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ABSTRACT OF THE DISSERTATION

Symmetry in the retinogeniculate motion circuit

by

Alfred Kaye

Doctor of Philosophy in Neurosciences (specialization in Computational
Neuroscience)

University of California, San Diego, 2013

Professor Edward Callaway, Chair
Professor William Kristan, Co-Chair
Professor Tatyana Sharpee, Co-Chair

The direction of visual motion is encoded in a population of direction selec-

tive retinal ganglion cells (DSRGCs) that provide inputs to the lateral geniculate

nucleus (LGN). In this work, a novel method of in vivo two-photon calcium imaging

is developed and used to determine how direction selective information is organized

in the superficial LGN. Neurons preferring a single direction of motion within the

superficial LGN predominantly represent the horizontal directions of motion, and

a population of cells exists which responds to both opposing directions along the

horizontal axis. A simple statistical model of retina-LGN connections demon-

xi



strates that random wiring within the superficial layer is sufficient to produce

the observed fractions of direction and axis of motion preferring LGN neurons.

The random wiring model is consistent with previous experimental results on the

fraction of LGN neurons receiving a single driving input, and makes quantitative

predictions about retina-LGN connectivity.

The efficient coding hypothesis suggests that sensory neurons should be

adapted to carry as much information as possible about the statistics of the envi-

ronment. In a theoretical study, we reconcile this hypothesis with the organization

and function of the retinogeniculate motion selective circuit. Under this theory,

the symmetries of the distribution of optic flows in natural scenes constrain op-

timal direction selective neurons to prefer only the cardinal directions of motion.

The directional tuning curves of On-Off DSRGCs in mice are compared with the

optimal tuning curves for jointly encoding orthogonal directions of motion, and are

found to correspond closely. The optimal encoding scheme for two opposing direc-

tion selective neurons, as observed in our study of the superficial LGN, requires

sharpening of tuning relative the retinal representation. The theory’s predicted

sharpening corresponds to our own data on direction selective responses in LGN,

and predicts that tuning curves that in a vertical motion layer in the LGN should

be more broadly tuned than those in a horizontal motion layer.

xii



Chapter 1

Introduction

The visual system of a variety of species computes visual motion from spa-

tiotemporal patterns of light hitting the retina [LMMP59, EB89, BH63, BSNM92].

Visual motion can be used to provide feedback control of movement [WH88,

KVD+91], to detect moving objects in the world [LMMP59], and to infer the

geometric structure of stationary objects [Adi85]. The function of the early mo-

tion pathway in rodents and rabbits, which begins with the computation of motion

direction by subtypes of retinal ganglion cells (RGCs) [BH63], has typically been

attributed to the reflexive control of eye movements through subcortical brain areas

responsible for those movements [Oys68]. The recent discovery that some types

of direction selective RGCs (DSRGCs) project to the lateral geniculate nucleus

(LGN) in mice [HWE+09] raises the question of how information derived from

DSRGCs may contribute to a broader range of visual motion perceptions.

This dissertation addresses the organization of motion selectivity in the

mouse LGN and its relationship to the statistics of visual motion in natural scenes.

Chapter 1 describes the investigation of direction selectivity in the superficial

mouse LGN with a novel vivo two-photon calcium imaging method. Direction

selective neurons clustered around the horizontal axis of motion, and a class of

neurons selective for both opposing directions of motion along the horizontal axis

was observed. A simple probabilistic model demonstrates that these results can be

reconciled with random wiring with layers of LGN and predicts quantitative circuit

properties. Chapter 2 develops a theory of optimal direction selectivity based on

1
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the efficient coding principle which matches previous experimental observations of

ON-OFF DSRGCs as well as the results of Chapter 1. Efficient coding requires di-

rection selective neurons to encode the cardinal directions of motion, and predicts

the tuning curve width of ON-OFF DSRGCs. The theory predicts that transfor-

mation of opposing directions of motion to produce axis selective neurons should

involve sharpening, and that it should only happen for the cardinal axes of motion.

DSRGCs were discovered discovered in the rabbit retina [BH63] shortly

after the first direction selective neurons were observed in cats [HW59]. The

observation that the On-Off DSRGCs prefer the four cardinal directions [OB67]

stimulated work on their mechanism of computing direction selectivity [BL65],

function [Oys68, OTC72], and development [EAG+08]. Few studies have at-

tempted to determine the role of DSRGCs in the central perception of visual mo-

tion [LOT69, MB69, SCM71, FSSI79], as they were thought to primarily project

to subcortical structures involved in reflexive eye movements [OTC72]. Instead,

higher order motion features in cortex are thought to receive input from direction

selective cortical inputs, which in turn derive their sensitivity to motion from many

non-direction selective LGN neurons [SH98].

Since neurons in visual cortex can derive direction selectivity de novo, the

functional role of On-Off DSRGCs in central vision is unclear. Before delving into

our experimental and theoretical work, it is useful to consider the properties of

On-Off DSRGCs that set them apart from other direction-selective cells. Each

On-Off DSRGC is tuned (responds strongest) to motion in one of the four cardinal

directions [OB67]. The neurons responding to a particular direction form a mosaic

on the surface of the retina, allowing a complete representation of motion in that

direction at each position of the visual field [AO95, HWE+09].

Since the world itself has an overrepresentation of edges in the horizontal

and vertical directions, a developmental program could begin with a random as-

sortment of direction preferences and learn to represent the cardinal directions.

However, the cardinal motion preference of On-Off DSRGCs is present before eye-

opening [WHZF11] and is not altered by dark-rearing or pharmacological manipu-

lations [EAG+08]. Individual subtypes of On-Off DSRGCs preferring a particular
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direction have been genetically labeled [HWE+09, KZMS10], further strengthen-

ing the claim that any adaptation to the statistics of the natural environment has

occurred on an evolutionary timescale.

Oyster and Barlow [OB67] observed that the direction preferences of these

neurons corresponded to the extraocular muscles, and thus that they might be

involved in the feedback control of eye movements. Oyster [Oys68] suggested that

DSRGCs likely “provide errors to a visual servo system which minimizes image

motion. To verify this idea, retinal direction information must be traced to its

final destination in the brain.” In this view, On-Off DSRGCs are a specialized

part adapted to a very specific task. Yet with the advent of genetically labelled

DSRGC cell lines, it at last became possible to trace these cells to their “final

destination.” As suggested by Oyster, both ON and On-Off DSRGCs do seem to

provide inputs to the anatomical regions responsible for reflexive eye movements.

However, On-Off DSRGCs (and also one subtype of OFF-DSRGC) but not ON-

DSRGCs were discovered to provide inputs to the LGN [HWE+09, YIS+09].

The principle that the direction preferences of these cells had adapted to the

mechanics of the lateral and medial rectus muscles of the eye (controlling eye move-

ments in the cardinal directions) is not disproven by this finding. However, the

natural scenes explanation for cardinal motion preference deserves greater consid-

eration. Humans are better at discriminating variability in horizontal and vertical

angles than in discriminating oblique angles [App72], and higher order visual areas

conserve a bias towards the cardinal directions [LPF03]. Yet widely-used models

in which neurons are optimized to discriminate between closely varying directions

do not seem to predict the cardinal motion preference (Chapter 2). We present a

simple argument from the symmetry of the distribution of visual motion directions

in Chapter 2 that predicts the cardinal motion preferences of these cells. The

theory can be extended to ask how pairs of neurons should encode visual motion,

demonstrating that the On-Off DSRGCs have optimal tuning curves for encoding

two orthogonal directions of motion (Chapter 2).

Attention to the On-Off DSRGC pathway in central visual processing grew

with the discovery that direction selective neurons in the visual cortex of mice
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have a strong bias towards cardinal directions that disappears with experience

[RNG+11]. The literature on direction selective neurons in LGN is scant - Levick

and colleagues [LOT69] showed that there were direction selective neurons in the

rabbit LGN in 1969 and suggested that their tuning curves might be sharpened

relative to those of DSRGCs. DSRGCs were observed in the rat [MB69, FSSI79] as

well, but cat LGN neurons were found to have only a weak sensitivity to direction

[TLZL94].

With the recent discovery that posterior On-Off DSRGCs target the su-

perficial region of the LGN [HWE+09], we became interested in the question of

whether it would be possible to observe organization of direction information in

the mouse LGN. We developed and applied a novel method of in vivo two photon

imaging to this problem. The method was depth-limited, but is the first in vivo

two photon imaging of population activity in the LGN. With this method, we were

able to observe the existence of direction selective neurons in the superficial mouse

LGN. There was a bias towards horizontal motion preference in the direction selec-

tive neurons we observed, confirming the physiological relevance of anatomically

observed posterior On-Off DSRGC axons in the superficial LGN [HWE+09]. This

anterior-posterior direction opponency was accompanied by an unexpected class

of neurons that responded to motion in either direction along the horizontal axis.

We construct a model of random wiring to explain this result in which

DSRGC inputs are targeted to different layers but wiring is completely random

within a layer. Our intention is to determine whether random wiring could explain

the population statistics we observe, or whether it would be necessary to invoke

some other mechanisms for LGN neurons to select inputs of a common type. We

find that random wiring is sufficient to explain our observations, even when the

model is restricted by previous experimental results. Although the model is in

agreement with the available data, it paints a picture of LGN wiring in which

there is a large degree of integration across functional types giving rise to new

feature selectivity such as axis selective neurons. This view of LGN anatomy is at

odds with the predominant view of the LGN as a mere relay of retinally derived

information [URR99], and is testable with electron microscopy [HHC+04].
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The horizontal direction and axis selectivity we observe, and the model we

put forward to explain it, further constrains our investigation of the information

processing that occurs in the retinogeniculate motion circuit. When pairs of op-

posing, rather than orthogonal, direction selective inputs synergistically encode

visual motion, our theory predicts sharper tuning curves for those cells. Further,

the sharpness of tuning in the superficial LGN matches the specific prediction for

horizontal preferring neurons, and we make an additional prediction regarding the

sharpness of tuning for vertical motion representation.

The statistical symmetries of visual motion thus predict properties of On-

Off DSRGCs, and the extension of our theory to encompass the symmetries of the

circuit predicts properties of direction selective LGN neurons. As a final step, we

generalize our theory to consider a class of neurons responding to both directions

of motion along an axis. The distribution of axis of motion can be thought as a

doubled circle (Chapter 2, Figure 2.7A) in which some symmetry has been lost

with respect to the direction of motion. We show that this symmetry-breaking

corresponds to a prediction that oblique axis selective cells are less optimal and

more asymmetric than cardinal axis selective cells.

We present results suggesting that there is preservation of symmetry by

the retinogeniculate motion circuit. The relationship between circuit, physical,

and statistical symmetries in the representation of visual motion underlies this

work. Together, these results suggest that the LGN both preserves (by separating

into layers) and breaks (by integrating within a layer) physical and statistical

symmetries, and that this organization is optimized to transmit information about

the direction of visual motion.



Chapter 2

Anterior-Posterior Direction

Opponency in the Superficial

Mouse Lateral Geniculate

Nucleus

2.1 Abstract

We show functional-anatomical organization of motion direction in mouse

dorsal lateral geniculate nucleus (dLGN) using the first two-photon calcium imag-

ing of dense populations in thalamus. Surprisingly, the superficial 75µm contains

anterior and posterior direction-selective neurons (DSLGNs) intermingled with

non-direction-selective neurons, while upward and downward-selective neurons are

nearly absent. Unexpectedly, the remaining neurons encode both anterior and pos-

terior directions, forming horizontal motion-axis selectivity. A model of random

wiring explainsconsistent with these results makes quantitative predictions about

the connectivity of direction-selective retinal ganglion cell (DSRGC) inputs to the

superficial dLGN . DSLGNs are more sharply tuned than DSRGCs. These results

suggest dLGN maintains and sharpens retinal direction selectivity, and integrates

opposing DSRGC subtypes in a functional-anatomical region, perhaps forming a

6
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novel feature representation for horizontal-axis motion, contrary to dLGN being a

simple relay. Furthermore, they support recent conjecture that cortical direction

and orientation selectivity emerge in part from a previously undescribed motion-

selective retinogeniculate pathway.

2.2 Introduction

Visual motion perception depends on the computation of direction of mo-

tion from spatiotemporal luminance patterns. It is widely believed that these

computations emerge de novo in the cortex, independently of retinogeniculate

direction-selective inputs [HW61, PLF04]. This view persists in spite of the fact

that motion is also computed in the retina [FMW02, WHZF11, BHD11], where

subtypes of direction-selective retinal ganglion cells (DSRGCs) encode each of four

cardinal directions (On-Off cells) or three distinct directions (On cells). These cells

have long been believed to serve purely subcortical pathways and mediate reflexive

behaviors [OB67], but not to supply input to cortex.

Recent evidence has begun to challenge the assumption of separate retinal

and cortical visual motion pathways in the mouse [HWE+09, KZMS10, RNG+11].

During early development, cortical direction and orientation selective neurons pre-

fer cardinal directions similar to the direction preferences of some On-Off DSRGCS

[RNG+11]. After this initial period, direction and orientation tuning evolve into

the adult form, characterized by the existence of neurons preferring all directions.

This compelling result suggests for the first time the possibility that direction

selectivity computed in the retina may strongly influence cortical direction and

orientation tuning via a pathway through the dorsal lateral geniculate nucleus

(dLGN). However, a functional direction-selective pathway from retina to dLGN

to cortex has not been shown in any species. It also remains largely unknown what

motion computations, if any, are performed in the dLGN.

In the canonical view, the dLGN simply relays information from the retina

to cortex, maintaining segregation of functional cell types as defined in the retina

[NC09]. Furthermore, these pathways are generally organized in distinct layers
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of uniform functional cell types, perhaps to help maintain segregation of parallel

information channels and avoid integration of separate pathways. Thus, if dLGN

does relay retinal direction-selectivity to the cortex, it may be organized in dis-

tinct layers of uniform function within dLGN. Each cardinal direction of motion

is represented by a different type of retinal ganglion cell (RGC), with distinct mo-

saics across the retina for each DSRGC type [HWE+09]. As such, each direction

may be represented by its own layer in the dLGN in order to maintain functional

segregation, if the canonical view applies.

Recently, it was shown that at least two On-Off DSRGC subtypes and one

novel Off DSRGC type terminate their axons at different depths within the mouse

dLGN [KZY+08, HWE+09, KZMS10, REZW+11, KDlHK+11], raising the possi-

bility that there may be a laminar organization of distinct direction preferences in

dLGN. Based on the pattern of axon terminals, posterior direction selectivity may

be limited to the superficial ∼75 µm layer of dLGN and upward and downward

direction selectivity may be restricted to deeper layers in dLGN. However, it is

not entirely clear from these anatomical studies whether these projections over-

lap with each other. Furthermore, the projections of anterior and upward On-Off

DSRGCs, as well as a multitude of other cell types, have not been traced. Pre-

dictions regarding the existence of a laminar organization of direction selectivity

in dLGN are further limited by unknown circuit parameters such as whether the

relevant dLGN neurons sample from retinal inputs across layers versus near their

cell bodies, and the degree to which direction selectivity is preserved across the

retinogeniculate synapse. Surprisingly, a thorough electrophysiological study did

not report direction-selective or On-Off responses in the mouse dLGN [GT03],

bringing into question whether direction selectivity is maintained and relayed at

all in mouse dLGN. Although, it is possible that stimulus parameters and analysis

criteria of this previous study did not identify direction-selective neurons. More-

over, a functional-anatomical organization of direction tuning has not been shown

in any species, despite the rare observation of direction-selective lateral geniculate

neurons (DSLGNs) in rats and rabbits [LOT69, MB69, SCM71, FSSI79]. How-

ever, the electrophysiological recording methods used by these studies may not
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have been able to distinguish the precise depths of a sufficient number of recorded

neurons, especially given their rarity in the population (∼5-10%), and potential

proximity of some of these neurons to the most superficial layers of dLGN.

Here, we directly examine the functional-anatomical organization of direc-

tion tuning in the superficial 75 µm layer of mouse dLGN using the first two-

photon calcium imaging of dense populations in the thalamus. This dense sam-

pling of neurons in the superficial LGN allowed us to characterize the direction

tuning and precise anatomical location relative to the dLGN surface and border

with the lateral posterior nucleus (LP) of dozens to hundreds of neurons simul-

taneously. By tiling across all three dimensions corresponding to the superficial

75 microns of the dLGN, we sampled hundreds of densely-labeled neurons within

the same animal in a given experimental session. The efficiency and thoroughness

of this approach distinguishes it from other methods, such as electrophysiological

recordings. These advantages of the imaging method allowed us to determine the

functional-anatomical organization of motion direction information in the super-

ficial dLGN. We find using this approach that two opposing directions of motion

(posterior and anterior) are encoded by subpopulations within the same superficial

region. Even more strikingly, we find another comparably sized subpopulation of

neurons that encodes both opposing directions of motion within the same neuron

to form horizontal axis-of-motion selectivity. All three of these functional subtypes

are intermingled within a majority of non-direction-selective neurons within the

superficial region. Neurons encoding vertical directions are very rare or nonexistent

in this region. We use these findings to examine the likelihood that horizontal di-

rection and axis-selective neurons in dLGN result from locally random integration

of concentrated anterior and posterior direction-selective input to the superficial

dLGN region.
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2.3 Result

2.3.1 Two-Photon Population Calcium Imaging of Visual

Responses in Superficial Mouse dLGN

In order to determine the functional organization of direction tuning in the

superficial mouse dLGN and test whether direction selectivity follows a laminar

pattern of direction preference, we developed a method for in vivo two-photon

calcium imaging of neuronal visual responses in the superficial region (leq 75 µm

deep from the surface) of mouse dLGN. To our knowledge, these studies yield

the first simultaneous physiological measurements of populations of anatomically

identified thalamic neurons (Figure 2.1). We expected to find a virtually uniform

layer of posterior DSLGNs given axon terminations of posterior DSRGCs specific

to this region [HWE+09, REZW+11]. For calcium dye loading, Oregon Green

Bapta-1 AM (OGB) was injected into the dLGN of C57/Bl6 mice (Figure 2.1A).

To test for direction selectivity in the dLGN, we presented drifting square-wave

gratings of 12 equally-spaced directions at a speed known to stimulate DSRGCs

[WSH05, KZY+08, KZMS10, HWE+09, YIS+09] (i.e., 25 deg/s, 0.01 cpd). Five

repeats of each stimulus and one a blank gray stimulus were presented in random

order to the animal while visually-evoked calcium responses were recorded in up

to dozens of neurons simultaneously at a known depth in the dLGN, reflecting

the underlying changes in firing rate of each neuron [KGH05, KABR10] (Figures

2.1C-1E and 2.2). This method allows even rare neuron subtypes to be detected,

and each neurons precise location to be mapped anatomically within the dLGN.

Many neurons responded robustly and reliably to at least one direction of

the drifting grating, characterized by a time-locked increase in fluorescence to the

period of the drifting grating (n = 353, ∆F/F amplitude at F1 or F2 >2.5% and

circular T2 test p <0.05; Figure 2.7). We used the modulation of the fluorescence

signal at the temporal frequency of the grating (0.25 Hz, F1) or at twice the tempo-

ral frequency of the grating (0.5 Hz, F2) as the measure of neuronal responsiveness.

The F1 modulation corresponds to either the onset (On) or offset (Off) of each

bar of light passing through a cells receptive field, while the F2 modulation cor-
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responds to both the onset and offset (On-Off) of each bar of light. Importantly,

since the OGB signal attenuates higher frequencies [VPM+10], a large, detected F2

modulation represents an even stronger than recorded modulation, increasing con-

fidence in On-Off designations. Likewise, an apparently low F2 modulation leaves

characterization of On-Off ambiguous or not possible. We computed the direction-

selectivity index (DSI) and axis-selectivity index (ASI) of each responsive neuron

in our sample. Neurons with high DSI values (DSI >0.5) responded preferentially

to a single direction of the grating. Neurons with high ASI values (ASI >0.5) re-

sponded preferentially to gratings drifting along a single axis of motion, responding

selectively to gratings drifting in either opposing direction along a motion axis at

a single orientation. The majority of neurons were not selective for motion in a

particular direction or along a particular axis (n = 320/353, Figure 2.2B, DSI <0.5

and ASI <0.5). These responses are consistent with the circular direction tuning

curves typical of dLGN neurons [HW61]. These findings demonstrate that the

superficial dLGN is far from a purely direction-selective region.

2.3.2 Anterior and Posterior Direction Selectivity in Su-

perficial Mouse dLGN

Conversely, 18 of the visually responsive cells in the dataset were strongly

and consistently direction selective (example cells Figures 2.2C, 2.2D and 2.3A, DSI

>0.5, Hotelling T2 test p <0.05). The proportion of DSLGNs observed is highly

significant compared to chance (shuffled trials, p <10-6, see Experimental Proce-

dures), and is within the range of direction selective fractions previously observed

in the mouse retina [KZY+08, HWE+09, BHD11] and rat LGN [MB69, FSSI79].

The majority of neurons in our dataset responded to both the onset and offset of

each bar of light moving through their receptive field (n = 10/18), defining their

receptive fields as On-Off and strongly suggesting that they receive driving input

from On-Off RGCs. The remaining neurons could not be definitively characterized

as either On, Off or On-Off. We next tested for functional organization of pre-

ferred direction in the superficial dLGN population, based on our predictions from

DSRGC projections. Unexpectedly, the majority of DSLGNs were strongly selec-
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tive for the anterior direction (n = 11/18, including one near the anterior-downward

border, Figures 2.2C and 2.3A), and the majority of these neurons were On-Off di-

rection selective (n = 8/11). Another population of DSLGNs was selective for the

posterior direction (n = 5/18, including one near the posterior-downward border),

corroborating known posterior DSRGC projections to the superficial layer. At

least one of these neurons could be defined with On-Off responses (Figure 2.2D),

perhaps reflecting the variety of On-Off response types inherent to that population

[HWE+09, REZW+11], and the attenuation of higher frequencies in the calcium

signal. Only one neuron was selective for upward motion, and one for downward

motion (Figure 2.3A), consistent with rare arborization of On-Off downward and

Off upward DSRGC axons in the superficial dLGN layer [KZMS10]. These re-

sults strongly predict a previously unknown retinogeniculate projection of On-Off

anterior DSRGCs to the superficial dLGN region. Furthermore, insofar as On-

Off upward DSRGCs project to dLGN, they are likely to project to deep rather

superficial layers.

Overall, the preferred directions of DSLGNs in the superficial 75 µm of

the dLGN were distributed along a single axis (Figure 2.3C, axial Rayleigh test, p

<0.05, unimodal Rayleigh test n.s.) corresponding to horizontal motion (fitted dis-

tribution <2◦ from horizontal axis). It is important to note that the axial Raleigh

test is significant (p <0.05) for DSI thresholds less than 0.5 and greater than 0.22

for neurons which show a consistent direction bias or sensitivity (Hotelling T2 test,

p <0.05), suggesting that direction selectivity in the population lies on a contin-

uum (Figure 2.8A). Interestingly, anterior DSLGNs (aDSLGNs) were intermingled

in depth with posterior DSLGNs (pDSLGNs) within the superficial 75 µm of the

dLGN (Figure 2.3D). The distributions of tuning width between pDSLGNs and aD-

SLGNs were indistinguishable from each other (t-test n.s.), and were more sharply

tuned for direction than reported for DSRGCs [mean width at half-maximum = 76

± 7◦ (SE) for DSLGNs compared to 115◦ reported for DSRGCs ([EAG+08], t-test

p <0.05]. Firing rate to OGB signal transformations are linear at low firing rates

[KABR10, LDL+11, NNC12], suggesting that the sharper tuning curves we observe

are not artifacts and represent sharpening of direction tuning in the dLGN [see
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also [LOT69]]. These results suggest that the dLGN both maintains and sharpens

retinal direction tuning in a subset of neurons and contains a preferred direction-

biased superficial region. Intriguingly, the direction-selective neurons in this region

overwhelmingly encode opposite directions along a single axis of motion.

2.3.3 Horizontal Axis Selectivity

This functional organization of opposing direction tuning prompted us to

next investigate whether the dLGN integrates across opposing directions of motion

to form axis-of-motion-selective neurons within the same region, in contrast to the

role of the dLGN as a simple relay of segregated functional channels. In support

of this hypothesis, 15 of the visually responsive neurons were highly selective for a

particular axis of motion, at a single orientation of the grating (Figures 2.2E and

2.3B, ASI >0.5). The proportion of ASLGNs observed is also significantly different

from chance (shuffled trials, p <10-6, see Experimental Procedures). The preferred

axis of motion of these neurons was also overwhelmingly biased towards a single

axis (axial Rayleigh test, p <0.05, unimodal Rayleigh test n.s.), corresponding to

horizontal motion (Figure 2.3C). The axial Raleigh test is significant (p <0.05) for

all ASI thresholds less than 0.5 for neurons which show a consistent axial bias or

sensitivity (Hotelling T2 test, p <0.05), suggesting that like direction selectivity,

axis selectivity in the population lies on a continuum (Figure 2.8B).

The preferred motion axis for axis-selective neurons was not significantly

different than the axis for direction-selective neurons (Watson-Williams test; fitted

distribution <20◦ from horizontal axis). Furthermore, axis-selective lateral genic-

ulate neurons (ASLGNs), pDSLGNs and aDSLGNs were intermingled in depth

within the superficial 75 µm of the dLGN (Figure 2.3D; one-way ANOVA n.s.).

ASLGNs, like DSLGNs, were more sharply tuned than DSRGCs [mean width

at half-maximum = 61 ± 2◦ (SE) for ASLGNs compared to 115◦ reported for

DSRGCs [EAG+08], t-test p <0.05]. Three of these neurons could be defined as

On-Off cells. Cell 1 in Figure 2.2E shows On-Off responses in one such neuron.

The similarity in response characteristics of ASLGNs and DSLGNs suggests that

they may receive common, retinal input. This is further supported by parameters
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of the retinogeniculate circuit, as discussed below.

2.3.4 Random Wiring Model

DSLGNs and ASLGNs in the superficial region both have strong and sta-

tistically significant preferences for the same horizontal axis of motion. This sug-

gests that anterior and posterior but generally not upward or downward direction-

selective inputs are likely to synapse in the superficial dLGN and that ASLGNs

may arise from the integration of opposing direction-selective inputs. This is fur-

ther supported by the lack of evidence for an axis-selective cell type in the mouse

retina (discussed below). Two main hypotheses can explain opposing direction-

selective integration to form ASLGNs: 1) horizontal ASLGNs reflect a specific

connectivity mechanism that targets certain dLGN neurons or synapses to result

in integration of opposing direction-selective inputs, or 2) horizontal ASLGNs re-

flect integration as a result of random wiring (i.e., random sampling from local

axon terminals) in a region which contains axon terminals from both anterior and

posterior direction-selective inputs.

In order to determine whether the fractions of DSLGNs, ASLGNs, and non-

selective neurons that we observe in superficial dLGN could have arisen by random

wiring alone, we developed a simple statistical model of the inputs to the super-

ficial dLGN. The model does not rule out the possibility that other mechanisms

contribute to forming this circuit. Rather, it asks whether random wiring alone

within the region can explain our findings in a way that is consistent with previous

experimental results, and makes testable predictions for future studies. In other

words, if the model proves to be valid under these constraints, specific connectivity

mechanisms are not theoretically necessary to yield the representation of direction

and axis information in the dLGN determined experimentally by our study.

In the random wiring model, neurons receive multiple independent inputs

that are anterior DS, posterior DS, or non DS. The random wiring model is con-

strained by the previous experimental observation that mouse dLGN neurons re-

ceive one to three strong inputs from the retina [with probabilities: one input (p1),

two inputs (p2), and three inputs (p3 = 1 − p1 + p2)], from which they derive
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their stimulus selectivity [CDL71a, CDL71b, Mas87, Mas92, URR99, CR00]. Im-

portantly, the basic results of the model are robust against the addition of dLGN

neurons which receive more than three strong retinal inputs. Inputs from other

sources (such as cortex and superior colliculus) are modulatory, rather than driving

including in the case of direction tuning [MDCL86, TLZL94]. The model assumes

that input from DSRGCs must be nearly pure to generate a DSLGN or ASLGN,

since linear summation of inputs only produces direction or axis selectivity (i.e.,

0.5 DSI/ASI) if over 90% of the inputs to a cell are of the required type(s). Cle-

land and colleagues [CDL71a] performed paired RGC-LGN recordings in cats and

found that very few (8.8%) LGN neurons had a single RGC input which accounted

for all of its spikes, providing information about likely values of p1. To simulate

random wiring, we assume that the probability of input to a dLGN neuron from

a given type of RGC is equal to the total proportion of input to superficial dLGN

belonging to that RGC type.

Together, these assumptions define a set of equations for each possible type

of cell. For example, the probability that a dLGN neuron receives one input

and is direction selective is 2p1f , where p1 is the probability of receiving one

input and f is the fraction of RGC inputs to dLGN of a single DSRGC type.

Other types of cells (e.g., ASLGNs receiving three inputs) can be defined similarly,

and the probabilities of each type are shown in Figure 2.6. We assume that the

fractions of input to superficial dLGN of either anterior or posterior DSRGCs are

equal, and that upward and downward DSRGCs do not project to the superficial

region, yielding 2f for the total fraction of DS input. The sum of probabilities for

observing DSLGNs with one, two, or three inputs in the model is equal to the total

fraction of DSLGNs, p(DS). Similar reasoning applies to ASLGNs with two or three

inputs, yielding p(AS) (see Appendix for a full derivation). In the model, not all

values for p(DS) and p(AS) are possible given random wiring; however the range

of possibilities is large (Figure 2.5B, light gray region). Previous studies provide

bounds on the likely fraction of dLGN neurons receiving only one driving RGC

input (p1 = 0.038-0.19, 95% C.I. derived from Cleland et al 1971 using the Wilson

interval for binomial variables with 5/57 single input LGN cells). Applying these
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bounds to p1 limits the possible solutions for fractions of ASLGNs and DSLGNs

which are consistent with the random wiring model (dark gray region of Figure

2.5B). The experimentally observed fractions of ASLGNs [p(AS) = 0.043, binomial

95% C.I. 0.026-0.069] and DSLGNs [p(DS) = 0.051, binomial 95% C.I. 0.033-0.079]

in our dataset (red region of Figure 2.5B) is consistent with the previous data on the

limits on p1 (fall within the bounded region). These results suggest that random

wiring is a valid mechanism for yielding the fractions of DSLGNs, ASLGNs and

non-selective neurons in the superficial dLGN without violating previous results

on the fraction of LGN neurons driven by a single input.

The random wiring model thus defines equations for two experimentally de-

termined values [probability of ASLGN, p(AS), and probability of DSLGN, p(DS)]

using three variables (f, p1, p2), leaving one free variable. We varied p2 in order

to find the family of solutions for p1 and 2f which satisfy the observed values for

p(DS) and p(AS) (Figure 2.5C, black curve with red region indicating confidence

intervals). In order for random wiring to explain the experimentally observed axis

and direction selective cell fractions, the model predicts that the total fraction of

direction-selective input (2f) to the superficial dLGN must be between 29 and 39%

of the total RGC inputs (25-45% including 95% C.I). The model also predicts that

the probability of a dLGN neuron receiving a single, driving retinal input (p1) is

between 0.028 and 0.092 (0-0.167 for the set of p1 values from the 95% C.I of AS

and DS fractions, see Experimental Procedures). Importantly, the ranges of 2f

and p1 are likely to be much narrower in actuality given that they are based here

on the extreme solutions of the model (e.g., p2 = 0), which are very unlikely to oc-

cur in the actual circuit. These results predict that the fraction of On-Off DSRGC

input to superficial dLGN is similar to the total fraction of retinal ganglion cells

that are On-Off DSRGCs, since the fraction of retinal ganglion cells which are

On-Off DSRGCs has been estimated to be between 20 and 36% ([HWE+09]; ex-

trapolating for four major On-Off DSRGC subtypes). Also, the range of solutions

for p1 overlap with experimentally observed values determined by dual recordings

between retina and dLGN in the cat [Figure 2.5B-C; [CDL71a]]. In this way, our

experimental results, combined with the results of our random wiring model and
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previous studies suggest that selective connectivity mechanisms are not required

in this circuit beyond concentrated anterior and posterior direction-selective input

to the superficial dLGN region. Furthermore, the models results given our data

make specific predictions about the wiring statistics of DSLGNs and ASLGNs.

2.4 Discussion

These results demonstrate a novel functional organization of opposing di-

rection information in the superficial region of mouse dLGN. The representation of

retinal motion information is segregated in terms of horizontal from vertical mo-

tion information, but integrated in terms of combining opposing directions along

the same horizontal axis within a majority of non-direction-selective neurons in

the same region. These dLGN functional cell types likely arise primarily from

synaptic integration of retinal inputs. It has been shown that dLGN neurons

are strongly driven and highly functionally correlated with their inputs from the

retina, which densely synapse on the soma and perisomatic compartments of re-

lay cells [HHC+04]. Moreover, dLGN neurons are modulated, rather than driven,

by other inputs such as from cortex, the reticular nucleus and the superior col-

liculus, which target more distal dendritic compartments [SG98]. Feedback from

visual cortex was removed during surgery in the experiment and thus dLGN re-

sponses are unlikely to derive from cortex in our experiments (also see [TLZL94]).

Projections from the superior colliculus to dLGN have been shown to not drive

direction tuning in dLGN [MDCL86]. Thus, it is unlikely that motion-selective re-

sponses in dLGN are derived from tuning in the superior colliculus. Furthermore,

local connections in dLGN are unlikely to compute direction tuning de novo since

excitatory connections are not believed to occur between neurons in the dLGN

[CRS03]. However, inhibitory connections do exist within dLGN and may modu-

late or sharpen direction tuning [LOT69]. It is important to note that excitatory

and inhibitory neurons in dLGN were not differentiated by our study. Our results

and these previous findings, as well as the known projection of posterior DSRGCs

to superficial dLGN, suggest that direction and axis tuning in dLGN are derived
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from integration of inputs from the retina.

Accounting for known properties of the retinogeniculate circuit, these re-

sults suggest that dLGN can maintain, sharpen and integrate retinal information

pathways. Moreover, all of these functions can be accomplished via locally ran-

dom wiring and do not require uniform functional lamination, as our model shows.

Since dLGN provides the majority of sensory input to primary visual cortex, and

given the remarkably similar direction preference tuning between retina, dLGN and

cortex (present study; [HWE+09, RNG+11]), it is likely that direction tuning first

computed in the retina is manipulated by the dLGN and then relayed to cortex.

This previously undiscovered pathway may supply motion information to cortex to

help derive cortical direction and orientation selectivity. This may indicate a sepa-

rate mechanism for generating direction and orientation selectivity compared to, in

contrast to classic models for the generation of direction and orientation selectivity

[HW61, HW62, FM00, PLF04]. Still, like retina, the dLGN likely only represents

specific axes of motion, and thus cortex must derive tuning for intermediate direc-

tions tuning via additional circuit mechanisms. Future studies will be necessary to

reveal whether the retinogeniculate pathway is necessary and sufficient to initiate

direction and/or orientation tuning in cortex during development, and what roles

the pathway plays in cortical computations, perception and behavior in the adult.

The pattern of direction tuning in superficial dLGN is in agreement with

superficially restricted projections of posterior DSRGCs [HWE+09], and deeply

restricted projections of On-Off downward and Off upward DSRGCs [KZMS10,

KDlHK+11]. Our results suggest that regardless of whether projections of these

different DSRGCs overlap, functional segregation is achieved in dLGN. This also

strongly implies that DSLGNs sample retinal inputs near their cell bodies, despite

having dendrites which likely span across layers, consistent with what has been

observed more generally for dLGN relay neurons [HHC+04, SG98]. Furthermore,

the results strongly predict projections of On-Off anterior DSRGCs to superficial

dLGN and On-Off upward DSRGCs to deep and not superficial dLGN. Similarly,

anterior DSRGCs may avoid projections to deep layers, following the pattern of

posterior DSRGCs. This suggests a striking model of functional organization in
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which the cardinal axes of visual motion are separated in the dLGN (Figure 2.4A).

In potential support of this hypothesis, two extracellular recording studies in rats

found a similar proportion of DSLGNs compared to the present study, but that

>80% of the DSLGNs in their samples preferred motion in vertical-axis directions

[MB69, FSSI79], indicating that dLGN encodes vertical directions. These studies

did not report precise depths of their recordings, perhaps because of limitations

of their methods and the rarity of DSLGNs, but it is likely that their methods

tended to sample from deep dLGN and may have largely missed superficial cells.

As imaging technologies improve to provide access to deeper dLGN and more

DSRGC cell type projections are labeled and characterized, the precise organiza-

tion of deeper dLGN, and a more complete understanding of potential laminar

organization may be revealed. Organizing opposing directions together and sep-

arating orthogonal axes in distinct layers represents an unprecedented functional

organization for dLGN and may provide advantages for computing higher-order

motion parameters.

We observed neurons that encode an axis of motion matching the opposing

preferences of direction-selective neurons in the same dLGN region. We see two

main possibilities for how this overlap in selectivity arises: either ASLGNs inte-

grate opposing direction-selective retinal ganglion cell type inputs to form a new

response class or ASLGNs receive direct input from an undiscovered axis-selective

retinal ganglion cell type and relay that information. The latter hypothesis is

most consistent with the view of the dLGN as a simple relay from retina to cor-

tex. Interestingly, if this pathway exists it may suggest further specificity of RGC

projections based on motion axis preference, for example if vertical axis cells are

found in deeper dLGN. However, while axis-selective retinal ganglion cells have

been found in the rabbits visual streak [Lev67, VT10], they are nearly absent in

the rabbits peripheral retina [Oys68] and have not been described previously in

the rodent retina, which has no visual streak. Moreover, while the persistent view

has been that the dLGN only relays retinal information and does not generate

novel feature selectivity, the current results present the first observed instance of

overlapping and opposing information channels in a single dLGN region, and thus
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the potential for direct integration of retinal pathways, for example as evaluated

by our random wiring model. Interestingly, one previous study suggested potential

for rare mixing of RGC type inputs in dLGN to yield intermediate tuning proper-

ties of X and Y cells in the cat [Mas92], suggesting that similar mechanisms may

be involved in other species and cell types. However, the present results represent

the first indication that dLGN may integrate retinal information to form a novel

feature selectivity. Regardless of whether axis selectivity first arises in retina or

dLGN, the importance of this pathway may be further pronounced if axis-selective

inputs influence orientation selectivity in some neurons in the cortexone of the

most ubiquitous features represented by the cortex and classically believed to arise

in cortex, independent of axis or orientation-selective inputs [HW62, FM00].

Integration of opposing direction preferences by ASLGNs could result from

either selective connectivity between DSRGCs and ASLGNs, for example favored

by developmental mechanisms, or could occur by chance if connections are non-

specific between retina and thalamus, given that incoming axonal arbors of oppos-

ing DSRGC types likely overlap spatially within superficial dLGN, as predicted by

our results. Future studies are necessary to determine how axis selectivity develops

in dLGN. In order to test whether our results are consistent with the generation of

ASLGNs by chance integration of DSRGC afferents with opposing direction pref-

erences, we generated a simple model based on random retinogeniculate wiring.

In this model, dLGN neurons receive one to three driving retinal inputs

[CR00] randomly distributed according to the fraction of direction-selective inputs

from the retina (Appendix). The random wiring model requires that an overwhelm-

ing majority (81-100%) of dLGN neurons receive more than one driving input from

RGCs in order to produce the proportions of ALSGNs and DSLGNs we observe in

the superficial dLGN (∼4% and ∼5% respectively). This is consistent with previ-

ous studies which have reported that ∼92% of relay neurons receive driving inputs

from more than one RGC [CDL71a]. The model predicts that a relatively large

fraction of RGC input to superficial dLGN is direction selective (>25%),which is

similar the fraction of RGCs that are On-Off direction-selective (20-36%, based on

anatomical estimates from [HWE+09]). The random wiring model demonstrates
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that integration can result by chance from convergence of relatively common di-

rection selective inputs and give rise to the representation of motion we observed

(see Appendix for extensions and further discussion of the model). This suggests

a developmental mechanism for establishing local concentrations (i.e., lamination)

of incoming fibers of specific direction preference, but does not require selective

targeting on a single cell basis to generate ASLGNs and maintain direction selec-

tivity in dLGN. If the conditions of the model are not met physiologically, selective

wiring between DSRGCs and ASLGNs may be necessary to generate ASLGNs in

the absence of direct axis-selective input. Regardless of the mechanism, the juxta-

position of horizontal axis- and anterior-posterior direction-selectivity within the

same region suggests a novel computational role for the superficial dLGN. By both

sharpening and integrating direction information within a laminar functional or-

ganization, the dLGN appears to not merely relay direction information from the

retina to cortex, but instead organizes and manipulates that information before

projecting it downstream. Future studies examining direct functional connectivity

analyzed from the retina to thalamus to cortex, as well as of local interneuron

circuits within dLGN may shed light on the mechanisms underlying these compu-

tations. For example, whether sharpening of direction tuning in dLGN results from

nonlinear postsynaptic summation [CHS07] or precisely targeted feedforward in-

hibition [WVS+11] remains unknown. The methods developed and demonstrated

here in combination with other methods are likely to aid these studies. Further-

more, the influence of these computations and the functional-anatomical organi-

zation of direction and motion axis information in the dLGN on visual cortical

processing, development and behavior remain intriguing, open questions.

2.5 Methods

2.5.1 in vivo Preparation

All experiments involving living animals were approved by the Salk In-

stitutes Institutional Animal Care and Use Committee. C57Bl/6 mice (n = 7

animals) were anesthetized with isoflurane (1-1.5%). A custom metal frame was
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mounted to the skull centered over dLGN stereotaxic coordinates (Figure 2.1A).

The frame was a thin round plate, 1 cm diameter and 1 mm thick. A triangular

notch in the side of the frame fit into a holding mount that formed a large well

around the frame, aided in light shielding, and secured the frame (and mouse) to

the optics table. A counterbore in the frame with ∼8 mm diameter formed a small

well in the frame and allowed clearance for the objective. A second counterbore

with 5 mm diameter served as a notched locator for the custom tubes described be-

low. A 3 mm aperture was centered in the frame. A craniotomy was made within

the aperture, and the exposed cortex, including the majority of visual cortex, and

underlying hippocampus were aspirated, exposing the thalamus. The brain was

rinsed with artificial cerebral spinal fluid (ACSF; in mM: 150 NaCl, 2.5 KCl, 2

CaCl2, 1 MgCl2, 10 HEPES) and a temporary ∼3 mm long cylindrical tube was

inserted for stability. A glass pipette was lowered through the cylinder into the

dLGN. 10 mM Oregon Green Bapta-1 AM (OGB) with 10% DMSO and Pluronic

F-127 [SGHK03] and 50 µM sulforhodamine 101 (SR101) were injected with 150

ms pulses every 15 sec for 15 min at 200 µm below the dLGN surface and again at

400 µm. The temporary tube was replaced with a permanent tube with a glass cov-

erslip sealed to the bottom with index-matched optical glue. This tube was glued

in place forming a chamber, which was filled with ACSF. Each of these tubes were

shaped as a combination of a cylinder, which was lowered into the brain, and a

flat round rim with 5 mm diameter that fit into the frames counterbore, holding it

properly in place. OGB-loaded neurons were imaged through the tube using 925

nm excitation with a conventional water-immersion objective (Zeiss 40X, 3.6 mm

working distance), attached to the end of a custom-built, light-shielded version

of the moveable objective two-photon microscope (Sutter). Images were acquired

at 4-8 Hz. This strategy for deep-brain, two-photon imaging was adapted from

similar protocols for imaging in the hippocampus [MCSK04, DHT+10]. For visual

stimulation, chlorprothixene (1 mg/kg, IM) was administered every 4 hours and

isoflurane was lowered to 0.3-0.5%.
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2.5.2 Visual Stimulation

Drifting square wave gratings were presented on a calibrated LCD monitor

(60 Hz, 34 x 27.5 cm) placed 15 cm from the mouses eye, along an axis parallel

to the mouses retina. Gratings were 8 sec duration, 0.01 cpd, and drifted at 25

deg/sec (0.25 Hz) in 12 directions spaced 30 deg apart including: nasal, temporal,

superior and inferior, corresponding to anterior, posterior, upward and downward.

A blank stimulus was a uniform gray screen and was displayed after every twelve

trials. The screen was gray for several seconds between stimulus presentations. For

each field of view containing a unique population of neurons, each stimulus was

presented 5 times to the animal, in random order, while movies of OGB fluorescence

were recorded using the microscope and ScanImage software [PSS03] running on

Matlab (Mathworks).

2.5.3 Data Analysis

Each image frame was cross-correlated with a template image to correct for

movement. Most trials had only subpixel movements during stimulus presentation.

Regions of interest (ROI) were drawn around each cell in each field of view, exclud-

ing glia using sulforhodamine 101 labeling [NKKH04], and pixels were averaged

within each ROI. The measured fluorescence change relative to a prestimulus base-

line (∆F/F) was calculated and used in all subsequent analyses. Stimulus-evoked

response was assessed by taking the Fourier transform of the fluorescence signal at

the stimulus frequency (F1; 0.25 Hz in all experiments) and at twice the stimulus

frequency (F2; 0.5 Hz). This method has been used to analyze electrophysiologi-

cal recordings of neurons under periodic visual stimulation since, compared to the

mean, it better distinguishes neuronal response classes to periodic stimuli [HS76]

and is insensitive to shifts in phase and suppression below baseline. We found this

to be true for dLGN calcium responses, and frequency domain analysis provided

information about the trial-to-trial reliability of responses used in subsequent anal-

yses. Neurons were classified as visually responsive if they showed an F1 or F2

modulation greater than 2.5%, corresponding to a peak-to-trough height of at least

5%. The circular T2 test [VM91] was used to further restrict our analysis to neu-
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rons for which the phase and magnitude of the corresponding Fourier amplitude

(F1 or F2) was distinguishable from the blank condition (Figure 2.7, p <0.05).

Five trials were performed at each direction of the grating, and the magni-

tude of the mean F1 or F2 amplitude was used as the measure of neural respon-

siveness. Strict criteria for direction selectivity were used, by choosing only those

cells which had a Direction Selectivity Index (DSI) >0.5 by both max-null and

circular variance metrics:

DSImax =
rmax − rnull
rmax + rnull

(2.1)

DSIres =
|
∑
rk exp iθk|∑

rk
(2.2)

where rk is the F1 or F2 magnitude at direction k. In order to test for reliability

of direction selectivity, the Hotelling T2 test was performed on five resampled

resultants (|
∑
rk exp iθk| ) to see whether they were distinguishable from the origin

at the p <0.05 level. We bootstrapped this p value by generating 1000 samples

of five resultants where each resultant has one independent, randomly chosen trial

at each direction, and taking the mean p value as the true value. Cells for which

F2 or F1 modulation met these criteria were considered direction selective for

further analysis, and F2 modulated neurons with F2 >F1 were defined as On-

Off. The tuning curves, histograms and response vectors for these On-Off neurons

are represented as black in all of the figures. Other neurons (F1 modulated) are

represented as red. Despite the low-pass filtering inherent in the spike to calcium

transformation, most F2 modulated direction selective neurons had a greater F2

than F1 modulation (n = 6/10).

We then fit each set of responses to a circular Gaussian (von Mises) distri-

bution, which is described as

rmax
expκ cos(x− µ)

expκ
(2.3)

and described the tuning width via the relation for the full width at half-maximum

FWHM = 2 ∗ arccos
log(1

2
eκ + 1

2
e−κ)

κ
(2.4)
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as in [EAG+08]. For population analysis of direction selectivity, the preferred

direction of all direction-selective neurons (Figure 2.3A) was transformed by mul-

tiplication by 2 in order to map opposing directions onto one another. The result-

ing distribution was tested for unimodality with a Rayleigh test (p <0.05), and a

maximum likelihood fit to a circular Gaussian (von Mises) distribution was used

to demonstrate the angle and sharpness of axial tuning (Figure 2.3C). The same

procedure was performed for axis-selective neurons (F1 and F2; Figure 2.3B and

2.3C).

In order to determine the probability that the fraction of direction and axis-

selective cells we observed occurred by chance (for example from a noisy signal or

unreliable neural responses), we resampled individual trials from all of the recorded

neuron responses with replacement to generate 10,000 random sets of 60 trials (5

trials per direction, 12 directions), to simulate 10,000 neurons. We then calculated

the DSI/ASI and reliability (Hotelling T2 test) for each of these simulated neurons

as described in the preceding section, and found that the probability of observing

a direction-selective (DS) neuron from chance was <.001. In order to determine

the probability that we would sample 18 DS neurons by chance, we calculated the

cumulative binomial probability for sampling n1 DS F1 and n2 F2 cells, where

n1 + n2 >17, in a sample size of 353. The same analysis was repeated for AS

neurons. For both DS and AS neurons, the probability of the observed number

of selective neurons was <10-6. This suggests that it is highly likely that the AS

and DS neurons we observe in dLGN are in fact axis and direction selective. We

furthermore calculated 95% confidence intervals for the observed fractions based

on the binomial probability distribution (Wilson interval) in order to account for

potential biases introduced from sampling from the actual populations of DSLGNs

and ASLGNs. The AS and DS confidence intervals defined a range of possible p1

values (0-0.17). Considering the joint 95% confidence interval of p(AS) and p(DS)

defined by a multinomial distribution, rather than two independent binomial 95%

confidence intervals, produced a similar p1 range (0-0.19).
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2.5.4 Random Wiring Model

The random wiring model is described in detail in Appendix: Random

wiring model.

2.6 Appendix: Random wiring model

2.6.1 Assumptions

In order to explore whether the observed proportions of direction and axis-

selective neurons in superficial dLGN require selective wiring, or whether they

could simply arise from random wiring, we considered a model with the following

assumptions:

1. Random wiring implies that the probability of an input to a dLGN neu-

ron from a given type of RGC is equal to the total proportion of input to

superficial dLGN belonging to that RGC type. To formalize,fa and fp are

the proportions of anterior and posterior direction-selective RGC inputs to

superficial dLGN, respectively. By random wiring, fa and fp are also the

probabilities that a given dLGN neuron receives input from each cell type,

respectively.

2. Mouse dLGN neurons receive 1 to 3 strong inputs from the retina, from

which they derive their stimulus selectivity. Previous studies in mice and

other species have found that relay neurons typically receive strong input

from one to three retinal ganglion cells [CDL71a, CR00]. In addition, the

stimulus selectivity of a relay neuron is highly correlated with the stimulus

selectivity of its RGC inputs [CDL71b, Mas87, URR99].

3. Any dLGN neuron which receives at least one non-selective RGC input is

non-selective. The direction selectivity index (0.5, resultant metric) used

in our study would require essentially pure DS input (16:1 ratio DS:non-

selective) by linear summation for an output neuron to be classified as DS.
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The same rationale applies to axis selectivity. However, note that an output

nonlinearity could potentially reduce this ratio.

4. Any dLGN neuron which receives a combination of purely A and P input

is axis-selective. Neurons receiving only A and P excitatory retinal input

would respond strongly to both directions, indicating axis selectivity. The

outcome of the simulation does not weigh heavily on this assumption. For

instance, loosening the assumption by allowing some cells to be non-axis-

selective under this criterion leaves our primary findings unchanged.

2.6.2 Theory

Under these assumptions, the probability of finding an anterior direction-

selective neuron [p(A)] is the sum of the probabilities of observing an anterior

DSLGN with one, two and three inputs,

p(A) = p(A;n = 1) + p(A;n = 2) + p(A;n = 3) (2.5)

where n is the number of inputs. If we take fa as the probability of a given input

being anterior selective (i.e., the fraction of anterior input), then

p(A;n = 1) = p1fa, p(A;n = 2) = p2f
2
a , p(A;n = 3) = p3f

3
a . (2.6)

By the first equation, p(A) equals the sum of these probabilities. Similarly, for

posterior cells

p(P ) = p(P ;n = 1) + p(P ;n = 2) + p(P ;n = 3) = p1f
1
p + p2f

2
p + p3f

3
p . (2.7)

For simplicity, and without altering the results to follow, we take fa = fp = f , so

that the total fraction of direction-selective input is 2f . The fraction of DSLGNs

and ASLGNs neurons generated by one, two and three RGC inputs is given in

Supplementary Figure 2.6.

Since the empirical probability of observing DSLGNs (0.05) and ASLGNs

(0.04) is known from our experiments, the system of equations

p(DS) = p(A) + p(P ) = 2p1f + 2p2f
2 + 2p3f

3 = 0.05 (2.8)
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and

p(AS) = 2p2f
2 + 6p3f

3 = 0.04 (2.9)

has two equations and three unknowns (p3 = 1 − p2 − p1). Thus, this system of

equations has a single free parameter, which we can write as the probability of two

inputs, p2. Varying p2,the family of solutions for p1 and 2f are shown in Figure

2.5C.

2.7 Figures
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Figure 2.1: (A) Surgery and calcium dye loading procedure as described in Ex-
perimental Procedures. Metal frame and tube cross sections, as well as anatomy [?]
are drawn to scale. The microscope objective drawing is not to scale. (B), Images
at multiple depths in the dLGN. Lateral is up. (C), Example field of view used
for imaging visual responses. (D-E), Change in fluorescence over time (∆F/F) for
neurons indicated by white boxes in (C). Cell 1 (F1 = 7.6 ± 0.4% F/F) responds
after Cell 2 (F1 = 5.9 ± 0.7% F/F) indicating slightly shifted positions of their
receptive fields relative to the same grating stimulus. Fourier magnitude is un-
affected by these shifts in phase (Figure 2.7). Red line indicates mean over five
trials; each trial is a gray line. Stimulus time indicated by bar under waveforms.
Scale bars: (B), 50 µm (C), 25 µm.
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Figure 2.2: (A), Polar plot legend for (B-E), with directions in visual coordi-
nates. Scale bars for fluorescence change (∆F/F) and time in (B-E) are shown in
lower right. (B-E) Examples of non-direction-selective dLGN neurons (B), ante-
rior direction-selective neurons (C), posterior direction-selective neuron (D), and
axis-selective neurons (E). Polar plots represent the magnitude of F1 (red) or F2
(black, On-Off) response to each grating direction. Axes outside of the circle show
the fluorescence time series, in units of percent change in fluorescence, in response
to each direction of the grating. Individual trials (gray) are overlaid with the
mean time series (red), where stimulus time (8 seconds) is indicated by bar under
waveforms as in (Figure 2.1D-1E).
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Figure 2.3: (A), Each vector on polar plot indicates a direction-selective neu-
ron. Direction of vector indicates direction preference. (B), Each vector indicates
an axis-selective neuron. Direction of vector indicates axis preference. Vectors
are reflected (gray) for display purposes, and represent the same data as black
and red vectors. (A-B), Length of vectors indicates level of direction selectivity
(DSI) or axis selectivity (ASI), using the max-null metric (Experimental Proce-
dures). Data for all neurons in the dataset are shown in Figure 2.8, using the
resultant metric and the Hotelling T2 test, for all values of DSI and ASI. Black
lines indicate On-Off response (F2 modulation) and red lines indicate F1 modula-
tion. (C), Maximum likelihood fit of axial circular Gaussian distributions to the
observed populations of direction- and axis-selective neurons from (A-B). Curves
represent the axial Gaussian models probability of observing a direction- (red)
or axis-selective (blue) neuron with a given preferred direction or preferred axis.
Dotted lines indicate preferred axis for each population, and curves are normalized
to equalize the maximum probability density for visualization. Both populations
prefer axes representing horizontal motion. (D), Depth of neuron populations in
dLGN dataset depending on stimulus selectivity. Whiskers are complete depth
range, boxes are 25th to 75th percentile, and the red line is the median depth.
Anterior-, posterior- and axis-selective neurons overlap locations in depth within
the superficial ∼75 µm of dLGN.
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Figure 2.4: (A1) (Left) Mosaics of retinal ganglion cells. Each color represents
a different On-Off DSRGC cell type: posterior (red), anterior (blue), upward (yel-
low), downward (green). Non-direction-selective neurons are gray. (Right, Super-
ficial Region) Organization of dLGN showing the superficial dLGN region con-
taining intermingled populations of posterior (red) and anterior (blue) DSLGNs as
well as horizontal ASLGNs (purple) and non-direction-selective neurons (gray) as
revealed by the current study. (Right, Deep Region) Predictions for deeper dLGN,
including intermingled upward (yellow) and downward (green) DSLGNs as well as
vertical ASLGNs (light green). This region is grayed out because its functional
organization remains unknown. Lines between retina and dLGN schematics rep-
resent RGC axons. Color conventions are same as rest of figure. The thickness of
the lines indicates predicted fraction (f) of overall input from our random wiring
model. Solid red and green lines represent known projection patterns of posterior
and downward DSRGCs, respectively, whereas dashed blue and yellow lines repre-
sent predicted projection patterns of anterior and upward DSRGCs made by the
current study. Our random wiring model demonstrates that concentrated, laminar
projection patterns of opposing DSRGCs can yield the fractions of DSLGNs and
ASLGNs we observe in superficial dLGN given locally random wiring.
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Figure 2.5: (A2) Basic probabilistic theory of the model which assumes dLGN
neurons receive one (probability = p1), two (p2) or three inputs (1-p1-p2) from
retina that drive their selectivity, including a variable for the fraction of anterior
and posterior direction selective input (2f). Some examples of individual prob-
abilities are shown. See also Appendix and Figure 2.8 as well as the main text
for details of the model. (B, C) Results of the model. (B) All possible ASLGN
and DSLGN fractions based on the model without further constraints (light gray
area). The fraction of purely single input neurons from [CDL71a] (95% binomial
C.I.: dark gray area 0.038 <p1 <0.19, actual value: dotted line) constrains the
model. The observed fractions of ASLGNs and DSLGNs in our study (95% bino-
mial C.I. from Wilson interval: red area, actual value: black dot) falls within this
plausible range. (C) Possible p1 and f values (by varying p2) corresponding to the
differing constraints in (B): unconstrained model (light gray region), constraining
p1 to be consistent with the fraction of purely single input neurons from [CDL71a]
(95% C.I.: dark gray region, actual value: dotted line), or constraining the model
to be consistent with the experimentally observed ASLGN and DSLGN fractions
in this study (95% C.I.: red region, actual value: black curve).
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Figure 2.6: Non-selective inputs would render dLGN neurons non-direction-
selective (DSI <0.5) in almost all instances, reducing possibilities to two permuta-
tions that are DS for each number of inputs. AS cells can only be produced from
two or more inputs.
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Figure 2.7: (A1-D1) F1 modulated neuron. (A2-D2) F2 modulated neuron (On-
Off cell; F2 >F1). (A1 and A2), Polar plot shows phase (angle) and magnitude
(radius, with inner circle 6% and outer circle 12% ∆F/F) of F1 modulation for
individual trial responses to drifting gratings at 180 degrees (blue dots) and 0
degrees (red dots), and to a blank gray screen (green dots) for (A1), and F2 mod-
ulation for individual trial responses for a different neuron to drifting gratings at 0
degrees (red dots), 300 degrees (blue dots) and to a blank gray screen (green dots)
for (A2). The circular T2 statistic [VM91] is used to determine the probability
that a response at a given direction overlaps with the response to the blank, and is
derived from the ratio of the variance within conditions (chosen direction or blank)
to the variance between conditions (distance between chosen direction and blank).
Note that the response magnitude used in defining direction selectivity is defined
to be the distance between the origin and the center of a particular cloud of points.
(B1-D1) Fluorescence time series of F1 modulated neuron showing individual trials
(gray) and mean responses (red) to drifting gratings at 180 degrees (B1), drifting
gratings at 0 degrees (C1) and gray screen (D1). (B2-D2) Fluorescence time series
of F2 modulated neuron showing individual trials (gray) and mean responses (red)
to drifting gratings at 0 degrees (B2), drifting gratings at 300 degrees (C2) and
gray screen (D2).
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Figure 2.8: (A1-A2) Distribution of DSI for all neurons (blue, A1-A2) by F1
(A1) and F2 (A2) metrics, and for direction-biased neurons (Hotelling T2 test, p
<0.05) by F1 (red bars, A1) and F2 (black bars, A2). (A3) Preferred directions
(angle of vectors) for all neurons with a significant bias for a direction (Hotelling
T2 test, p <0.05). (B1-B2) Distribution of ASI for all neurons (blue, B1-B2) by
F1 (B1) and F2 (B2) metrics, and for axis-biased neurons (Hotelling T2 test, p
<0.05) by F1 (red bars, B1) and F2 (black bars, B2). (B3) Preferred directions
(angle of vectors) for all neurons with a significant bias for an axis (Hotelling T2
test, p <0.05). The magnitude of each vector is the DSI or ASI value. Vectors are
reflected (gray) for display purposes in (B3), and represent the same data as black
and red vectors.
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Anterior-posterior direction opponency in the superficial mouse lateral geniculate

nucleus. Cell Press, 2012. The dissertation author was the primary investigator

and author of this paper. *Equally contributing authors.



Chapter 3

Optimal tuning curves for

direction selective retinal ganglion

cells

3.1 Abstract

Subtypes of retinal ganglion cells encode the direction of visual motion of

objects in the world. The efficient coding hypothesis holds that this encoding

should be optimized for the natural statistics of motion [BR61]. Fisher Informa-

tion optimal theories predict that neurons should be more sharply tuned than is

observed [ZS99], do not match the observed direction preferences of retinal gan-

glion cells, and do not naturally take into account synergies when multiple neurons

jointly encode the same variable [BN98].

We present an information-theoretic theory of optimal direction selectivity

for encoding natural optic flow distributions that reconciles features of retinal mo-

tion processing with the efficient coding hypothesis. The direction preferences of

optimal neurons correspond to symmetries in the stimulus distribution, explaining

the cardinal motion preference of On-Off direction selective retinal ganglion cells

(DSRGCs) [OB67], in contrast to previous theories. Extension of the theory into

the problem of population coding shows that the tuning width of On-Off DSRGCs

38
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[EAG+08] is optimal for the representation of two orthogonal directions of motion,

an organization that can produce unbiased estimators of direction [VH90]. In con-

trast, the joint encoding of opposing directions of motion requires sharper tuning,

as has been observed in direction selective neurons of the LGN [LOT69]. This

prediction is consistent with observed characteristics of the mouse LGN, where

a sharpened joint encoding of two opposing directions of motion has been ob-

served [MKNC12]. There is also a novel prediction that vertical motion opponency

should result in less sharply tuned cells than horizontal motion opponency, due to

anisotropies in the natural optic flow distribution. On-Off DSRGCs in the mouse

retina transmit as much information as possible about the distance from their pre-

ferred direction. A simple theory explains the cardinal motion preference of these

cells [LOT69, MKNC12] as well as the transformation of directional information

that occurs in the retinogeniculate synapse. The theory explains not only physi-

ological but also anatomical aspects of this circuit, and provides a framework for

future analyses of more complex motion features [RNG+11]. A generalization of

the theory to encompass adaptive binning provides insight into the relationship

between the observed asymmetry of orientation tuning curves [HA78, Swi98] and

the stimulus distribution.

3.2 Introduction

Both computer and neural vision systems use apparent motion to infer the

changing geometric structure of the world [Adi85, KH96, WH88]. The optic flow

representation, in which visual motion is reduced to a motion vector at each visual

field position, enables the subsequent computation of that geometric structure

[WH88]. Self-motion through the natural world produces a statistical distribution

of optic flows, and the efficient coding hypothesis holds that the neural encoding

of optic flows should be optimized for this natural distribution [BR61]. In some

mammals, the encoding of optic flows takes place in retinal ganglion cells (RGCs)

which respond selectively to visual motion in a particular direction [BH63]. These

direction selective retinal ganglion cells (DSRGCs) have become a canonical circuit
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for considering how simple and sparse synaptic connections between neurons can

perform complex sensory computations [BHD11, WHZF11]. A genetic program

establishes a complete optic flow representation through four subtypes of On-Off

DSRGCs [EAG+08, HWE+09], each of which disregard the brightness of an object

and instead respond to its motion in one of the cardinal directions [OB67].

Although recent evidence suggests that On-Off DSRGCs may help shape

direction selectivity in cortex [RNG+11], models of cortical direction selectivity

predict it developing from non-selective retinal and thalamic inputs [Hee93]. Phys-

iology experiments in visual cortex have therefore been used to constrain com-

putational models of how neurons compute direction selectivity [Hee93, MU81].

These models seek to explain how selectivity for complex motion features (e.g.,

the global optic flow corresponding to moving forward at an angle of 40◦) are con-

structed from hundreds or thousands of local direction selective inputs [DW91],

or how those local direction selective inputs derive from LGN inputs [MU81]. In

contrast, feedforward processing of On-Off DSRGC signals occurs in the LGN

[LOT69, HWE+09, KZMS10], where a small number of relatively large retinal in-

puts shapes motion selectivity [CR00, MKNC12]. Each direction selective retinal

input is broadly tuned [EAG+08] and represents a cardinal direction [OB67], which

further constrains the computation that occurs at this synapse.

At the retinogeniculate (RGC-LGN) synapse, the representation of motion

is transformed [MKNC12] before being transmitted to a subsequent stage of pro-

cessing (visual cortex). The feedforward model of visual neuroscience consists

of a sequence of such computations, each constructing neurons that respond to

a more complex visual feature than the previous stage [FE91]. Unlike cortical

stages of processing, retinal direction selectivity derives from a simple anatom-

ical circuit producing asymmetric inhibitory inputs from a single class of cells

(starburst amacrine cells), which has been demonstrated with both electron mi-

croscopy [BHD11] and paired intracellular recordings [WHZF11]. Similarly, On-Off

DSRGCs preferring different directions appear to project to subregions of the LGN

[HWE+09, KZMS10], suggesting a sparse input pattern that is in keeping with

known features of the LGN [CR00]. In a separate work, we found evidence for
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this model of direction selectivity in the LGN using two-photon calcium imaging

[MKNC12].

The present work reconciles the retinogeniculate motion circuit with the

efficient coding hypothesis by predicting observed features of the circuit from the

probability distribution of natural optic flows. The theory provides an explanation

for the tuning properties of the motion circuit, and makes predictions for future

studies of the subsequent stages of processing of motion. More broadly, the frame-

work provided here is relevant to the encoding of any circular variable by neurons,

such as phase coding of interaural time differences [CK90], motor direction [AG00],

or whisker deflection [SBA03]. The encoding of directional variables by neurons is

a fundamental problem, and has especially been considered with reference to the

discriminability of direction of motion in the presence of noise [SBNM96]. Theo-

ries using the Fisher Information have be used to determine optimal neural tuning

curves for this discriminability task [ZS99, SS93], and have been shown to match

properties of direction selective neurons in visual cortex [GS10]. van Hateren found

that the perpendicular, cosine tuning curves observed in blowflies produce a non-

biased estimator of the direction of motion [VH90], although the DSRGC tuning

curves are not cosine shaped [EAG+08]. The present study makes use of the natu-

ral distribution of optic flows to extend this result, showing that the optimal tuning

curves are not only perpendicular but specifically prefer the cardinal directions.

In addition, we show that On-Off DSRGC tuning curve widths are optimal for a

representation of perpendicular directions, but that the LGN appears to transform

these tuning curves in order to optimally represent opposite directions.

3.3 Results

3.3.1 Optimal direction preference

Optic flow fields are computed from sequences of images in time [HS81].

In the process, a time series of luminances within a region of space becomes a

single circular variable, the direction θ of motion within that region, which is not

uniformly distributed in the natural environment. In order to determine whether
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the DSRGC encoding is statistically optimal for encoding optic flows, the distri-

bution of optic flows in the natural environment is needed. We used the CatCam

video dataset [BEKK04] of cameras mounted on cats as they explored a natural

environment to derive the probability of flow in each direction, p(θ) (Figure 3.1A).

p(θ) was well approximated by a symmetric double Laplacian distribution

(Pearson’s ρ2 = 0.95; Materials and Methods) with a marked preference for hori-

zontal over vertical motion. The form of this distribution and observed symmetry

is similar to that observed in Roth and Black’s (2005) [RB05] study of flows in-

duced by human camera operators (although they observed greater upward than

downward motion). The two-fold symmetry of p(θ) (Figure 3.1A) was robust to

variation of the standard deviation of the Gaussian kernel and the threshold. The

interplay between scene structure and ego-motion gives rise to this optic flow dis-

tribution [CL07], which in turn is represented by motion selective neurons. The

directional tuning curves of DSRGCs, following the efficient coding hypothesis,

should therefore be matched to p(θ).

Specifically, the efficient coding hypothesis holds that neurons should carry

as much information as possible about the stimulus. An individual neuronal tuning

curve, r(θ), should maximize the mutual information

I(r; θ) = H(r)−H(r|θ), (3.1)

where H(·) is the entropy, or uncertainty, of a probability density. In the low noise

limit (H(r|θ) ≈ 0), the optimal tuning curve is one which matches its gain to

the probability of a stimulus, |r′(θ)| = p(θ) [Lau81]. For neurons encoding linear

variables, the optimal response functions are just cumulative distributions of the

stimuli. However, when the stimulus is a circular variable (i.e., angle), the optimal

response functions cannot simply be defined as cumulative distributions, since this

would lead to discontinous responses (a neuron responds weakly to 0◦, and strongly

to 359.9◦).

This apparent paradox can be resolved by considering which stimulus fea-

tures are encoded by direction selective neurons. Equation 3.1 corresponds to the

amount of information conveyed by the neuron’s activity about the entire range of

stimulus directions. The neuron may carry more information about its preferred
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direction or about some other direction, based on the stimulus distribution and

its tuning curve. Remarkably, a symmetric direction selective tuning curve can

maximize I(r; θ) only when the preferred direction lies along an axis of symmetry

of p(θ), since the two halves of r′(θ) are equal to p(θ). This argument is developed

in detail in the Appendix to this chapter and extended to the case of neurons

responding to both directions along an axis (Supporting Figure 3.4).

The conventional view of direction selective neurons is that they communi-

cate a very specific behaviorally relevant signal about the likelihood that motion is

occurring in their preferred direction [BSNM92] for use in an ethologically relevant

behavior. To optimally accomplish these tasks, direction selective neurons would

have to maximize the information between the neural response and how far the

angle of visual motion is from the neuron’s preferred angle, δθ = |θ − θmax|. Higher

information between δθ and the neural response I(r; δθ) would make it possible

for a feedback control system, for example, to better determine whether motion

occurs in that direction. An optimal neuron, for the purposes of this study, is one

that both communicates as much information as possible about δθ in addition to

carrying as much information about θ,

argmax
r(θ)

I[r(θ); δθ] = argmax
r(θ)

I[r(θ); θ]. (3.2)

There is a unique tuning curve that is both direction selective and maxi-

mizes I(r; θ) for every preferred direction (Materials and Methods). Surprisingly,

these tuning curves are not symmetric unless the preferred direction lies along an

axis of symmetry of p(θ) and they do not maximize I(r; δθ) (Figure 3.1C). The

bilateral symmetry of p(θ) constrains optimal direction selective neurons to prefer

only the four cardinal directions, corresponding to the horizontal and vertical axes

of symmetry. The On-Off DSRGCs differ from other classes of retinal directions

selective cells as well as cortical direction selective neurons in fulfilling this criterion

for optimality.

This prediction is not generated by the overrepresentation of motion in the

cardinal directions (i.e., peaks in the distribution), but rather by the symmetries

of the stimulus distribution. Asymmetric directional tuning curves maximizing

I(r; θ) are locally optimal in that the gain matches the stimulus distribution, but
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globally suboptimal in they introduce ambiguity between the distance from the

preferred direction and the neural response. This uncertainty, or noise entropy

H(r|δθ), reduces the information transmitted by the neural response about the

distance from the preferred direction.

Every value of the neural response can be produced by two different direc-

tions on the tuning curve. Optimal direction selective neurons occur when these

two directions occur at the same distance from the preferred direction, which oc-

curs only for the cardinal direction preferring curves.

For comparison, the Fisher Information F [ZS99, SS93] provides a different

optimality criterion which predicts that neurons should place the highest gain

(largest r′(θ)) at those regions where the probability of the stimulus is maximal.

The optimal preferred directions in the Fisher scheme are not the most likely

stimuli - rather, they are the preferred directions for which the sharpest part

of the tuning curve is at the horizontal axis (Figure 3.1D). As the sharpness of

tuning increases, this causes a split into four discrete optimal preferred directions,

but the optimal direction selective neurons are rotated from the cardinal direction

representation of On-Off DSRGCs [OB67] and the efficient coding theory.

The average F is highest for infinitely sharp tuning curves [ZS99, SS93],

so it does not provide a meaningful prediction about what the sharpness of tun-

ing should be. Furthermore, the Fisher Information is additive in the number of

neurons present, so that it doesn’t provide a measure of neural encoding which

encompasses synergistic encoding of stimuli. For large populations, it is possible

to add additional constraints on the encoding [GS10] or noise correlations between

neurons [ZS99] to obtain predictions, but this precludes the sort of analysis of

pairs of highly specific encodings that are relevant to the processing of information

contained in On-Off DSRGCs and introduces additional assumptions.

3.3.2 Pairs of direction selective responses

The feedforward circuit from retina to LGN is organized so that one to three

strong inputs drive each relay cell [CR00, HHC+04]. Our own experimental results

indicate that there may be neurons in the LGN which receive driving inputs from
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two direction selective neurons preferring different directions [MKNC12]. Recently,

the discovery of a dramatic bias towards the cardinal directions amongst direction

selective neurons in the mouse visual cortex has raised the possibility that infor-

mation from On-Off DSRGCs may be pooled in the cortex as well [RNG+11]. The

remarkable sparsity of the LGN circuit prompted us to consider the problem of

how multiple direction selective neurons should jointly encode object motion. We

extended the maximum response entropy framework to the case of two neurons, in

the case where both neurons are encoding the same stimulus parameter θ.

Optimal direction selective neurons exist when information betweeen the

neuron’s response and the both the angle of motion and the difference between that

angle and a preferred direction are maximized (equation 5). Neurons thus derived

are not necessarily Fisher optimal, since F will be maximized by neurons putting

the maximum values of r′(θ) at the points where p(θ) is highest (Figure 3.1C).

Extending Fisher Information theories to the case of multiple neurons requires

additional constraints (e.g. on neuron density, etc.) or the introduction of explicit

noise correlations to capture synergistic encoding of stimuli, since F is additive

in the number of neurons. Synergistic encoding incorporates naturally into the

mutual information, in contrast, and surprisingly matches observed features of the

retinogeniculate motion circuit.

In the absence of noise, the trajectory of two direction selective neurons

responding to different directions of motion (Figure 3.2A)will therefore be a curve

(1d manifold) in a 2d firing rate space (Figure 3.2B). Integrating over the path

described by this curve yields the response entropy,

H(~r) =

∫
p(~r) log p(~r)d~r (3.3)

We can decompose the response entropy into the entropy due to the stimulus and

an additive term, the line entropy, which is equal to the average log of F ,

Hresponse(~r, θ) = H(θ) +
1

2

∫
dθp(θ) log[r′21 + r′22 ]︸ ︷︷ ︸

Line entropy

(3.4)

The line entropy provides the contribution of the direction selective tuning curves

to the encoding, since the stimulus entropy is independent of the response func-
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tions. Unlike the Fisher Information [ZS99], this term is not additive and thus is

sensitive to the synergistic encoding of direction by a pair of neurons.

Two orthogonally tuned direction selective responses enable the unbiased es-

timation of all directions of motion [VH90]. A pair of orthogonal direction selective

neurons maximizes response entropy relative to the empirical stimulus distribution

when the sharpness of each tuning curve is 118◦(Figure 3.2C). This maximum is

well-defined and corresponds to an optimal encoding in the absence of noise or in

the presence of additive Gaussian noise in the responses (see Materials and Meth-

ods). The theory gives us a geometric insight into the reason for this maximum -

this value corresponds to the longest trajectory in r1-r2 space (red trace, Figure

3.2B). Remarkably, the tuning width of On-Off DSRGCs in the mouse retina is

120◦ [EAG+08], almost exactly equal to the tuning width at which the information

between the neural response and the stimulus is maximized.

The optimal tuning width for pairs of direction selective neurons is highly

dependent on the distance between the preferred directions of the neurons (Figure

3.3). The tuning width of On-Off DSRGCs would therefore not be optimal for

pairs of direction selective neurons separated by either 45 or 180◦. As the distance

between the pair of neurons’ preferred directions increases, the neurons must be-

come sharper according to this result. A sharpening of On-Off DSRGC output

has previously been observed in the rabbit LGN [LOT69]. Data from our own

experiments, published separately from this work, show that in the mouse LGN,

there exists a layer of opposing horizontal direction selective neurons in the super-

ficial LGN. The theory predicts that if this region is truly optimized to represent

opposing horizontal directions, significantly sharper tuning should be observed rel-

ative to the retina. In fact, just such a sharpened tuning was observed ( FWHM

76 ± 7◦ SEM), and the degree of sharpening precisely matched the prediction of

the theory for horizontal but not vertical neurons. These results also point to a

potential anisotropy between the vertical and horizontal directions, in that a pair

of opposing vertical direction selective neurons should be significantly less sharp

than the neurons in the horizontal layer. This prediction would obviously not hold

for pairs of direction selective neurons that were not optimized to the natural optic
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flow distribution (Figure 3.3).

3.4 Discussion

On-Off DSRGCs create a representation of the retinal direction of move-

ment at each location in visual space - that is, they represent optic flow. These cells

respond invariantly to the polarity of the stimulus [BH63], and are not built out

of intrinsically orientation selective subunits like DS cells in the visual cortex are

thought to be. They are relatively invariant to speed, contrast, and luminance, and

these secondary parameters are encoded in separable functions [NDG+11, WSH05],

facilitating normalization through a population code at a future stage of processing.

The symmetries of the natural optic flow distribution constrain optimal di-

rection selective neurons to prefer only the cardinal directions, as has been seen in

On-Off DSRGCs [OB67]. This requirement means that direction selective tuning

curves must also be orthogonal to one another, which has previously been shown to

enable non-biased estimators of motion direction based on pairs of neurons [VH90].

The sharpness of tuning dramatically affects the information transmitted by the

neural code, and the On-Off DSRGCs appear to have an optimal sharpness of tun-

ing for this representation. A neuron receiving inputs from two orthogonally tuned

neurons with similar receptive field positions would therefore have as much infor-

mation as possible about the direction of motion at that position. It is currently

unknown whether neurons receive input from two orthogonally tuned direction se-

lective inputs, but the theory implies that such neurons could potentially be more

reliable than neurons receiving either unidirectional or opposing inputs.

Information about direction selective neurons in the mouse LGN is limited

to the superficial layer, where there appear to be direction selective neurons receiv-

ing inputs from either of the two horizontal directions, as well as receiving input

from both opposing directions [MKNC12]. The theory predicts that a sharpening

of tuning relative to the On-Off DSRGCs for pairs of opposing direction selective

neurons. The pairs of horizontal direction selective LGN neurons appear to be sig-

nificantly sharper than On-Off DSRGCs, in agreement with that prediction. The
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colocalization of these neurons within the same region of the LGN, as well as this

prediction, imply that the output of these neurons is optimal when considering a

pair of neurons with opposing direction preferences at the same position. The sub-

sequent processing of this information, either within the LGN or in visual cortex

[RNG+11]., should therefore combine information across these colocalized classes

of cells. The theory also predicts that vertical motion preferring cells should be

significantly broader than the horizontal motion preferring cells. Together, these

predictions suggest that the retinogeniculate motion circuit is highly optimized to

carry information about the natural distribution of optic flows, in keeping with the

efficient coding hypothesis.

Previous studies of optimal DS have primarily focused on either forced

choice tasks [BSNM92] or the discriminability of stimuli [ZS99, SS93]. Brunel et al

(1998) [BN98] showed that the mutual information can be derived from the Fisher

Information under certain conditions, although Yarrow and Series (2012) [YS12]

have showed that for small populations (as in the retinogeniculate circuit) they

diverge. The Fisher Information does not allow for synergistic encoding schemes

without additional terms and predicts an infinitely sharp tuning curve [ZS99, SS93].

The MI can be shown to reduce to the response entropy in the absence of noise -

we further decompose it to observe dependence on the log Fisher Information, or

line entropy. This result holds as well in the presence of additive Gaussian noise.

The observed shift from an optimal encoding of orthogonal to optimal en-

coding of oppositely tuned neurons fits our own data on the organization of mouse

LGN [MKNC12], as well as historical studies that observed vertical motion pre-

ferring regions of rat LGN [MB69]. Futhermore, these results are consistent with

the sharpening of a few driving inputs in the LGN in order to maximize infor-

mation transmission through a more efficient encoding [SHS09]. However, our

study differs from previous work in applying these ideas to the circuitry building

motion features in the DSRGC pathway. It is presently unknown to what extent

higher order motion features in the mouse exist and are derived from DSRGCs. As

functional-anatomic methods reveal the subsequent stages of this motion circuit,

the population encoding schemes described here can be extended to include larger
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numbers of neurons and to generate novel hypothesis.

3.5 Materials and Methods

Optic flows were derived from the head mounted video of a cat walking in

a natural environment [BEKK04] using the Lucas-Kanade algorithm. The distri-

bution of optic flows p(θ) was summed across spatial positions and time points in

the movie and then fit to a symmetric double exponential distribution given by

p(θ) = K1 +K2 exp

[
−|θ − πi|

K3

]
+K4 exp

−
∣∣∣θ − π(2i+1)

2

∣∣∣
K5

 , i ∈ 0, 1, (3.5)

and the goodness of fit was evaluated with the Pearson’s correlation coefficient

between the empirical distribution and the fit.

The mutual information between the empirical distribution of optic flows

p(θ) was used to derive optimal direction selective tuning curves.

In order to observe how the sharpness of tuning affects the discriminability

of direction selective tuning curves, the Fisher information (F) for Gaussian noise

around the response function,

F(r, θ) = r′(θ)2, (3.6)

was calculated. In order to ensure comparability between theoretical direction

selective tuning curves and published On-Off DSRGC tuning curve parameters,

von Mises response functions [EAG+08]),

r(θ) = rmax
expκ cos(θ − θmax

expκ
, (3.7)

were used. κ, the sharpness of tuning, and θmax, the preferred direction, were

systematically varied in order to find the optimal preferred directions as a function

of the sharpness of tuning. The average discriminability of timuli, 〈F(r(θ))〉p(θ),
was used as the measure of optimal tuning in this section.

Optimal pairs of tuning curves were analyzed by fitting two separate von

Mises response functions, with preferred directions θmax1 = θmax2 + ε, where ε
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was the angular distance between preferred directions. This distance was varied

systematically, and the resulting pairwise mutual information was assessed in the

low noise condition,

I(~r; θ) = H(θ) +
1

2

∫
dθp(θ) log[r′21 + r′22 ]︸ ︷︷ ︸

Line entropy

− 1

2
log[2πeσ2

r ]︸ ︷︷ ︸
Entropy of noise

. (3.8)

3.6 Appendix: Optimal tuning curves for axis

selective cells

3.6.1 Introduction

Direction selective tuning curves can efficiently encode whether motion oc-

curs in their preferred direction [i.e., I(r; δθ)] only for the cardinal directions of

motion. An underlying assumption of this theory is that neurons also wish to

maximize the information contained about the stimulus direction (I(r; θ)), and

that r(θ) must be continuous. For direction selective tuning curves, all preferred

directions can produce continuous tuning curves maximizing I(r; θ), but only the

cardinal directions of motion could encode whether motion occurs in that direction

optimally.

Here we generalize our theory to the case of bilateral symmetry, as is ob-

served in axis of motion (φ = 2θ mod 2π) encoding. We show that adaptive

binning is necessary in order to generate tuning curves that maximize informa-

tion about axis of motion (I(r;φ)) for any axes of motion apart from horizontal

and vertical. Adaptive binning of axes of motion leads to asymmetric axis tuning

curves r(φ).

3.6.2 Results

Piecewise, the tuning curve r(θ) must locally match |r′(θ)| to p(θ) in order

to achieve maximal response entropy. In order to be continuous, each of the n
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piecewise segments must integrate to the same value,∫ a2

a1

(θ)dθ =

∫ a3

a2

p(θ)dθ = ... =

∫ an

an−1

p(θ)dθ =
1

n
. (3.9)

Thus, direction selectivity is the special case where n = 2, so that each of

the two segments integrates to 1
2
. Orientation selectivity is the case n = 4. This

work considers the case where ∆a is fixed, a2−a1 = a3−a2 = ... = an−an−1 = ∆a.

The case where ∆a is not fixed corresponds to adaptive binning, since the boundary

points ai are not at fixed distances from one another, but instead must be chosen

to make the
∫ ai+1

ai
(θ)dθ fixed.

The consequences of adaptive binning may be seen most clearly in the

case of neurons which have tuning curves r(φ), where φ = 2θ mod 2π. We will

call these neurons axis selective, rather than orientation selective, to distinguish

neurons responding to opposing directions of motion rather than stationary edges

along a particular orientation, in keeping with [MKNC12]. That is, axis selective

neurons are direction selective neurons defined on the doubled circle 2θ. p(φ)

is bilaterally symmetric (Supplementary Figure 3.4A), whereas p(θ) is two-fold

bilaterally symmetric (Figure 3.1A).

Direction selective tuning curves r(θ) that maximize I(r; θ) exist for all

preferred directions θmax, but they are asymmetric and do not maximize I(r; δθ)

(Figure 3.1B). The symmetry constrains a2 = a1 + π for all preferred directions,

since each half of the distribution always has the same integral. Asymmetric tuning

curves exist for neurons preferring directions other than the cardinal directions of

motion, but this asymmetry constrains their optimality according to our theory.

Optimal axis selective tuning curves r(φ), in contrast, can only maximize

I(r;φ) when either φ ∈ 0, π (horizontal or vertical motion) without adaptive bin-

ning (i.e, a2 = a1 + π). Any other orientation leads to
∫ a2
a1
p(θ)dθ 6=

∫ a3
a2
p(θ)dθ,

as shown in Supplementary Figure S1C, so that the tuning curve is discontinuous.

Adaptive binning creates the possibility of axis selective tuning curves maximizing

I(r;φ) for all preferred axes (φmax) (red curve; Supporting Figure S1C). The asym-

metry of the adaptive binning tuning curves is systematically skewed towards the

horizontal direction (circular-linear correlation between skewness of tuning curve
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and preferred angle, p<10−10), since the increased probability of horizontal mo-

tions leads to increased gain for those axes of motion. Thus, the optimal tuning

curves for oblique angles have longer tails towards the vertical direction.

3.6.3 Discussion

The generalization of our theory provides insight into the relationship be-

tween adaptive binning of circular variables and the symmetries of the distribution

of those variables. Adaptive binning is irrelevant to our analysis of optimal direc-

tion selective neurons, due to the two-fold bilateral symmetry of p(θ). Axis of

motion selectivity, which we recently observe in the mouse LGN, is the encoding

of a bilateral symmetric variable φ by monotonic tuning curves.

The theory presented here suggests that asymmetric tuning curves resulting

from adaptive binning are necessary to encode any φ other than the horizontal

and vertical axis. This result predicts that asymmetric tuning curves would exist

for axis of motion selective neurons preferring oblique axes. Asymmetric tuning

curves have been observed for orientation tuned neurons [HA78, Swi98], but axis of

motion tuning differs from orientation tuning in that it represents pure selectivity

for motion rather than combined edge/motion stimuli. Whereas two opposing

cardinal direction selectivity inputs can be used to compute optimal axis selective

tuning curves, optimal oblique axis of motion selective tuning curves would need to

be computed de novo. The systematic asymmetry of oblique tuning curves is a clear

prediction of this the generalized theory; if oblique axis of motion selective neurons

are discovered, their tuning curves should be skewed away from the horizontal.

3.7 Figures
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Figure 3.1: (A) Empirical distribution of optic flows (blue) derived from the Cat-
Cam video, showing local maxima and bilateral symmetry along the horizontal
and vertical axes. The empirical distribution is well-fit by a symmetric double ex-
ponential (red; Materials and Methods). (B) Mutual information between neural
response (r) and distance from preferred angle (|θ − θmax|) for optimal direction
selective neurons. Information can be maximized only when the preferred direction
corresponds to an axis of symmetry of the stimulus distribution. Local maxima,
representing optimal direction preferences, correspond to the horizontal and ver-
tical directions. (C) Average Fisher Information for direction selective cells as
a function of preferred direction preferring different directions, as a function of
sharpness of tuning (κ). Overlay (dotted line) shows that the Fisher optimal pre-
diction for direction preferences does not match the direction preferences of optimal
direction selective neurons (B) from the mutual information.
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Figure 3.2: (A,D) Normalized firing rate tuning curve for two orthogonal direc-
tion preferring neurons, shown in red and blue (A) and two oppositely direction
preferring neurons (D). The curves are von Mises response functions with a full
width at half-maximum of 120◦. (B,E) Trajectory in r1-r2 space corresponding to
the orthogonal tuning curves (B) and opposite tuning curves (E). Diagram shows
the arc-length along this trajectory, as in equation 4. (C,F) Response entropy
(bits) has a clear maximum as a function of tuning width (FWHM) for orthogonal
(C) and opposite (E) tuned cells. The maximum corresponds to the curves in A
and B, and is very close to the tuning width observed for On-Off DSRGCs in the
retina for orthogonal cells (C).
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Figure 3.3: (A) Optimal direction selective tuning curve full-width at half-
maximum as the angle between their preferred directions varies for horizontal
(blue) and vertical (green) motion preferring cells with the natural scenes dis-
tribution or any direction under a uniform stimulus distribution
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Figure 3.4: A. Black curve indicates the probability density of axis of motion
for the natural scenes dataset, p(φ). Double-arrow labels indicate the axis of
motion corresponding to φ: rightward is horizontal motion, leftward is vertical
motion. B,C. Optimal axis of motion tuning curve (|r′(φ)| = p(φ)) derived as for
direction selective cells is shown in blue for an axis preferring neuron (B: vertical
axis prefering neuron, C: oblique angle axis preferring neuron). It is continuous
for the vertical axis preferring curve in B and discontinuous for the oblique axis
preferring neuron in C. Adaptive binning (as described in Supporting Text) derives
a related optimal tuning curve, shown in red and offset slightly for visualization.
The adaptive binning tuning curve is identical to the blue curve for the vertical
axis preferring neuron (B), and differs from the blue curve for the oblique axis
preferring neuron (C).
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Chapter 3, in full, is a preprint of a paper that is being prepared for submis-

sion. Alfred P Kaye, Edward M Callaway, Tatyana O Sharpee. Optimal tuning

curves for direction selective retinal ganglion cells. In Preparation, 2013. The

dissertation author was the primary investigator and author of this paper.
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