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ARTICLE OPEN

Predicting breast cancer response to neoadjuvant treatment
using multi-feature MRI: results from the I-SPY 2 TRIAL
Wen Li 1, David C. Newitt 1, Jessica Gibbs1, Lisa J. Wilmes1, Ella F. Jones 1, Vignesh A. Arasu1, Fredrik Strand1,2, Natsuko Onishi 1,
Alex Anh-Tu Nguyen1, John Kornak1, Bonnie N. Joe1, Elissa R. Price1, Haydee Ojeda-Fournier3, Mohammad Eghtedari 3,
Kathryn W. Zamora4, Stefanie A. Woodard4, Heidi Umphrey4, Wanda Bernreuter4, Michael Nelson5, An Ly Church 5, Patrick Bolan5,
Theresa Kuritza6, Kathleen Ward6, Kevin Morley6, Dulcy Wolverton 7, Kelly Fountain7, Dan Lopez-Paniagua7, Lara Hardesty7,
Kathy Brandt8, Elizabeth S. McDonald9, Mark Rosen9, Despina Kontos9, Hiroyuki Abe10, Deepa Sheth 10, Erin P. Crane11,
Charlotte Dillis11, Pulin Sheth12, Linda Hovanessian-Larsen12, Dae Hee Bang13, Bruce Porter13, Karen Y. Oh14, Neda Jafarian14,
Alina Tudorica14, Bethany L. Niell 15, Jennifer Drukteinis15, Mary S. Newell16, Michael A. Cohen16, Marina Giurescu17, Elise Berman18,
Constance Lehman19, Savannah C. Partridge19, Kimberly A. Fitzpatrick20, Marisa H. Borders20, Wei T. Yang21, Basak Dogan21,
Sally Goudreau 22, Thomas Chenevert23, Christina Yau1, Angela DeMichele9, Don Berry24, Laura J. Esserman 1 and
Nola M. Hylton 1✉

Dynamic contrast-enhanced (DCE) MRI provides both morphological and functional information regarding breast tumor response
to neoadjuvant chemotherapy (NAC). The purpose of this retrospective study is to test if prediction models combining multiple MRI
features outperform models with single features. Four features were quantitatively calculated in each MRI exam: functional tumor
volume, longest diameter, sphericity, and contralateral background parenchymal enhancement. Logistic regression analysis was
used to study the relationship between MRI variables and pathologic complete response (pCR). Predictive performance was
estimated using the area under the receiver operating characteristic curve (AUC). The full cohort was stratified by hormone receptor
(HR) and human epidermal growth factor receptor 2 (HER2) status (positive or negative). A total of 384 patients (median age: 49 y/o)
were included. Results showed analysis with combined features achieved higher AUCs than analysis with any feature alone. AUCs
estimated for the combined versus highest AUCs among single features were 0.81 (95% confidence interval [CI]: 0.76, 0.86) versus
0.79 (95% CI: 0.73, 0.85) in the full cohort, 0.83 (95% CI: 0.77, 0.92) versus 0.73 (95% CI: 0.61, 0.84) in HR-positive/HER2-negative, 0.88
(95% CI: 0.79, 0.97) versus 0.78 (95% CI: 0.63, 0.89) in HR-positive/HER2-positive, 0.83 (95% CI not available) versus 0.75 (95% CI: 0.46,
0.81) in HR-negative/HER2-positive, and 0.82 (95% CI: 0.74, 0.91) versus 0.75 (95% CI: 0.64, 0.83) in triple negatives. Multi-feature MRI
analysis improved pCR prediction over analysis of any individual feature that we examined. Additionally, the improvements in
prediction were more notable when analysis was conducted according to cancer subtype.

npj Breast Cancer            (2020) 6:63 ; https://doi.org/10.1038/s41523-020-00203-7

INTRODUCTION
An important advantage of neoadjuvant chemotherapy (NAC)
over adjuvant therapy for locally advanced breast cancer is the
ability to monitor treatment response, which allows informed
adjustment of the treatment plan. Among imaging methods,
magnetic resonance imaging (MRI) is the most accurate for
assessing tumor response to NAC1–5. Results from the I-SPY 1
TRIAL (CALGB 150007/ACRIN 6657) found that functional tumor
volume (FTV) predicted pathologic complete response (pCR) and
recurrence-free survival6,7. Subsequently, serial measures of FTV
during treatment are used in the adaptive randomization engine
of the I-SPY 2 trial, designed to accelerate the evaluation of novel
agents for breast cancer8. Pathologic complete response is the
primary endpoint in I-SPY 2.
FTV represents the active portion of tumor volume, as defined

by pharmacokinetic thresholds applied to dynamic contrast-

enhanced MRI (DCE-MRI)9. While FTV has shown effectiveness
for the prediction of pCR, there is still potential for improvement,
especially in the setting of hormone-positive tumors10. Additional
features can be derived from the same DCE-MRI data, including
longest diameter, sphericity, and contralateral background par-
enchymal enhancement (BPE). These additional measures have
also shown value for prediction of pCR11–14. Longest diameter is a
standard clinical measurement used to assess tumor response,
consistent with the Response Evaluation Criteria in Solid Tumors
(RECIST)15. Sphericity is a three-dimensional shape feature
previously found to be associated with pCR in the I-SPY2 trial11.
Several studies have shown the association of BPE with breast
cancer risk in the screening setting, and decreased BPE has been
found to be associated with pCR following neoadjuvant che-
motherapy12–14,16,17.
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This study investigated whether the predictive performance of
MRI can be improved over FTV or any single feature alone by
using a combination of features measured on DCE-MRI. By
providing better prediction of response, MRI can advance
personalized treatment and play an important role in assessing
whether to change targeted therapies or proceed directly to
surgical resection.

RESULTS
Patient characteristics
A total of 384 patients who had complete MRI data and pCR
outcome were included in the analysis (see Fig. 1 for patient
exclusion details and Table 1 for patient characteristics in the
eligible cohort and included cohort). After NAC, 29.7% (114/384)
achieved pCR and 70.3% (270/384) did not. The pCR rates in HR/
HER2 subgroups were 14.8% (24/162) for HR+/HER2−, 31.7% (19/
60) for HR+/HER2+, 66.7% (20/30) for HR−/HER2+, and 38.6%
(51/132) for triple negatives (HR−/HER2−). The median age was
49 (interquartile range: 41 to 56, range 24 to 77) years. There was
no statistically significant difference (p= 0.48) in age between
patients eligible (median age: 49; interquartile range: 41 to 56) and
analysis (median age: 48.5; interquartile range: 41 to 56). There
were no statistically significant differences with respect to race
(p= 0.54), HR/HER2 subtype (p= 0.61), menopausal status
(p= 0.83), or treatment (p= 0.72) between eligible and analysis
cohorts. pCR rates in the cohort of subjects with MRI and pCR
outcomes (N= 878, see Fig. 1) were 34.9% (306/878) for the full
cohort, 18.6% (64/344) for HR+/HER2−, 36.6% (49/134) for HR
+/HER2+, 69.3% (52/75) for HR−/HER2+, and 43.4% (141/325) for
triple negatives. Overall pCR rates were higher in this cohort than
in the cohort included in the analysis (N= 384).

Predict pCR using MRI features
Table 2 shows the estimated AUCs (and 95% CIs) for optimized
models generated by individual and combined features. Variables
included in each model are listed in Supplementary Table 1. Fig. 2

shows the bar charts for visual comparison and Fig. 3 shows the
corresponding ROC curves for each AUC value.
Combining multiple MRI features resulted in higher AUC

compared to single features alone, in the full cohort and in each
breast cancer subtype. In the full cohort, AUC for the combined
model was 0.81 (95% CI: 0.76–0.86), which exceeded the highest
AUC achieved using a single feature model (LD) at 0.79 (95% CI:
0.73–0.85). The p-value of the difference between the two AUCs
was <0.001.
Using the combined model within individual subtypes resulted

in improved predictive value: an AUC of 0.83 (95% CI: 0.77–0.92,
p < 0.001) was achieved in HR+/HER2−, 0.88 (95% CI: 0.79–0.97,
p < 0.001) in HR+/HER2+, and 0.82 (95% CI: 0.74–0.91, p < 0.001)
in HR−/HER2− (TN). We could not calculate a reliable 95%
confidence interval for the AUC of combined features in the
HR− /HER2+ subgroup because the number of outcomes was too
small (n= 20 pCRs; n= 10 non-pCRs).
Although AUCs of the combined features were higher than

those of individual measures in the full cohort and in subtype
cohorts (p < 0.001), Fig. 3 shows their relationship on the full scale
of sensitivity and specificity. The ROC curves of the combined
predictors had greater separation from the ROCs of a single type
of predictor for the subtype cohorts than the full cohort.

DISCUSSION
Given its robust correlation with long-term outcomes, pCR has
increasingly become the clinical goal of NAC in locally advanced
breast cancer. The ability to use non-invasive methods to
accurately predict pCR early in the course of treatment has
enormous clinical implications as it would permit personalized,
evidence-based escalation or de-escalation of therapy. Our results
showed that MRI functional tumor volume-based prediction of
pathologic outcome following NAC can be improved using a
combination of multiple features, as compared to a single feature
alone. Importantly, each of these features can be measured from
the same DCE-MRI dataset, requiring no additional image
acquisitions.
In support of our findings, previous studies using combined MRI

parameters have typically shown higher predictive performance
for pCR compared to those using a single parameter. For example,
Lee et al compared the ability of pre-treatment DCE-MRI perfusion
imaging parameters to predict pCR in 74 breast cancer patients
who were treated with NAC followed by surgery18. Their
retrospective study concluded that the model combining perfu-
sion parameters of contralateral breast background parenchyma
and those of the tumor had higher predictive value than each
single-parameter model. This also agrees with results published by
Hylton et al, who performed a multivariable analysis of the DCE-
MRI examinations of 162 women with breast tumors 3 cm or
larger6, showing that a model combining MRI parameters (longest
diameter, functional tumor volume, signal enhancement ratio) and
clinical tumor size achieved the highest predictive accuracy
for pCR.
Based on our study of HR/HER2 subtype, the improvement in

predicting pCR by multi-feature MRI was more notable in
individual subtypes than in the full cohort. More interestingly,
imaging predictors included in the optimized model were
different among subtypes, which indicates that some features
may capture the treatment response better than others, depend-
ing upon the cancer subtype. For example, studies have shown
that tumor sizes measured using MRI were less accurate in HER2+
compared to HER2− subtypes19,20. However, the decrease in BPE
before and after NAC showed its association with pCR in HER2+
breast cancer21,22. Our study showed consistent results as FTV or
LD yielded lower AUCs than SPH or BPE in the HR−/HER2+
subtype, where combining them into the prediction model can
help improve the predictive performance.

Fig. 1 Study subject exclusion criteria. Out of 17 patients excluded
for MRI protocol violation or insufficient quality, 10 had protocol
violation or technique failure, 6 had obvious motion or were re-
positioned after contrast injection, and 1 patient could not tolerate
MRI. Image quality issues contributing to the exclusion of BPE values
(n= 86) were insufficient fat suppression (n= 47) or coil inhomo-
geneity artifact (brightness on the outer edge of the breast, n= 37),
or both (n= 2). The remaining number of exclusions (n= 148) were
due to the segmentation failure. pCR pathologic complete response,
LD longest diameter, SPH sphericity, BPE background parenchymal
enhancement.
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Four MRI features were included in this analysis. They were
chosen by having demonstrated clinical relevance. However, there
could be many other imaging features in MRI that could also
potentially be predictive of pCR. With the advancement of
computational technology, radiomics can extract a large number
of features and machine-learning algorithms can be used to select
biologically or physiologically meaningful features to predict
cancer treatment outcomes. In our future studies, other radiomics
features will be explored.
Among the four MRI features that we studied, FTV is an IDE-

approved algorithm and a well-established imaging biomarker in
the I-SPY 1 and 2 trials. Other features all have pitfalls and
challenges. LD is a standardized and internationally recognized
measurement reported in the ACR Breast Imaging Reporting and
Data System (BI-RADS)23. However, LD can be subjective and may
not capture the functional or physiological changes from
treatment. In this study, BPE was calculated fully automatically
and therefore avoided reader subjectivity. However, achieving a
reliable and automated quantitative BPE measurement is still a
challenge. Approximately 30% of the MRI examinations were
excluded because of inadequate fibroglandular tissue segmenta-
tions. A more reliable quantitative BPE measurement in combina-
tion with higher overall image quality standards is needed. SPH is
a morphologic measurement of tumor shape. According to its
definition, a solid round-shaped tumor has a larger SPH than a
diffuse tumor. However, SPH does not accurately differentiate
tumor necrosis and multi-centric tumors. In addition, SPH is not
measurable when tumor volume has reduced to a minimal
residual. We observed better predictive performance by combin-
ing these features together than using any single feature alone,
which indicates that deficiencies in the individual features may

compensate for each other in the prediction of treatment
response.
Our study has several limitations. First, all DCE-MRI data in I-SPY

2 were under well-managed assessment and control, but we still
observed various quality issues such as different signal-to-noise
ratios and insufficient fat suppression. These variations could
affect the variability of our MRI feature measurements. Second,
SPH was not calculable when FTV was close to zero. This limitation
can cause the exclusion of good responders in our analysis. Third,
even though we had the advantage of a large sample size for our
study (n= 384), the patient population was not evenly distributed
among cancer subtypes. In particular, the HR−/HER2+ subset had
only 30 patients with 10 non-pCRs, which prohibited us from
achieving a reliable 95% CI confidence interval for the AUC in this
sub-cohort. Fourth, because multiple agents were tested simulta-
neously in I-SPY 2, patients with the same HR/HER2 status could
have received different agents and responded differently. In future
analyses, drug efficacy should also be estimated as an indepen-
dent variable in the prediction model when a larger sample size is
available.
In conclusion, our study showed that MRI can provide

quantitative information about tumor characteristics, and multi-
feature analysis yielded better prediction of pathologic complete
response than sole analysis of any of the single features we
examined. The improvement in the predictive performance was
more notable when analysis was conducted into cancer subtype.
Continued work to improve the reliability and predictive
performance of individual features is currently underway and
further testing of the multi-feature model will be done in
expanded I-SPY 2 cohorts.

Table 1. Patient characteristics (eligible versus included in the analysis).

Eligible N= 990 Analysis N= 384 p

Age (median with interquartile range) 49 (41–56) 49 (41–56) 0.48

Race 0.54

White 784 (79.2) 315 (82.0)

Black or African American 121 (12.2) 34 (8.9)

Asian 68 (6.9) 27 (7.0)

American Indian or Alaska Native 4 (0.4) 2 (0.5)

Native Hawaiian or Pacific Islander 5 (0.5) 3 (0.8)

Mix 7 (0.7) 3 (0.8)

HR/HER2 subtype 0.61

HR+/HER2− 380 (38.4) 162 (42.2)

HR+/HER2+ 156 (15.8) 60 (15.6)

HR−/HER2+ 89 (9.0) 30 (7.8)

HR−/HER2− (triple negative) 363 (36.7) 132 (34.4)

Menopausal status 0.83

Premenopausal 464 (46.9) 181 (47.1)

Perimenopausal 33 (3.3) 17 (4.4)

Postmenopausal 291 (29.4) 113 (29.4)

Not applicable 134 (13.5) 46 (12.0)

Unknown 68 (6.9) 27 (7.0)

Treatment 0.72

Experimental drugs 779 (78.7) 303 (78.9)

Standard drugs (control) 221 (22.3) 81 (21.1)

HR hormone receptor, HER2 human epidermal growth factor receptor 2. Note — Unless otherwise specified, data in columns 2 and 3 are number of patients,
with percentages in parentheses.
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METHODS
Patient population
Women 18 years of age and older and diagnosed with locally advanced
breast cancer (stage II or III, tumor ≥ 2.5 cm) are eligible to enroll in the I-
SPY2 trial (clinical trial number: NCT01042379; registration date: January 5,
2010)24,25. A total of 990 patients enrolled in I-SPY 2 from May 2010 to
November 2016 and randomized to one of nine completed experimental
drug arms or standard of care were considered in this retrospective study.
Participants received 12 weekly cycles of paclitaxel alone (standard of care)
or in combination with one of nine experimental agents, followed by four
cycles of anthracycline-cyclophosphamide (AC) every 2–3 weeks, prior to
definitive surgery (Fig. 4)10. Patients with HER2-positive cancer also
received trastuzumab for the first 12 cycles. In some experimental drug
arms, the experimental agent may substitute for one of the standard
therapies (paclitaxel or trastuzumab). All participating sites received
approval from their institutional review board. All patients provided
written informed consent to participate in the study. Subsets of the patient
cohort were included in previous studies10,26,27.

MRI acquisition and feature analysis
For each participant, MRI examinations occurred at four sequential time
points: pre-treatment (T0, pre-NAC), after 3 cycles (T1, early NAC), after 12
cycles and between drug regimens (T2, mid-NAC), and before surgery (T3,
post-NAC). All MRI examinations used DCE-MRI, performed according to
the predefined I-SPY 2 MRI protocol (described in Supplementary Table 2).
For each DCE-MRI examination, four features were assessed: functional

tumor volume (FTV), sphericity (SPH), contralateral background parench-
ymal enhancement (BPE), and longest diameter (LD). FTV, SPH, and BPE
were calculated using in-house software tools developed in the IDL
software environment (Exelis Visual Information Solutions, Boulder, Color-
ado). The FTV method was subsequently replicated on a commercial
platform that gained FDA IDE approval in 2010 for use in I-SPY 29,28. LD was
measured by the site radiologist and abstracted from clinical MRI reports
by study coordinators at each site. Study coordinators, radiologists, and

imaging scientists who worked on generating these features were blind to
pathologic outcomes.
FTV and SPH were calculated within a 3D volume-of-interest (VOI)

defined by the site radiologist or trained imaging coordinator. Early
percent enhancement (PE) and signal enhancement ratio (SER) maps were
derived by PE ¼ S1�S0

S0
´ 100% and SER ¼ S1�S0

S2�S0
, where S0, S1, and S2 are

signal intensities at pre-contrast, early (approximately 2.5 minutes), and
late (approximately 7.5 minutes) post contrast, respectively. FTV was
calculated by summing voxel volumes with PE ≥ 70% and SER ≥ 0. As
previously described, a threshold different from 70% was applied for a
small number of patients when necessary to account for variability in MRI
systems and tumor enhancement pattern9. In these cases, adjusted
thresholds defined at baseline were kept constant for all subsequent MRI
examinations. SPH was defined as SA0

SAtumor
, where SAtumor is the surface area

of the 3D FTV tumor mask and SA0 is the surface area of a perfect sphere of
the same volume. Tumor surface area was calculated using a surface
meshing analysis. SPH values range from 0 to 1.0, with 1.0 representing a
perfect sphere.
BPE was defined as the mean PE of fibroglandular tissue in the

contralateral breast. An automated segmentation algorithm was used to
identify breast tissue boundaries and a fuzzy c-means clustering algorithm
was applied to classify fibroglandular tissue from the segmented breast29.
BPE was calculated by automatically averaging over the tissue in five
continuous axial slices geometrically centered in the superior–inferior
direction to characterize tissue in the center of the breast. Illustrations of
measuring FTV, LD, SPH, and BPE are shown in Supplementary Fig. 1.

Pathologic outcome
pCR was defined as the absence of residual invasive disease in the breast
and axillary lymph nodes after NAC, measured at surgery. Histopathologic
analysis was performed by site pathologists.

Statistical analysis
Baseline values and percentage changes from baseline were computed for
each feature and treated as independent variables in the logistic
regression model using binary pCR outcome (1: pCR; 0: non-pCR) as the
dependent variable. The area under the curve (AUC) for the receiver
operating characteristic (ROC) was used to assess the predictive
performance, with 100 repeated 5-fold cross-validation applied to avoid
biased estimates of classification accuracy. The 95% confidence interval (CI)
of cross-validated AUC was estimated using 1,000 bootstrap resamples.
P-values of variables in the logistic regression model were estimated by the
likelihood-ratio chi-squared test of nested models—with and without the
variable being tested. This retrospective analysis was restricted to patients
with all four MRI features available at all treatment time points.
Logistic regression models were built using single versus combined MRI

features. For single-feature (i.e., FTV, SPH, BPE, or LD) analysis, optimized
models were built by selecting variables—from baseline measure and
percentage change at T1, T2, T3 compared to the baseline—as
independent variables in the logistic regression analysis, and by achieving
the highest cross-validated AUCs as mentioned above. For the combined
method, all variables from four MRI features available at all treatment time
points up to T3 were subject to the variable selection. For single and
combined analyses, optimized models were created separately in the full
patient cohort and in each of the four breast cancer subtypes defined by
HR/HER2 status. Subtype was added as an additional independent
categorical variable in the regression model for the full cohort.

Table 2. AUCs of optimized models using individual versus combined MRI features.

Model type Full N= 384 pCR
rate= 29.7%

HR+/HER2-N= 162
pCR rate= 14.8%

HR+/HER2+N= 60
pCR rate= 31.7%

HR-/HER2+N= 30
pCR rate= 66.7%

HR-/HER2-N= 132
pCR rate= 38.6%

FTV only 0.77 (0.73, 0.83) 0.72 (0.61, 0.84) 0.71 (0.52, 0.85) 0.67 (0.48, 0.74) 0.74 (0.64, 0.83)

BPE only 0.69 (0.62, 0.76) 0.66 (0.47, 0.73) 0.76 (0.64, 0.88) 0.75 (0.46, 0.81) 0.62 (0.50, 0.74)

SPH only 0.69 (0.62, 0.75) 0.68 (0.54, 0.81) 0.65 (0.48, 0.74) 0.73 (0.47, 0.77) 0.56 (0.49, 0.67)

LD only 0.79 (0.73, 0.85) 0.73 (0.61, 0.84) 0.78 (0.63, 0.89) 0.64 (0.49, 0.86) 0.75 (0.64, 0.83)

Combined 0.81 (0.76, 0.86) 0.83 (0.77, 0.92) 0.88 (0.79, 0.97) 0.83 0.82 (0.74, 0.91)

Note —Numbers in parentheses are 95% confidence intervals.

Fig. 2 Bar chart of area under the receiver operating character-
istic curves (AUCs) for predicting pathologic complete response
using single versus combined MRI features. Each column
represents an AUC value estimated for the logistic regression model
using a single or combined MRI features. MRI features include
functional tumor volume (FTV), sphericity (SPH), background
parenchymal enhancement (BPE), and longest diameter (LD). AUCs
were plotted in the full cohort and in sub-cohorts defined by
hormone receptor (HR) and human epidermal growth factor 2 (HER2)
status. The error bar shows the 95% confidence interval of each
estimated AUC. The black dotted line shows where AUC= 0.5 is.
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The Wilcoxon rank and Fisher’s exact test was used to assess differences
by age, HR/HER2 subtype, race, menopausal status at the start of NAC, and
treatment (experimental versus standard chemotherapy). AUCs of ROC
curves were compared by bootstrapping with 2,000 replicates using a two-
sided test.

Statistical analyses were performed using R version 3.4.1 (R Foundation
for Statistical Computing, Vienna, Austria), where the ‘caret’ package was
used for logistic regression analyses30, the ‘pROC’ package for ROC
analyses31, and the ‘boot’ package for calculating 95% CIs for cross-
validated AUCs32,33. All tests were considered nominally statistically
significant when p < 0.05.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The data generated and analyzed during this study are described in the following
data record: https://doi.org/10.6084/m9.figshare.1291219134. The datasets are as
follows: the original acquired and derived MRI DICOM data, under the title “I-SPY 2
MRI Collection”, and an Excel file called “Multi-feature MRI NACT Data.xlsx”. These will
be deposited and be publicly available in NCI The Cancer Imaging Archive (TCIA):
https://www.cancerimagingarchive.net/. However, due to technical limitations with
the deposition and curation of the data, their release date is anticipated to be late
2020. When they become available, this metadata record associated with this article34

will be updated to version 2 to link the TCIA data DOI. In the meantime, please
contact the corresponding author with data queries.

Received: 12 March 2020; Accepted: 21 October 2020;

Fig. 3 Plots of receiver operating characteristic curves (ROCs) for single versus combination of MRI features. The corresponding areas
under the ROC curve (AUCs) are listed in Table 2. MRI features include functional tumor volume (FTV), sphericity (SPH), background
parenchymal enhancement (BPE), and longest diameter (LD). ROCs were plotted in the full cohort and in sub-cohorts defined by hormone
receptor (HR) and human epidermal growth factor 2 (HER2) status.

Fig. 4 I-SPY 2 study schema and adaptive randomization. Patients
were randomized to the standard (paclitaxel for human epidermal
growth factor 2 [HER2]-negative or paclitaxel plus trastuzumab for
HER2-positive) or one of the experimental drug arms. Participants
received a weekly dose of paclitaxel alone (standard) or in
combination with an experimental agent for 12 weekly cycles
followed by four (every 2–3 weeks) cycles of anthracycline-
cyclophosphamide (AC) prior to surgery. MRI examinations were
performed at pre-neoadjuvant chemotherapy (NAC) (T0), early NAC
(T1), mid-NAC (T2), and post-NAC (T3).
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