental sample served as a
technical replicate throughout the data set; extracted water samples served as process blanks;
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and a cocktail of QC standards carefully chosen not to interfere with the measurement of
endogenous compounds were spiked into every analyzed sample. This allows instrument per-
formance monitoring and aided chromatographic alignment. Instrument variability was deter-
mined by calculating the median relative standard deviation (RSD) for the standards added to
each sample prior to injection into the mass spectrometers. Overall process variability was
determined by calculating the median RSD for all endogenous metabolites (i.e., non-instru-
ment standards) present in 100% of the pooled matrix samples. Experimental samples were
randomized across the platform run with QC samples spaced evenly among the injections.

Ultrahigh Performance Liquid Chromatography-TandemMass
Spectroscopy (UPLC-MS/MS)
The LC/MS portion of the platform was based on a Waters ACQUITY ultra-performance liq-
uid chromatography (UPLC) and a Thermo Scientific Q-Exactive high resolution/accurate
mass spectrometer interfaced with a heated electrospray ionization (HESI-II) source and Orbi-
trap mass analyzer operated at 35,000 mass resolution. The sample extract was dried then
reconstituted in acidic or basic LC-compatible solvents, each of which contained 8 or more
injection standards at fixed concentrations to ensure injection and chromatographic consis-
tency. One aliquot was analyzed using acidic positive ion-optimized conditions and the other
using basic negative ion-optimized conditions in two independent injections using separate
dedicated columns (Waters UPLC BEH C18-2.1x100 mm, 1.7 μm). Extracts reconstituted in
acidic conditions, were gradient eluted from a C18 column using water and methanol contain-
ing 0.1% formic acid. Basic extracts were similarly eluted from a C18 column using methanol
and water, in the presence of 6.5mM ammonium bicarbonate. The third aliquot was analyzed
via negative ionization following elution from a HILIC column (Waters UPLC BEH Amide
2.1x150 mm, 1.7 μm) using a gradient consisting of water and acetonitrile with 10mM ammo-
nium formate. The MS analysis alternated between MS and data-dependent MS/MS scans
using dynamic exclusion, and the scan range was from 80–1000 m/z.

Gas Chromatography-Mass Spectroscopy (GC-MS)
The samples for GC-MS analysis were dried under vacuum for a minimum of 18h prior to
being derivatized under dried nitrogen using bistrimethyl-silyltrifluoroacetamide. Derivatized
samples were separated on a 5% diphenyl/95% dimethyl polysiloxane fused silica column
(20m x 0.18mm ID; 0.18μm film thickness) with helium as a carrier gas and using a temperature
ramp from 60°C to 340°C in a 17.5 min period. Samples were analyzed using a Thermo-Finni-
gan Trace DSQ fast-scanning single-quadrupole mass spectrometer with an electron impact
ionization (EI) and operated at unit mass resolving power. The scan range was 50–750 m/z.

Bioinformatics
The informatics system used consisted of four major components, the LIMS, the data extrac-
tion and peak-identification software, data processing tools for QC and compound identifica-
tion, and a collection of information interpretation and visualization tools for use by data
analysts. The hardware and software foundations for these informatics components were the
LAN backbone, and a database server running Oracle 10.2.0.1 Enterprise Edition.

Data Extraction and Compound Identification
Raw data was extracted, peak-identified and QC processed using Metabolon’s hardware and
software. Compounds were identified by comparison to library entries of purified standards.
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Biochemical identifications are based on three criteria: retention index within a narrow RI win-
dow of the proposed identification, accurate mass match to the library +/- 0.005 amu, and the
MS/MS forward and reverse scores between the experimental data and authentic standards.
The MS/MS scores are based on a comparison of the ions present in the experimental spectrum
to the ions present in the library spectrum.

Statistical Calculations
Two types of statistical analysis were performed: (1) significance tests and (2) classification
analysis. Standard statistical analyses were performed in ArrayStudio (OmicSoft Corporation)
on log transformed data. For those analyses not standard in ArrayStudio, the programs R
(http://cran.r-project.org/) or JMP (SAS Institute Inc.) were used. Welch’s two-sample t-test
was used to test whether two unknown means are different from two independent populations.
The False Discovery Rate (FDR) was also determined to account for the possibility of false posi-
tives present in large data sets. The FDR for a given set of compounds was estimated using the
q-value [14]. The Random forest supervised classification technique based on an ensemble of
decision trees [15] was also used to generating the ““out-of-bag” (OOB) error rate” as a mea-
sure of prediction accuracy. P and q value is provided for each metabolite in S1 Table.

Results

Validation of the early stage of PH
Our hemodynamic data, collected after 14 days of MCT treatment, demonstrate a significant
increase in right ventricle peak systolic pressure (RVPSP), and indicate that at this early time
point there is already active pulmonary vasoconstriction (Fig 1A). However, this increase in
pressure was found to be relatively mild when compared to 28 days of MCT exposure, which in
normally used to induce an established stage of PH (Fig 1A). Moreover, the increase in pulmo-
nary pressure, although significant, did not induce significant changes in right ventricle work-
load, since it did not significantly alter either right ventricle contractility or relaxation (Fig 1B
and 1C). The Fulton index (RV/LV+S) also did not identify any signs of RV hypertrophy 14
days after MCT, while at 28 days there was a significant evidence of RV hypertrophy (Fig 1D).
Thus, 14 days of MCT exposure induces a very early stage of PH (pre-PH) that exhibits only
pulmonary vasoconstriction with no significant changes in the primary determinants of devel-
oped PH, RV work load and hypertrophy.

Overall statistics of metabolic study
In this study, the metabolic profiles of lung samples from either Control (n = 10) or PH
(n = 10) MCT-treated rats (14 days after MCT single injection) were compared. The presented
dataset was comprised of a total of 789 compounds of known identity. Our data indicate that
519 biomarkers were altered with a significant p-value where 465 biomarkers were increased
and 54 were decreased compared to control (Fig 2A). Random forest analysis for control vs.
pre-PH yielded a predictive accuracy of 95%; one PH sample was incorrectly sorted, perhaps
due to variation within the disease model (Fig 2B). An estimate of the false discovery rate (q-
value) was calculated to take into account the multiple comparisons that normally occur in
metabolomic-based studies (S1 Table). To exclude compounds that are meeting the p<0.05
cut-off by random chance, the q-value are shown. A low q-value (q<0.10) is an indication of
high confidence in a result. In our data using a cut-off at q<0.1 indicates no false positive
results.

Pre-PH Biomarkers
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Altered bioenergetics
Several studies have suggested that a Warburg-like switch from oxidative phosphorylation to
glycolysis is characteristic of PH [16, 17]. Thus, we initially examined if we could identify
changes in glycolysis in the MCT rats prior to the development of PH. Our data indicate that,
compared to control group, there are significant elevations in glucose (~10-fold), glycolytic
intermediates (glucose 6-phosphate and fructose 6-phosphate) and glycolytic products (pyru-
vate and lactate) (Fig 3). We also found that pentose phosphate pathway metabolites (6-phos-
phogluconate and sedoheptulose-7-phosphate) were also increased (Fig 3). Metabolites of
glycogen breakdown—glucose 1-phosphate (Fig 3), maltotetraose, maltotriose and maltose

Fig 1. Right ventricle hemodynamic changes and right ventricle hypertrophy at early and developed stages of pulmonary hypertension induced
by MCT injection in the rat. The developed stage of PH (28 days after MCT injection) was characterized by a significant increase in RVPSP (A), increased
RV load, assessed by RV contractility (B) and RV relaxation (C) and severe RV hypertrophy. However, the early stage of PH (pre-PH) 14 days after MCT
injection exhibits only a mild increase in RVPSP with no alterations in RV function and hypertrophy (A-C). Results are expressed as mean ± SEM; n = 6–8.
*P<0.05 vs. Control group; †P<0.05 vs. Pre-PH (MCT14days) group.

doi:10.1371/journal.pone.0150480.g001
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(data not shown)–were also increased in pre-PH lung. Elevated levels of Pentose Phosphate
pathway metabolites (ribose 5 phosphate and sedoheptulose 7 phosphate) are suggestive of
increased glucose uptake and utilization in PH. This also contribute to increased nucleic acid
synthesis) along with erythritol and xylitol (aromatic amino acid synthesis). The ribulose/xylu-
lose-5 phosphate ratio suggests that nucleotide synthesis is preferred, which would also gener-
ate NADPH as a reducing agent. Thus, increased flux through the PPP may be in response to
increased oxidative stress in PH. Taken together, these data are consistent with a metabolic
shift toward glycolysis and suggest increased glucose uptake and utilization is an early marker
that precedes the development of PH.

Disrupted carnitine homeostasis
To undergo beta-oxidation in the mitochondria, long-chain fatty acids must first be conjugated
to carnitine to form long-chain acylcarnitines. Prior work has linked derangements in carnitine
homeostasis with the development of pulmonary hypertension [10, 18, 19]. While long chain
fatty acids were not significantly changed as a class, we identified significantly decreased levels
of long-chain acylcarnitines (palmitoylcarnitine, stearoylcarnitine, linoleoylcarnitine, and
oleoylcarnitine) in the pre-PH lung (Fig 4). This suggests that there is a reduced utilization of
fatty acids for beta-oxidation, though the ketone body 3-hydroxybutyrate (BHBA) was signifi-
cantly increased (3.02 fold, data not shown) pointing again on increased glucose metabolism
that can produce BHBA. Taken together, these data are again indicative that fatty acid beta-oxi-
dation is altered prior to the development of PH and, in conjunction with increased glycolytic
products, are consistent with a Warburg-like metabolic shift.

Increased inflammatory biomarkers
As might be expected from the etiology of pulmonary hypertension, markers of inflammation,
stress, tissue remodeling and redox homeostasis were substantially altered in PH. Omega-6
fatty acids (for example, arachidonate, docosadienoate and dihomo-linoleate), which are pre-
cursor compounds for prostaglandin biosynthesis, were increased in the pre-PH lung (Fig 5A).
These metabolites can be further processed by lipoxygenase (LOX) and cyclooxygenase (COX)

Fig 2. Overall metabolic profiling statistics. Statistical comparisons usingWelch’s Two-Sample t-Test show significantly altered metabolic changes in
MCT-treated lungs (N = 10) compared with controls (N = 10, A). MCT significantly increased a large number of metabolites (465) but only significantly
decreased 54 metabolites compared to the normal lung (p<0.05). Random forest analysis for control vs. MCT-treated rats yielded a predictive accuracy of
95% (B).

doi:10.1371/journal.pone.0150480.g002
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enzymes to generate inflammatory eicosanoids, such as prostaglandin E2, prostaglandin D2,
prostaglandin J2, and leukotriene B5, all of which were increased in pre-PH lungs (Fig 5B).
Further, the accumulation of kynurenine/kynurenate (Fig 6) is again indicative that a highly
inflammatory state exists prior to the development of PH. The significant increase in serotonin
(Fig 7) and histamine (S1 Table) are also interesting as they have been associated with the
development of PH [20].

Increases in markers of tissue damage, remodeling and fibrosis
Our data indicate that there are increases in ethanolamine and glycerophosphoethanolamine
in the PH lung (Fig 7), suggesting that elevated phospholipid degradation and membrane

Fig 3. Evidence for a glycolytic switch in the MCT-treated rat lung.Data for control lung are represented in grey boxes and data for the pre-PH lung are
represented in blue boxes. Quantities are in arbitrary units (N = 10, p<0.05). MCT-treated animals have higher levels of glucose, glucose-6-phosphate,
glucose-1-phosphate, fructose, fructose-6-phosphate, 6-phospho gluconate, ribulose 5-phosphate, sedoheptulose-7-phosphate, pyruvate and lactate.
These metabolic data are consistent with an upregulation of glycolytic or glucose dependent pathways in the lungs of pre-PH rats.

doi:10.1371/journal.pone.0150480.g003
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Fig 4. Carnitine homeostasis is altered in the MCT-treated rat lung. Significant decreases in conjugated acyl carnitines such as palmitoylcarnitine,
stearoylcarnitine and oleoylcarnitine indicate that there is disrupted fatty acid transport to mitochondria in the lungs of pre-PH rats (N = 10, p<0.5).

doi:10.1371/journal.pone.0150480.g004

Fig 5. A shift in the balance omega 6 and omega 3 fatty acids and increased pro-inflammatory eicosanoid production in the MCT-treated rat lung.
The ratio between pre-PH and control metabolites show both significant increases (red boxes) for omega 6, omega 3 fatty acids and eicosanoids and a
trending decrease (light green box) for stearidonate (A). The pro-inflammatory prostaglandins E2, D2, J2 and leukotriene B5 are also significantly increased
in the pre-PH lung (N = 10, p<0.05, B).

doi:10.1371/journal.pone.0150480.g005

Pre-PH Biomarkers

PLOS ONE | DOI:10.1371/journal.pone.0150480 March 3, 2016 9 / 21



remodeling are occurring. Methylhistidines, produced by methylation of actin and myosin in
muscle, provide an index of the rate of muscle protein breakdown. Thus, the increases in
1-methylhistidine, 3-methylhistidine, and acetyl derivatives (N-acetyl-3-methylhistidine) we
observed (Fig 7) are suggestive of smooth muscle damage. We also observed increased 1- and
2-stearoylglycerophosphoglycerols (derived from the mitochondrial inner membrane compo-
nent cardiolipin) and N-formylmethionine, a breakdown product of mitochondrially-encoded/
synthesized proteins (Fig 7), which may reflect mitochondrial damage resulting from stress or
the induction of cell death.

Following MCT-induced lung damage, a high molecular weight (HMW) hyaluronic acid
(HA) polysaccharide component of the extracellular matrix is thought to undergo degradation
to generate low molecular weight products. In support of this, we observed an increase in the
HAmetabolites glucosamine, N-acetylglucosamine 6-phosphate, and erythronate (generated by
oxidation of N-acetylglucosamine) and in di- and tri-peptides (derived from protein degrada-
tion) in the pre-PH lung (Fig 8). These data are consistent with an increase in tissue remodeling
occurring prior to the development of PH. We also observed that markers of collagen

Fig 6. Inflammatory metabolites are increased in the MCT-treated rat lung. Inflammation, via INF-
gamma or TNF-alpha, activates indoleamine-2,3-dioxygenase (IDO) or tryptophan-2,3-dioxygenase (TDO)
that degrade tryptophan to kynurenine/kynurenate (center pathway). There is a significant increase in
tryptophan, kynurenine, kynurenate and serotonin in the pre-PH lung suggestive of increased inflammation.
(N = 10, p<0.05).

doi:10.1371/journal.pone.0150480.g006
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breakdown, trans-4 hydroxyproline and the collagen-derived peptide, Pro-OH-Pro and Ac-Ser-
Asp-Lys-Pro-OH, a thymosin beta 4-derived anti-inflammatory and anti-fibrotic tetrapeptide
[21, 22], were increased in the PH lung (Fig 9). Together these data are consistent with the con-
cept that increased inflammation and fibrosis are occurring prior to the development of PH.

Alterations in arginine metabolism
Nitric oxide (NO) synthases convert arginine to citrulline to generate NO. However, arginine
can also be converted to citrulline (through ornithine) in the urea cycle via the activity of

Fig 7. Biomarkers of cellular damage are increased in the MCT-treated rat lung. Phospholipid
degradation and membrane remodeling markers (ethanolamine and glycerophosphoethanolamine) are
significantly increased in the pre-PH lung. Methylhistidines (1-methylhhistidine and N-acetyl-3-histidine),
produced by methylation of actin and myosin in muscle, are indicative of muscle protein breakdown and
therefore muscular damage. Significant increases in mitochondrial membrane degradation
(2-stearoylglycerophosphoglycerol) and the breakdown product of mitochondrially-encoded/synthesized
proteins (N-formylmethionine) reflect mitochondrial damage. (N = 10, p<0.05).

doi:10.1371/journal.pone.0150480.g007
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arginase. Although, complete urea cycle is available in liver, lung endothelium also has enzymes
for arginine metabolism via urea cycle. Our data indicate that in the PH lung there is a signifi-
cant increase in urea suggesting that L-arginine is mainly utilized by arginase (Fig 9). The argi-
nase product, ornithine, required for polyamine and proline biosynthesis, is also increased in
the PH lung (Fig 9). Ornithine is metabolized by ornithine decarboxylase (ODC) to generate
polyamines, which are necessary to stabilize newly synthesized DNA and play a supportive role
in in cell growth and division. We identified increases in the polyamine spermidine (Fig 9) sug-
gestive that increases in the urea cycle may support cellular proliferation. Finally, elevated pro-
line can be metabolized to hydroxyproline and its accumulation is thought to promote fibrosis
[23]. Our data indicate that both 4-hydroxyproline and proline-hydroxyproline are increased
in the pre-PH lung suggesting that a fibrotic pathway is being activated. Our recent data sup-
port this concept [24].

Fig 8. The extracellular matrix is remodeled in the MCT-treated rat lung. Initiating with fructose 6-phosphate, the glucosamine pathway contributes to
extracellular matrix remodeling (center pathway). Glucosamine 6-phosphate, N-acetylglucosamine 6-phosphate, N-acetylglucosamine, sialic acid and the
oxidation product erythronate were all significantly increased the pre-PH lung (N = 10, p<0.05).

doi:10.1371/journal.pone.0150480.g008
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Alterations in glutathione biosynthesis
We detected significant decreases in reduced glutathione (GSH) in the pre-PH lung that may
reflect a disruption in redox homeostasis (Fig 10A); indeed, cystine (an oxidative product of
cysteine), methionine sulfoxide and N-acetylmethionine sulfoxide (products of methionine
oxidation) were all increased in pre-PH rats. Metabolites associated with the conversion of
methionine to cysteine, such as S-adenosylmethionine (SAM), were also increased (Fig 10A),
with decrease in S-adenosylhomocysteine suggestive of a high demand for glutathione. More-
over, SAM is involved in methylation of histamine by Histamine N-methyltransferase and our
data (S1 Table) indicate high levels>600 fold of 1-methylhistamine accumulation in PH lungs.

Fig 9. Disruption of argininemetabolism in the MCT-treated rat lung. The metabolic fate of arginine is complex being involved in NO signaling, the urea
cycle, proliferation, and matrix remodeling (center pathway diagram). There is significantly increased urea production in the pre-PH lung indicative of
increased arginase activity. Aspartate and fumarate, which are involved in arginine biosynthesis, are significantly increased in the pre-PH lung as is arginine
itself. Polyamine metabolites are significantly increased in the pre-PH lung, indicative of increased cellular proliferation while the significant increase in
proline pathway metabolites is suggestive of extracellular matrix remodeling (N = 10, p<0.05).

doi:10.1371/journal.pone.0150480.g009
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Increased levels of 2-hydroxybutyrate (AHB), which is produced as a byproduct when
cystathionine is converted to cysteine in times of high glutathione demand (such as in response
to an oxidative environment), were also identified in the pre-PH lung (Fig 10), while increases
in ophthalmate and norophthalmate, a tripeptide analogue of GSH produced by glutathione
synthase in which cysteine has been replaced by 2-aminobutyrate, are also consistent with
increased demand for glutathione synthesis. Elevated levels of gamma-glutamyl amino acids
(AA, Fig 10B) were accompanied by increases in 5-oxoproline (Fig 10A) and may reflect
increased gamma-glutamyl AA exchange to replenish GSH. Finally, trends in increased
tocopherols and carnosine (a histidine-derived dipeptide with anti-oxidative capacity), and sig-
nificant increases in 12-HETE (which is generated by free radical oxidation of arachidonate,
Fig 10) are consistent with increased oxidative stress.

Fig 10. Evidence of a redox imbalance in the MCT-treated rat lung.Despite an increase in glutathione recycling, as indicated by increases in the
5-oxoproline metabolite, both reduced and oxidized glutathione are significantly decreased in the pre-PH (A), indicative of increased oxidative stress. The
ratio between pre-PH and control metabolites demonstrate significant increases (red boxes) gamma-glutamyl amino acids (B). Activation of the gamma-
glutamyl cycle is usually associated with an increased inflammatory response (N = 10, p<0.05).

doi:10.1371/journal.pone.0150480.g010
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Discussion
Pulmonary hypertension is a fatal disease characterized by pathologic vascular remodeling
leading to right-sided heart failure. The monocrotaline (MCT)-induced rat model of PH has
been used to dissect physiological and molecular aspects of this disease. Following injection,
MCT is metabolically activated to a pyrrolizidine alkaloid in the liver; this compound exhibits
extensive toxicity toward pulmonary endothelial cells, resulting in decreased barrier function,
edema and eventually fibrosis. As a result, pulmonary vascular resistance increases and the
right ventricle of the heart compensates by hypertrophy, leading to its eventual failure. Our
hemodynamic data indicate mild pulmonary vasoconstriction with attendant changes in heart
function/structure 14 days after MCT injection, whereas, 28 days after MCT injection the dis-
ease had progressed to a severe stage. Thus, to evaluate the metabolic changes at the early stage
of PH, we conducted a global metabolic profiling study 14 days after MCT injection to identify
biomarkers that changed prior to the development of PH. The metabolic platform is described
in Fig 11. Our data indicate that 14 days after the injection of MCT, but prior to the develop-
ment of PH [16] there is already a switch to glycolysis and a reduction in mitochondrial beta
oxidation as reflected in the accumulation of glycolytic intermediates and products and reduc-
tions in acyl-carnitine long-chain fatty acid metabolites. This Warburg like effect, that under-
lies the proliferative phenotype of cancer cells, has been recently linked to the development of
pulmonary hypertension [25]. In support of our data in the MCT-exposed rat, PH patient
metabolomic data also observed a significant elevation of glucose and fructose 6-phosphate lev-
els [7]. However, the changes in PH patients were less pronounced [7]. Underlying mecha-
nisms of glycolytic switch in PH and possible treatments have been the focus of recent studies
[26–29]. We have previously reported that carnitine shuttling of long-chain fatty acids is dis-
rupted in a lamb model of PH [10]. This appears to occur secondary to increased endothelial
NOS uncoupling, and subsequent high level of peroxynitrite generation in the lung results in
carnitine acyltransferase nitration and inhibition [10]. Interestingly, this decrease in fatty acid
beta-oxidation was also observed in humans with PH [7]. In this study we also found that sev-
eral conjugated carnitine-fatty acid intermediates were decreased in the pre-PH lung suggest-
ing that decreased beta-oxidation may be involved in the development of PH. As restoring
carnitine homeostasis has been shown to resolve endothelial dysfunction [10, 18, 19] this may
also be a potential therapeutic target in PH.

Another aspect of PH etiology is a contribution of inflammatory pathways in the develop-
ment of the disease. It has been recently shown that fibroblast-macrophage interactions in PH
lead to the activation of the inflammatory response through the secretion of cytokines and che-
mokines such us IL-1β, IL-6 and VEGF-A [30, 31]. Interestingly, the changes that occur in
fibroblasts and macrophages during the development of PH are also associated with preferen-
tial aerobic glycolysis [31]. The pro-inflammatory damage associated molecular pattern
(DAMPs) protein HMGB1 was also found to be a contributing factor in the development of
PH through its ability to activate the TLR4 receptor [32]. Our data in MCT-treated rats are
indicative of indoleamine 2,3-dioxygenase (IDO) activation as we observe significant accumu-
lation of both kynurenine and kynurenate. This tryptophan degradation pathway can be acti-
vated by several inflammatory molecules such as TNFα, IL-6, and IFNγ [33, 34]. This may
occur through a NFκ-B-mediated signaling pathway. This is consistent with other studies that
attributed TLR4 receptor and fibroblast/macrophage activations in the pathogenesis of PH [31,
35]. Another spectrum of inflammatory pathway activation we observed in MCT rats involved
the production of pro-inflammatory eicosanoids. The balance between omega 3 and 6 fatty
acids is very important for inflammatory response and cytokine production in lungs [36].
Although, both are polyunsaturated fatty acids, omega 3 exhibits anti-inflammatory properties
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[37, 38] whereas omega 6 generally promotes inflammation [39, 40]. Our data in MCT lungs
suggest there is disruption of the 6:3 ratio with an increase in total omega 6 pro-inflammatory
fatty acids, specifically arachidonic acid. The formation of prostaglandins from arachidonic
acid via cyclooxygenase results in an inflammatory microenvironment that attracts and stimu-
lates immune cells [41–43]. Interestingly, treatment with a lipid emulsion containing omega-3
fatty acid in newborns with persistent PH increased left pulmonary blood flow by 30% and
decreased pulmonary vascular resistance by 28% [44]. This suggests that restoring the balance
between omega 6 and 3 fatty acids could be a potential new therapeutic target in PH.

PH is also associated with vascular and right ventricle fibrosis [45, 46]. Damage to the vas-
cular wall results in remodeling that involves proliferation as a first step, which then progresses

Fig 11. The metabolic study platform. Rats received MCT at day 0 and developed severe PH at day 28. However, lungs were collected for metabolomics
at day 14 to monitor metabolic changes that precede pathological changes in the lung and heart. Lungs were perfused, collected and shipped to Metabolon
inc for metabolic profiling. Sample preparation was done at Metabolon as described in the methods. Data from LC/GCMS were obtained and analyzed using
the proprietary Metabolyzer™ software package. After statistical analysis and heat map generation, metabolic pathways altered 14 days after MCT injection
were compared to control rats. In future (dashed arrows) this platform will be tested as a predictor for drug efficacy in the MCT and Sugen/hypoxia models of
PH. Also, we will identify metabolite “fingerprints” that can be tested in clinical conditions for early PH diagnosis.

doi:10.1371/journal.pone.0150480.g011
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to fibrotic substitution in damaged tissues. This promotes increased stiffness of the lung vascu-
lature [46]. The metabolic profile we observed in pre-PH lungs showed increased levels of glu-
cosamine and its derivatives as well as hydroxyproline. These metabolites likely contribute to
excessive extracellular matrix (ECM) remodeling. ECM remodeling is known to contribute to
both fibril formations during fibrosis [47] and in the invasiveness of proliferating vascular wall
cells into the parenchyma resulting in plexiform lesion formation [48]. Importantly, the glucos-
amine pathway starts from elevated levels of fructose-6-phosphate, which is upregulated in PH
lungs due to a glycolytic switch in the cell’s metabolism. Thus, the glycolytic switch in PH can
alter the proliferation of vascular cells, leading to the activation of inflammatory cells and ECM
remodeling producing both fibrosis and plexiform lesions.

Endothelial NOS dysfunction is well characterized in PH [49–52]. Increased uncoupling of
eNOS due to different factors—elevated levels of ADMA [53, 54], reduced association with
Hsp90 [55], decreased tetrahydrobiopterin levels [56], oxidation of tetrathiolate cluster by
hydrogen peroxide, nitric oxide or peroxynitrite [57–59]—reduce consumption of arginine
through the NO pathway leading to vasoconstriction in pulmonary artery [54, 60]. The upregu-
lation of arginase, which competes with eNOS for the same substrate—arginine, increases the
consumption of arginine via the urea cycle [61, 62]. We identified a robust (~14-fold) upregula-
tion of the urea pathway in pre-PH lungs. The downstream product of the urea cycle, ornithine
is able to contribute to proliferation through polyamine biosynthesis and to fibrosis via the pro-
line pathway. Both these pathways are increased in pre-PH lungs, suggesting that increases in
enzymatic reactions downstream of ornithine may be preventing the normal conversion of orni-
thine back to citrulline and this could lead to the NO pathway being bypassed. However, it is
also important to note that citrulline from the NOS reaction is situated in the caveolae micro-
compartment, which possesses the enzymes (ASL and ASS) necessary to regenerate arginine at
the NOS site. Whereas, citrulline produced by the urea cycle is inside the mitochondria, which
would have to be translocated back to caveolae in order to feed into NOS cycle. It is unclear
whether this occurs and is part of the arginine-paradox [63, 64] that suggests that there may be
different arginine pools within the cell which are available only to NOS or arginase but not both.

In conclusion, results from this global metabolic profiling study revealed number of meta-
bolic alterations in the pre-PH rat lung. Our data suggest a shift in energetics toward glycolytic
processes and this may feed forward into the induction of inflammation, oxidative stress and
fibrosis that are observed during the progression of PH. Interestingly, we observed a great deal
of similarity between the metabolic changes in the MCT-model compared to previous meta-
bolic profiling in humans with PH [7]. Thus, despite it failing to recapitulate the structural
changes associated with advanced PH in humans, the MCT model may still serve as a useful
pre-clinical model of PH. Our metabolic profiling of an early PH stage may lead to the identifi-
cation of metabolite “fingerprints” that can be used to diagnose PH, monitor treatment effi-
cacy, or be used as key metabolites to follow when testing new therapeutic regimens.

Supporting Information
S1 Table. Metabolite changes in MCT-treated rat lung. The table represents chemical name,
ratio between PH and control group, p and q value for each metabolite in the study.
(XLSX)
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