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Abstract
Background: The development of large-scale gene expression profiling technologies is rapidly
changing the norms of biological investigation. But the rapid pace of change itself presents
challenges. Commercial microarrays are regularly modified to incorporate new genes and
improved target sequences. Although the ability to compare datasets across generations is crucial
for any long-term research project, to date no means to allow such comparisons have been
developed. In this study the reproducibility of gene expression levels across two generations of
Affymetrix GeneChips® (HuGeneFL and HG-U95A) was measured.

Results: Correlation coefficients were computed for gene expression values across chip
generations based on different measures of similarity. Comparing the absolute calls assigned to the
individual probe sets across the generations found them to be largely unchanged.

Conclusion: We show that experimental replicates are highly reproducible, but that
reproducibility across generations depends on the degree of similarity of the probe sets and the
expression level of the corresponding transcript.

Background
Expression microarrays provide a vehicle for exploring the
gene expression in a manner that is rapid, sensitive, sys-
tematic and comprehensive [1–6]. Thousands of genes
can now be studied simultaneously without the need of
an a priori candidate gene list. In order to keep up with
advances in genome sequencing, the number and compo-
sition of representative gene sequences are frequently
updated and probe sets representing newly discovered
expressed sequences are added on commercial microar-
rays. Furthermore, existing probe sets are revised because

probe sequences once thought to be unique for a single
gene are occasionally found to be less specific. This leads
to the question of whether results from newer microarray
generations are comparable to those of previous genera-
tions. The cost, time and irreplaceable nature of some of
the samples used for microarray analysis require that a
method to compare data from different generations be
developed.

Although Affymetrix Chips can each measure the expres-
sion of over 12,000 genes and ESTs, the true transcript
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level is confounded by a substantial amount of noise and
variability induced by both the large number of observa-
tions and the wide range of gene expression values [7].
Microarrays are sensitive to noise from many sources
including the manufacturing process and the experimen-
tal (RNA isolation, labeling, hybridization, staining,
washing and scanning) processes. Even within the same
generation of chips and for replicates of single tissue sam-
ples, there may be substantial variability in the measure-
ment levels for the same gene [8]. It is critical to
distinguish this noise from the changes that are real. Many
empirical approaches have been adopted to decrease
noise from microarray based experiments. Different
methodologies and strategies for reducing noise include
establishing an arbitrary global threshold for fold-changes
[9], noise-filtering look up tables [8], normalization tech-
niques to make microarrays comparable, such as using
ANOVA methods to provide estimates of changes in gene
expression that are corrected for potential confounding
effects [10,11], and using replicate experiments to esti-
mate the variability in reported gene expression [12].
Applying fold change thresholds has been the most com-
mon method of reducing noise by filtering out the false
positives [8,9,13]. However, much of the work done to
date has focused on decreasing noise within the same gen-
eration and has not addressed the issue of comparability
across generations.

In this analysis, we have estimated the level of congruency
between corresponding probe sets on two generations of
Affymetrix Chips, HuGeneFL (old) and HG-U95A (new).
We aim to understand the characteristics that contribute
to the systematic variability of the expression values for
experiments performed on different generations of micro-
arrays and extract features that would make them more
comparable. Furthermore, we address the issue of variable
scanner settings, since a ten-fold decrease in the photo-
multiplier tube (PMT) settings of the scanner was another
parameter introduced by Affymetrix in parallel to the new
chip generation, and interfered with data comparability.
More specifically, to expand the dynamic range of the
expression assay, a reduction of the system amplification
was recommended when using HG-U95A chips.

Results
In order to assess the accuracy and reproducibility of the
experiments, as well as the effect of different scanner set-
tings and different chip generations we performed the fol-
lowing types of comparisons. The labeled cRNA from a
single sample was split in two, hybridized to two HG-
U95A chips and both were scanned at "low gain" photo-
multiplier tube (PMT) settings (Exp 1). The labeled cRNA
from a sample was split, hybridized to two HG-U95A
chips, one was scanned at "low gain" PMT settings, the
other at "high gain" settings (Exp 2). The labeled cRNA

from a sample was split, hybridized to two HuGeneFL
chips, one was scanned at "low gain", the other at "high
gain" (Exp 3). The labeled cRNA from one sample was
split, hybridized to a HuGeneFL chip and a HG-U95A
chip, the HuGeneFL scanned at "high gain" and the HG-
U95A at "low gain" (Exp 4) according to manufacturer's
recommendations.

For the two HG-U95A chip-pairs, where each chip-pair
was hybridized with a single tissue sample and scanned at
the same "low gain" scanner setting, the correlations
across all probe sets were greater than 0.99 (Exp1 in Table
1). Looking at the four HG-U95A chip-pairs in Exp 2, with
one chip of each pair scanned at "high gain" and the other
at "low gain" PMT settings, the correlation coefficients
across all probe sets ranged from 0.756 to 0.872 (Table 1).
The same analysis on the three HuGeneFL chip-pairs
(with one of each pair scanned at "high gain" and the
other at "low gain") resulted in the correlation coefficients
across the 7,129 probe sets ranging between 0.904 and
0.947 (Exp 3, Table 1). Finally, in the analysis of the 8,044
common probe sets between HuGeneFL chips (measured
at "high gain") and HG-U95A chips (measured at "low
gain"), the correlation coefficients ranged between 0.730
and 0.810 (Exp 4, Table 1).

The rest of the analyses focused solely on the measure-
ments made on the seven samples split across the HuGen-
eFL at "high gain" and the HG-U95A chips at "low gain",
as this is the most common comparison that will need to
be made (Exp 4). The correlation between the gene expres-
sion values was computed for different subsets of probe
sets based on i) the number of common probe pairs; ii)
the number of 'P' calls assigned to every probe set; iii) the
expression level of the genes on HuGeneFL chips.

For the first analysis each subset consisted of probe sets
with the same number of common probe pairs. The corre-
lation coefficient (r) was calculated by plotting all the
measurements on the HuGeneFL versus all the measure-
ments on the HG-U95A for every subset. The number of
common probe pairs within probe sets ranged from zero
to 16 (see Methods). The correlation improved as the
number of common probe pairs increased (Figure 1).
When probe sets had 1 or more probe pairs in common, r
was greater than 0.8, and for 14 or more probe pairs in
common, r was more than 0.9.

A second analysis was performed in a similar manner, by
creating subsets based on the number of 'P' calls per probe
set, across the 14 chips (7 HuGeneFL and 7 HG-U95A
chips). The correlation coefficient increased for the genes
as the number of 'P' calls increased (Figure 2).
Page 2 of 12
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Based on the level of gene expression on the HuGeneFL
chips, different groups were made for gene expression
level ranging from, for example, -100,000 to -10,000, -
10,000 to -1,000 and so on. The correlation across the two
chips was computed for each of these groups (Figure 3). It
was observed that the higher the reported gene expression
level on the HuGeneFL chips, the higher the correlation of
the gene expression values between HuGeneFL and HG-
U95A chips.

A chi-square analysis was done for all the probe sets on
both generations to determine if the absolute calls made
for the HuGeneFL chips were statistically independent
from the absolute calls made for the HG-U95A chips. A
three-by-three contingency table was constructed based
on the absolute calls. The 113,050 pairs of calls (7 sam-
ples × 2 chip generations × 8,044 common probe sets)
were placed into this contingency table and the chi-square
value computed. The computed chi-square value was
greater than the chi-square value at 0.01 significance level,
giving sufficient confidence to reject the null hypothesis
that the calls made for the HuGeneFL chips were inde-
pendent from the calls made for the HG-U95A generation
of Chips.

The correlation coefficient was computed for each probe
set across the two chip generations. There were seven pairs

of expression values for each probe set and 8,044 correla-
tions corresponding to the 8,044 probe sets common to
HuGeneFL and HG-U95A chips (Figure 4). 2,200 of the
8,044 genes (27 %) had a negative correlation (i.e. r < 0),
indicating that the gene expression levels changed in
opposite direction across generations (i.e. the more of a
transcript reported by one generation, the less reported by
the other generation) (see Table 3 [Additional File 1] at
http://www.chip.org/~ashish/Reproducibility/ for the
correlation coefficients between the probe sets of the two
chip generations).

In order to determine if high intensity can compensate for
low number of matched probe pairs, correlation was com-
puted for different intensity levels of HuGeneFL for probe
sets with specific number of common probe pairs. For
example, we looked at all the probe sets with 0 common
probe pairs and computed correlations for different
ranges of HuGeneFL intensity levels. It was observed that
even for probe sets with low number of common probe
pairs, the correlation between HuGeneFL and HG-U95A
gene expression levels increased as the reported gene
expression on HuGeneFL increased (Figure 5 and 6).

All the above described analysis was repeated using the
Affymetrix MAS 5.0 algorithm. The obtained results were
highly similar (see Additional Figures 7–10 at http://

Table 1: The correlation coefficient for pair wise comparisons of samples within and across chip generations and scanner settings.

No. of probe sets U95A / Low Gain in 
common

U95A / Low Gain Correlation (r)

Experiment MAS 4.0 MAS 5.0

1 12,625 Chip3 Chip4 0.994 0.993
Chip7 Chip8 0.996 0.989
U95A / High Gain U95A / Low Gain

2 12,626 Chip2 Chip3 0.847 0.846
Chip6 Chip7 0.756 0.753

12,600 Chip10 Chip11 0.843 0.815
Chip13 Chip14 0.824 0.827
HuGeneFL/High 
Gain

HuGeneFL/Low 
Gain

3 7,129 Chip15 Chip16 0.906 0.912
Chip18 Chip19 0.904 0.913
Chip21 Chip22 0.947 0.955
HuGeneFL/High 
Gain

U95A / Low Gain

4 8,044 Chip1 Chip4 0.745 0.802
Chip5 Chip7 0.730 0.719
Chip9 Chip11 0.749 0.690
Chip12 Chip14 0.798 0.760
Chip15 Chip17 0.818 0.792
Chip18 Chip20 0.803 0.766
Chip21 Chip23 0.810 0.789
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www.chip.org/~ashish/Reproducibility/). However, when
using the MAS 5.0 algorithm, 2,637 of the 8,044 genes
(32%) were negatively correlated.

Discussion
This work is focused on the comparison of HuGeneFL at
"high gain" settings and HG-U95A settings at "low gain"
settings. Although this comparison represents probe sets
with the worst correlation coefficients, it was specifically
chosen because most research labs tend to use HuGeneFL
chips with the old scanner ("high gain") settings and HG-

U95A chips with the new scanner ("low gain") settings,
due to a change in Affymetrix recommendations. This rep-
resents the most common problem of comparability
across the two generations.

Many of the probe sets in the new generation of Affyme-
trix chips (HG-U95A) have been significantly modified
from the corresponding probe sets in the older
generation. These differences in the design of the probe
sets are due to several factors, including corrections and
additions made to the public databases and new tech-

Figure 1
Distribution of the number of probe sets versus the number of probe pairs in common is shown for the 8,044 probe sets on 
both the older HuGeneFL and the newer HG-U95A Chips. The Y-axis of the line graph appears on the left, while the Y-axis of 
the column graph appears on the right. Each of the 8,044 probe sets is represented in only one column. All expression meas-
urements across all 14 chips were used to calculate each column's correlation coefficient. The effect of the number of common 
probe pairs on the correlation of the gene expression values is illustrated. The correlation between the gene expression values 
across the two generations of chips increases as the number of common probe pairs increases; however, there are few probe 
sets with many common probe pairs.
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niques used in probe selection. Our aim was to determine
the characteristics of the two chip generations that would
account for the systematic variability in the gene expres-
sion values across them.

The gene expression values for replicates of a particular tis-
sue sample measured at the same scanner setting and on
the same chip generation (HG-U95A) gave a very high
correlation of 0.99 (Exp 1, Table 1). This indicates that
expression measurements within one generation are
highly reproducible. Therefore, any variation in gene
expression levels across the two generations should be

due to the chip technology itself and the specificity of the
probe set sequences.

The reproducibility of HG-U95A chips scanned at "high
gain" and "low gain" scanner settings is poorer than the
reproducibility of HuGeneFL chips at the two scanner set-
tings. This lower correlation of HG-U95A chips at the two
scanner settings could be attributed to the fact that HG-
U95A chips have higher density of probe pairs than
HuGeneFL chips, making them more sensitive to back-
ground noise. Furthermore, since the HG-U95A chips are
more specific with respect to their sequence selection cri-
teria, they would hybridize more efficiently than

Figure 2
Distribution of the number of probe sets versus the number of 'P' calls given by those probe sets for all the 14 chips. The Y-
axis of the line graph appears on the left, while the Y-axis of the column graph appears on the right. The correlation between 
the gene expression values of HuGeneFL and HG-U95A is roughly correlated to the number of 'P' calls given by the probe sets 
in each chip.
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HuGeneFL chips and so would be more saturated at high
scanner settings giving a lower correlation between "high
gain" and "low gain" scanner settings. The experiment
involving HG-U95A chips at "high gain" versus the HG-
U95A at "low gain" had a higher correlation compared to

the HuGeneFL at "high gain" versus the HG-U95A at "low
gain" experiments (Table 1). This could be attributed to
several factors. The different composition of probe pairs
used for some probe set across generations could result in
altered hybridization efficiency, and consequently differ-

Figure 3
Distribution of the number of probe sets versus the different levels of gene expression values on the HuGeneFL. The Y-axis of 
the line graph appears on the left, while the Y-axis of the column graph appears on the right. The correlation between the gene 
expression values from the HuGeneFL and HG-U95A is roughly correlated to the levels of gene expression levels on the 
HuGeneFL chip. For the Y-axis, each of the 8,044 probe sets was represented 7 times, one for each measurement on the 
HuGeneFL chip.
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Figure 4
Distribution of 8,044 correlation coefficients corresponding to the common probe sets between HuGeneFL and HG-U95A. 
Representative probe sets are illustrated in the smaller plots (Affymetrix probe set ID numbers: M14539_at, 38052_at, 
X16504_s_at and 2035_s_at). The lower left graph shows the plot for a probe set whose expression values were positively 
correlated between the two chips, while lower right graph shows the plot for a probe set whose expression values were neg-
atively correlated.
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ent expression values for the corresponding genes. The
different number of probe pairs per probe set in each gen-
eration could also introduce some variance since it alters
the "sample size" on which all calculations are based. The
higher density of probe cells in the HG-U95A chips means
that probe pairs are closely packed, and perhaps affected
in a different way than standard density chips by noise
and background levels. Moreover, the probe pairs for each
probe set are scattered over HG-U95A chips as opposed to
being physically grouped together as on the HuGeneFL
chips. This could result in a variable impact of background
and noise on the expression value obtained for each probe
set.

Every probe set on HuGeneFL has a corresponding probe
set on HG-U95A. However, not all the probe pairs within
a probe set are common for the corresponding probe sets
on both chip types. In this analysis, the correlation
between probe sets increases as the number of common
probe pairs increases (from zero to 16 probe pairs), with
a correlation coefficient of 0.4 if there are no probe pairs
in common and over 0.8 if even one probe pair is in com-
mon. The sharp increase of the correlation coefficient
between probe sets with none and one common probe
pairs, could be explained by the use of poor sequence
selection criteria for the specific HuGeneFL probe sets,
which later required the complete replacement of the
probe set. The chi square value computed using the abso-

Figure 5
Intensity plots of HuGeneFL vs. HG-U95A for different number of common probe pairs (0, 1, 8 and 14) for the probe sets 
across the two generations. Each of the probe sets was represented 7 times on X-axis and Y-axis, one for each measurement 
on the HuGeneFL and HG-U95A chip respectively.
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Figure 6
Graph showing the correlation between the gene expression of HuGeneFL and HG-U95A for different levels of expression on 
HuGeneFL chip. High expression levels appear to compensate for low numbers of common probe pairs between chip 
generations.
Page 9 of 12
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lute calls given to each of the probe sets demonstrates that
most probe sets (77%) were assigned the same absolute
calls on both generations. Using the reproducibility of
absolute calls as a measure of consistency across the two
generations indicates that the two generations are consist-
ent overall.

The reproducibility of gene expression measurements
across generations was higher for probe sets with higher
gene expression measurements. To some extent, high
expression levels appear to compensate for low numbers
of common probe pairs between chip generations, with
highest correlations reached when increased gene expres-
sion was combined with a large number of common
probe pairs (Figure 5 and 6). This pattern was also evident
when analyzing the number of 'P' calls for every probe set.
More specifically, the correlation of absolute calls for
every probe set, increased with increasing gene expression
levels. Although the absolute calls are qualitative
indicators of the presence of a transcript in a sample, they
are derived from the intensities of individual probe pairs
within the probe set. We propose that the increased repro-
ducibility at higher expression levels is due to the
decreased significance of the fixed measurement noise
effect.

Conclusions
This paper gives a basic summary statistic of the compari-
son between different chip generations, as well as infor-
mation on the extent to which this is possible. Being able
to perform such comparisons is critical especially when
tissue availability and financial limitations are an issue.
Skeletal muscle was used for the purposes of this study,
but any tissue can be used for the establishment of
benchmarks depending on the specific interests of indi-
vidual labs. Further study of more samples and tissue
types could establish a widely applicable analytical model
to make the most of current datasets and accelerate work
with future microarray generations and platforms.

Methods
RNA extraction and hybridization
Total RNA was extracted from normal human skeletal
muscle tissue samples and used for cDNA and labeled
cRNA synthesis as previously described [14,15]. The frag-
mented cRNA together with control targets recommended
by Affymetrix were hybridized to the GeneChip of choice
(HuGeneFL or HG-U95A). HuGeneFL chips contain oli-
gonucleotide sequences representative of 5,600 genes.
Each gene is represented by at least one probe set, which
in turn consists of approximately 20 probe pairs. Each
probe pair consists of two probe cells, the perfect match
(PM) and the mismatch (MM). The former is complemen-
tary to, and interrogates the expression of a 25 base pair
region of the gene sequence, while the latter contains a

one-base change and is used to control for non-specific
hybridization. HG-U95A chips contain probe sets, each
consisting of approximately 16 probe pairs, representative
of ~12,600 genes. All 5,600 measured by the HuGeneFL
chips are also measured by the HG-U95A chips; however,
in order to improve their sensitivity and specificity, the
composition of some of the probe pairs has been
changed.

Signal detection and analysis
The chips were incubated (16–17 hours, 45°C and 60
rpm) in a rotating oven, washed by the Affymetrix Fluidics
Station, using the recommended signal amplification
step, and scanned by the Affymetrix Scanner. Two
different scanner settings were used. "High gain" PMT)
settings were recommended for HuGeneFL chips, and
"low gain" PMT settings were introduced for the HG-
U95A chips. Therefore most HuGeneFL chips were
scanned using Affymetrix "high gain" settings and most
HG-U95A chips were scanned using the "low gain" set-
tings. In order to assess the influence of the "scanner set-
tings" parameter in our data, some HuGeneFL chips were
rescanned under "low gain" and some HG-U95A chips
were rescanned under "high gain". A list of experiments
and settings is presented in Table 2 (the raw .CEL files for
all these experiments can be accessed at http://
www.chip.org/~ashish/Reproducibility/). Using the
Affymetrix software (Microarray Suite 4.0), each probe set
was assigned an "average difference" value corresponding
to the expression level of the particular gene it represents.
The calculated average difference was used as the measure
of expression levels throughout this analysis. The analysis
was repeated using the Affymetrix Microarray Suite 5.0
(MAS 5.0).

Affymetrix software also assigns every probe set an "abso-
lute call" (Present [P], Absent [A], Marginal [M]), which
represents a qualitative indication of whether or not a
transcript is detected within a sample. In the MAS 4.0
algorithm these calls are determined using the following
metrics: 1) the ratio of the number of positive probe pairs
to the number of negative probe pairs (known as the Pos-
itive/Negative Ratio), 2) the fraction of positive probe
pairs (Positive Fraction), and 3) the average across the
probe set of each probe pair's log ratio of positive intensity
over negative intensity (Log Average Ratio) (1).

Affymetrix tables http://www.affymetrix.com/Auth/sup-
port/downloads/comparisons/
PN600444HumanFLComp.zip indicate that 6,623 probe
sets from HuGeneFL chip have been mapped to 7,094
probe sets from the HG-U95A chip giving a total of 8,044
comparisons between the two generations. Affymetrix
also provides a list of the numbers of probe pairs common
for the two generations.
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The correlation coefficient was used as a measure of con-
gruency between the probe sets across the two generations
of Affymetrix Chips (see Table 3 [Additional File 1]). The
correlation for different subsets of probe sets was com-
puted based on certain probe set characteristics, as dis-
cussed above. Finally, a chi-square analysis was done to
determine whether the absolute calls made for the
HuGeneFL chip were different from the absolute calls
made for the HG-U95A chip.
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