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Inductive Biases Constrain Cumulative Cultural Evolution
Bill Thompson (billdthompson@berkeley.edu)

Social Science Matrix, Univeristy of California, Berkeley

Thomas L. Griffiths (tgriffiths@princeton.edu)
Departments of Psychology and Computer Science, Princeton University

Abstract

Cumulative cultural evolution is a distinctively human form
of information-processing that endows our societies with im-
probable and efficient technologies. But how objective is this
process? A widely held conjecture is that human cognitive
biases can constrain cumulative cultural evolution, and there-
fore shape our discoveries. We present a Bayesian analysis of
a simple form of cumulative cultural evolution. This model
allows us to formulate and test the theoretical conjecture in
an experimental setting. Across a series of behavioural ex-
periments, we show that people’s inductive biases constrain a
population’s ability to discover counter-intuitive virtual tech-
nologies in a simple search problem. Our analysis highlights
formal relationships between cumulative cultural evolution,
Bayesian inference, and stochastic optimization.
Keywords: cumulative cultural evolution; inductive biases;
optimization; computation; Bayes; cultural evolution;

Introduction
We are surrounded by bizarre and complex objects that vastly
improve our lives. To our recent ancestors, many of the tools
and technologies we rely on today were inconceivable, yet
the same innovations will soon seem primitive to our descen-
dants. The capacity for cumulative discovery is a uniquely
human form of information processing on a breath-taking
scale – but how objective is this process? Is technologi-
cal evolution an unbiased search for optimal solutions to the
problems we face? Or is it shaped by the same representa-
tional constraints and biases that limit individuals?

This question has been widely discussed in the context of
cultural evolution (Mesoudi, 2016). Most theories of cultural
evolution agree on the conjecture that in some circumstances,
human cognitive biases must constrain cumulative cultural
evolution (Morin, 2016; Acerbi & Mesoudi, 2015; Claidière,
Scott-Phillips, & Sperber, 2014). This hypothesis has been
widely debated and examined in formal models (Claidière &
Sperber, 2007; Boyd & Richerson, 1985; Henrich & Boyd,
2002; Griffiths, Kalish, & Lewandowsky, 2008), but it has
never been tested experimentally. In part, testing this hypoth-
esis has been challenging because it is difficult to quantify
an appropriate set of expectations in an experimental setting
(Miton & Charbonneau, 2018).

In this paper, we develop a mathematical model of cumu-
lative cultural evolution that allows us to formulate these ex-
pectations precisely. Our model is derived from a Bayesian
analysis of individual cognition. The model makes quantita-
tive predictions about the circumstances under which induc-

tive biases are likely to stifle discovery. To test these pre-
dictions, we adapt a widely studied experimental paradigm
in which participants design and transmit a simple artificial
technology: virtual arrowheads. Our strategy is to first char-
acterise participants’ inductive biases in this context using se-
rial reproduction chain experiments. On the basis of these es-
timates, we conduct a series of arrowhead-design experiments
which differ only in the extent to which task reward structure
contradicts participants’ biases. In the process of formalizing
our predictions, we identify a formal relationship between cu-
mulative cultural evolution and stochastic optimization.

Background
Cumulative Cultural Evolution
Unlike other species, every generation of humans builds on
the insights and actions of their ancestors (Henrich, 2015).
When an Apple engineer develops iPhone security updates,
she makes use of cognitive resources expended by Turing al-
most a century before. In this sense, people alive today ex-
tend the computations initiated by people who faced simi-
lar problems in the past. What kind of process allows us to
effectively pool computational resources with strangers over
seemingly unbounded timescales? Computation over genera-
tions depends on a proclivity to learn from the people around
us and the artefacts they create. When this kind of learning
is repeated over time, a stochastic process is induced. This
process is called cultural transmission (Boyd & Richerson,
1985). In some species, cultural transmission leads to cumu-
lative innovation. This special case is known as cumulative
culture (Mesoudi & Thornton, 2018) and is surprisingly rare
(Whiten, Caldwell, & Mesoudi, 2016).

Discovering Technologies
There are many forms of cumulative culture, but one simple
example has been heavily studied: refinement of technologies
towards consistent functional objectives. Outside of the lab-
oratory, examples of this process are easy to find: motorcy-
cles today are faster, more efficient, more reliable, safer, and
longer-lasting than the motorcycles people rode during the
second World War. In an experimental setting, small-scale
analogues of this process have been studied in several do-
mains. For instance, Caldwell and Millen (2008) showed that
micro-societies of experimental participants discover cumu-
latively more effective ways to design a tall-standing tower
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of spaghetti. In these experiments, later participants observed
the designs of earlier participants, and created taller and taller
spaghetti towers as a result. Similar findings have been
reported in lineages of participants designing simple knots
(Muthukrishna, Shulman, Vasilescu, & Henrich, 2014), paper
aeroplanes (Caldwell & Millen, 2008), rice baskets (Zwirner
& Thornton, 2015), and fishing nets (Derex, Beugin, Godelle,
& Raymond, 2013), for example.

Inductive Biases in Cumulative Culture
Cumulative cultural evolution can be recreated and manipu-
lated in the laboratory. However, it remains unclear whether
the products of these processes are shaped by biases in the
way people think, or whether inductive biases and repre-
sentational constraints are effectively washed out over time.
This has been difficult to establish empirically, in part be-
cause it is often challenging to quantify the influence of peo-
ple’s inductive biases. Recent reviews have noted that exper-
imental tasks often feature unconstrained or difficult to quan-
tify design spaces (Miton & Charbonneau, 2018), and that
there is a need for a better understanding of the information-
processing dynamics that link cognition and cultural evolu-
tion (Mesoudi & Thornton, 2018; Heyes, 2018). Mathemat-
ical analyses have repeatedly identified the potential for hu-
man biases to shape cumulative cultural evolution (Claidière
& Sperber, 2007; Boyd & Richerson, 1985; Griffiths et al.,
2008). However, extending abstract models to an experimen-
tal setting remains a challenge. Here, we introduce a formal
model that is closely related to these theories of culture, but
derived from a Bayesian analysis of cognition, and therefore
directly applicable in an experimental context. Our analysis
extends prior Bayesian models of cultural evolution (Griffiths
& Kalish, 2007; Navarro, Perfors, Kary, Brown, & Donkin,
2018) to the cumulative case. The model we introduce allows
us to specify formal predictions about the circumstances in
which inductive biases constrain cumulative cultural evolu-
tion, and test those predictions experimentally.

Model: Optimization by Cumulative Culture
Our analysis applies to settings in which the design features
of a technology can be described in terms of (n) continu-
ous valued parameters Θt ∈ Rn. This setting offers a natural
connection to prior experimental work, in which participants
modify design features such as length, height, width, angles,
crossing points, mass, or hue.

Induction of a Design
Each new individual estimates these design features from
artefacts produced by the previous generation. If this estima-
tion procedure can be given a formulation as Bayesian infer-
ence, then an individual’s estimate Θ̂ can be decomposed into
a trade-off between two quantities: noisy empirical observa-
tion of the true design features Θ; and inductive biases im-
posed by cognition. Inductive biases can expressed as a prior
distribution p(Θ). Using this framework, Θ̂t can be treated as

a random variable distributed according to the posterior dis-
tribution implied by a Bayesian model of learning.

Innovation
After estimating the existing design, each participant attempts
an innovation. Assume a f : Θ→ R is a function that re-
flects the utility of a technology with respect to it’s design
features. In the literature on cultural evolution, this quan-
tity would sometimes be referred to as a fitness landscape.
We will make the assumption that individuals are capable of
bounded, local innovation. This is appropriate to scenarios
in which innovation is largely driven by an ability to iden-
tify similar but improved variants of whatever already exists,
through limited experimentation with minor design variations
for example. Local information about f can be naturally ex-
pressed as its gradient with respect to design features, evalu-
ated at Θt . We denote this quantity ∇ f = ∇Θ f (Θt).

Diffusion Chains
These assumptions formalize a simple theory of cumulative
culture as repeated cycles of observation, induction, and local
innovation, leading to the expression:

Θ
t+1 = Θ

t −α∇ f − (Θt − Θ̂
t) , (1)

where t ∈ 1, . . . ,T denotes a specific generation in a transmis-
sion chain. This equation describes a single step of a trans-
mission chain in terms of the relationship between an exist-
ing technology (Θt ), its utility ( f ), its status with respect to
human cognitive constraints and the fidelity of transmission
(Θt − Θ̂t ), and an innovation rate (α). We examine the prop-
erties of this general model under some simplifying assump-
tions.

Assumption 1: Gaussian Prior & Observation Noise As-
sume individual learning can be modelled as probabilistic in-
ference in a Gaussian model: observations of an existing de-
sign are noisy, and this noise can be approximated by Gaus-
sian corruption of the true design features; inductive biases
can be approximated by a Gaussian distribution.

Assumption 2: Independent Features Individual design
features θi ∈ Θ can be treated independently. This is a limit-
ing assumption, but nonetheless appropriate to many relevant
contexts. If µi is the prior expectation, the posterior expecta-
tion is:

E
[
θ̂

t
i
]
= λiµi +(1−λi)θ

t
i (2)

where λi = σ2
i /(σ

2
i + δ2

i ) reflects the relative variance of the
prior (δ2

i ) and observation noise (σ2
i ) – in other words, the

strength of an inductive bias p(θi) relative to the fidelity of
transmission.

Chain Dynamics
The expected change at each generation can be written:

E
[
θ

t+1
i −θ

t
i
]
= λi(µi−θ

t
i)−α∇ f . (3)
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which implies no further accumulation in expectation when
∇ f = ∇∗f , where ∇∗f ≡ (µi−θt

i)(λi/α). This cultural process
will halt if the potential for local innovation drops below a
threshold determined by: the distance of the current design
from the prior expectation (µi−θ), relative to a willingness to
explore (α), weighted by the balance of prior and empirical
leniencies in learning (δ2

i /σ2
i ).

Assumption 3: Quadratic Utility Landscape The fate of
the process is closely tied to the utility landscape in which it is
operating. A simple but broad class of cases can be captured
by the assumption that there is an optimal design Θ∗, and that
f can be locally approximated by a quadratic surface with the
optimum design at its minimum / maximum. In this regime,
utility decreases with squared distance from the optimum at a
rate proportional to a parameter a. A utility landscape that can
be described in this manner has gradients ∇ f = a(θ−θ∗i ). A
transmission process acting on a utility landscape of this form
will halt in expectation if it reaches θt

i = φ∗i :

φ
∗
i = λ

∗
i µi +(1−λ

∗
i )θ
∗
i (4)

which is a linear combination of the prior mean µi and the
optimum design θ∗i with mixing proportions:

λ
∗
i = σ

2
i /(σ

2
i +αas) (5)

where s = δ2
i +σ2

i . Equations (4) and (5) represent our main
theoretical result. Our analysis predicts that the outcome
of a transmission chain is a compromise between the in-
ductive biases of individuals and the optimal design. When
these conflict, the balance of the compromise is quantifiable
from the relationships between: transmission fidelity (σ2

i ),
strength of inductive bias (δ2

i ), an exploration rate (α), and
the slope of the utility landscape (a). The weighting factor
0 ≤ λi ≤ 1 interpolates between cultural evolutionary pro-
cesses that are constrained by inductive biases (λ→ 1) and
therefore dragged back toward the prior p(θi), and processes
that are dominated by information contained in the the util-
ity landscape (λ→ 0), and therefore destined to discover an
objective optimum.

Biased Computation by Cumulative Culture
One way to interpret this finding is as a description of the
computation that is being implemented by the process we
have analysed – the computation implemented by a chain of
individuals. Two analogies motivate this interpretation. First,
equation (5) has the same form as equation (4). At each gen-
eration, an individual person performs a computation that we
formalized as a sample from the posterior distribution in a
Bayesian model of inference. This computation is biased and
local: the expectation is a linear combination of the individ-
ual’s inductive bias and the currently existing design θt . How-
ever, the chain as a whole can be understood to implement a
biased but global computation: equation (5) describes the ex-
pectation of a posterior distribution computed by the same
kind of learner after observing (a noisy realisation of) the op-

timal design θ∗. Second, in the Gaussian case, equation (1)
can be rewritten as:

θ
t+1
i = θ

t
i−α∇ f −λi(θ

t
i−µi)+ ε

t
i (6)

which is a form of stochastic gradient descent with regular-
isation. Stochastic optimization and Bayesian inference are
known to be related (Mandt, Hoffman, & Blei, 2017). This
highlights a common interpretation of cognitive and cultural
processes – they are both forms of information processing.
This cultural process solves an optimization problem subject
to regularisation by human inductive biases. In the remainder
of this paper, we test this prediction.

Experiment: Discovering Virtual Technologies
We adapted an experimental paradigm that has been widely
used to study the influence of social learning on cumula-
tive culture (Mesoudi, Chang, Murray, & Lu, 2015). The
experimental task involves designing a virtual arrowhead.
The arrowhead has a number of attributes (e.g. length,
width) that can be modified and achieves a score when de-
ployed on a virtual hunt. The score reflects the number
of calories of food earned by the arrowhead. Participants’
goal was simply to test and redesign a single arrowhead
they inherited, in an attempt to increase its score. This
paradigm allowed us to construct a low-dimensional search
problem in which we hypothesised that task-naive partici-
pants would display biased expectations. Athough there is
signfificant discussion surrounding the definition of cumu-
lative cultural evolution, a central requirement is that over
time, it’s products must“enhance some measure of perfor-
mance...[through]...sequential improvements...” (Mesoudi &
Thornton, 2018). In our experiment, unconstrained cumu-
lative cultural evolution would correspond to the chains of
participants sequentially designing arrowheads that achieve
higher scores until the maximum score is achieved.

Method
Stimuli The experiment was presented as a website. Partic-
ipants designed a virtual arrowhead using two HTML range
sliders which modified its width and length. Figure 1 shows
the design space. During experimental trials, the screen was
split into left (25% screen width) and right (75% screen
width) panels. The left panel displayed the participant’s esti-
mate of the arrowhead they inherited in reduced proportions
that nonetheless preserved the design. Underneath was a de-
piction of two range-sliders positioned in accordance with the
arrowhead’s attributes, and text indicating the number of calo-
ries that the arrowhead earned. The main panel (Right) dis-
played an arrowhead in the center, pointing downwards. Two
range-sliders were located beneath the arrowhead. Moving
a range-slider modified either the length or the width of the
arrowhead dynamically. Both dimensions of the arrowhead
could take values ranging between 50 and 150 pixels.

Arrowhead scores were determined by a quadratic func-
tion of the form f (θi) =

1
2 a(θi−θ∗i )

2 + c, where θ∗i is the
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Figure 1: Regularly sampled virtual arrowheads in a design space
implied by the ability to modify two features – length and base
width.

optimum value for feature θi. We chose to use this family
of functions because it constructs a smooth utility landscape
with a single optimum. Previous work has focused on con-
ditions that allow populations to search effectively through
more complex landscapes with both local and global optima
(Acerbi, Tennie, & Mesoudi, 2016). In contrast, our anal-
ysis focuses on a problem that should be relatively easy to
solve optimally if people’s inductive biases do no constrain
cultural evolution. Quadratic functions are also the class of
landscapes we examined in our theoretical analysis.

Within the family of quadratic landscapes, we required a
function which was: smooth over the full range; did not re-
turn negative scores; had an optimum (maximum) score that
lies within a semantically reasonable range given the framing
of the task. To meet these requirements, we set α =−30 and
c = 10000 for all experiments and divided the result by 100.
Given our settings of θ∗i (see below), the maximum available
score was 1000 calories. Calories decreased away from θ∗i at
a rate given by ∇ f =− 3

10 (θ
t
i−θ∗i ). To award a score, we com-

puted f for both arrowhead features (length and base width)
and awarded the mean.

Procedure Participants were informed that: they would go
on a virtual hunt; their task was to design a virtual arrowhead
that will earn as many calories of food as possible on the hunt;
a bonus payment would be made in proportion to the number
of calories their arrowhead earned. After consenting to the
experiment, participants completed an Information Trial (IT),
during which they observed the arrowhead they had inher-
ited (first generation participants inherited an arrowhead with
a randomly sampled design). This arrowhead was displayed
in the center of the right panel for 3000 milliseconds. Par-
ticipants then recreated the arrowhead as accurately as pos-
sible. Participants then proceeded to the first Modification
Trial (MT). The participant’s estimate of the arrowhead de-
sign was displayed as the arrowhead they inherited in the left

panel. Participants completed four MTs. During each MT, θ̂t
i

was displayed in the left panel. At the beginning of an MT, no
arrowhead was displayed in the right panel, and the positions
of the range-sliders were randomised. Participants could not
proceed to the next trial until at least one range-slider had
been modified. Upon modifying any of the rage-sliders posi-
tions, the arrowhead was redrawn. Modifications were lim-
ited to a range of ±30 pixels around θ̂t

i . This enforced a
weak restriction on the innovations participants could make
in accordance with our theoretical model. There was no limit
to the number of times participants could modify the range-
sliders in a given MT. Once satisfied, participants could click
Submit to obtain feedback – the number of calories earned by
the current arrowhead design. Arrowheads evaluated during
previous MTs were displayed (in reduced proportions) in the
left panel, in trial order. After completing four MTs, partici-
pants were informed that their opportunity to test arrowheads
was complete and proceeded to the test trial (TT). Participants
were reminded that the arrowhead they designed during this
trial would determine a bonus payment. TT was identical to
MT in all other respects.

Participants Participants (n = 1000) were recruited online
using Amazon’s Mechanical Turk. The experimental proto-
col was approved by the University of California, Berkeley’s
Committee for the Protection of human Subjects. Participants
were paid $0.50 to complete the experiment, and awarded a
performance-based bonus of up to $0.50. Most participants
completed the experiment in less than three minutes. Data
from any participants who completed the experiment in less
than 20 seconds were rejected.

Figure 2: Participant view of the experiment. Screenshot shows
the fourth Modification Trial. At this point in the expreriment, the
participant has completed the Information trial (and recreated their
inherited arrowhead, shown first in the left panel) and three Modifi-
cation Trials (the arrowheads tested by the particiant so far and their
scores are shown in the left panel).
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Figure 3: All arrowheads produced by participants at generation 3
or later in 20 serial reproduction chains of 10 generations each. A
sample based approximation to participants’ inductive biases, p(θ).

Results

Reproduction Chains We first ran a simpler experiment
using the same stimuli. This experiment used serial repro-
duction chains to characterise participants’ inductive biases in
our stimulus set. In these chains, each participant completed
an IT, but did not proceed to MT and TT. Each participant
observed the arrowhead designed by the previous participant,
and was asked to reproduce it as accurately as possible. Previ-
ous mathematical (Griffiths & Kalish, 2007) and experimen-
tal (Griffiths et al., 2008; Xu & Griffiths, 2010) research has
established that serial reproduction chains characterise partic-
ipants’ inductive biases. Figure 3 shows the distribution of ar-
rowheads produced by all participants at generation 3 or later
(in all our analyses, the first two generations of a chain are ex-
cluded as burn-in generations to minimise the effects of ran-
dom initial conditions), across 20 serial reproduction chains
of 10 generations each. This collection of arrowheads can
be understood as a sample-based approximation to the prior
distribution p(Θ). The empirical mean of this distribution is
µ̂width = 111, µ̂length = 118. People favoured arrowheads that
are relatively long and relatively wide.

Optimization Chains In light of participants’ inductive bi-
ases, we conducted four experiments. We treat these as sepa-
rate experiments rather than experimental conditions because
they were carried out sequentially. Each experiment (20
chains of 10 generations) featured a utility landscape with
a differently located optimum but the same calorie gradient
surface. Our prediction was that differently located optimums
would lead to differential discovery of those designs, and dif-
ferential task success (number of calories). Our mathematical

analysis identified the distance between the optimum arrow-
head and the mean of the prior distribution p(θ) as the cru-
cial predictive quantity: optimal arrowheads that are farther
from the prior distribution should be harder to find because
they are less intuitive. Figure 4 shows our results. Experi-
ment 1 (θ∗width = 115,θ∗length = 115) was designed to be most
consistent with people’s inductive biases. In this experiment,
the arrowheads people designed scored well (mean calories
M = 948, SD = 46). Experiment 4 was least consistent with
people’s biases, contradicting people’s expectations in both
dimensions. Success in the task suffered as a result (M = 794,
SD = 183). Experiments 2 (θ∗width = 75,θ∗length = 115, M =
912, SD = 98) and 3 (θ∗width = 115,θ∗length = 75, M = 845,
SD = 132) were designed to contrast with people’s biases in
one of the two dimensions – width and length respectively.

We combined data from all four experiments and com-
puted the difference between the optimum arrowhead and
the mean of the prior distribution. The main prediction of
our formal model (equation 4) can be rearranged into a lin-
ear model of the form φ∗i = µ̂i + β(θ∗i − µ̂i). This allowed
us to perform an ordinary least squares regression analysis
of this model in our experimental data. The prediction was
upheld. Accounting for the mean of the prior distribution
(β̂ = 1.0, p < .001) and the difference between the mean of
the prior and the optimum design (β̂ = 0.42, p < .001) ac-
counted 96% of the variance in the features of the arrowheads
people produced (R2 = 0.962). We also analysed task suc-
cess, and found significant differences in the distribution of
arrowhead scores in all pairwise comparisons of our four ex-
periments (at α = .05). Only the comparison between exper-
iments 3 and 4 (t(197) = 3.2, p = 0.0017) was not significant
at α = .001. Figure 4 (b) shows how task success reduced
over the four experiments. Finally, we computed the predic-
tions of our mathematical model under the inferred mixing
proportions λ explicitly. Figure 4 (c) shows these predictions.

Conclusion

We introduced a simple formal theory of cumulative cultural
evolution. We used this theory to predict how the inductive
biases of individuals would constrain a cultural process. We
tested this prediction in a series behavioural experiments. We
found that discovery of an optimal virtual technology in a
simple search problem was impeded by people’s inductive bi-
ases. These results reinforce a theoretical conjecture that had
previously not been studied empirically. Our analysis high-
lighted formal connections between cumulative cultural evo-
lution, Bayesian inference, and stochastic optimization. Our
results suggest a more general insight: identifying the algo-
rithm that is implemented by a cultural process can allow us
to characterise the computation it performs, yielding a cog-
nitive interpretation of the process in information-processing
terms. Our results showed that computation by cumulative
culture can be biased. This naturally raises the question: un-
der what circumstances is computation by culture unbiased?
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(a)

(b)

(c)

Figure 4: Results of all optimization experiments. Above (a): ker-
nel density estimates of the distribution of arrowheads produced by
all participants at generation 3 or later. Dotted lines show the loca-
tion of the optimum arrowhead in design space. Middle (b): The
distribution of scores obtained by the arrowheads produced by par-
ticipants at generation 3 or later in all optimization chains. The Eu-
clidean distance between the optimum arrowhead and the mean of
the prior distribution predicts task success (No. calories). Below
(c): Mean arrowhead design produced by all participants at gener-
ation 3 or later in all optimization chains (yellow cross), alongside
the mean design predicted by our mathematical model (after fitting
λ to experimental data, blue circles), the empirical mean of the prior
distribution (µ̂, green plus), and the experiment-specific optimum
design (black arrowhead).
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