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An approach to quantum mechanical reactive scattering in polyatomic 

molecular systems is described. The formulation is based on the reaction 

path Hamiltonian of Miller, Handy, and Adams [J. Chern. Phys. Jl, 99 (1980)]. 

""' The essential physical idea is that the reaction coordinate in even poly-

atomic systems may be coupled strongly to only a few (one or two) of the 

vibrational modes orthogonal to it, and rather weakly coupled to the 

(perhaps many) remaining modes. This leads naturally to a "system-bath" 

decomposition of the reaction process, and this paper shows how this is 

carried through for the reaction path Hamiltonian. If only one transverse 

mode is included with the reaction coordinate to form the "system", for 

example, then the overall model is that of a collinear-like reaction, 
I 

whose dynamics are treated accurately, taking place in a (harmonic) "bath" 

to which it is weakly coupled . 

• 



-2-

I. Introduction. 

Quantum mechanical reactive scattering for molecular systems 

is a topic of obvious importance, for it provides the rigorous 

theoretical description of chemical reactions, but the practical 

difficulties which hinder applications are substantial. The 

usual complication of inelastic molecular collisions, i.e., many 

strongly coupled channels, is compounded by the additional 

complexity of dealing with a rearrangement scattering process. 

The present status of the problem is that treatment of collinear 

atom-diatom reactions, A+ BC + AB + C, is relatively routine, but 

only a few calculations have. been reported for more complex 

. . 1 react1.ons. 

The purpose of this paper is to describe a practical framework 

for approaching the problem of quantum reactive scattering for 

three-dimensional polyatomic systems. The approach utilizes the 

reaction path Hamiltonian mod.el for the polyatomic system, as 

2 
formulated by Miller, Handy, and Adams, and it also exploits the 

existing capability for carrying out collinear-like reactive 

scattering calculations. 

The reaction path description3 of a chemical reaction chooses 

the coordinates and momenta which characterize the system as a 

reaction coordinate, the distance along,the reaction path (usually 

taken as the steepest descent path in mass~weighted cartesian 

coordinates through the transition state), and its conjugate 

momentum, plus local normal mode vibrations that are orthogonal 

to it. The potential energy surface in this model is thus a 

' 
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(multidimensional) harmonic'valley about the reaction path .. 

The form of the HamiltOnian in these variables obtained by 

Miller, Handy, and Adams shows explicitly how couplings between 

the various degrees of freedom enter and also how the quantities 

characterizing them can be constructed from present quantum 

chemistry computational methodology. 

The idea which we pursue in this paper is that for most 

reactions one expects the reaction coordinates to be str~mgly 

coupled to only a few of the transverse vibrational modes, and 

weakly coupled to the possibly large number of remaining modes, 

The validity of this notion is simply that most chemical 

reactions are local phenomena, so that the modes of the molecule 

physically close to the region of the bond..-breaking and bond ..... making 
., 

will be strongly affected (i.e~, coupled) by the reaction, but 

those far from the region only weakly affected. Thus 

a "system.,-bath" decomposition of the process is natural: the reaction 

coordinate and the few (maybe only one) strongly coupled modes are 

the "system'', whose dynamics should be treated accurately, and 

the remaining (many) weakly coupled modes constitute the (harmonic) 

bath that will be incorporated perturbatively .. 

System.,...bath models have applications to many phenomena in 

physical chemistry, and there are a variety of theoretical 

methodologies for dealing with them.. If the bath is harmonic and 

the coupling between system and bath linear in the bath coordinates, 

then the classical mechanical version of the treatment leads in 

4 
an elementary fashion to a generalized Langevin equation (GLE) 
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for the. "system" dynam;i.cs; this has been discussed previously2b 

by one of us with respect to the reaction path Hamiltonian and 

the specific form of the GLE given~ Presently, however, we wish 

to retain a fully quantum mechanical description. If a quantum 

representation in terms of tetradic operators were used one could 

d . 11 1 h 1 . 1 GLE 1 . S b procee 1n a manner para . e to t e c assica · ana ys1s, ut 

at the practical.level the tetradic formulation does not accomplish 

any simplification unless additional approximations are introduced. 

In this paper, therefore, we treat the system~bath coupling by 

straight.,-forward quantum mechanical perturbation theory, which 

will be sufficient, of course, if the coupling is tndeed weak, 

Section II describes the system.,-bath decomposition of the 

reaction path Hamiltonian, and the perturbative treatment of the 

coupling between the two is described in Section III.. This is 

th 
essentially a distorted wave approximation where the zero 

order Hamiltonian that defines the distorted wavefunction is the 

fully coupled "system" Hamiltonian plus the uncoupled l''bath 1 
.. , 

If, for example, the Hsystem'' consists of the reaction coordinate 

and only one trasverse vibrational mode 7 then it is equivalent 

to a collinear atom..-diatom reaction, The solution of the zeroth 

order problem thus involves the accurate solution of this collinear~ 

like reactive scattering problem, and the coupling to the other 

C'bath''}. modes is then incorporated perturbatively·, The overall 

picture is that of a collinear reaction taking place in a (harmonic) 

bath to which it is weakly coupled. It is useful to note that the 

th zero order version of the present approach is essentially 

• 



-5-

equivalent to an approximation.utilized recently by 

6 Bowman, ~ ~ and found to give encouragingly good results, 

.... 
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II. System.,...BathiDeccmposition of the Rea.ction Path. Hamiltonian, 

For total angular momentum J=O the reaction path Hamiltonian 

of Miller, Handy and Adams is 

(2,1} 

where (s,p ) is the reaction coordinate and its conjugate momenta, s 

and (Qk ,P k), k=2, ._ .. , F, the coordinates and momenta for normal 

mode vibrations in the hyper~plane normal to the reaction path. 

Bk 
1 

(s)- are curvature coupling elements that couple vibrational 
• 

mode k to the reaction coordinate (labeled here as mode 1), and 

{Bk kt(.s)} are coriolis..-.like coupled elements that couple vibrational 
• 

modes k and k', 'F?JN-6~ where N is the number of atoms of the 

complete molecular system.. More specifics of this Hamiltonian 

2 7 
and its applications are described elsewhere .. ' 

The ''system" is chosen to be the reaction coordinate (Jllode k=l) 

and vibrational modes k=2,, .. "f, and the "'bath'' consists of the 

remaining-modes k=f+l,,,,,F~ Retaining only the lowest order 

coupling terms between the system and the bath gives 

H (p s ' s ' { p k ' Qk} ) (2 .. 2a} 

• 
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where 

with 

Hsys + ~ath 

H. (p ,s,{Pk,Qk},k=2., ... ,f) sys s 

f 2 
r p s - . r ·Qk p k I Bkk I c s) ] 

k,k 1=2 

(2 ._2b) 

(2. 2c) 

(2 .. 2d) 

F 
[ QkBk,·l (s) . (2.2e) 

k=f+l 

One sees that H is the ordinary reaction path Hamiltonian for sys 

the f degrees of freedom that constitute the "system'·'. 

In many cases it may be reasonable to take the "bath'' 

frequencies {wk(s)},k=f+l, ... ~F to be independent of the reaction 

coordinate s, but one may not always wish to do so. If the 
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S-dependence of mode k is retained, then it induces an additional 

coupling to the reaction coordinate, This is mcist easily seen 

in the classical version of the Hamiltonian if one transforms the 

bath variables from cartesian coordinates and momenta to action 

Hamiltonian becomes 

and there is the following additional term in H
1 

where 

f 

[p - L QkPktBk k,(s)] 
s k k '=2 ' 

' ' --·-·-·--·-------------
f 2 

r 1 + I . ok \ 1 < s) J 
k=2 ' 

- w \ (_s) 

2wk (s) 

(2 .. 3a) 

(2 ,3b) 

(2 ,3c) 

th The zero order Hamiltonian thus conserves the action variables 

{~} ,k=f+l" ... ,F of the bath, i..e., the bath is vibrationally 

d . b . . th d a 1a at1c 1n zero or er 

R?tation, i.e., non-zero values of the total angular momentum 

J, can be incorporated in the present description by including it 

in the ''bath"; i,e., it seems reasonable that in most cases 

rotation will be weakly coupled to the reaction coordinate._ (If 
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this is not the case, then rotation must be included in the 

"systemt' and treated non..-perturbatively, perhaps, e.g., via an 

infinite-order sudden approximation .. ) To ~ath, and thus to H
0

, 

is added the rotational energy of the rigid asymmetric rotor 

corresponding to the molecular geometry S=S and Qk=O, k=2,.,,,F, 

J E t(s). The lowest order rotation ... vibration coupling terms can ro 

then be included in H
1

. 

Finally, all of the above equations have been written in terms 

of the classical version of the reaction path Hamiltonian, but it 

is well known how one constructs the corresponding quantum 

mechanical Hamiltonian operators. 
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III. Pertutbative Treatment of System..,.Bath Coup lin? .. 

A method to include the effect of system-bath coupling within 

quantum mechanical peruurbation theory is, for a scattering problem, 

standard distorted wave theory.9 Thus the transmission amplitude 

t (E) for reaction from initial quantum state ~ ... = {nk}, k=2, .... ,;F: 
~·~ 

of the reactants (i .. e .. , the transverse vibrational modes at s = - 00 ) 

to final state n ~ of products (i ,e .. , the transverse vibrational 

modes at s = +=} with total energy E, is given by a perturbation 

series 

- t (O) (E) + t (l) (E) + 
n' ,n n t- n 

~ 

. • ... (3.1} 
("<'. t"· "<::" ~ 

The zeroth term in Eq. (3.1) is the transmission amplitude 

th resulting from the zero order Hamiltonian H
0 

of Eqs, (2 .. 2)_.,...(.2.3), 

and since the ''bath'' quantum numbers are conserved b.y H
0

, t~~~·n 
":""". ~ 

is diagonal in them. 

To make the fonnulae more transparent we specialize now 

to the case that the "system'' consists of the reaction coordinate 

plus just one transverse,_vibrational mode, i.e., £=2 in Eq .. (_2.2). 

The 11 syst~1 ' is thus equivalent to a collinear atom .... diatom 

reaction, and the zeroth order amplitude is of the form 

t (~} (E) 
n ,n 
~- '\""· 

(3 •. 2)_ 

n3'. ·~ 
The reduced amplitude t t (E) is the result of a collinear~ 

n2,n2 

like-scattering.calculation with the vibrationally adiabatic bath 

f., 
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serving only to modify the effective potential along the reaction 

coordinate, 

•. (3. 3) 

If the bath frequencies are essentially constant, then the bath 

adds a constant to the energy and the reduced amplitude has the 

even simpler form 

F 

~3 (3,4) 

when t(~d) (E') is the two-dimensional collinear-like transmission 
n2,n2 

amplitude as a function of the collinear energy E'. 

(If, for example, the frequencies of the bath are approximated 

:j: 
by their constant values of the transition state, wk(O) :: wk, k=3, ••• iF; 

then Eq. (3,4) leads to a very useful expression for the thermal 

rate constant. The rate constant k(T) is given by 

k(T) 

where Q is the partition function of the reactants and N(S} is 
r 

the Laplace transform of.the cummulative reaction probability 

N(E), 

(3 .. Sa) 
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with 

N(E) = E (3. 5b) 

n •·,n 
.,.. 

- .,. 

Utilizing Eq. (3 .4), it is relatively straight-forward to show 

that Eq. (3.5) gives N(B) in terms of its two-dimensional 

counterpart, 

where 

with 

=joo dE 1 e-SEt· N (Et) 
2d . . 

&2d CE. t 1 = 

:f 
and where-Q is the partition function of the bath, 

bath 

* Qbath (B) = exp[ -B 

If one adopts the language of transition state theory, then 

Eq. (3.7) expresses the rate constant as 

(3.6) 

(3, 7a) 

(3,7c) 



,.,. 

.• 
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kT q* 
K(T) ~~ 

.h Q 
r 

(3 ,8) 

where q*· is the complete partition function of the transition state 

(bath plus system) 

* Q 

with the transmission coefficient K(l) given by 

(3. 9) 

K(T) - *. (1 ) = N2d C.B) /Q2d X . 21TKT - K2d (T) (3 '10) 

The transmission coefficient of Eq. (J.lO), however, is seen to 

be identical to the transmission coefficient for the two-dimensional 

collinear~like system, th In zero order, therefore, and with the 

assumption of constant frequencies, one sees that the transmission 

coefficient for the complete system of F degrees of freedom is the 
- - ---

"same as that for -the- smailer system of f degrees of freedom,. This 

1 . d 1 b 1. 10 h approximation has been uti ~ze recent y y Bowman, et ~ wit 

quite good results.) 

To determine the first order term to the transmission amplitudes, 

(1) th . 
t 1 of Eq. (3.1), requires the zero orderwavefunctions, the 
n ,n 

scattering eigenfunctions of H
0

, f 1 (s). They are also diagonal 
n+n 

in the bath quantum numbers, 

f 1 (s} 
n +-n 

(3 ,11)_ 
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. n3 ~ • ·-~ 
with the reduced function f ~ (s) being the result of the 

n2+n2 
two-dimensional collinear~like scattering calculation~ The 

asymptotic boundary conditions for fn~+n(s) are of the standard 

form, 

f , (s) 
n+n 

ik s 
n 

e -
'\, -·---

kl/2 
n 

-ik ~s 
n o e -

~· ·~ - -k~~2 

t (O) (E) 
n ~, n ... 

r (~) (E) 
n ,n ' s-+.,..oo (3,12a) 

,... 

(3.12b) 

(0) 
where r , 

n ·~ 
and t(O) are the zeroth order reflection and transmission 

n' ,n 

amplitudes, and these translate in an elementary way into corresponding 

boundary conditions on the two-dimensional-like scattering functions 
n3 •. • Ily 

f ,..... (s). 
n2-u2 

t (l) (E) is then given by (with h = 1) 
n' ,n 

t(l) (E) =-i 
n' ,n n'" ,n" Jd :t ( ) * H (l) f ( ) 

B n'"+n' s n"' ,n" n"+n s 

(3.13) 

(1) 
where H "' 11 is the matrix of H

1 
in the.vibrationally adiabatic 

n ,n 

basis of the transverse vibrational states; it is still an 

operator (multiplicative and differential) in the reaction 

coordinate degree of freedom, Since the translational scattering 

functions are diagonal in the bath quantum numbers, Eq. (3.13) 

simplifies to the following 

•. 



t (1) 
n' ,n 

(E) = .,-i 

"' 
nn n"~ 
2' 2 

-15-

(3 .14) 

One could in principle proceed to construct higher order 

distorted wave contributions, but a simpler (though approximate) 

way to take these effects into account is to unitarize the first 

order approximation via some ad noc procedure, for example, the 
---~ 

11 
exponential DHBA model. It is the composite matrix of reflection 

and transmission amplitudes in this case that is unitary, 

u (3.15} 

where r = {r 1 } and t = {t 1 } are the reflection and transmission 
~ n ,n ~ n ,n 

amplitudes as discussed above. r and t are the reflection and 
!:: t= 

transmission amplitudes corresponding to the reverse reaction, 

i.. e. , beginning at s = -+=, (t is the transpose of t, both of 
~ ~ 

which are in general rectangular matrices; r and t are square 
~ ~ 

matrices.) The exponential unitarization procedure expands U 

perturbatively, 

and then determines the first two terms via Eq, (3,15).; 
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~0 = 
:,....· 

r 
(1) 

( 
S:::· 

~1 ... 
t(l) 
j:: ·-. 

~·(0) 

:(0) J 
r· 
;;;. 

,._ (1) r . 

~(J 
!::: 

Equation (3.16) is assumed to be the first two terms of the 

(.3,17a). 

(3,17b) 

·powers series of an exponential, which is then resumed synnnetrically 

to give, 

u (3 ,18) 

th 
With ~O and ~l known via Eq. (.3.17) from the zero and first order 

distorted wave results, Eq. (3.18) is used to determine U, and then 
~ 

Eq. (3 ,15) gives the unitarized transmission and reflection·. (i.e~, 

reactive and non~reactive) ~mplitudes. 
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IV. Concluding Remarks. 

One can, in principle, improve results given by the approach 

we have presented in one of two ways, namely; to treat the coupling 

between "system" and "bath'' to higher order in perturbation theory, 

or to retain a first order pe.rturbative treatment of the coupling 

and to include more of the transverse vibrational modes in the 

"system". There are practical limitations, however, in proceeding 

too far along either of these avenues. If one attempts to 

include more than one or two transverse vibrational modes with the 

reaction coordinate to form the "systemN, it will not generally be 

practical to solve the zeroth order problem itself accurately. 

Conversely, if one must go beyond first order perturbative theory 

in ·a distorted wave calculation, then the perturbative approach is 

usually not the best way to attack the problem. 

Our view, therefore, is that the approach we have described 

will be useful if indeed only one or. two transverse modes are 

strongly coupled to the reaction coordinate, and together with it 

define the "systemt', while the coupling to the remaining transverse 

modes (the ''bath'') can be treated by first order perturbative 

theory. An encouraging note in this regard is that for the 

6 
three-dimensional H + H

2 
reaction Bowman'~t al. obtain quite 

reasonable results already at the zeroth order level of this 

approach with only one transverse mode included in the "systemt', 

i.e., the bending vibrations and rotation make up the "bath'·'. 

Finally, we note that sometimes it may not be most convenient 

to solve the collinear.,-like reactive scattering problem for the 

"system" in the reaction path coordinates (s,Q 2) (for example, if 
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the curvature coupling B2 1 (s) is very large), If such is the , 
case, one can transfonn the collinear..-like Hamiltonian H. · of sys 

Eq. (2.2c) (with f=2) to cartesian form, 

1 2 2 
H (p s P 0 ) + H (.p x p ) - - (p +p ) sys s' ' 2' ·2 sys x' ' y, y - 1 x y 

+ V(x,y) (4.1) 

whe~e V(x,y) is given by 

V(;x,y) (.4. 2) 

where x
0 

(s) and y
0 

(s) . are given by 

Xo(s) -- Js 
0 

ds t sin e (s t) (.4, 3a) 

Yo (s) = 1 ds t cos e (s) (4,3b) 

0 

with 

s 

e (s) =j ds t B (s') (4.4) 2,1 
0 

and where s is determined as a function of x and y by the equation 

sin8 (s) (x-xo (s)) + case (s) (y--yo (s)) =' 0 (4.5) 
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