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Scalable Emulation of Sign-Problem−Free Hamiltonians
with Room Temperature p-bits

Kerem Y. Camsari, Shuvro Chowdhury and Supriyo Datta1

1School of Electrical and Computer Engineering, Purdue University, IN, 47907
(Dated: October 23, 2019)

The growing field of quantum computing is based on the concept of a q-bit which is a delicate
superposition of 0 and 1, requiring cryogenic temperatures for its physical realization along with
challenging coherent coupling techniques for entangling them. By contrast, a probabilistic bit or a
p-bit is a robust classical entity that fluctuates between 0 and 1, and can be implemented at room
temperature using present-day technology. Here, we show that a probabilistic coprocessor built
out of room temperature p-bits can be used to accelerate simulations of a special class of quan-
tum many-body systems that are sign-problem−free or “stoquastic”, leveraging the well-known
Suzuki-Trotter decomposition that maps a d-dimensional quantum many body Hamiltonian to a
d+1-dimensional classical Hamiltonian. This mapping allows an efficient emulation of a quantum
system by classical computers and is commonly used in software to perform Quantum Monte Carlo
(QMC) algorithms. By contrast, we show that a compact, embedded MTJ-based coprocessor can
serve as a highly efficient hardware-accelerator for such QMC algorithms providing several orders
of magnitude improvement in speed compared to optimized CPU implementations. Using realistic
device-level SPICE simulations we demonstrate that the correct quantum correlations can be ob-
tained using a classical p-circuit built with existing technology and operating at room temperature.
The proposed coprocessor can serve as a tool to study stoquastic quantum many-body systems,
overcoming challenges associated with physical quantum annealers.

I. INTRODUCTION

The basic building block of conventional digital elec-
tronics is the CMOS (Complementary Metal Oxide Semi-
conductor) transistor that is used to represent determin-
istic bits, that are either 0 or 1. Quantum computing, on
the other hand, is based on q-bits that are coherent, del-
icate superpositions of 0 and 1. It is possible to define an
entity intermediate between bits and q-bits that are clas-
sical but probabilistic, which we call “p-bits” [1]. It has
been argued that just as three-terminal transistors pro-
vide a building block for large functional circuits, a three
terminal realization of the p-bit can provide a building
block for p-circuits [2] reminiscent of the probabilistic
computer described by Feynman in the same paper that
helped launch the field of quantum computing [3].

Such p-circuits can perform useful functions broadly
relevant in the context of quantum computing and ma-
chine learning [4]. For example, p-circuits can be used
to perform classical annealing in hardware [5], perform
integer factorization by operating multipliers in an in-
vertible mode [1, 6], just like quantum annealers that
have been used for similar applications [7, 8]. In the ma-
chine learning context, p-bits can function as hardware
accelerators for binary stochastic neurons [9] that can be
used to become efficient inference engines [10, 11], or they
can be used in an efficient calculation of correlations to
accelerate learning algorithms, an application area also
discussed in the context of quantum computing [12–15].

Scope

In this paper, we introduce an application of p-circuits
to accelerate Quantum Monte Carlo (QMC) simulations
of quantum systems based on the well-known Suzuki-
Trotter decomposition that maps a d-dimensional quan-
tum many body Hamiltonian to a d+1-dimensional clas-
sical Hamiltonian. This allows a quantum system to be
emulated by a number of classical replicas that are inter-
acting with each other [16] (FIG. 1) and this approach is
commonly used in software or high-level hardware sim-
ulations [17–21]. By contrast, we show that a compact,
embedded MTJ-based coprocessor can speed up the sim-
ulation by several orders of magnitude.

For a class of quantum Hamiltonians generally referred
to as stoquastic Hamiltonians [22] that avoid the sign
problem [23] and are therefore amenable to efficient QMC
simulation, it should be possible to build hardware accel-
erators using replicated p-bits to emulate the thermody-
namics of q-bit networks. The number of p-bits required
to emulate a given q-bit network is typically a factor
of 25-100 larger, but this is offset by the relative ease
of implementation. Three-terminal p-bits can be imple-
mented at room temperature with Magnetoresistive Ran-
dom Access Memory (MRAM) technology which is cur-
rently in production with hundreds of millions memory
cells. Non-magnetic and completely digital implementa-
tions of p-bits are also possible [6, 24] though they would
require much larger energy and area [25] and while they
can provide speed up over CPU/GPU implementations
they would not achieve the potential speed up that can
be obtained with the MTJ-based implementation.

A highly efficient classical coprocessor made out of con-
ventional p-bits could overcome fundamental difficulties
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FIG. 1. q-bit to p-bit mapping: (a) A d-dimensional q-bit array described by the Transverse Ising Hamiltonian can be
mapped to a d+1-dimensional p-bit array with n-replicas that are coupled in the vertical direction by the Suzuki-Trotter
decomposition (The case for d = 2 is illustrated). In this scheme, the replicas are always connected with periodic boundary
conditions such that mi,n+1 = mi,1. The many-body quantum and the corresponding classical Hamiltonian are shown where
the operators σz, σx of the quantum system are replaced with binary p-bits in the classical system with mi,j ∈ {−1,+1}.
Corresponding coupling terms are (J‖)i,j = Ji,j/n and J⊥ = −1/(2β)log tanh(βΓx/n).

associated with the low temperature operation of quan-
tum annealers [26] while operating almost as fast as phys-
ical annealers. For example, it has recently been shown
that an optimized CPU-based simulated quantum an-
nealing (SQA) implementation was 108 times slower than
a physical quantum annealer, even though it has shown
similar algorithmic scaling on a model problem [19].

With appropriate magnet designs [27] individual p-bits
can flip in a nanosecond or less so that with a million of
them operating in parallel, we should have ∼ petaflips
per second which is several orders of magnitude faster
than existing digital implementations including paral-
lelized GPU [28] and multi-core CPU implementations
[29] that operate typically with ∼ 1-30 gigaflips per sec-
ond.

It has also recently been suggested [30] that among
quantum annealing options, SQA exhibits the best scal-
ing properties, performing even better than experimental
quantum annealers in some cases. As such, accelerating
the software-based SQA with specialized hardware is a
desirable goal and has led to recent interest in this area
[21, 31].

Another advantage of p-bit networks is that unlike
q-bit networks they can be interconnected using con-
ventional electronic devices such as GPUs or FPGAs.
This could allow all-to-all connectivity beyond nearest
neighbor coupling without requiring any special encoding
[32, 33]. Moreover, it should allow the implementation
of arbitrary k-body interactions that are usually avoided

by introducing ancillary bits to map them into 2-body
interactions [34, 35].

Organization of the paper

We start in Section II, with a description of the map-
ping from the q-bit network to the p-bit network, along
with the behavioral equations describing the dynamics
of the latter. These behavioral equations for p-circuits
are similar to those used for stochastic neural networks
and are often implemented in software for machine learn-
ing applications. However, a hardware implementation
can provide a significant speed-up especially because it
can allow parallel asynchronous operation under the right
conditions.

Next in Section III we consider a common example of
a stoquastic Hamiltonian, namely the Transverse Ising
Hamiltonian [36, 37], commonly employed by quantum
annealers [38]. We compare the exact quantum results for
the averages and correlations with the results obtained
from the p-bit network demonstrating the impressive ac-
curacy that can be achieved with a limited number of
replicas. In Section IV we show another example, namely
the ferromagnetic Heisenberg Model [16, 39], once again
comparing the exact quantum results with probabilis-
tic simulations of the p-bit network. In Section V, we
show how Classical and Quantum Annealing can be per-
formed using a network of p-bits. Finally in Section VI
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FIG. 2. Exact quantum solution of a 1D Transverse Ising Hamiltonian vs Probabilistic Spin Logic (PSL): (a)
A 1D ferromagnetic linear chain (Ji,j = +2) with M = 8 spins (nearest neighbor with periodic boundary conditions) described
by the quantum Transverse Ising Hamiltonian (Eq. 1) is solved exactly, as a function of the transverse magnetic field (Γx) at
an inverse temperature of β = 10. A symmetry breaking magnetic field in the +ẑ direction is used, Γz = 1, so that at Γx = 0,
all spins are pointing in the +ẑ direction. The green dashed line is obtained by evaluating Eq. 4 as a function of Γx. The red
dots represent 100 different PSL runs obtained with different RNGs, each running for tf = 2000 time steps. The blue triangles
represent the average of PSL simulations and closely match the exact solution, establishing the accuracy of the quantum to
classical mapping, with n = 250 replicas. (b) A probability histogram of correlations of the form |↓↓ . . . ↓〉 = 0, |↑↑ . . . ↑〉 = 255
are obtained from PSL and Quantum Boltzmann Law at Γx/J = 2.5 that corresponds to the last point of the x-axis in (a).
Only a portion of the states are shown for clarity, states in between show essentially identical agreement.

we present SPICE simulations of actual hardware im-
plementations that can be built with existing Embed-
ded Magnetoresistive RAM (eMRAM) technology that
has been under development by a number of foundries
[40–42]. Unlike standard eMRAM where a non-volatile
MTJ is carefully engineered with a large energy barrier
(EB ≈ 40-60 kBT ) so that the magnetization state is
retained for a long time [43], the free layer of the MTJ
for the p-bit is designed as a thermally unstable mag-
net (EB ≈ 0 kBT ) whose magnetization rapidly fluctu-
ates in time in the presence of thermal noise [44]. Using
full device-level SPICE simulations corresponding to the
p-bit and a resistive interconnection matrix, we demon-
strate that the correct quantum correlations can be ob-
tained using this classical p-circuit which can be built
with existing technology at room temperature.

II. Q-BIT TO P-BIT

Since the seminal work of Suzuki [16], it is well-known
that a d-dimensional quantum many-body Hamiltonian
can be mapped to a d+1-dimensional classical Hamil-
tonian applying the so-called Suzuki-Trotter decomposi-
tion [16, 45], which is used as a basis for PIMC methods
to simulate quantum annealing using classical computers
[17]. This decomposition results in the quantum system
being mapped to a classical system with n replicas that
are coupled to each other. In this paper we consider two
examples as described in the next two Sections, but the
principles apply to stoquastic Hamiltonians in general.

Consider for example the Transverse Ising Hamiltonian

in 1D written as [37]:

HQ=−

(
M∑
i

Ji,i+1σ
z
i σ

z
i+1 + Γx

M∑
i

σxi + Γz

M∑
i

σzi

)
(1)

The Suzuki-Trotter mapping produces the following clas-
sical 2D Hamiltonian [17]:

HC = −
(

lim
n→∞

n∑
k=1

M∑
i=1

(J‖)i,i+1 mi,kmi+1,k + γzmi,k

+J⊥ mi,kmi,k+1

)
(2)

where (J‖)i,j = Ji,j/n, n being the number of repli-
cas, γz = Γz/n and the vertical coupling term is J⊥ =
−1/(2β)log tanh(βΓx/n) and mi,j ∈ {−1,+1}. Note
how the quantum mechanical operators in Eq. 1 have
become classical spins in Eq. 2. The mapping of Eq. 2
becomes exact in the limit of infinite replicas (n → ∞)
however, for finite replicas the error scales as O(1/n2)
[18] and can be made arbitarily small by choosing an
appropriate number of replicas.

Behavioral model for p-bits

The classical system expressed by Eq. 2 can be repre-
sented by p-circuits that are built out of p-bits. There
are two central equations that are used to describe p-bit
networks [1]:

mi(t+ 1) = sgn
[
r + tanh βIi(t)

]
(3a)
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FIG. 3. 1D Heisenberg Model: (a) A 1D Heisenberg model (M = 4 spins) with a transverse magnetic field is considered.
(b) The chessboard lattice corresponding the 2D classical mapping of the model with periodic boundary conditions in the
replica and lattice directions. (c) The interaction terms within the shaded and unshaded unit cells are shown. Within shaded
cells, all neighbors are coupled vertically, diagonally and horizontally (t1, t2, t3) in addition to a 4-body interaction energy term
(t4) that involves the product of all four spins. Terms that arise from the diagonal part of the Hamiltonian, H0, result in
additional horizontal interactions (t0) in both the shaded and unshaded cells. (d) Probability histogram corresponding to a
M = 4 spin ferromagnetic Heisenberg Model. The histogram is obtained by solving the Quantum Boltzmann Law (Eq. 4) with
the parameters shown in the inset and by solving behavioral PSL equations but with a modified Eq. 3b to account for a 3-body
term arising from the 4-body interaction. For the PSL simulation 20 replicas are used with tf = 107 time steps. Samples taken
from different replicas are considered independent and reduced to 16 probabilities to be compared with the original quantum
system.

where t is dimensionless time that is incremented one at
a time, r is a random number uniformly distributed be-
tween −1 and +1 and r at each time step is uncorrelated
with the r chosen at the previous step. βIi is the di-
mensionless current to each p-bit, where β is the inverse
temperature. Ii in general, is calculated according to,

Ii(t) ≡ −
∂HC
∂mi

which in the present case, becomes:

Ii(t) =

(
bi +

∑
j

Wijmj(t)

)
(3b)

where Wij is the interconnection matrix and bi is the bias
term. We refer to Eq. 3 as Probabilistic Spin Logic (PSL)
equations and note that these equations are essentially
the same as those discussed in the context of stochastic
neural networks such as Boltzmann Machines, developed
by Hinton and colleagues [9].

It is important to note that while Eq. 3b is a linear
synapse that typically arises from quadratic Hamiltoni-
ans with 2-body interactions, specially designed digital

CMOS circuits can be used to implement more com-
plicated interactions arising from cost functions such
as generalized Hopfield models with k-body interactions
[46, 47]. Such a flexibility of implementing complicated
interactions could be a key advantage for hardware p-
circuits.

PSL dynamics

PSL equations can be updated to approximate the
steady state joint probability density for any W ma-
trix, symmetric or asymmetric. For symmetric W matri-
ces, the joint probability density is simply expressed by
the classical Boltzmann Law, ρ({m}) ∝ exp[−βE({m})],
where E is the energy for a given configuration {m},
E = 1/2 mT [W ]m. There are two important conditions
regarding the updating of Eq. 3. First, Eq. 3b needs to
be calculated much faster than Eq. 3a for proper conver-
gence [6], a requirement particularly relevant for hard-
ware implementations. Second, Eq. 3a needs to be up-
dated sequentially, as in Gibbs sampling [48]. The re-
quirement of sequential updating prohibits paralleliza-
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tion in software implementations, except in special cases
such as restricted Boltzmann machines where the lack
of intralayer connections between “visible” and “hidden”
layers allows each layer to be updated in parallel [49].
For asynchronous hardware implementations, however, a
clockless operation seems to satisfy the requirement of
sequential updating naturally [5, 6].

III. TRANSVERSE ISING HAMILTONIAN

For the 1D Transverse Ising Hamiltonian (Eq. 1), we
assume periodic boundary conditions such that σzM+1 =
σz1 . Γx is the local transverse magnetic field and Γz is a
local z-directed magnetic field. Eq. 1 can be constructed
by first writing each term, σi, as a 2M × 2M matrix fol-
lowed by ordinary matrix multiplication for each prod-
uct term. These terms are written in terms of 2 × 2
Pauli spin matrices (ςx,y,z) at the jth lattice point as
σj = I ⊗ I ⊗ . . . ⊗ ς ⊗ . . . ⊗ I ⊗ I where I is the 2×2
identity matrix and ς is the Pauli spin matrix at the jth

term in the product.

Quantum Boltzmann Law

In principle, Eq. 1 can be exactly solved for any quan-
tity of interest as a function of temperature and all other
parameters J and Γ, from the principles of quantum sta-
tistical mechanics [50]:

〈S〉 =
Tr. [Sop exp(−βHQ)]

Tr. [exp(−βHQ)]
(4)

where β ≡ 1/kBT is the “inverse temperature” (as de-
fined in Eq. 3a) and we have chosen to use a unit system
in which kB = 1. S is the quantity we wish to calculate
with a corresponding operator Sop. In practice, directly
solving Eq. 4 becomes intractable due to the exponential
dependence of the Hamiltonian (2M × 2M ) to the size of
the problem (M). Due to its similarity to the classical
Boltzmann Law [51], we refer to Eq. 4 as the “Quantum
Boltzmann Law” throughout this paper and solve it for
small 1D systems. To obtain numerically stable results
at low temperatures (high β), we first diagonalize the
Hamiltonian and subtract the ground state energy from
the diagonals, without changing any observable quanti-
ties.

Averages and correlations

In FIG. 2a we calculate the average z-magnetization of
a 1D ferromagnetic (Jij = +2) chain with M = 8 spins,
as a function of a transverse magnetic field. The aver-
age z-magnetization, 〈mz〉, is obtained by the operator
σz =

∑
σzj /M where σzj provides the net z-spin, |↑〉−|↓〉,

at site j. To break the symmetry of mz = ±1 at low tem-
peratures (β = 10) we introduce a +ẑ-directed magnetic

field. As the transverse magnetic field increases, 〈mz〉
gradually decreases, while 〈mx〉 (not shown) increases,
as spins become aligned with the transverse magnetic
field. Incidentally, the reverse process, starting from a
large Γx at a low temperature and slowly decreasing it
to find the ground state of a complicated spin-glass, is
commonly used in quantum annealing algorithms [18].

FIG. 2b shows the probabilities of correlated states at a
given temperature and transverse field expressed as dec-
imal numbers. This is done by first converting the states
to binary numbers such that ↑ denotes +1 and ↓ denotes
0 and then converting the full state into a decimal num-
ber, for example the all down state |↓↓ . . . ↓〉 corresponds
to 0, and the all up state |↑↑ . . . ↑〉 corresponds to 255
and so on. There are 28 = 256 such states, each with a
given probability obtained from Eq. 4. These correlated
states are calculated by first constructing an operator
for the probability of finding a |↑〉 state at a given site,
Pj(|↑〉) = (I + σzj )/2 where I is the 2M × 2M identity
matrix. Similarly, Pj(|↓〉) = (I − σzj )/2. Using these
operators, any correlation of the form |↓↑ . . . ↑〉 can be
calculated from the corresponding composite operator:

P (↓↑ . . . ↑) = P (↓)P (↑) . . . P (↑) =

M∏
k=1

Pk (5)

There are 256 such operators and Eq. 4 can be used for
each of them to obtain a probability for each state for
any J,Γ, β. FIG. 2b shows these probabilities at a cho-
sen parameter combination and they are in agreement
with results obtained from a simulation of p-bits, as we
next explain in Section II. Note that this joint proba-
bility density contains all statistical information in the
system, as averages and other correlations of interest can
be calculated from it, for example one can obtain 〈mz〉
by weighting each state by the net z-spin they contribute
to the average.

PSL vs Quantum Boltzmann Law

With this picture, the mapped classical Hamiltonian
with n replicas described in Eq. 2 is used to obtain a
consolidated [W ] matrix that is of size (Mn) × (Mn)
to be used in Eq. 3. FIG. 2 shows the equivalence of the
PSL implementation of the Transverse Ising Hamiltonian
to the exact quantum many-body description for a 1D-
chain with M = 8 spins. Note that the p-bit mapping
can be applied to much larger spin systems, but an ex-
act solution by Eq. 4 quickly becomes intractable. We
investigate the average z-spin of this ferromagnetic chain
at a constant temperature (β = 10) as a function of the
transverse magnetic field, Γx. A symmetry breaking field
(to favor a +1 order) of Γz = 1 is applied. As expected,
the exact result shows how the average z-spin becomes
disordered. The PSL results for a n = 250 replica system
reproduce this behavior. The z-spin average is obtained
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by taking an average over the length of the chain, as well
as over each replica. The final average (for a given red
dot) is recorded at the end of tf = 2000 dimensionless
time steps. Since a single stochastic point is recorded at
the end of tf , for each Γx point, we observe a variance
in the final results, however averaging over 100 differ-
ent simulations for the same system, we get a very close
match to the exact solution.

In FIG. 2b, the full joint probability density for the
classical system is obtained from a PSL simulation that
is run for tf = 105 dimensionless time steps. The state
of each replica with 8-spins is converted into a binary
number at each time step, as in the exact solution, and
then collected over all replicas. The striking agreement
with PSL and the Quantum Boltzmann Law in FIG. 2 es-
tablishes the faithful mapping of the quantum system to
the classical system, from the behavioral PSL equations
Eq. 3.

IV. FERROMAGNETIC HEISENBERG MODEL

Before proceeding to a hardware implementation show-
ing how replicated networks of p-bits can be built by
existing nanodevices, we show another example of a sto-
quastic Hamiltonian that can be represented by p-bits.
The Heisenberg Hamiltonian in 1D in the presence of a
transverse magnetic field can be written as:

HQ= −

(
M∑
i

Jzσ
z
i σ

z
i+1+Jxσ

x
i σ

x
i+1+Jyσ

y
i σ

y
i+1+Γxσ

x
i

)
(6)

Following [16, 39, 52], we apply the Suzuki-Trotter
transformation to this system and obtain the chessboard
lattice that is shown in Fig. 3b with shaded and unshaded
unit cells. The interactions terms for this hardware neu-
ral network are shown in Fig. 3c. For the shaded unit cells
all two-body interactions (t1, t2, t3,) exist in addition to a
4-body interaction (t4) that involves the product of each
spin. The two-body interactions can be implemented us-
ing a linear synapse of the form of Eq. 3b but the 4-body
interaction requires a non-linear synapse that computes
the input terms that are products of three neighboring
spins. The interaction terms t0 arise due to the diago-
nal parts of the quantum system, as in the case of the
Transverse Ising Hamiltonian, and exists for both the
shaded and unshaded unit cells shown in Fig. 3c. The
detailed derivations of all interaction terms are shown in
Appendix A.

In Fig. 3d, we show a simulation of the classical system
using behavioral PSL equations and compare this to the
exact solution as before. We choose a set of parameters,
Jx = Jy = Jz = 1 that corresponds to the ferromagnetic
Heisenberg Model with a small transverse magnetic field
in the x-direction, such that all off-diagonal terms in the
exp(−βHQ) are positive, hence making this system sto-
quastic [52]. In this small example with M = 4 spins,

we observe good agreement between the mapped system
and the exact solution.

V. FACTORIZATION AS INVERSE
MULTIPLICATION

So far we have shown probabilistic emulation of quan-
tum systems in equilibrium without performing anneal-
ing. In Fig. 4, we show how classical and quantum an-
nealing can be performed by the probabilistic coprocessor
using Eq. 3a and Eq. 3b. We choose the problem of inte-
ger factorization by expressing a p-circuit that performs
binary multiplication using Full Adders and AND gates.
This structure is similar to the factorization descriptions
in [6, 53–55]. We improve our previous design [6, 53] by
eliminating nodes that are connected to each other, for
example if a Full Adder carry out is connected to the
carry in of another Full Adder, these two nodes are com-
bined into a single node so that the p-bit in this node
receives the sum of the inputs that each node receives.
This allows us to reduce the problem size and exhibits
better scaling for the inverse multiplier.

Fig. 4 compares Classical Annealing (CA) with sim-
ulated Quantum Annealing (SQA) with p-circuits. For
classical annealing the temperature β−1 is linearly de-
creased from 1 to 0.1, while for simulated quantum an-
nealing the inverse temperature is fixed at β = 10 but
the transverse magnetic field is linearly reduced from 3
to 0.1. For these parameters, we observe that for the
8 bit multiplier, the SQA seems to perform better than
CA as SQA finds the correct factors with 100% proba-
bility with 58% probability of finding (11,13) and 42%
probability of finding (13,11) while CA finds the correct
factors with 77.8% probability out of 100 samples. While
we note that SQA seems to work better for this particu-
lar set of parameters, we have not attempted to optimize
the parameters for CA or SQA. In SQA m-replicas of the
original system is needed to map the Ising Hamiltonian
to the corresponding Transverse Ising Hamiltonian. To
make a fair comparison between SQA and CA in terms
of the statistical samples being used, we performed CA
with the same number of replicas but they are not in-
teracting with each other. With a sophisticated synapse
design that would allow replica swapping, replicas in the
CA mode can be held at different temperatures for par-
allel tempering algorithms [56] but we do not explore
this further. Our purpose has been to show that an au-
tonomously operating p-circuit can be used to perform
CA and SQA with physical replicas to speed up these
algorithms as we show in the next section.

VI. P-BIT TO STOCHASTIC MRAM

We now show how the behavioral p-bit model can be
represented by a stochastic neural network in hardware
(FIG. 5a). Each replica in the classical system consists
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FIG. 4. Classical versus quantum annealing with p-circuits: (a) An 8-bit binary multiplier designed as a p-circuit.
When operated in invertible mode this circuit functions as a factorizer. In the classical annealing (CA) scheme, this circuit
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annealing (SQA). For SQA, the weight matrix is obtained according to the Transverse Ising mapping as discussed. (b) The
heatmap of the weight matrix J‖ shows that the connections among p-bits in the invertible multiplier circuit are sparse and

discrete. (c) Classical annealing schedule: β−1 is linearly decreased from 1 to 0.1. (d) In SQA, the transverse field (Γx) is
linearly reduced from 3 to 1 while β = 10. (e) The time evolution of CA: The numbers inside parenthesis on the right shows
the multiplicity of replicas at a particular value. (f) Time evolution for SQA: All replicas find the right factors at the end
annealing. (g-h) Histograms are calculated by averaging the results over 100 ensembles.

of p-bits that are interconnected to each other with a
resistive network (synapse), a typical architecture often
used in many hardware neural networks [57, 58] though
for more complicated systems involving k-body interac-
tions (k > 2), standard electronic devices such as FPGA’s
could also be used for this purpose, for example as in
Ref. [59]. The extra dimension added by the Suzuki-
Trotter transformation would increase the synaptic com-
plexity but for sparse quantum networks, this transfor-
mation would only slightly increase the fan-in of each
p-bit in the classical network.

We assume that the weighted summation is carried out
by ideal operational amplifiers. The replicas are also con-
nected in the vertical direction (not shown in FIG. 5)
with nearest neighbor coupling according to the coupling
coefficient J⊥.

In the case of quantum annealing, the vertical resis-
tors need to be reconfigurable, therefore they need to be
designed differently compared to the fixed resistors that
represent the transverse coupling (J‖)i,j . In our device
level examples, we use fixed resistors in order to estab-
lish the equivalence between the classical and quantum
systems and have not performed annealing.

Network parameters

The device equations for the synapse and the p-bit
shown in FIG. 5 are given as [10, 44]:

VOUTj/(VDD/2) = sgn[r + tanh(VINj/V0)] (7)

VINj =
∑
i

Rref

Rji
V OUTi (8)

Eq. 7 and Eq. 8 are combined with the PSL equations,
Eq. 3, to obtain the following equations that map the
behavioral PSL equations to physical parameters:

mj =
VOUTj

(VDD/2)
, Wji =

R0

Rji
, β =

VDDRref

2V0R0
(9)

where R0 is a unit resistor that is used to electrically
change the inverse temperature β, and V0 is a transis-
tor dependent parameter (≈ 40 mV) that defines the
stochastic window of the p-bit (FIG. 5c). Depending
on the sign of the interconnection, Wij , the non-inverted

output VOUTj or the inverted output V OUTj is used for
the synaptic connections.
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LLG

FIG. 5. p-bit to Stochastic eMRAM: (a) Each replica in the classical system is represented by a hardware neural network
involving p-bits (neurons), interconnected by a resistive network (synapse). The outputs of the p-bits are weighted by the
resistive network to become inputs to each other. Bias terms are added as fixed external voltage sources. (b) Detailed circuit
schematics of a given p-bit and synapse following Ref. [44]: The outputs are collected by a fast operational amplifier (assumed
ideal in circuit simulations). Fixed layer ferromagnet (FM) is a stable magnet with a large energy barrier, while the free layer
is a circular low-barrier magnet (LBM) (EB ≈ 0 kBT ) whose magnetization fluctuates in the presence of thermal noise. (c)
SPICE simulations for the input-output characteristics of the p-bit: The results for 1000 p-bits where the input voltage is
swept from −VDD/2 to +VDD/2, in tsim = 1 ns (Inset shows the autocorrelation of the p-bit at VIN = 0). Each p-bit has a
randomized resistance due to the random magnetization of the free layer, showing a range of outputs bounded by the parallel
and anti-parallel resistance of the MTJ. Ensemble averaged output for 1000 samples at a given input voltage (tsim = 2 ns for
each sample) shows a tanh(VIN/V0) behavior. (d) The circuit model that self-consistently solves the stochastic LLG equation

with the MTJ and transistor models. ~Is is the spin-current exerted on the free layer due to the current polarized by the fixed
layer, m̂ is the instantaneous magnetization and ~Hnoise is the thermal noise field.

Device models

The 1T/1MTJ p-bit is modeled by combining a 14
nm-High Performance FinFET model from the open
source Predictive Technology Models (PTM) [60] with
a stochastic Landau-Lifshitz-Gilbert (sLLG) solver im-
plemented in SPICE [61], following the design described
in [44] (FIG. 5d). The MTJ is modeled as a simple con-
ductor whose conductance depends on the instantaneous
magnetization mz(t), provided by the sLLG such that

GMTJ(t) = G0

[
1 +mz(t)

RAP −RP
RAP +RP

]
(10)

where RP and RAP are the parallel and antiparallel re-
sistance of the MTJ and G0 = (R−1AP + R−1P )/2. We use
an experimentally measured value for the tunneling mag-
netoresistance (TMR) = (RAP − RP )/RP = 110% after
Ref. [40]. G0 is set equal to the transistor resistance at
VIN = 0 to produce a symmetric sigmoid with no offsets,

in this case G−10 = 23.4 kΩ. The free layer is assumed to
be a circular low barrier nanomagnet [62, 63] with a di-
ameter of 22 nm and thickness of 2 nm and a saturation
magnetization of Ms = 1100 emu/cc, with a damping
coefficient α = 0.01, typical parameters for CoFeB [64].

The time dependent magnetization is obtained by solv-
ing sLLG equation in the monodomain approximation
[65]:

(1 + α2)
dm̂

dt
= −|γ|

(
m̂× ~H

)
− α|γ|

(
m̂× m̂× ~H

)
+

1

qN

(
m̂× ~IS × m̂

)
+

α

qN

(
m̂× ~IS

)
(11a)

γ is the electron gyromagnetic ratio, q is electron charge
and N is the number of Bohr magnetons (µB) in the

volume of the magnet, N = MsVol./µB . ~H contains
the external magnetic and internal anisotropy fields of
the magnet as well as the noise field. In the case of
a circular nanomagnet without an easy-axis anisotropy,
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FIG. 6. Full circuit simulation of a 4-spin chain with
10 replicas: 1D classical Ising chain of M = 4 spins is sim-
ulated in SPICE with full device models for the stochastic
MRAM-based p-bit and a resistive interconnection matrix
and compared with PSL and Quantum Boltzmann Equation.
β = 0.5, Γx = 10 and Ji,j = +1. The joint probability den-
sity is expressed in decimal numbers similar to the previous
examples.

the total internal magnetic anisotropy becomes ~Hm =
−4πMsmxx̂, where z-y is the easy plane of the magnet.
The thermal noise is added in three directions (x̂, ŷ and
ẑ) with zero mean and 〈H2

noise〉 = 2αkBT/[(γMsVol.)] in
units [Oe2/s] [66].

Device operation

The p-bit shown in FIG. 5c is a series-resistance con-
trolled device where the transistor resistance can be made
much smaller or much larger compared to the fluctuat-
ing MTJ resistance. Therefore, the operation of the p-bit
does not require manipulating the magnetization of the
free layer unlike in standard spin-transfer-torque MRAM
cells. However, the current flowing through the fixed
layer of the MTJ produces a spin-polarized spin current
that can unintentionally torque the magnet. We assume

that this current is given as ~Is = PIMTJẑ, where ẑ is the
fixed layer orientation and P is an interface polarization
that can be related to TMR [67]. This spin-current is
fed back to the sLLG solver and fully accounted for in
the calculation of magnetization in our simulations, how-
ever for the circular LBM with a large demagnetization
field used here, its effects are negligible [68]. Using these
models, FIG. 5c shows transient SPICE simulations of
a single p-bit output, VOUT for 1000 samples where VIN
is rapidly swept in 2 ns. The range of stochastic out-
puts is bounded by a distribution of resistances ranging
from RP to RAP . The ensemble average shows an ap-
proximate hyperbolic tangent behavior that allows the
mapping shown in Eq. 7.

The inset of FIG. 5d shows the autocorrelation time of
the circular in-plane magnet with a lifetime of ≈ 100 ps.
The fluctuations for a circular magnet is expected to
be faster compared to a magnet with perpendicular

anisotropy due to the strong demagnetizing field that
keeps the magnetization vector in the easy plane of the
magnet [69]. The very short lifetime of such a circular
low barrier magnet could allow very fast and efficient
sampling times, as long as the interconnection network
operates faster than these timescales. In present sim-
ulations, the resistive network operates instantaneously
with an ideal operational amplifier therefore this require-
ment is met naturally, however in real implementations
the synapse needs to be designed carefully.

The second requirement, the need for sequential up-
dating of each p-bit is met naturally since the probability
of simultaneous flips among p-bits is extremely unlikely,
therefore hardware p-bits evolve autonomously without a
synchronizing clock, effectively going through a random
update order that does not affect their final distribution.

Stochastic MRAM-based p-bit vs Quantum
Boltzmann Law

In FIG. 6, using full SPICE simulations for a 40 p-bit
network we compute the joint probability density of a
M = 4 spin ferromagnetic chain (Ji,j = +1) using 10
replicas, with β = 0.5 and Γx = 10. Unlike FIG. 2,
no symmetry breaking field is applied and the network
is asynchronously operated for tsim = 250 ns, with a
time step of 1 ps. All analog voltage values at the end
of the SPICE simulation are thresholded (> 0 V ≡ 1,
< 0 V ≡ −1) and a time-average is obtained similar to
the PSL averaging after converting the state of each p-bit
to binary and then to decimal. The results from the full
device models seem to be in good agreement with the
exact solution obtained from Eq. 4 and the behavioral
PSL equations that are included for reference. Note the
suppression of states 5 = (0101)2 and 10 = (1010)2 that
correspond to the energetically unfavorable antiferromag-
netic configurations |↓↑↓↑〉 and |↑↓↑↓〉, respectively. The
agreement between the full SPICE models with the be-
havioral and exact solutions establishes the feasibility of
the proposed quantum circuit emulator.

Projected performance improvement

In annealing algorithms, a key parameter is the time-
to-solution (TTS) that is defined as the total time a solver
requires to reach the desired answer of a problem with
a predefined accuracy [30]. TTS clearly depends on the
intrinsic hardware substrate that is used to implement
the algorithm but also on the type of the problem and
the required accuracy in the solution. Since the type
of problem can have varied scaling properties with no
generic answers [29, 30, 70], here we attempt to define
a basic hardware unit, which is the time to provide a
spin-flip attempt as defined by Eq. 3a. As shown in the
inset of Fig. 5, the correlation time of an in-plane circular
magnet can be as low as about 100 ps due to a preces-
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sional fluctuation mechanism found in such low barrier
magnets [27]. Assuming a nearest neighbor 3D classical
network that is mapped from a 2D quantum network, we
assume that the synapse delay due to a crossbar struc-
ture can be much faster than magnetic fluctuations, en-
suring all spin flip updates use up-to-date information
and are useful. In such a scenario having N = 106 spins
that are operating autonomously with a 0.1 to 1 ns cor-
relation times, we project that the spin-flip rate can be
0.1 to 1 petaflips per second, which is orders of magni-
tude faster than present day CPU implementations [29]
as well as parallelized GPU implementations [28]. A de-
tailed projection with power estimates can be found in
[71]. Finally, we note that such GHz rate fluctuations of
low barrier magnets have been not only theoretically pre-
dicted [27] but also experimentally observed in in-plane
magnets [72].

VII. CONCLUSION

We have presented a scalable, room-temperature quan-
tum emulator using stochastic p-bits that can be built by
a simple modification of the existing 1T/1MTJ cell of the
eMRAM technology. The proposed emulator uses phys-
ical replicas for repeated Trotter slices used in software
Quantum Monte Carlo methods. Having physical repli-
cas for each slice could enable better scaling properties
for quantum annealing compared to classical annealing as
discussed in [17], since choosing the optimal number of
replicas or probing each replica separately to find better
energy minima is possible in a physically engineered de-
sign, unlike in real quantum systems [18]. The electrical
control of annealing parameters, inverse temperature (β)
and transverse field (Γx), could allow a very large num-
ber of q-bits to be reliably emulated with room tempera-
ture p-bits. Using conventional electronic devices such as
GPU’s or FPGA’s to implement the synapses, it should
be possible to engineer complicated interactions that ex-
tend beyond nearest neighbors and/or involve k-body in-
teractions (k > 2). We note that even though the “sign
problem” limits the universal use of our p-computer, a
large number of practically relevant quantum systems
could be efficiently emulated by it, considering a large
number of optimization problems have been mapped on
to the Transverse Ising Hamiltonian [73]. Our results
provide a method of emulating quantum systems with
probabilistic hardware in advance of a scalable universal
quantum computer.
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APPENDIX A : MAPPING QUANTUM
HEISENBERG MODEL TO A CLASSICAL

SYSTEM

The Heisenberg Hamiltonian emulated in Section IV
is,

HQ= −

(
M∑
i

Jzσ
z
i σ

z
i+1+Jxσ

x
i σ

x
i+1+Jyσ

y
i σ

y
i+1+Γxσ

x
i

)
(12)

Following [16, 39], we divide this Hamiltonian into three
non-commuting parts, i.e., HQ = H0 +H1 +H2, where

H0 =−
M∑
i=1

Jzσ
z
i σ

z
i+1 (13)

H1 =−
M∑

i=1,3,···

(
Jxσ

x
i σ

x
i+1 + Jyσ

y
i σ

y
i+1

)
−

1

2

M∑
i

Γxσ
x
i (14)

H2 =−
M∑

i=2,4,···

(
Jxσ

x
i σ

x
i+1 + Jyσ

y
i σ

y
i+1

)
−

1

2

M∑
i

Γxσ
x
i (15)

The n-th approximant of the Suzuki-Trotter transfor-
mation for this Hamiltonian is then given by

Z
(n)
Q =

∑
α1,α2,··· ,α2n

[ 2n∏
k=1

e−βH0(αk)/2n

×
2n−1∏

k=1,3,···

〈αk|e−βH1/n|αk+1〉

×
2n∏

k=2,4,···

〈αk|e−βH2/n|αk+1〉
]

and the classical system becomes,

Hd+1 =

2n∑
k=1,2,3,···

1

2n
H0 (αk)

−
1

β

2n−1∑
k=1,3,···

ln〈αk|e−βH1/n|αk+1〉

−
1

β

2n∑
k=2,4,···

ln〈αk|e−βH2/n|αk+1〉

(16)

with periodicity along (d + 1)th dimension such that
|α2n+1〉 = |α1〉. Also notice that any k-th replica can
also be written more explicitly using Dirac’s bra-ket no-
tation in terms of the constituent spins of that replica as
|αk〉 = |m1,km2,k · · ·mM,k〉 which is actually a 2M × 1
column vector and mi,j denotes i-th spin of j-th replica.

Then the first summation on the right hand side of Eq.
(16) can be written as

2n∑
k=1,2,3,···

1

2n
H0 (αk) =

2n∑
k=1

M∑
i=1

Jz

2n
mi,kmi+1,k +

Γz

2n
mi,k

(17)
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In order to evaluate ln〈αk|e−βH1/n|αk+1〉 and
ln〈αk|e−βH2/n|αk+1〉, we start by repeatedly using the
following identity of the Kronecker product:

eA⊗IB+IA⊗B = eA ⊗ eB (18)

to write the following:

e−βH1/n = e−
β
n ζ ⊗ e−

β
n ζ ⊗ · · · ⊗ e−

β
n ζ (19)

where

ζ =− Jx (σx ⊗ I2) (I2 ⊗ σx)− Jy (σy ⊗ I2) (I2 ⊗ σy)

−
1

2
Γx (σx ⊗ I2 + I2 ⊗ σx)

(20)

and is a 4 × 4 matrix representing a two-body Hamilto-
nian.

Here we note that |αk〉 can also be partitioned in terms
of Kronecker products of two spin systems as

|αk〉 = |m1,km2,k〉 ⊗ |m3,km4,k〉 ⊗ · · · ⊗ |mM−1,kmM,k〉.
(21)

With the definition of |αk〉 above in mind, we also re-
peatedly use another Kronecker product identity:

(A⊗B) (C⊗D) = (AC)⊗ (BD) (22)

to write

〈αk|e−βH1/n|αk+1〉

=

M∏
i=1,3,···

〈mi,kmi+1,k|e−βζ/n|mi,k+1mi+1,k+1〉
(23)

where we have also made use of Eq. (19). Taking e-base
logarithm on both sides, we finally get

ln〈αk|e−βH1/n|αk+1〉

=

M∑
i=1,3,···

ln〈mi,kmi+1,k|e−βζ/n|mi,k+1mi+1,k+1〉.
(24)

In a similar manner, we can also write,

ln〈αk|e−βH2/m|αk+1〉

=

M∑
i=2,4,···

ln〈mi,kmi+1,k|e−βζ/n|mi,k+1mi+1,k+1〉.
(25)

Next, we evaluate the 4×4 density matrix:

e−βς/n =

 X1 X5 X5 X2

X5 X3 X4 X5

X5 X4 X3 X5

X2 X5 X5 X1

 (26)

The corresponding Xi are given by:

X =
√

Γx
2 + Jy2

X1 =
1

2
e
βJx
n

[
cosh

(
β

n
X

)
−
(
Jy

X

)
sinh

(
β

n
X

)]
+

1

2
e

−β(Jx−Jy)
n

X2 =
1

2
e
βJx
n

[
cosh

(
β

n
X

)
−
(
Jy

X

)
sinh

(
β

n
X

)]
−

1

2
e

−β(Jx−Jy)
n

X3 =
1

2
e
βJx
n

[
cosh

(
β

n
X

)
+

(
Jy

X

)
sinh

(
β

n
X

)]
+

1

2
e

−β(Jx+Jy)
n

X4 =
1

2
e
βJx
n

[
cosh

(
β

n
X

)
+

(
Jy

X

)
sinh

(
β

n
X

)]
−

1

2
e

−β(Jx+Jy)
n

X5 =
1

2
e
βJx
n

Γx

X
sinh

(
β

n
X

)
.

We then use the following energy relation (a justifica-
tion of the energy model will be presented in Appendix
B):

−
1

β
ln〈mi,kmi+1,k|e−βς/n|mi,k+1mi+1,k+1〉

= 2ε− t1 (mi,kmi,k+1 +mi+1,kmi+1,k+1)

− t2 (mi,kmi+1,k+1 +mi+1,kmi,k+1)

− t3 (mi,kmi+1,k +mi,k+1mi+1,k+1)

− t4mi,kmi,k+1mi+1,kmi+1,k+1 (27)

where ε is a constant that we ignore and

t0 =
1

2n
Jz

t1 =
1

8β
(lnX1 − lnX2 + lnX3 − lnX4)

t2 =
1

8β
(lnX1 − lnX2 − lnX3 + lnX4)

t3 =
1

8β
(lnX1 + lnX2 − lnX3 − lnX4)

t4 =
1

8β
(lnX1 + lnX2 + lnX3 + lnX4 − 4 lnX5)

This corresponds to the energy model for the Heisenberg
Hamiltonian as shown in Fig. 3.

APPENDIX B : JUSTIFICATION OF USING
FORM OF THE ENERGY MODEL IN

APPENDIX A

We start by simplifying the notation such that mi,k ≡
m1, mi+1,k ≡ m2, mi,k+1 ≡ m3, and mi+1,k+1 ≡ m4

and put different I1 values for different configurations of
{m2,m3,m4} into a truth table as shown in Table I with
following definitions:

f1 =
1

2
ln

(
X1

X5

)
(28)

f2 =
1

2
ln

(
X5

X2

)
(29)

f3 =
1

2
ln

(
X5

X4

)
(30)

f4 =
1

2
ln

(
X3

X5

)
(31)
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TABLE I. Truth table for I1.

s3 s4 s2 I1 =
1

2
ln

(
P (m1 = +1|m3,m4,m2)

P (m1 = −1|m3,m4,m2)

)
1 1 1 f1
1 1 0 f2
1 0 1 f3
1 0 0 f4
0 1 1 −f4
0 1 0 −f3
0 0 1 −f2
0 0 0 −f1

We have also used the notation that si ∈ {0, 1}, (i ∈
{1, 2, 3, 4}) is the binary counterpart of the bipolar spin
mi ∈ {−1, 1}.

In the binary representation, we can cast I1 into the
following form:

I1 = f1s3s4s2 − f1s̄3s̄4s̄2 + f2s3s4s̄2 − f2s̄3s̄4s2
+ f3s3s̄4s2 − f3s̄3s4s̄2 + f4s3s̄4s̄2 − f4s̄3s4s2

(32)

We use the following two transformations to switch from
si to mi:

mi →
1 + si

2
(33)

m̄i →
1− si

2
, (34)

we can recast Eq.(32) into its bipolar form as

I1 =
f1

8
[(1 +m3)(1 +m4)(1 +m2) − (1 −m3)(1 −m4)(1 −m2)]

+
f2

8
[(1 +m3)(1 +m4)(1 −m2) − (1 −m3)(1 −m4)(1 +m2)]

+
f3

8
[(1 +m3)(1 −m4)(1 +m2) − (1 −m3)(1 +m4)(1 −m2)]

+
f4

8
[(1 +m3)(1 −m4)(1 −m2)(1 −m3)(1 +m4)(1 +m2)]

(35)

Upon simplification and re-arrangement of the terms
we get,

I1 =

(
f1

4
−
f2

4
+
f3

4
−
f4

4

)
m2

+

(
f1

4
+
f2

4
+
f3

4
+
f4

4

)
m3

+

(
f1

4
+
f2

4
−
f3

4
−
f4

4

)
m4

+

(
f1

4
−
f2

4
−
f3

4
+
f4

4

)
m2m3m4

(36)

Integrating Eq.(36) with respect to m1 and multiplying

by

(
−

1

β

)
, we partially get the energy model

E = −
1

β

(
f1

4
−
f2

4
+
f3

4
−
f4

4

)
m1m2

−
1

β

(
f1

4
+
f2

4
+
f3

4
+
f4

4

)
m1m3

−
1

β

(
f1

4
+
f2

4
−
f3

4
−
f4

4

)
m1m4

−
1

β

(
f1

4
−
f2

4
−
f3

4
+
f4

4

)
m1m2m3m4

+K1 (m2,m3,m4)

(37)

whereK1 is a function ofm2, m3 andm4 but independent
of m1.

Defining,

t3 =
1

4β
(f1 − f2 + f3 − f4)

=
1

8β
(lnX1 + lnX2 − lnX3 − lnX4) (38)

t1 =
1

4β
(f1 + f2 + f3 + f4)

=
1

8β
(lnX1 − lnX2 + lnX3 − lnX4) (39)

t2 =
1

4β
(f1 + f2 − f3 − f4)

=
1

8β
(lnX1 − lnX2 − lnX3 + lnX4) (40)

t4 =
1

4β
(f1 − f2 − f3 + f4)

=
1

8β
(lnX1 + lnX2 + lnX3 + lnX4 − 4 lnX5)(41)

we get the simplified energy expression:

E (m1,m2,m3,m4)
∣∣∣
m1

= −t1m1m3 − t2m1m4

− t3m1m2 − t4m1m2m3m4 +K1 (m2,m3,m4)
(42)

Repeating the whole procedure for I2, I3 and I4 sepa-
rately, give us

K1 (m2,m3,m4) = −t1m2m4 − t2m2m3

+K2 (m3,m4) (43)

K2 (m3,m4) = −t3m3m4 +K3 (m4) (44)

K3 (m4) = 0. (45)

Putting Eqs.(42-45) together, gives us the energy
model used in Eq.(27).
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