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ABSTRACT
Persistence is defined as the probability that the local value of a fluctuating field remains at a particular state for a certain amount of time,
before being switched to another state. The concept of persistence has been found to have many diverse practical applications, ranging
from non-equilibrium statistical mechanics to financial dynamics to distribution of time scales in turbulent flows and many more. In this
study, we carry out a detailed analysis of the statistical characteristics of the persistence probability density functions (PDFs) of velocity
and temperature fluctuations in the surface layer of a convective boundary layer using a field-experimental dataset. Our results demon-
strate that for the time scales smaller than the integral scales, the persistence PDFs of turbulent velocity and temperature fluctuations
display a clear power-law behavior, associated with a self-similar eddy cascading mechanism. Moreover, we also show that the effects of
non-Gaussian temperature fluctuations act only at those scales that are larger than the integral scales, where the persistence PDFs deviate
from the power-law and drop exponentially. Furthermore, the mean time scales of the negative temperature fluctuation events persisting
longer than the integral scales are found to be approximately equal to twice the integral scale in highly convective conditions. However,
with stability, this mean time scale gradually decreases to almost being equal to the integral scale in the near-neutral conditions. Contrar-
ily, for the long positive temperature fluctuation events, the mean time scales remain roughly equal to the integral scales, irrespective of
stability.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0013911., s

I. INTRODUCTION

Let f (t) denote a stochastic signal fluctuating in time governed
by a particular dynamics. The persistence is then the probability P(t)
that the quantity f (t) − f (t) does not change sign up to the time
t,1,2 where the overbar denotes the time average. Despite its simple
description, only for some specific systems, such as those exhibit-
ing fractional Brownian motions, the persistence probability density
functions (PDFs) could be analytically shown to decay as a power-
law, P(t)∝ t−(1−H ). Here, H is the Hurst exponent (0 <H < 1) whose
value of 0.5 indicates simple Brownian motion.1,3–5 The power-law

form of P(t) dictates that as the H values get larger, the persistence
PDFs decrease more slowly, which seems to be consistent with the
general notion that a stochastic signal displays anti-persistent or per-
sistent behavior depending on whether 0 < H < 1/2 or 1/2 < H < 1.6

However, for other complex systems, no theoretical solutions exist
for the persistence PDFs, and these need to be computed empir-
ically from the experimental data at hand.7 Notwithstanding the
theoretical challenges, the concept of persistence has many practical
applications, such as in the field of biology where one can ask how
long does it take for an epidemic to spread,8 in financial markets to
assess when does a preferred stock will cross a threshold price,9 or
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in the field of geophysics to predict when will the next earthquake
have a dangerously high magnitude.10 Note that, depending on the
context, the persistence could also be referred to as distributions of
the first-passage time, survival probability distributions, return-time
distributions, or the distributions of the inter-arrival times between
the successive zero-crossings.11

In turbulent flows, the interest in the concept of persistence or
zero-crossings grew with the analytical result from Rice12 through
which it was possible to show that the frequency of the zero-
crossings in a turbulent signal was related to the Taylor microscale.13

This connection was intriguing because it implied that the dissipa-
tion rate of the turbulent kinetic energy could be directly computed
from the zero-crossing frequencies. Since then, several studies are
carried out in wall-bounded turbulent flows to verify this result, and
the agreements obtained with the theoretical prediction are more
or less satisfactory.13–16 However, there has been a fair amount of
disagreement among different experiments regarding the statistical
characteristics of the PDFs of the inter-arrival times between the suc-
cessive zero-crossings (hereafter, the persistence PDFs). Narayanan,
Rajagopalan, and Narasimha15 found that in a turbulent boundary
layer, the persistence PDFs of the velocity fluctuations were log-
normal to a good approximation. Later, Sreenivasan, Prabhu, and
Narasimha13 and Kailasnath and Sreenivasan17 found that the per-
sistence PDFs of the velocity fluctuations and momentum flux sig-
nals were double-exponential in nature. Their interpretation of this
behavior was that the long intervals are a consequence of the large-
scale structures passing the sensor and the short intervals are a con-
sequence of the impinging small-scale motions superposed on the
large-scale structures. Subsequently, Bershadskii et al.18 showed that
the persistence PDFs of temperature fluctuations from a turbulent
convection experiment followed a power-law distribution, which
indicates scale-free behavior. In a follow up study, Sreenivasan and
Bershadskii19 commented that when the temperature behaved like
an active scalar in convective turbulence, the persistence PDFs fol-
lowed a power-law distribution. On the other hand, when the tem-
perature behaved like a passive scalar in shear-driven turbulence,
the persistence PDFs followed a log-normal distribution. Recently,
Kalmár-Nagy and Varga20 noted that the persistence PDFs of veloc-
ity fluctuations followed a log-normal distribution in a turbulent
flow around a street canyon.

In atmospheric turbulence, the investigation of the statisti-
cal properties of the persistence PDFs of turbulent fluctuations is
quite rare. Nevertheless, there are a few limited studies available
from the atmospheric surface layer, which report the persistence
PDFs of velocity and scalar fluctuations.21–24 The atmospheric sur-
face layer is a generalization of the inertial layer of unstratified
wall-bounded flows by including the effect of buoyancy, where the
effects of surface roughness are no longer important and the mod-
ulations by the outer eddies are not too strong.25,26 Yee et al.21,22

reported that the persistence PDFs of scalar concentrations dis-
played a double power-law in a near-neutral surface layer. Later,
Katul et al.27 also observed the same, when they investigated the
persistence PDFs of the burst events in the sensible heat flux in
a convective surface layer. Pinto, Lopes, and Tenreiro Machado28

showed that the double power-law feature in a distribution func-
tion is related to the presence of two sets of fractals with two dif-
ferent fractal dimensions associated with two different scale-free
processes. However, Narasimha et al.29 found that the persistence

PDFs of the momentum flux events in a near-neutral surface layer
followed an exponential distribution, suggestive of a Poisson type
process. Recently, Cava and Katul23 demonstrated that the persis-
tence PDFs of the velocity and scalar fluctuations in a canopy sur-
face layer turbulence could be power-laws with log-normal cutoffs
or log-normal distributions depending on the measurement height
in the canopy. In due course, Cava et al.24 showed that the persis-
tence PDFs of the velocity and scalar fluctuations in the canopy and
atmospheric surface layer turbulence could be modeled as a power-
law distribution with an exponential cutoff in convective conditions.
Chamecki30 lent support for this model by investigating the per-
sistence PDFs of velocity fluctuations above and within a cornfield
canopy.

Therefore, from this brief review, it is apparent that there is a
very little consensus about the statistical characteristics of the per-
sistence PDFs for both laboratory and atmospheric turbulent flows.
Nevertheless, in a convective atmospheric surface layer, a detailed
understanding of the persistence properties of velocity and temper-
ature fluctuations is important since it holds the key to explain the
quadrant cycles of the heat and momentum fluxes. This is because
the switching patterns of the heat and momentum fluxes from one
quadrant to the other are dependent on the zero-crossings of the
component signals, as described by their persistence PDFs. Thus, we
define our objectives for this study as follows:

1. To carry out a detailed analysis to establish the statistical scal-
ing properties of the persistence PDFs of velocity and temper-
ature fluctuations in a convective surface layer.

2. To empirically connect the statistical scaling properties of the
persistence PDFs with the turbulent structures in a convective
surface layer.

This study is organized as follows: In Sec. II, we provide the
descriptions of the field-experimental dataset and methodology used
in this study; in Sec. III, we present and discuss the results; and
finally, in Sec. IV, we conclude by presenting our findings and
providing the future research direction.

II. DATASET AND METHODOLOGY
In this study, the dataset being used is from the Surface Layer

Turbulence and Environmental Science Test (SLTEST) experiment.
The SLTEST experiment ran continuously for nine days from 26
May 2005 to 03 June 2005, over a flat and homogeneous terrain at
the Great Salt Lake desert in UT, USA (40.14○ N, 113.5○ W), with
the aerodynamic roughness length (z0) being z0 ≈ 5 mm.31 During
this experiment, nine north-facing time synchronized CSAT3 sonic
anemometers were mounted on a 30-m mast, spaced logarithmically
over an 18-fold range of heights, from 1.42 m to 25.7 m, with the
sampling frequency being set at 20 Hz.

During the daytime convective periods, the standard practice is
to compute the turbulent statistics in the atmospheric surface layer
over a 30-min period.32–34 Therefore, the data from all nine sonic
anemometers were restricted to rain-free daytime convective periods
and subsequently being divided into 30-min sub-periods, contain-
ing the 20-Hz measurements of the three wind components and
the sonic temperature.35 To select the 30-min periods for the per-
sistence analysis, we followed the detailed data selection methods as
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TABLE I. The six different stability classes formed from the ratio −ζ = z/L in an unstable atmospheric surface layer flow, where z is the height above the surface and L is the
Obukhov length. The ratios span from highly convective (−ζ > 2) to near-neutral (0 < −ζ < 0.2) conditions. The number of 30-min runs and the associated heights with each
of the stability classes are given. The total numbers of zero-crossings (No. ZC) in u′, v′, w′, and T′ signals associated with each stability class are also provided.

Number of
Stability class 30-min runs Heights u′ (No. ZC) v′ (No. ZC) w′ (No. ZC) T′ (No. ZC)

−ζ > 2 55 z = 6.1 m, 8.7 m, 12.5 m, 17.9 m, 25.7 m 116 459 86 576 142 751 127 633
1 <−ζ < 2 53 z = 3 m, 4.3 m, 6.1 m, 8.7 m, 12.5 m, 17.9 m, 25.7 m 119 511 92 236 189 131 138 785
0.6 <−ζ < 1 41 z = 2.1 m, 3 m, 4.3 m, 6.1 m, 8.7 m, 12.5 m, 17.9 m 97 575 73 884 184 652 115 173
0.4 <−ζ < 0.6 34 z = 1.4 m, 2.1 m, 3 m, 4.3 m, 6.1 m, 8.7 m 90 551 70 957 193 302 107 356
0.2 <−ζ < 0.4 44 z = 1.4 m, 2.1 m, 3 m, 4.3 m, 6.1 m 128 538 98 123 293 816 154 774
0 <−ζ < 0.2 34 z = 1.4 m, 2.1 m, 3 m 114 383 95 228 285 961 143 470

outlined in Ref. 36. Note that we rotated the coordinate systems of all
nine sonic anemometers in the streamwise direction by applying the
double-rotation method of Kaimal and Finnigan33 for each 30-min
period.

A total of 261 combinations of the stability ratios (−ζ = z/L,
where L is the Obukhov length) were possible for the selected 30-min
periods from the convective conditions (−L > 0). The stability ratio
−z/L is the ratio between the turbulent kinetic energy generated due
to buoyancy and due to shear, with the Obukhov length (L) being
defined as

L = −
u3
∗T0

kvgH0
, (1)

where T0 is the surface air temperature, g is the acceleration due to
gravity (9.8 m s−2), H0 is the surface kinematic heat flux, kv is the
von Kármán constant (0.4), and u∗ is the friction velocity. It is to be
noted that these are the same set of runs used by Chowdhuri, Kumar,
and Banerjee36 for their study of turbulence anisotropy. The entire
range of −ζ (12 ≤ −ζ ≤ 0.07) was divided into six stability classes

and considered for the persistence analysis (see Table I). For each
30-min run, the turbulent fluctuations of the three velocity com-
ponents in the streamwise (u′), cross-stream (v′), and vertical (w′)
directions along with the fluctuations in the sonic temperature (T′)
were computed by removing the linear trend from the 30-min period
associated with the respective variables.37

A graphical illustration of the persistence phenomenon is pro-
vided in Fig. 1, where a 120-s long section of u′ signal is shown for a
particular 30-min run, corresponding to a −ζ = 10.6. Figure 1 shows
that the u′ signal displays persistent positive or negative (i.e., above
or below the mean) values for a particular amount of time, denoted
as tp. Note that the persistence time tp can also be interpreted as the
inter-arrival time between the subsequent zero-crossings where the
u′ signal changes its sign. The zero-crossings are identified by using
the telegraphic approximation (TA) of the u′ signal as

(u′)TA =
1
2
(

u′(t)
∣u′(t)∣

+ 1) (2)

FIG. 1. A 120-s long section of a time
series of u′ from a highly convective sur-
face layer corresponding to −ζ = 10.6
is shown for (a) actual values and (b)
its telegraphic approximation (TA), where
u′ > 0 is denoted as 1 and u′ < 0 is
denoted as 0. The red horizontal line
denotes the position of zero, and the red-
crosses show the points where the u′

signal changes its sign from positive to
negative or vice versa (zero-crossings).
To provide an example, two particular
regions of the u′ signal are highlighted
where the positive and negative values
persist for a time tp (around 30 s–50 s).
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and locating the points where the TA series changes its value from
0 to 1 or vice versa [see Fig. 1(b)]. The associated probability that
the u′ signal stays positive or negative for tp amount of time can
be evaluated by constructing the persistence PDFs using standard
statistical procedures (see Appendix A). Moreover, the same concept
can also be extended to other turbulent fluctuations such as v′, w′,
and T′.

For any stability class as outlined in Table I, the number of
persistent events (corresponding to each tp values) in u′, v′, w′,
and T′ signals can be represented by the number of zero-crossings.
In Table I, we provide the number of zero-crossings or persistent
events by considering all the 30-min runs from a particular stabil-
ity class. Typically, we encounter in the order of 105, the number of
zero-crossings for each signal from every stability class (see Table I).
Therefore, the persistence PDFs of velocity and temperature fluctua-
tions for each of these six stability classes are constructed over these
large number of ensemble events to ensure their statistical robust-
ness. In Sec. III, we discuss the properties of these persistence PDFs,
corresponding to these six stability classes.

III. RESULTS AND DISCUSSION
Before describing the features of the persistence PDFs, it is

worthwhile to discuss about the presentation of the results. Earlier
studies by Narayanan, Rajagopalan, and Narasimha,15 Sreenivasan,
Prabhu, and Narasimha,13 and Kailasnath and Sreenivasan17 on tur-
bulent boundary layer flows have presented the results on persis-
tence time scales after converting those to spatial length scales by
employing Taylor’s frozen turbulence hypothesis. It is important to
note that although they presented results on the inter-arrival times
between the two successive zero-crossings of turbulent signals, their
convention is equivalent to persistence time tp (see Fig. 1). They
interpreted this spatial length scale as a representative of the eddy
length scale of the flow, given the connection between the mean
value of the zero-crossings with the Taylor microscale.13,14,17

In the convective surface layer turbulence, it is a common prac-
tice to normalize the spatial length scales in the streamwise direction
by the height above the surface.38–43 This is related to the assump-
tion that the turbulent structures in a convective surface layer are
self-similar with height.40,44–48 Thus, before computing the persis-
tence PDFs, it seems apropos to convert the persistence time tp to a
streamwise length (tpu, where u is the mean horizontal wind speed)
by applying Taylor’s frozen turbulence hypothesis and subsequently
normalizing the same with z. Note that for all our selected runs,
σu/u (where σu is the standard deviation of the streamwise veloc-
ity) was less than 0.2, and so Taylor’s frozen turbulence hypothesis
could be assumed to be valid.49 The normalized variable (tpu)/z
has a large range, given that the minimum of tp is restricted by the
sampling interval of 0.05 s (20-Hz sampling frequency) and the max-
imum of tp could go as large as in the order of 102 s (see Fig. 1).
A well-suited strategy to evaluate the PDFs of such variables is to
take the logarithmic transformation and then binning the trans-
formed variables in the logarithmic space.50–57 More details about
the effect of binning strategy on the persistence PDFs is provided in
Appendix A.

Therefore, we begin with discussing the properties of the persis-
tence PDFs of velocity and temperature fluctuations in a convective

surface layer by presenting the empirical results scaled with z. Sub-
sequently, to develop a physical understanding of these persistence
PDFs, we present comprehensive evidence to underpin their scaling
properties and relate them with the turbulent flow structures.

A. Persistence PDFs of velocity and temperature
fluctuations

In Fig. 2, we show the persistence PDFs of velocity (u′ and w′)
and temperature fluctuation (T′) signals, plotted against (tpu)/z for
the six different stability classes outlined in Table I. These persis-
tence PDFs (P[(tpu)/z]) are computed after logarithmically binning
the ensemble of values of (tpu)/z from a particular stability class and
then using Eq. (A2) to take into account the effect of the variable
bin-width owing to the logarithmic transformation (see Appendix
A). The log–log representation is used in Fig. 2 such that the power-
law functions on such plots would be represented by straight line
segments.

Similar to Bershadskii et al.18 and Chamecki,30 the persistence
PDFs are computed separately for the positive and negative fluctu-
ations (shown as blue and red markers in Fig. 2) for u′, w′, and T′

signals and compared with the persistence PDFs for the total fluctua-
tions (combining both positive and negative) shown as gray markers.
Note that we focus on u′, w′, and T′ signals since unraveling the
characteristics of their persistence PDFs has an implication toward
understanding the genesis of ejection and sweep cycles in stream-
wise momentum (u′w′) and heat flux (w′T′) signals. Nevertheless,
the persistence PDFs of v′ signals are shown in Fig. S1 of the supple-
mentary material, and they display a similar characteristic shape as
u′ signals for all six stability classes.

From Fig. 2(a), one can note that under highly convective strat-
ification regimes, an extensive straight line segment is observed in
the persistence PDF of the u′ signal with a cutoff at (tpu)/z ≈ 10.
Moreover, the persistence PDFs of T′ and w′ signals also display a
straight line segment for the small values of (tpu)/z, although their
extent remains shorter than the u′ signal, with cutoffs at (tpu)/z ≈ 4
and (tpu)/z ≈ 1, respectively [Fig. 2(a)]. In the log–log represen-
tation, a straight line segment is reminiscent of a power-law func-
tion, thus indicating the persistence PDFs of u′, w′, and T′ signals
behave in a power-law fashion up to a certain threshold of (tpu)/z.
Note that the exponents of these power-law functions in Fig. 2(a)
are different for u′, T′, and w′ signals being equal to 1.6, 1.4, and
1.25, respectively. These exponents have been estimated from a lin-
ear regression on the log–log plots in Fig. 7, which we will revisit in
Sec. III C while discussing the physical significance of this power-law
behavior. Since power-laws are scale invariant, a different scaling of
the persistence time tp as employed in Fig. 7 would not affect their
exponents.

To judge the effect of stability on the exponents of these
power-law functions, we compared the exponents obtained from
the highly convective stability [Fig. 2(a)] with the other five stabil-
ity classes [Figs. 2(b)–2(f)]. We note that for the w′ signal, with the
change in stability, the extent of this power-law region gradually
shrinks, becoming almost non-existent in the near-neutral stabil-
ity [Figs. 2(a)–2(f)]. On the contrary, no discernible change is being
observed in the power-law behavior of u′ signals with stability. How-
ever, for T′ signals, there is a modest change in the extent of the
power-law region with stability, although not as clearly visible as in
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FIG. 2. The persistence PDFs of the normalized streamwise sizes (tpu)/z corresponding to the positive (red) and negative (blue) fluctuations in the streamwise velocity (u′,
inverted triangles), temperature (T′, circles), and vertical velocity (w′, squares) are shown separately for the six different stability classes. The panels corresponding to these
six stability classes are arranged from the top-left to the bottom-right as (a) −ζ > 2, (b) 1 < −ζ < 2, (c) 0.6 < −ζ < 1, (d) 0.4 < −ζ < 0.6, (e) 0.2 < −ζ < 0.4, and (f) 0 < −ζ
< 0.2. The gray inverted triangle, circle, and square markers on all the panels show the persistence PDFs computed after considering the positive and negative fluctuations
together. The PDFs of w′, T′, and u′ are shifted vertically by two decades for visualization purposes. The black thick lines on all the panels show the power-laws with their
respective slopes being mentioned in panel (a). The black dashed line denotes the value of (tpu)/z = 1.

the w′ signal. Along with that, the threshold streamwise sizes up to
which the power-law behavior holds are also not similar for these
three signals. For the u′ signal, at streamwise sizes greater than about
10z, deviation from the power law is noted, whereas for the w′ signal,
the threshold streamwise size is much closer to z. On the other hand,
for the T′ signal, the threshold streamwise size is approximately in
between of the sizes corresponding to u′ and w′ signals.

Additionally, we note that for u′ and w′ signals, the persistence
PDFs of positive and negative fluctuations almost coincide with each
other for all the values of (tpu)/z. Nevertheless, the same is not
true for the T′ signal. It could be noted that for the highly convec-
tive stability class [−ζ > 2, Fig. 2(a)], the persistence PDFs show a
slight disparity between the positive and negative T′ signals at the
larger values of (tpu)/z. However, this difference gradually disap-
pears with the change in stability from highly convective to near
neutral [Figs. 2(a)–2(f)]. Therefore, one may ask for highly convective
stability, what causes this discrepancy between the persistence PDFs
associated with positive and negative temperature fluctuations?

1. Linkage between the persistence PDFs
and asymmetric distribution

To investigate the aforementioned question, it is useful to
consider a premultiplied form of the persistence PDFs such as

(tpu)/z × P[(tpu)/z]. From phenomenological arguments, we will
show that such a form of the persistence PDF is equivalent to a time-
fraction distribution associated with (tpu)/z by directly connecting
the premultiplied persistence PDF with the PDF of the correspond-
ing signal itself. We emphasize that such a connection is not possi-
ble to establish from the persistence PDFs alone (shown in Fig. 2)
without considering its premultiplied form.

Therefore, to prove such a linkage, let us consider we have an
N-member ensemble of (tpu)/z values corresponding to a signal in a
particular state. Note that, in the present context, there are only two
possible states where the signal could be either above or below the
mean (positive or negative fluctuations). Since the persistence time
is computed based on the number of points lying between successive
zero-crossings multiplied by the sampling interval (see Fig. 1), we
can write

Q

∑
i=1
[(tpu)/z]ini ∝ Tf , (3)

where Q is the number of unique members in the N-member ensem-
ble of (tpu)/z, ni is the frequency of occurrences of these unique
members, and Tf is the total time-fraction spent by the signal in that
particular state. The right-hand side of Eq. (3) stems from the fact
that the left-hand side of the same equation can be rearranged as
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Q

∑
i=1
[(tpu)/z]ini = N

Q

∑
i=1
[(tpu)/z]iP[(tpu)/z]

= N(tpu)/z, (4)

where P[(tpu)/z] = (ni/N) is the probability of selecting a unique
member from the N-member ensemble. Given that the sum of all
the possible tp values is equal to the total time spent by the signal in
a particular state and N, u, and z are constants for a particular period,
the quantity N(tpu)/z in Eq. (4) is equivalent to Tf with some pro-
portionality constants. Thus, from Eqs. (3) and (4), we can rewrite
Eq. (3) in the integral form as

∫

( tpu
z )max

( tpu
z )min

(
tpu
z
) P[(

tpu
z
)] d(

tpu
z
)∝ Tf . (5)

Since Eq. (5) holds true for both positive and negative fluctuations,
we may also rewrite Eq. (5) as

∫

( tpu
z )max

( tpu
z )min

([
tpu
z

P(
tpu
z
)]

N
− [

tpu
z

P(
tpu
z
)]

P
) d(

tpu
z
)∝ ΔTf , (6)

where the subscripts P and N refer to the positive and negative fluc-
tuations and ΔTf is the difference in the time fractions associated
with those. For a particular signal, the difference in time fractions
associated with positive and negative fluctuations can be estimated
from the PDF of that signal as

[∫

0

−∞
p(x̂)dx̂ − ∫

∞

0
p(x̂)dx̂] = ΔTf , (7)

where p(x̂) is the PDF of the signal x normalized as x̂ = x′/σx such
that x̂ is a standard variable with zero mean and unit standard devi-
ation. Through the cumulant expansion of Nakagawa and Nezu,58

p(x̂) can be expressed as

p(x̂) = G(x̂)[1 +
x̂3

6
(x̂3
− 3x̂) +

1
24
(x̂4 − 3)(x̂4

− 6x̂2 + 3)]

G(x̂) =
1
√

2π
exp(−

x̂2

2
),

(8)

where G(x̂) is the standard Gaussian distribution and x̂3 and x̂4 are
the skewness and kurtosis of the signal x. Katul et al.59 showed that
if the kurtosis is ignored in Eq. (8), then the left-hand side of Eq. (7)
can be analytically evaluated as

∫

0

−∞
p(x̂)dx̂ =

6 + (
√

2/π) x̂3

12
,

∫

∞

0
p(x̂)dx̂ =

6 − (
√

2/π) x̂3

12
.

(9)

By replacing the result from Eq. (9) in Eq. (7), we can write Eq. (6)
as

∫

( tpu
z )max

( tpu
z )min

([
tpu
z

P(
tpu
z
)]

N
− [

tpu
z

P(
tpu
z
)]

P
) d(

tpu
z
)∝

x̂3

3
√

2π
.

(10)

Hence, from Eqs. (6)–(10), we conclude that the difference between
the positive and negative fluctuations in the premultiplied form of
the persistence PDFs is directly related to the non-Gaussian char-
acteristics of the signal, approximated by its skewness. In addition
to this, we also note that by performing a change of variables, Dor-
val56 showed that the premultiplied PDF of a stochastic variable x is
equivalent to the PDF of log(x), known as the logarithmic PDF (see
Appendix A for further details).

2. Premultiplied or logarithmic persistence PDFs
of velocity and temperature fluctuations

Figure 3 shows the logarithmic PDFs of (tpu)/z for the same six
different stability classes shown in Fig. 2. These PDFs are computed
after taking the logarithm of (tpu)/z in base 10 and dividing the
fraction of samples by the logarithmic bin-width d log10[(tpu)/z].
Similar to Fig. 2, in Fig. 3, the logarithmic persistence PDFs are
shown separately for the positive and negative fluctuations and com-
pared with the total fluctuations (combining both positive and neg-
ative), corresponding to u′, w′, and T′ signals. Note that owing
to premultiplication, the power-law sections of the premultiplied
PDFs are comparatively flattened, whereas exaggeration occurs at
the larger values of (tpu)/z (for a clear demonstration, see Fig. 8 in
Appendix A).

From Fig. 3(a), we note that in highly convective stability, the
premultiplied PDFs of the positive and negative T′ signals are clearly
separated at larger values of (tpu)/z > 4 [shown by the divergence
between the red and blue circles in Fig. 3(a)]. However, they agree
with each other at the smaller values of (tpu)/z. Using Eq. (10),
we can conclude that this difference between positive and nega-
tive T′ signals at the large values of (tpu)/z is related to the non-
Gaussian characteristics of the temperature fluctuations, expressed
by its skewness. Chowdhuri, Kumar, and Banerjee36 noted that the
skewness and kurtosis of the temperature fluctuations are strongly
non-Gaussian (≈1.5 and 5, respectively) in the local free-convection
limit (−ζ > 1). This observation is in agreement with the previous
studies in the convective surface layer.60–63 Our results show that this
non-Gaussianity in the T′ signal is only realized at large sizes of per-
sistent temperature patterns, approximately greater than four times
the measurement height.

It is also interesting to note that the total time fractions at these
large sizes are governed by the negative fluctuation patterns alone
[Fig. 3(a)]. Katul et al.59 showed that the difference in the PDFs
between the positive and negative T′ signals could be attributed
to the asymmetry between the warm-updraft and cold-downdraft
motions under the assumption that the contributions from the
counter-gradient quadrants could be ignored. Therefore, this finding
is consistent with that of Adrian, Ferreira, and Boberg,64 where they
showed from laboratory experiments that in highly unstable condi-
tions, the temperature fluctuation patterns are governed by the more
frequent cold-downdrafts bringing well-mixed air from aloft, inter-
spersed with intermittent occurrences of the warm-updraft motions
rising from the ground.

However, this clear disparity between the premultiplied PDFs
of positive and negative T′ signals gradually disappears as the near-
neutral stability is approached [Figs. 3(a)–3(f)]. This is congruous
with the close to Gaussian characteristics of the T′ signal in the
near-neutral stability.65,66 Apart from that, for u′ and w′ signals, no
difference is observed between the premultiplied PDFs of positive
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FIG. 3. Same as in Fig. 2, but for the logarithmic persistence PDFs of the normalized streamwise sizes (tpu)/z. The panels corresponding to the six stability classes are
arranged from the top-left to the bottom-right as (a) −ζ > 2, (b) 1 < −ζ < 2, (c) 0.6 < −ζ < 1, (d) 0.4 < −ζ < 0.6, (e) 0.2 < −ζ < 0.4, and (f) 0 < −ζ < 0.2. The logarithmic
PDFs of w′, T′, and u′ are shifted vertically by a decade for visualization purposes. The colored arrows on all the panels show the position of the normalized integral length
scales, corresponding to w′ (blue arrows), T′ (pink arrows), and u′ (red arrows) signals.

and negative fluctuations, irrespective of the stability classes. The
reason for this is that the PDFs of u′ and w′ signals remain very
nearly Gaussian for all the stability conditions in an atmospheric
surface layer.36,60

In summary, for the convective surface layer turbulence, the
persistence PDFs of the velocity and temperature fluctuations follow
a power-law function up to a certain threshold size. This threshold
size and the power-law exponents are not similar for u′, w′, and T′

signals. For u′ signals, the threshold size is an order of magnitude
larger than z, whereas for w′ signals, it is approximately equal to z.
On the other hand, the threshold size for T′ signals is somewhere
in between of u′ and w′ signals. It is also remarkable to note that
in a convective surface layer, the non-Gaussian effects in T′ signals
are only perceived at those sizes that are larger than this threshold
size, where the power-law behavior ceases to exist. Therefore, it is
imperative to ask in convective surface layer turbulence:

1. What statistical properties of velocity and temperature fluctu-
ations give rise to the power-law behavior punctuated with a
cutoff in their persistence PDFs?

2. How are those statistical properties connected with the struc-
tures of the turbulent flow?

In Secs. III B and III C, we will explore these questions by
analyzing surrogate datasets and employing an alternate scaling of
persistence time scales of velocity and temperature fluctuations.

B. Scrutiny of persistence PDFs through surrogate
data

The persistence PDFs are related to the inter-arrival time
between the successive zero-crossings of a time series. If these zero-
crossings were randomly located being independent of each other,
we would have expected the persistence PDFs to follow a Poisson
distribution, which is exponential in nature.1,67 However, in a con-
vective surface layer, the persistence PDFs of the turbulent velocity
and temperature fluctuations show a power-law structure. This indi-
cates the zero-crossings of these signals are not independent but
correlated with each other. Moreover, for T′ signals, the power-
law behavior extends up to a certain streamwise size (≈4z) beyond
which the non-Gaussian effects dominate the characteristics of the
persistence PDFs.

Therefore, to gain more insight regarding the statistical char-
acteristics of the persistence PDFs of u′, w′, and T′ signals in con-
vective turbulence, we generated the following two different types of
surrogate datasets:

1. The temporal correlation of the original time series is pre-
served by keeping the auto-correlation function unchanged,
but modifying the PDF of the time series to be Gaussian.

2. The temporal correlation of the original time series is
destroyed by random shuffling, but keeping the PDF of the
time series unchanged.
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The normal procedure to generate the first type of the surro-
gate dataset is taking the Fourier transform of the time series and
keeping the Fourier amplitudes the same but randomizing the asso-
ciated Fourier phases, with inverse Fourier transform being applied
to the modified Fourier coefficients.68,69 Since the Fourier ampli-
tudes of the surrogate dataset are kept intact during the process
of Fourier phase-randomization (PR), this procedure preserves the
Fourier spectrum and hence the auto-correlation function of the
time series. On the other hand, the second type of the surrogate
dataset is generated by randomly permuting (shuffling) the orig-
inal time series such that the temporal correlations are destroyed
completely.

1. Phase-randomization and randomization
experiments

For our purpose, we performed the phase-randomization and
randomization experiments by varying the strength of the random-
ization to investigate their gradual effects on the behavior of the
persistence PDFs. A similar procedure was suggested by Maiwald
et al.70 to investigate the effect of the non-linearity on a stochastic
time series by increasing the strength of the phase-randomization
in a step-wise manner. In this context, the randomization strength
implies the percentage of the Fourier phases or the time series values
that have been shuffled randomly to generate the surrogate datasets
(see Appendix B for further details). Figure 4 shows the typical
results from these two experiments for the highly convective sta-
bility class. Note that similar results have been found for the other
five stability classes as well, which are not shown here. For illus-
tration purposes, the logarithmic persistence PDFs of positive and
negative T′ signals are shown at various randomization strengths
from 0% (original time series) to 100% (completely randomized)
for phase-randomization [Fig. 4(a)] and randomization experiments
[Fig. 4(b)], respectively (see Figs. S2 and S3 of the supplemen-
tary material for the effect on u′ and w′ signals). The logarithmic

representation is chosen, since, in this representation, the non-
Gaussian characteristics of T′ signals are better revealed while pre-
serving the power-law structure of the persistence PDFs (Figs. 3
and 8).

From Fig. 4(a), we note that the power-law structure of the T′

persistence PDFs are preserved for all the randomization strengths
of the phase-randomization experiments, although the separation
between the positive and negative T′ persistence PDFs becomes
indistinguishable at 20% randomization strength. This is related
to the fact that in phase-randomization experiments, the surrogate
time series of temperature fluctuations approach an almost Gaus-
sian distribution at even 20% randomization strength [see Fig. S4(a)
of the supplementary material]. On the contrary, from Fig. 4(b), we
note that the power-law structure of the T′ persistence PDFs gradu-
ally disappears as the strength of the randomization is increased to
100%. Nevertheless, in Fig. 4(b), the difference between the positive
and negative T′ persistence PDFs remains preserved, irrespective
of the randomization strength. The reason for this is that the non-
Gaussian PDFs of the temperature fluctuations remain unchanged
in the randomization experiments [see Fig. S4(b) of the supplemen-
tary material]. Similar results are also obtained for the persistence
PDFs of u′ and w′ signals (see Figs. S2 and S3 of the supplementary
material).

To summarize the results from Fig. 4, we can conclude that
the power-law behavior of the persistence PDFs is related to the
temporal coherence in the time series. In a turbulent time series,
the temporal coherence can be described by the integral time scale,
defined as the time up to which the signal remains auto-correlated
with itself.33,45,71

2. Auto-correlation functions and integral scales
Figure 5 shows the auto-correlation functions [Rxx(τ), where x

can be u′, w′, or T′ signals and τ is the time lag] of u′, w′, and T′

signals, plotted against the lags for the six different stability classes.

FIG. 4. The logarithmic persistence
PDFs of the normalized streamwise
sizes (tpu)/z corresponding to the pos-
itive (red) and negative (blue) fluctua-
tions in the temperature (T′) signal from
the highly convective stability class (−ζ
> 2) are shown for the following two
sets of experiments: (a) Fourier phase-
randomization (PR) and (b) temporal
randomization (R). The original logarith-
mic persistence PDFs are shown at the
bottom of both the panels and the rest
are shifted vertically by three decades
where the original temperature signals
are gradually randomized either in their
Fourier phases or temporal values, start-
ing from 20% to 100%.
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FIG. 5. The auto-correlation functions are plotted against the normalized time lags (τu/z) for u′ (red circles), w′ (blue squares), and T′ (pink inverted triangles) signals for
the six different stability classes. The panels corresponding to these six stability classes are arranged from the top to the bottom as (a) −ζ > 2, (b) 1 < −ζ < 2, (c) 0.6 < −ζ
< 1, (d) 0.4 < −ζ < 0.6, (e) 0.2 < −ζ < 0.4, and (f) 0 < −ζ < 0.2. The exponential functions are fitted to the auto-correlation functions to determine the integral length scale
associated with u′, w′, and T′ signals. The legends shown in each panel describe the equations for the exponential fits.

Note that in Fig. 5, the time lags are converted to a streamwise length
(τu) by using Taylor’s frozen turbulence hypothesis and normalized
with z. Apart from that, the auto-correlation functions are ensemble
averaged over the set of 30-min runs from a particular stability class
(see Table I) to ensure that the results are statistically robust. These
auto-correlations can be represented with an exponentially decaying
function of the form

Rxx(
τu
z
) = exp(−K

τu
z
) Ô⇒ exp(−

ℓx

Λx
), (11)

where x can be u′, w′, or T′, ℓx = τu, and Λx = z/K, known as the
integral length scale.33

From Fig. 5(a), we note that the coefficients K for T′ and w′

signals are closer to each other (K = 0.57 and 0.79, respectively),
whereas the K value for the u′ signal remains much lower (K = 0.15).
Using Eq. (11), this implies that in the highly convective stability,
the integral length scales of T′ and w′ signals (Λx = z/K) almost
coincide with each other, while the integral length scale of the u′

signal remains the largest. However, as the stability changes from
highly convective to near neutral, the coefficients K of T′ signals
become closer to u′ signals, implying that the ΛT values approach Λu
[Figs. 5(a)–5(f)]. On the other hand, the Λw values remain approx-
imately equal to z, irrespective of the stability classes (K = 0.79 to
0.90).

These results are in accordance with the previous studies in
surface layer turbulence, where it has been noted that in highly
convective stability, the ΛT values approach Λw, whereas in the
near-neutral stability, they are much closer to Λu.39,72,73 Apart from

that, the approximate equality of Λw with z supports the argument
that the eddies that contribute to the w′ signal are attached to the
ground.35,42,74,75 If these integral length scales obtained from Fig. 5
(Λu, Λw, and ΛT) are replaced in the persistence length scales (tpu)
in Fig. 3, we note that the deviation from the power-law occurs at
those scales larger than the integral scales for u′, w′, and T′ sig-
nals. The integral length scales are comparable to the peak wave-
length of the turbulence energy spectrum.33 This is demonstrated
in Fig. S5 of the supplementary material for the highly convective
stability class (−ζ > 2), where the scaled peak wavenumbers (κz,
where κ is the streamwise wavenumber) of the u′, w′, and T′ spec-
tra match with z/Λx (x can be u′, w′, or T′ signals). Therefore, it
indicates that the power-law behavior of the persistence PDFs is con-
nected to the eddies from the inertial subrange of the turbulence
spectra (sizes smaller than the integral scales). On the other hand,
deviation from the power-law behavior in the persistence PDFs
occurs at those scales comparable to the energy containing scale
of eddies (sizes larger than the integral scales). To further explore
this connection with the turbulent flow structures, it is appropriate
to represent the persistence PDFs by scaling their persistence times
with the integral scales. We present the results regarding those in
Sec. III C.

C. Scaling the persistence time by the integral scales
We begin with discussing the logarithmic persistence PDFs,

since in that representation, the disparity between the PDFs cor-
responding to the positive and negative fluctuations at larger
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persistence scales is highlighted more clearly (see Fig. 3 in Sec. III
A). The persistence time tp of u′, w′, or T′ signals are scaled with the
integral time scale (Γ) before computing the logarithmic persistence
PDFs. Note that from the application of Taylor’s frozen turbulence
hypothesis, this is equivalent to scaling the persistence length with
integral scales Λ.

1. Logarithmic persistence PDFs
Figure 6 shows the logarithmic persistence PDFs with the per-

sistence times normalized by Γ corresponding to u′, w′, or T′ signals
for all six stability classes (Table I). For all three signals in Fig. 6, a
bend could be clearly observed in the logarithmic persistence PDFs
at the time scales larger than the integral scales, indicating the clear
deviation from the power-law. Apart from that, one can note from
Fig. 6(a) (highly convective stability) that the difference between the
positive and negative persistence PDFs for T′ signals occurs exactly
at those time scales that are larger than the integral time scales
of temperature [see the gray region in Fig. 6(a)]. This discrepancy
gradually disappears in near-neutral stability [see Figs. 6(a)–6(f)],
implying that the non-Gaussian characteristics of the T′ signal are
definitely related to the energy containing scales of motions.

However, the persistence PDFs deviate from the power-law
form at scales larger than the integral scales. Chamecki30 showed,
for canopy surface layer turbulence, the persistence PDFs of veloc-
ity fluctuations at large time scales behave exponentially, the
hallmark of a random Poisson type process. Cava et al.24 hypothe-
sized this as a consequence of random deformation of the coherent

structures, giving rise to several sub-structures with independent
arrival times. Nevertheless, Chamecki30 also commented that this
exponential nature of the persistence PDFs could be better studied
by considering the cumulative distribution functions (CDFs), given
their smoothed nature at large time scales.

The CDF [F(tp/Γ)] is defined as

F(tp/Γ) = ∫
(tp/Γ)

(tp/Γ)max

P(tp/Γ)d(tp/Γ), (12)

which denotes the probability that the normalized persistence time
has a value smaller than or equal to tp/Γ. From Eq. (12), it follows
that for an exponential distribution (Poisson process), both the PDFs
and CDFs have the same form, albeit with different proportionality
constants. Additionally, the CDFs also have an inherent advantage
of being bin-independent with a smooth convergence toward 1.51,55

At the right-hand side of Fig. 6 (see the side panels), the CDFs cor-
responding to the positive and negative T′ signals are shown for the
time scales larger than the integral scale ΓT [(tp/ΓT) > 1] in a log–
linear coordinate system, corresponding to all six stability classes
(the CDFs of u′, w′, and T′ signals for the whole range of tp/Γ are
provided in Fig. S6 of the supplementary material). The exponential
decay of the CDFs,

F(tp/Γ)∝ exp[−λ(tp/Γ)], (13)

in such plots would appear as a straight line with the slope of λ.
For the highly convective stability [panel (a) at the right-hand

side of Fig. 6], we note that the λ values obtained from the slopes

FIG. 6. The logarithmic persistence PDFs are shown for the persistence times normalized by the integral time scales (Γ) associated with w′ (squares), T′ (circles), and u′

(inverted triangles) signals. The logarithmic PDFs are shifted vertically for visualization purposes. The panels on the right show the cumulative distribution functions of T′

signals [FT ′ (tp/ΓT )] plotted for tp/ΓT > 1 (marked as the gray regions on the left panels) on a log–linear plot. This representation is chosen to determine the slope of the
exponential functions [represented as straight lines, see Eq. (13)] fitted separately for the positive and negative temperature fluctuations persisting for times larger than the
integral time scales. The descriptions of the markers are shown in the legend, placed in a corner of the bottom panel (f) at the left-hand side.
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of the straight line fits for negative and positive T′ are 0.7 and
1.1, respectively. It implies that the mean time scales (Γ/λ) related
to the long persistent events of negative T′ are almost twice the
integral scale of temperature, whereas for the positive T′, they are
almost equal to the integral scale. Furthermore, with the change
in stability from highly convective to near neutral, the λ values
for the long events of positive T′ remain fixed at 1.1, but for
the negative T′, these values gradually increase from 0.7 to 1.1 at
near-neutral stability [see the side panels (a)–(f) in Fig. 6]. This
indicates that the mean time scales of the long persistent events
of negative temperature fluctuations become closer to the integral
scale of temperature as the near-neutral stability is approached,
while the same remains unchanged for the positive fluctuation
patterns.

Since these long events are associated with the energy contain-
ing scales (see Sec. III B), the disparity in the mean time scales (or
length scales from Taylor’s frozen turbulence hypothesis) between
the warm and cold events could be explained from the coherent
structure perspective. The large-eddy simulation (LES) results of
Khanna and Brasseur76 and Salesky, Chamecki, and Bou-Zeid77

indicate that in highly convective stability, the vertical velocity and
temperature fluctuations display a cellular organization pattern. This
explains the closeness of the integral scales of w′ and T′ in highly
convective stability [Fig. 5(a)]. Apart from that, their LES simula-
tions also show that the warm-updraft motions are concentrated at
the cell edges, while the cold-downdraft motions occupy a larger area

at the cell center. This geometrical asymmetry between the warm-
updraft and cold-downdraft motions might be the reason why the
long warm events have mean length scales comparable to the inte-
gral scales, while the scales of the long cold events are almost twice of
that. However, in near-neutral conditions, the warm and cold fluids
are positioned on the long streaky patterns of streamwise fluctua-
tions having similar streamwise lengths, comparable to the integral
scales.76,77 Given the closeness of ΛT and Λu in the near-neutral
stability [Fig. 5(f)], this elucidates why in such conditions an equiv-
alence is observed between the mean length scales of long warm and
cold events.

2. Persistence PDFs
So far in Fig. 6, we have focused on the characteristics of the

long persistent events larger than the integral scales (associated with
energy containing eddies) by investigating the logarithmic represen-
tation of the persistence PDFs. However, it would also be advanta-
geous to focus on the power-law structure of the persistence PDFs
at scales smaller than the integral scales (associated with the eddies
from the inertial subrange). Since the power-law behavior is best
represented in the original PDFs, Fig. 7 shows the persistence PDFs
of u′, w′, and T′ signals with tp scaled with Γ.

From Fig. 7, one can note the cut-off scale, where the devia-
tion from the power-law behavior begins, is located almost exactly
at the integral scale Γ for all three signals. Apart from that, com-
pared to Fig. 2, the cut-off behavior of the power-law is quite sharp

FIG. 7. The persistence PDFs are shown for the persistence times normalized by the integral time scales (Γ) associated with w′ (squares), T′ (circles), and u′ (inverted
triangles) signals. The panels corresponding to these six stability classes are arranged from the top-left to the bottom-right as (a) −ζ > 2, (b) 1 < −ζ < 2, (c) 0.6 < −ζ < 1,
(d) 0.4 < −ζ < 0.6, (e) 0.2 < −ζ < 0.4, and (f) 0 < −ζ < 0.2. The black thick lines on all the panels show the best fit power-laws with their respective slopes being mentioned
in panel (a). The regions in all the panels corresponding to tp/Γ > 1 are in gray. The descriptions of the markers are provided in the legend of panel (f).
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in Fig. 7 due to the correct scaling of tp with Γ. This feature is con-
sistent with Fig. 6. Nevertheless, since the PDFs in Fig. 6 are in the
premultiplied form, the exponents of the power-law for the scales
smaller than the integral scales cannot be estimated from there (see
Fig. 8 in Appendix A). Therefore, in Fig. 7(a) (highly convective sta-
bility), the exponents of the power-law functions are determined by
performing a linear regression for the range 0.01 ≤ tp/Γ ≤ 1 on the
log–log plots. The slopes (exponents) of the best fit lines are found
to be 1.6, 1.4, and 1.25 for u′, w′, and T′ signals, respectively, with R2

values more than 0.98. Note that the exponent 1.4 for the T′ signal is
very close to 1.37 as reported by Bershadskii et al.18 from their turbu-
lent convection experiments. To assess the effect of stability on the
power-law behavior, the exponents obtained from the highly con-
vective stability are compared with the other stability classes. The
following features emerge:

1. For the u′ signal, no change in the power-law behavior is
observed with stability.

2. For the T′ signal, no discernible change can be observed,
although at near-neutral stability, a slight deviation from 1.4
exponent might be possible.

FIG. 8. An example is provided from the highly convective stability class (−ζ > 2)
to illustrate the effect of linear and logarithmic binning on the persistence PDFs of
w′ (squares), T′ (circles), and u′ (inverted triangles) signals, considering both the
positive and negative fluctuations. The persistence times are normalized by the
integral time scales (Γ) associated with w′, T′, and u′ signals. The black markers
indicate the persistence PDFs constructed from linear binning, whereas the orange
markers denote the same but from logarithmic binning. To convert from logarithmic
to linear space, the logarithmic persistence PDFs are premultiplied with the factor
obtained from Eq. (A2) and are shown as the red markers. Note that all three PDFs
for w′, T′, and u′ signals are shifted vertically by three decades for visualization
purposes. The gray thick lines show the same power-laws as in Figs. 2 and 7.

3. For the w′ signal, the extent of the power-law behavior gradu-
ally decreases with stability.

Since the power-law structure in the persistence PDFs is asso-
ciated with the tp values smaller than the integral time scales, it
is thus representative of the eddies from the inertial subrange of
the turbulence spectrum. This observation lends considerable sup-
port to the hypothesis of Yee et al.22 and Cava et al.24 where they
connected this power law behavior in the persistence PDFs
with the self-similar Richardson cascading mechanism, given
the implied scale-invariance associated with power-law distribu-
tions.51,78 Accordingly, it also explains the reduction in the exten-
sion of the power-law behavior for the w′ signal associated with the
near-neutral stability. From Table I, it is clear that the near-neutral
stability class (0 < −ζ < 0.2) corresponds only to the lowest three lev-
els of the SLTEST experiment (z = 1.4 m, 2.1 m, 3 m). The inertial
subrange of the w spectra starts approximately at κz = 1, considering
Λw ≈ z. If this is converted to frequency (f = u/2πz), then we would
obtain the threshold at ≈1 Hz (assuming u ≈ 10 m s−1 and z = 2 m),
indicating only a decade wide subrange being resolved at the 20-Hz
sampling rate. Therefore, the decrease in the power-law range for the
w′ signal could be attributed to insufficient sampling of small-scale
eddies at 20-Hz frequency for the lowest three SLTEST levels.

3. Physical explanation of persistence exponents
In general, the exponents of the power-laws in persistence PDFs

are non-trivial and difficult to compute analytically, except for sim-
ple systems such as fractional Brownian motions.1,4,5 Recently, to
explain these power-law exponents, Cava and Katul23 and Cava
et al.24 proposed an ambitious connection with the self-organized
criticality (SOC) observed in the sandpile model of Bak, Tang, and
Wiesenfeld.79,80 This is inspired by the results from Sreenivasan, Ber-
shadskii, and Niemela81 where such a connection was proposed for
turbulent convection. By using the results from Jensen, Christensen,
and Fogedby82 and Bershadskii et al.,18 Cava et al.24 connected these
power-law exponents as

m = 3 − γ −
μ
2

, (14)

where m is the spectral slope of the telegraphic approximated time
series, γ is the power-law exponent, and μ is the intermittency expo-
nent. In a near-neutral atmospheric surface layer flow, Sreenivasan
and Bershadskii19 found m to be equal to 4/3, as opposed to the 5/3
spectral slope in the inertial subrange.

If we accept this premise of SOC and assume m to be the same
for u′, w′, and T′ signals, then we can rewrite Eq. (14) as

γ = 1.67 −
μ
2

, (15)

where m is replaced as 4/3. From Eq. (15), one can infer that the
difference in the power-law exponents (γ) for u′, w′, and T′ signals is
directly related to the different values of the intermittency exponents
(μ). Since we note that, from Figs. 2 and 7, the power-law exponent
is the largest for the u′ signal (γ = 1.6), Eq. (15) implies that the value
of μ corresponding to this signal is the smallest, equal to 0.14. On the
other hand, the power-law exponents for T′ and w′ signals are equal
to γ = 1.4 and 1.25, respectively. Therefore, according to Eq. (15),
the intermittency exponents for these two signals are considerably
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larger than the u′ signal, with the values being equal to 0.54 and 0.84
respectively.

Bershadskii et al.18 interpreted that the larger the intermit-
tency exponent, there is more intermittent build-up of energy at the
small scales, causing deviation from the Kolmogorov scaling for the
higher-order structure functions (anomalous scaling) in the inertial
subrange. Katul, Parlange, and Chu83 and Katul et al.84 demon-
strated that in a convective surface layer, the temperature fluctua-
tions are more intermittent compared to the velocity fluctuations,
given the presence of sharp drops associated with the cliffs of the
ramp-cliff patterns. Even though Eq. (15) dictates that the μ values
for T′ signals are larger than u′ signals, there is also an implication
that the μ values are the largest for w′ signals, given their γ being
the smallest (γ = 1.25). The reason for this difference is not clear at
present.

Nevertheless, it is important to note that the one-to-one corre-
spondence between the persistence and intermittency exponents as
shown in Eq. (15) is predicated upon the assumption that the m val-
ues are equal for all three signals. Cava et al.24 found that there is a
considerable scatter among the m values for u′, w′, and T′ signals in
a convective surface layer and they often differ from 4/3. Regardless,
further discussion of the difference in persistence exponents among
u′, w′, and T′ signals is beyond the scope of this article.

However, an alternate theoretical framework also exists where
the persistence PDFs are connected to the fractal dimensions of
small-scale turbulence.85–87 In retrospect, this alternate framework
had been proposed to provide a new methodology to compute the
fractal dimensions, without relying on the box-counting methods
being used in the studies by Sreenivasan and Meneveau88 and Scotti,
Meneveau, and Saddoughi89 (see the work of Sreenivasan90 and
Catrakis91 for a review). Nonetheless, at present, both of these frame-
works based on SOC and fractals seem plausible to connect these
power-law exponents with the physical nature of small-scale turbu-
lence, but further research is required to assess their viability. We
present our conclusions in Sec. IV.

IV. CONCLUSION
We report the statistical scaling properties of the persistence

PDFs of turbulent fluctuations in streamwise and vertical velocity
(u′ and w′) and temperature (T′) from the SLTEST experimental
dataset in a convective surface layer. The important results from this
study can be summarized as follows:

1. The persistence PDFs of u′, w′, and T′ signals display a power-
law behavior up to a certain threshold scale, punctuated with
an exponential cutoff. The power-law exponents are 1.6, 1.25,
and 1.4 for u′, w′, and T′ signals, respectively, with no signifi-
cant change being observed with stability.

2. From randomization experiments, it is shown that this power-
law behavior of the persistence PDFs is linked to the tempo-
ral coherence in the time series. This temporal coherence is
represented by the integral scales, computed from the auto-
correlation functions.

3. By normalizing the persistence time scales with the integral
scales, it is found that the power-law behavior in the PDFs is
related to those scales that are smaller than the integral scales.
Since power-laws are synonymous with scale-invariance, it

implies the effect of the self-similar eddy cascading mechanism
(Richardson cascade) on the persistence PDFs.

4. A premultiplied form of the persistence PDF is used to demon-
strate that the non-Gaussian effects of the temperature fluctu-
ations act only at those scales that are larger than the integral
scales. This indicates that the non-Gaussian characteristics of
the temperature fluctuations are associated with the energy
containing scales of motions.

5. From the exponential fits in the persistence CDFs, it is illus-
trated that the mean time scales of the negative T′ events per-
sisting longer than the integral scales are approximately twice
the size of the integral scales in highly convective conditions.
However, this mean time scale gradually decreases to almost
being equal to the integral scale in the near-neutral stability.

6. On the other hand, for the long positive T′ events, the mean
time scales remain roughly equal to the integral scales, irre-
spective of stability. This discrepancy with the negative T′

events is interpreted to be associated with the change in the
topology of the coherent structures from cellular convection
patterns in highly convective conditions to horizontal streaks
in near-neutral stability.

Note that this study is the first of its kind for a convective
surface layer turbulence, where the entire focus has been on estab-
lishing the statistical characteristics of the persistence PDFs. We
have convincingly demonstrated that the persistence PDFs of veloc-
ity and temperature fluctuations in a convective surface layer follow
a power-law distribution followed by an exponential cutoff. Sub-
sequently, by scaling the persistence time scales with the integral
scales, this statistical property of the persistence PDFs has been asso-
ciated with the turbulent structures in a convective flow. Apparently,
this scaling has been formulated by generating surrogate datasets
that preserve or destroy the temporal correlations in a turbulent
signal.

Apart from that, it is also important to emphasize that the
findings obtained from this study have direct bearings on the quad-
rant behavior of the turbulent momentum and heat fluxes. This
is because the switching patterns from one quadrant to the other
are related to the combination of the zero-crossings in the com-
ponent signals that construct the fluxes (u′ and w′ or w′ and T′).
Since the persistence PDFs are related to the time spent between
the zero-crossings in a signal, the future research questions are as
follows:

1. How the persistence PDFs of the heat and momentum fluxes
are related to the persistence PDFs of the velocity and temper-
ature fluctuations?

2. How much of the flux variation can be described by the
persistence properties of the component signals?
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APPENDIX A: THE EFFECT OF BINNING ON
PERSISTENCE PDFS

The common method for computing the PDFs of a stochastic
variable is to bin the data in the linear space and computing the frac-
tion of samples lying within each bin, divided by the bin-width.92,93

However, in the context of a stochastic variable that varies over a
substantial range, sometimes many orders of magnitude, the linear
binning may not be a good strategy. The PDFs obtained from lin-
ear binning for such variables are usually dominated by a few high
probability bins at the lower range and an overwhelming amount of
many low probability bins at the higher range, as illustrated by Dor-
val.56 A better strategy is to use logarithmic binning for stochastic
variables that have positively skewed distributions, such as having
high densities at the lower range and low densities at the large range
of values.56 Intuitively, we may expect the same with the persistence
time, having large occurrences associated with smaller time scales,
with occasional incidences persisting for a long time.

In the logarithmic binning exercise, a logarithmic transforma-
tion is applied to the associated variable and then the fractions of
samples are computed in each logarithmic bin, divided by the bin-
width in the logarithmic space to compute the PDFs. The logarith-
mic binning has been used extensively to deduce the characteristics
of the distributions associated with neuronal inter-spike intervals
in biophysical signals,56,94 to estimate the size distribution of the
avalanches associated with sandpile models,50 and to identify the
Lévy flight patterns in animal displacements53,54 and in many other
practical cases (see Ref. 51 and the references therein for a detailed
review on this topic).

However, the logarithmic bin-width is variable in the linear
space and increases as the values increase, thus making the num-
ber of samples in each logarithmic bin dependent on the linear

width of the bin.55 By employing the change of variables technique,
Dorval56 showed that the PDFs constructed in the linear (Plin) and
logarithmic (Plog) spaces are related to each other as

Plog(x) = (loge10)[xPlin(x)], (A1)

where x is the associated stochastic variable and the factor loge10
emerges as the bins of x are constructed in powers of 10. Note that
in this study, we also used the bins in power of 10 while constructing
the persistence PDFs. Since the PDFs should be related to constant
bin-width in the linear space,53,92 we can rearrange Eq. (A1) to obtain
the actual PDFs from the logarithmic PDFs as

P(x) = [Plog(x)](xloge10)−1. (A2)

An alternate way to obtain the actual PDFs is to divide the frac-
tion of samples within each logarithmic bin by the equivalent linear
width in the logarithmic space, also known as normalized logarith-
mic binning.55 However, both of these methods yield the same result,
since the PDFs obtained from the normalized logarithmic binning
are equivalent to Eq. (A2).

In Fig. 8, we show an example of persistence PDFs for u′, w′,
and T′ signals (combining both the positive and negative fluctua-
tions) from a highly convective stability class (−ζ > 2) to illustrate the
effect of linear and logarithmic binning strategies. Before construct-
ing the PDFs, the persistence time tp is normalized by the integral
scale Γ associated with u′, w′, and T′ signals due to the reasons as
described in Sec. III. We note that the linear PDFs and the PDFs
described by Eq. (A2) are equivalent to each other, although the
PDFs obtained from Eq. (A2) display a broader range of power-law
behavior and are substantially less noisy than the linear PDFs in the
larger range of tp/Γ values. On the other hand, the logarithmic PDFs
are premultiplied PDFs as shown in Eq. (A1). Therefore, compared
to the actual PDFs, the logarithmic PDFs exhibit a flatter slope in the
smaller range of tp/Γ values, concomitant with a slower decrease in
the larger range.

APPENDIX B: DESCRIPTION OF
PHASE-RANDOMIZATION AND RANDOMIZATION
EXPERIMENTS

To perform the phase-randomization experiment at varying
strength of randomization, we first choose a 30-min time series of
u′, w′, or T′ signals (having 36 000 points at the sampling frequency
of 20-Hz) from a particular stability class, as outlined in Table I. The
step-by-step methodology is provided as follows:

1. The Fourier transformation of the 30-min time series is per-
formed, generating 36 000 complex Fourier coefficients. Out of
the 36 000 coefficients, half of these are the complex conjugates
of each other, implying the need to only consider the Fourier
phases of the first 18 000 coefficients.

2. These 18 000 Fourier phases are separated into two parts along
their midpoint at the 9000th point. From the left half of the
9000 Fourier phases, ( x

2)% of the phases are randomly chosen,
with the same being repeated for the right half as well.

3. These ( x
2)% of the randomly chosen phases from the left and

right halves are shuffled with each other. Therefore, the total
x% Fourier phases of the 18 000 coefficients are scrambled
in this procedure while keeping their amplitudes intact. The
revised Fourier coefficients are computed by using the same
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amplitude but the scrambled phases, and then, their complex
conjugates are taken for the rest of the 18 000 points.

4. The inverse Fourier transform is undertaken for these revised
Fourier coefficients to generate the phase-randomized time
series at an x% randomization strength. The randomization
strength implies the percentage of the Fourier phases that have
been shuffled randomly to generate the surrogate dataset.

Note that the aforementioned procedure can be adopted for
the randomization experiment as well. To generate a randomized
dataset at an x% randomization strength, ( x

2)% of the time series val-
ues are randomly shuffled between the left and right halves, along the
midpoint of the time series at 18 000th point. This type of shuffling
procedure is known as Hurst’s card simulation by drawing anal-
ogy with the shuffling patterns of a standard deck employed in card
playing games.95
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