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Abstract

While hypogammaglobulinemia is associated with COPD exacerbations, it is unknown whether 

frequent exacerbators have specific defects in antibody production/function. We hypothesized that 

reduced quantity/function of serum pneumococcal antibodies correlate with exacerbation risk in 

the SPIROMICS cohort.

We measured total pneumococcal IgG in n=764 previously vaccinated participants with COPD. 

In a propensity-matched subset of n=200 with vaccination within five years (n=50 without 

exacerbations in the previous year; n=75 with one, n=75 with ≥2), we measured pneumococcal 

IgG for 23 individual serotypes, and pneumococcal antibody function for 4 serotypes.

Higher total pneumococcal IgG, serotype-specific IgG (17/23 serotypes), and antibody 

function (3/4 serotypes) were independently associated with fewer prior exacerbations. Higher 

pneumococcal IgG (5/23 serotypes) predicted lower exacerbation risk in the following year. 

Pneumococcal antibodies are inversely associated with exacerbations, supporting the presence of 

immune defects in frequent exacerbators. With further study, pneumococcal antibodies may be 

useful biomarkers for immune dysfunction in COPD.

Keywords

immunity; antibodies; immunoglobulin G; opsonization; Streptococcus pneumoniae 

1. Introduction:

Exacerbations of chronic obstructive pulmonary disease (ECOPD) are highly significant 

events in the natural history of COPD, and are associated with lung function decline, 

morbidity, mortality, and healthcare costs(1-3). Although certain individuals with COPD 

experience frequent exacerbations (defined as ≥2 treated ECOPD in one year) and have 

a particularly poor prognosis(3), risk factors for recurrent exacerbations are not well 

understood. Defining such risk factors could facilitate therapeutic interventions to mitigate 

associated morbidity and mortality.

There is growing evidence that frequent exacerbators have reduced adaptive immune 

function(4). Reduced concentrations of total immunoglobulin A (IgA), immunoglobulin 

G (IgG), and IgG subclasses are associated with increased ECOPD risk(5-9), and 

frequent exacerbators have blood gene expression profiles indicating reduced lymphocyte 
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function(10). ECOPD are commonly caused by bacterial respiratory pathogens such as 

Streptococcus pneumoniae (pneumococcus) and Haemophilus influenzae, which are also the 

most common cause of respiratory infections in primary immunodeficiency diseases (PIDs). 

Case series have indicated that some patients with frequent exacerbations meet criteria 

for PIDs(11). However, it is unknown whether defects in the production of antibodies 

to bacterial respiratory pathogens are common in individuals with recurrent ECOPD, and 

current guidelines for their evaluation do not include investigation for immune deficiencies.

In evaluating suspected PIDs, measurement of IgG antibodies to multiple capsule types 

(serotypes) of S. pneumoniae is widely utilized as an indicator of adaptive immune 

response(12). However, the presence of serum anti-pneumococcal IgG (PnIgG) antibodies 

does not necessarily indicate their ability to opsonize and kill bacteria in vivo(13). This 

point is particularly significant among older adults, who experience age-related decline in 

antibody function(14), accompanied by greatly increased risk for pneumococcal pneumonia. 

The multiplexed opsonophagocytosis assay (MOPA) measures pneumococcal antibody 

function (PnAF; reported as Opsonic Index or OI) via killing of pneumococci by serum 

antibodies in vitro(15) (see Figure E1 in the Supplementary material). PnIgG levels 

were initially used to evaluate pneumococcal vaccines and remain in use by clinical 

immunologists for PID diagnosis. However, a key study in infants showed that some 

pneumococcal antibodies generated by vaccination were not functional in opsonizing and 

killing bacteria(13). Because PnAF is a better indicator of in vivo protection from infections, 

it is now a requisite endpoint in clinical trials of pneumococcal vaccines and was the primary 

outcome in studies resulting in the approval of the 13-valent pneumococcal conjugate 

vaccine (PCV13) in older adults(16). Due to impaired PnAF, older adults are highly 

susceptible to pneumococcal infections despite normal antibody levels(14). We recently 

developed approaches to standardize MOPA results using pneumococcal reference serum, 

allowing comparison of measurements performed by different laboratories(17). We have 

also created novel analytical models to interpret PnAF responses(18). Collectively, these 

improvements make MOPA an attractive option to investigate adaptive immune function in 

COPD. However, pneumococcal antibodies have not been studied as predictors of ECOPD 

risk.

Our objective was to investigate the hypothesis that lower baseline pneumococcal IgG 

levels and lower PnAF are associated with increased ECOPD risk in a cohort from the 

SubPopulations and InteRmediate Outcome Measures in COPD Study (SPIROMICS).

Some of these results were reported in a poster discussion session at the American Thoracic 

Society 2020 virtual conference(19).

2. Materials and methods:

2.1 SPIROMICS design and data collection

SPIROMICS is an ongoing prospective cohort study that enrolled 2,981 participants across 

four strata (Stratum 1: Never smokers, Stratum 2: Smokers without COPD, Stratum 3:Mild/

Moderate COPD, and Stratum 4: Severe COPD) with the goal of identifying new COPD 

subgroups and intermediate markers of disease progression(20, 21).
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SPIROMICS participants underwent a baseline study visit that included spirometry, 

biospecimen collection, chest CT imaging, and standardized questionnaires. At the baseline 

visit, participants self-reported number of ECOPD in the previous year, if they had ever 

received a pneumococcal vaccine, and whether that vaccine had been received in the 

previous 5 years. Type of pneumococcal vaccine was not specified in the baseline visit 

questionnaire. However, the questionnaire data and sera included in the current study were 

collected prior to use of PCVs in older adults and those with chronic lung disease, therefore 

most (if not all) previously vaccinated participants would have received PPV23.

Longitudinal follow-up consisted of up to three annual visits and quarterly telephone calls 

to assess for ECOPD. Prospective total ECOPD in the first year of follow-up were defined 

as the number of exacerbations that received any treatment in the 365 days after enrollment, 

and severe ECOPD were those that required emergency department evaluation or hospital 

admission.

Written consent for participation in SPIROMICS was provided by all participants, and the 

study was reviewed and approved by the institutional review board at each participating 

institution. The laboratory activities specific to this study were approved by the institutional 

review board at the University of Alabama at Birmingham.

2.2 Total pneumococcal IgG levels

With the objective of primarily evaluating pneumococcal antibodies produced in response 

to vaccination (as opposed to those naturally acquired via colonization and/or infection), 

we restricted this analysis to n=764 SPIROMICS participants with COPD (strata 3-4) who 

self-reported having previously received a pneumococcal vaccine (see Figure E2 in the 

Supplementary material). Total PnIgG levels (combined IgG levels for the 23 serotypes 

included in PPV23) were measured in baseline sera. Total PnIgG measurement was 

performed by the Johns Hopkins University Institute for Clinical and Translational Research 

core lab using the 23vELISA pneumococcal vaccine response assay (VaccZyme™,the 

Binding Site, UK) according to the manufacturer’s instructions.

2.3 Serotype-specific pneumococcal IgG

From this group, we selected n=200 participants for serotype-specific analyses who 

specified having received a pneumococcal vaccine within the preceding 5 years. Propensity 

score matching was used to select three subsets based on frequency of self-reported ECOPD 

in the year before enrollment: n=50 with none, n=75 participants with one, and n=75 

with ≥2. To select these participants, a propensity score model was created to model the 

probability of having had no ECOPD in the previous year at baseline, using age, sex, 

race, and FEV1 (% predicted) as predictors. Propensity score matching was used to match 

75 subjects with ≥2 ECOPD to 75 with 1 ECOPD. Average propensity scores from each 

exacerbation pair were then used to select 50 controls without ECOPD (See Figure E2 in 

the Supplementary material). PnIgG antibody concentrations for each of the 23 individual 

serotypes present in the pneumococcal polysaccharide vaccine (PPV23) were measured at 

ARUP Laboratories (Salt Lake City, Utah) with a multiplex bead array assay that utilized 

pneumococcal capsular polysaccharide conjugated to Luminex microspheres(22, 23).
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2.4 Pneumococcal antibody function

In the same n=200 participants we used MOPA to determine OI for 4 pneumococcal 

serotypes (3, 19F, 9V, 11A) previously identified as common causes of pneumonia and 

exacerbations in COPD(24, 25). The killing-type OPA was performed as previously 

described at the UAB MOPA Core Laboratory in accordance with uniform protocols, 

available at www.vaccine.uab.edu(15)(see Figure E1 in the Supplementary material). To 

enhance generalizability, MOPA results were standardized using reference values from 

pneumococcal reference serum 007sp(17). Results are reported as standardized OI, the 

serum dilution that results in 50% bacterial killing (i.e., higher OI indicating higher PnAF).

2.5 Statistical analysis

Statistical analysis was performed using SPSS version 27 (IBM) and Prism version 9 

(GraphPad). Raw PnIgG data (in μg/mL) and OI were non-normally distributed, and log 

transformation was performed prior to analysis. We compared mean log-transformed PnIgG 

levels and OI between ECOPD groups (0, 1, and ≥2 ECOPD in the previous year) using 

one-way ANOVA with Bonferroni correction for the three pairwise comparisons. For the 

four serotypes in which both PnIgG and OI were measured, we compared results using 

Spearman’s correlation.

To investigate associations between log transformed PnIgG and ECOPD reported in the 

year before enrollment, we performed unconditional logistic regression, first unadjusted 

and then adjusted for age, baseline FEV1 (% predicted; post-bronchodilator), sex, race, 

maximal educational attainment (greater than high school vs all others), current smoking, 

and inhaled corticosteroid (ICS) use at baseline. The same approach was then used to 

investigate associations between OI and ECOPD in the year before enrollment. For total 

PnIgG analysis, the multivariable model also included adjustment for time since vaccination 

(within the past 5 years vs 5 or more years ago) and oral corticosteroid use at baseline.

To investigate associations between either PnIgG or OI and prospective risk of total 

and severe ECOPD over the first year of follow-up, we used negative binomial models, 

unadjusted and adjusted for the same covariates used in retrospective analyses. P-values 

<0.05 were considered statistically significant. Odds ratios (OR) and incidence rate ratios 

(IRR) indicate the odds (or risk) of greater number/rate of ECOPD with increasing 

pneumococcal IgG or OI.

3. Results:

3.1 Baseline Characteristics of Participants

Baseline characteristics of study participants are shown in Table I. Mean age of the 

total PnIgG cohort (n=764) was 67.0±7.6 years; 55% were male, and 85% were white. 

Mean baseline FEV1 (% predicted; postbronchodilator) was 60.2±23.2%. Among the 200 

participants included for serotype-specific analyses, mean age was 64.5±7.7 years, 54% 

were male, 83% were white, and mean FEV1 was 46.5±19.1%.
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3.2 Total pneumococcal IgG

Total PnIgG concentrations were significantly higher among participants without ECOPD 

compared to those with ≥2 ECOPD in the year before enrollment (mean log(PnIgG) 1.96 vs 

1.81, P<0.001) and for 1 vs ≥2 ECOPD (mean log(PnIgG) 1.95 vs 1.81, P=0.010)(Figure 

1A; see Table E1 in the Supplementary material).

There was a significant association between higher total PnIgG and having had 0 (as 

compared to ≥2) ECOPD in the previous year in both unadjusted (OR 0.31, 95% 

CI[0.17-0.56]; P<0.001) and adjusted (OR 0.45, 95% CI[0.0.24-0.88]; P=0.018) analyses 

(Figure 1B). There was also a significant association between higher total PnIgG and 1 (as 

compared to ≥2) ECOPD in the adjusted model (OR 0.38, 95% CI[0.18-0.82]; P=0.014)(see 

Table E2 in the Supplementary material).

Higher baseline total PnIgG was predictive of fewer total (IRR 0.59, 95% CI [0.42-0.83], 

P=0.003) and severe (IRR 0.44, 95% CI [0.25-0.80], P=0.007) ECOPD in the first year of 

follow-up in unadjusted analysis. However in the multivariable models, baseline total PnIgG 

was not a significant predictor of total or severe ECOPD risk in the first year of follow-up 

(Figure 1C/D; see Table E3 in the Supplementary material).

3.3 Serotype-specific pneumococcal IgG levels

Among 23 serotypes tested, PnIgG levels for 13 serotypes were significantly higher among 

participants with 0 (vs ≥2) ECOPD in the year before enrollment. PnIgG for 5 serotypes was 

higher among those with 1 (vs ≥2) ECOPD. For serotype 9N, PnIgG was higher for those 

with 0 (vs 1) ECOPD (Figure 2A; see Table E4 in the Supplementary material).

In multivariable logistic regression models, higher serotype-specific PnIgG levels for 16 of 

23 serotypes was associated with having 0 (vs ≥2) ECOPD in the year before enrollment 

with adjustment for age, sex, race, FEV1, educational attainment, smoking, ICS use (Figure 

2B; see Table E5 in the Supplementary material). For eight serotypes, higher PnIgG was 

associated with having 1 (vs ≥2) ECOPD. Higher PnIgG for serotypes 5 and 9N were 

associated with having 0 (vs 1) ECOPD (see Table E5 in the Supplementary material).

Five serotypes (5, 19F, 10A, 15B, and 19A) were significant predictors of future total 

ECOPD in the adjusted negative binomial model (Figure 3C; see Table E6 in the 

Supplementary material). In the multivariable model, higher PnIgG predicted lower risk for 

severe ECOPD in the first year of follow-up for serotypes 19A (IRR 0.42, 95% CI 0.20-0.92, 

P=0.029) and 20 (IRR 0.52, 95% CI [0.28-0.99], P=0.047) (Figure 2D; see Table E6 in the 

Supplementary material).

3.4 Pneumococcal antibody function

OI, measured by MOPA, was higher in those with 0 (vs ≥2) ECOPD in the year before 

enrollment for three of four serotypes (serotype 3: Log(OI) 1.68 vs 1.22; P<0.001, serotype 

9V: 2.42 vs 1.94; P= 0.021, serotype 11A: 2.43 vs 1.97; P=0.035), and higher in 0 

(vs 1) ECOPD for serotype 3 (1.68 vs 1.31; P=0.006) (Figure 3A; see Table E7 in the 

Supplementary material).
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In the multivariable logistic regression model, higher OI was associated with 0 (vs ≥2) 

ECOPD in the year before enrollment for 3 of 4 serotypes, (serotype 3: OR 0.33, 95% 

CI[0.18-0.61]; P<0.001, serotype 9V: OR 0.55, 95% CI[0.36-0.84]; P=0.006, serotype 11A: 

OR 0.60, 95% CI[0.41-0.90]; P=0.013) (Figure 3B; see Table E8 in the Supplementary 

material). For serotypes 3 and 11A, higher OI was associated with 0 (vs 1) ECOPD.

However, baseline OI was not a significant predictor of prospective total or severe ECOPD 

risk over the following year (Figure 3C/D; see Table E9 in the Supplementary material). 

PnIgG positively correlated with OI for all four serotypes in which both parameters were 

measured (3: r=0.591, 19F: r=0.582, 9V: r=0.329, 11A: r=0.414; P<0.001 for all four 

serotypes).

4. Discussion:

This analysis of 764 previously vaccinated participants in the SPIROMICS cohort 

demonstrated significant inverse associations between total concentrations of anti-

pneumococcal IgG antibodies at baseline and participant-reported ECOPD in the previous 

year. We confirmed these results using serotype-specific PnIgG levels in a subset of n=200 

participants from this group. Using MOPA, we also demonstrated impaired function of 

pneumococcal antibodies in those with more frequent ECOPD.

Our study, the first to our knowledge that has demonstrated such associations, provides 

further support for adaptive immune dysfunction among frequent exacerbators. With further 

studies in COPD and non-COPD populations, polysaccharide antibody deficiency could 

be confirmed as an important, potentially treatable underlying risk factor for recurrent 

ECOPD, a large proportion of which are caused by bacterial infections. Current therapeutic 

approaches to prevent and treat ECOPD are applied without consideration of infectious 

vs non-infectious etiology, nor the patient’s immune status. Characterization of immune 

defects in ECOPD could facilitate more targeted use of antimicrobials and/or corticosteroids, 

and the development of treatment strategies to augment antibody levels and/or function in 

susceptible individuals.

Previous studied have demonstrated associations between ECOPD and 

hypogammaglobulinemia, however ours is the first to demonstrate associations with reduced 

quantity and/or function of specific antibodies. Leitao-Filho and colleagues associated 

low total IgG levels with ECOPD frequency(6), COPD hospitalization(5, 6), and 1-year 

mortality(26). They found that low total IgG and IgG subclass concentrations were common 

in two clinical trials that enrolled participants with moderate-severe COPD at increased 

exacerbation risk(6, 7). In a case series, many frequent exacerbators referred to a specialty 

clinic for immunologic evaluation met diagnostic criteria for PIDs(11). However, these 

studies could not demonstrate whether underlying defects in antibody production and/or 

function (similar to PIDs) accounted for increased ECOPD risk.

Among IgG subclasses, ECOPD have been specifically associated with reduced IgG2(7). 

IgG2 is the primary subclass involved in immune responses to polysaccharide antigens, 

including pneumococcal capsular polysaccharide(27), the key virulence factor and antigenic 
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target for S. pneumoniae. Polysaccharide-specific antibody responses in COPD are not well 

studied. The PNEUMO study used OI and serotype-specific PnIgG to compare immune 

responses between PPV23 and the 7-valent pneumococcal conjugate vaccine (PCV7) in 

COPD(28). It found no association between pneumococcal antibodies and ECOPD but was 

underpowered to investigate exacerbations as a main outcome.

Our finding of independent associations between total PnIgG levels and ECOPD, 

supplemented by results from serotype-specific PnIgG and OI, suggest that defects in 

polysaccharide antibody production could account for reduced IgG2 levels in frequent 

exacerbators.

Measurement of serotype-specific (in addition to total) PnIgG is an important feature in 

our study design. Since low total PnIgG following PPV23 would strongly suggest impaired 

polysaccharide antibody response, 23vELISA has been proposed as an initial screening 

test for PID. However, this approach could fail to diagnose more subtle cases of immune 

deficiency if robust responses to one or more individual serotypes yielded an overall normal 

result(29). Therefore, our finding of independent associations between higher PnIgG and 

fewer ECOPD for 17 of 23 serotypes tested further supports the presence of deficiency of 

anti-polysaccharide antibodies in frequent exacerbators. It also suggests that associations 

with total PnIgG concentrations observed in the larger cohort were not driven by responses 

to one/several serotypes.

While associations between PnIgG levels and ECOPD support antibody deficiency as an 

ECOPD risk factor, they cannot be used to infer the functional ability of serum antibodies 

to kill bacteria in vivo. By investigating PnAF (OI) using MOPA, our study is the first 

to demonstrate a functional defect in serum antibodies resulting in impaired bacterial 

killing in COPD. This has important implications in the broader study of adaptive immune 

dysfunction in ECOPD.

Our analysis of functional (in addition to quantitative) pneumococcal antibody responses 

is a novel approach and a significant strength. PnAF is a better indication of in vivo 

responses to bacterial infections, as compared to PnIgG, and older adults have been shown 

to have functional antibody defects despite “adequate” IgG levels. This is likely to be 

particularly relevant in COPD, which increases in prevalence and often in severity with age. 

Via impaired opsonophagocytosis, lower PnAF may contribute to defective phagocytosis by 

COPD macrophages which was recently shown to be a risk factor for ECOPD(30, 31). Our 

finding of functionally impaired adaptive immunity to bacterial pathogens among those with 

more frequent ECOPD reinforces the potential in vivo implications of qualitative defects 

in antibody production. The strength of correlation between PnAF and PnIgG varied by 

serotype but was generally modest across the four serotypes in which both were measured. 

Since MOPA measures overall PnAF (i.e. not isotype or IgG-subclass specific response), 

further studies are needed to elucidate the relationship between antibody levels and function.

Importantly, the four serotypes we selected to investigate PnAF are among the most 

prevalent causes of pneumococcal exacerbations and pneumonia in COPD(24, 25). Our 

results suggest that impaired antibody-mediated immunity could account for the observation 
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that serotypes 9V, 19F, and 11A are among the most common serotypes isolated in 

recurrent pneumococcal ECOPD(24). We observed an association between higher OI and 

fewer ECOPD for three serotypes (3, 9V, and 11A) and with serotype-specific PnIgG 

for all four. Serotype 3 is unique among pneumococci, as its distinct capsular synthetic 

mechanism enhances virulence and resists immune-mediated clearance(32). Despite its 

inclusion in PCV13 (which has resulted in the near-elimination of other vaccine serotypes 

where implemented), serotype 3 remains a prevalent cause of pneumococcal community 

acquired pneumonia (CAP) and invasive pneumococcal disease in the general population(33, 

34), and has been associated with CAP in COPD(24). We observed significant differences 

in OI between frequent exacerbators and those with fewer ECOPD for serotype 3, and 

its associations with prior ECOPD were the strongest we observed. These findings could 

have important implications for pneumococcal epidemiology, and vaccine development and 

implementation in COPD.

While there is rationale for underlying polysaccharide antibody deficiency as a risk factor 

for ECOPD, it is also possible that levels and/or function of antibodies could be affected by 

COPD treatments, most notably systemic corticosteroids. We found a significant association 

between higher total PnIgG and fewer ECOPD in the previous year in the multivariable 

model that included adjustment for oral corticosteroid use at baseline, suggesting that the 

observed associations are unlikely to be related to more prevalent use of these medications 

among frequent exacerbators. However, this adjustment was not performed in the cohort 

selected for serotype-specific analysis due to limited sample sizes, with infrequent oral 

corticosteroid use. Likewise, in the larger cohort we also observed significant associations 

between total PnIgG and ECOPD in the multivariable model that included adjustment for 

timing of pneumococcal vaccination. Baseline sera were obtained prior to routine use of 

PCVs in adults (i.e. previously vaccinated participants most likely received PPV23), and we 

found significant associations for serotypes unique to PPV23 in addition to those shared 

between PCVs and PPV23.

This indicates that the characteristics of participants’ functional immune response to 

vaccination are more likely to account for the observed associations. However, further 

serotype-specific studies in larger cohorts with detailed information regarding previous 

pneumococcal vaccination will be helpful to confirm these findings from total PnIgG 

analysis. Before pneumococcal antibodies can be used as biomarkers for immune 

dysfunction in frequent exacerbators, several caveats must be considered. Despite 

widespread use of PnIgG for PID diagnosis(12), we and others have demonstrated variability 

between different laboratories and clinical cutoffs that may limit diagnostic use of PnIgG(35, 

36). In contrast, MOPA measures PnAF via a uniform protocol that is available worldwide, 

and results are standardized using pneumococcal reference sera to minimize interlaboratory 

variability. Despite these advantages, our studies in non-COPD populations demonstrated 

wide variability between serotypes in baseline PnAF and vaccine response(18). PnIgG 

and PnAF that correspond with protection from infections have not been defined in 

adult populations (including those with COPD), and likely vary by serotype, age, and 

vaccine type. We therefore opted to analyze differences in log-transformed PnIgG between 

ECOPD groups, and did not apply cutoffs that are utilized clinically for diagnosis of 

PIDs. Further investigation is needed to determine optimal strategies to interpret results 
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of pneumococcal antibody assays for immune evaluation, and the values from our study 

should not be construed as cutoffs for clinical diagnostic use. We did not have detailed 

information regarding timing of vaccination, and prospective studies that analyze pre and 

post-vaccination sera at defined intervals are needed to interpret vaccine responses in COPD 

in the context of the diagnostic approaches used in PIDs. Future studies can also evaluate 

responses to PCVs in addition to PPV23, to investigate whether defects in antibodies also 

involve impaired response to protein-conjugated antigens.

Additional limitations of our study include analysis of a limited number of sera from a single 

cohort, and we measured pneumococcal antibody function in a relatively small number of 

serotypes. Future studies may consider a broader panel to further examine relationships 

between antibody levels and function. While our study may have been underpowered to 

detect differences in prospective ECOPD for the number of serotypes tested, the consistent 

trends between higher PnIgG and lower prospective ECOPD risk for most serotypes tested 

are noteworthy, and additional studies in larger cohorts are needed.

In conclusion, these independent, inverse associations between pneumococcal antibodies 

and ECOPD frequency strongly support the presence of adaptive immune dysfunction in 

frequent exacerbators and suggest that polysaccharide antibody deficiency may represent a 

key mechanism for recurrent bacterial infections in this high-risk group. Although there are 

currently no guidelines or recommendations for immune evaluation in COPD, our findings 

add to a growing body of evidence suggesting that measurement of functional antibody 

responses, including pneumococcal antibodies, could be useful. Individuals identified 

as having underlying immune defects could subsequently be targeted for personalized 

therapeutic interventions(11, 37-39) to mitigate the high morbidity and mortality that 

accompany further ECOPD.
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Abbreviations:

(COPD) Chronic obstructive pulmonary disease

(ECOPD) exacerbations of COPD

(IgA) immunoglobulin A

(IgG) immunoglobulin G

(PIDs) primary immunodeficiency diseases

(PnIgG) pneumococcal IgG antibodies

(MOPA) multiplexed opsonophagocytosis assay

(PnAF) pneumococcal antibody function

(OI) opsonic index

(SPIROMICS) SubPopulations and InteRmediate Outcome Measures in 

COPD Study

(ELISA) enzyme-linked immunosorbent assay

(PPV23) pneumococcal polysaccharide vaccine
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(FEV1) forced expiratory volume in the first second

(OR) odds ratio

(CI) confidence interval

(IRR) incidence rate ratio

(ICS) inhaled corticosteroids

(PCV7) 7-valent pneumococcal conjugate vaccine

(PCV13) 13-valent pneumococcal conjugate vaccine
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Figure 1. 
A. Mean total pneumococcal IgG (PnIgG) levels were higher among SPIROMICS 

participants with fewer ECOPD in the previous year. P-values are from one-way ANOVA 

with Bonferroni correction for multiple comparisons.

B. Higher total PnIgG was associated with having 0 (vs 2+) ECOPD in the previous year in 

a multivariable logistic regression model that included adjustment for age, sex, race, FEV1, 

maximal educational attainment, current smoking at baseline visit, inhaled corticosteroid 

use, oral corticosteroid use, and timing of pneumococcal vaccination within past 5 years.

C-D. Total PnIgG levels at baseline and risk for total (C.) and severe (D.) ECOPD in 

the first year of longitudinal follow-up, in multivariable negative binomial models that 

included adjustment for age, sex, race, FEV1, maximal educational attainment, current 

smoking at baseline visit, inhaled corticosteroid use, oral corticosteroid use, and timing of 

pneumococcal vaccination within past 5 years

*Odds ratios (OR)/Incidence rate ratios (IRR) indicate the odds (or risk) of greater number 

of ECOPD with increasing pneumococcal IgG or OI

LaFon et al. Page 15

Clin Immunol. Author manuscript; available in PMC 2024 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
A. Mean serotype-specific pneumococcal IgG (PnIgG) levels were higher among 

SPIROMICS participants with fewer ECOPD in the previous year across a majority 

of serotypes tested. P-values are from one-way ANOVA with Bonferroni correction for 

multiple comparisons.

B. Higher serotype-specific PnIgG levels were associated with having 0 (vs 2+) ECOPD in 

the previous year in multivariable logistic regression models that included adjustment for 

age, sex, race, FEV1, maximal educational attainment, current smoking at baseline visit, and 

inhaled corticosteroid use

C-D. Serotype-specific PnIgG levels at baseline and risk for total (C.) and severe (D.) 

ECOPD in the first year of longitudinal follow-up, in multivariable negative binomial 

models that included adjustment for age, sex, race, FEV1, maximal educational attainment, 

current smoking at baseline visit, and inhaled corticosteroid use

*Odds ratios (OR)/Incidence rate ratios (IRR) indicate the odds (or risk) of greater number 

of ECOPD with increasing pneumococcal IgG or OI
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Figure 3. 
A. Mean opsonic index (OI, a measure of pneumococcal antibody function) was higher 

among SPIROMICS participants with fewer ECOPD in the previous year in 3 of 4 

serotypes tested. P-values are from one-way ANOVA with Bonferroni correction for 

multiple comparisons.

B. For these 3 serotypes, higher OI was associated with having 0 (vs 2+) ECOPD in the 

previous year in multivariable logistic regression models that included adjustment for age, 

sex, race, FEV1, maximal educational attainment, current smoking at baseline visit, and 

inhaled corticosteroid use

C-D. Baseline OI and risk for total (C.) and severe (D.) ECOPD in the first year of 

longitudinal follow-up, in multivariable negative binomial models that included adjustment 

for age, sex, race, FEV1, maximal educational attainment, current smoking at baseline visit, 

and inhaled corticosteroid use

*Odds ratios (OR)/Incidence rate ratios (IRR) indicate the odds (or risk) of greater number 

of ECOPD with increasing pneumococcal IgG or OI
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Table I.

Characteristics of Study Participants*

Serotype-specific Pneumococcal IgG (PnIgG);
Opsonic index (OI)

Tot. PnIgG
(n=764)

Overall
(n=200)

Exacerbations in the previous year

0 (n=50) 1 (n=75) ≥2 (n=75)

Age 67.0±7.6 64.5±7.7 64.48±7.6 63.6±7.6 65.4±7.85

Male 417 (54.6) 108 (54) 30 (60.0) 39 (52.0) 39 (52.0)

White 648 (84.8) 166 (83) 40 (80.0) 65 (86.7) 61 (81.3)

Body mass index 27.5±5.3 26.9±5.4 26.17±5.47 27.7±5.4 26.61±5.30

FEV1 † 60.2±23.2 46.5±19.1 44.68±18.74 47.5±20.2 46.8±18.45

Eosinophils (absolute count) 0.21±0.23 0.20±0.13 0.19±0.13 0.19±0.13 0.21±0.14

Current smoking 206 (27.0) 44 (22.0) 15 (30.0) 14 (18.7) 15 (20.0)

Pack-years smoking 54.1±24.3 51.4±22.9 52.3±21.1 48.6±23.2 53.6±23.8

Inhaled steroids ‡ 369 (48.3) 131 (65.5) 25 (50.0) 50 (66.7) 56 (74.7)

Greater than high school education 476 (62.3) 117 (58.5) 28 (56.0) 46 (61.3) 43 (57.3)

*
Values indicate n (%) and mean ± standard deviation for dichotomous and continuous variables, respectively

†
Forced expiratory volume in the first second (post-bronchodilator; % predicted)

‡
Self-reported use at time of baseline visit
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