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ABSTRACT OF THE DISSERTATION

Solar Resource Assessment with Sky Imagery and a Virtual Testbed for Sky
Imager Solar Forecasting

by

Benjamin Bernard Kurtz

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2017

Professor Jan Kleissl, Chair

In recent years, ground-based sky imagers have emerged as a promising tool for

forecasting solar energy on short time scales (0 to 30 minutes ahead). Following the

development of sky imager hardware and algorithms at UC San Diego, we present three

new or improved algorithms for sky imager forecasting and forecast evaluation.

First, we present an algorithm for measuring irradiance with a sky imager. Sky

imager forecasts are often used in conjunction with other instruments for measuring

irradiance, so this has the potential to decrease instrumentation costs and logistical

complexity. In particular, the forecast algorithm itself often relies on knowledge of the

x



current irradiance which can now be provided directly from the sky images. Irradiance

measurements are accurate to within about 10%.

Second, we demonstrate a virtual sky imager testbed that can be used for vali-

dating and enhancing the forecast algorithm. The testbed uses high-quality (but slow)

simulations to produce virtual clouds and sky images. Because virtual cloud locations are

known, much more advanced validation procedures are possible with the virtual testbed

than with measured data. In this way, we are able to determine that camera geometry and

non-uniform evolution of the cloud field are the two largest sources of forecast error.

Finally, with the assistance of the virtual sky imager testbed, we develop improve-

ments to the cloud advection model used for forecasting. The new advection schemes are

10–20% better at short time horizons.
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Chapter 1

Introduction

In recent years, there has been a significant effort to shift toward the generation

of energy via renewable sources such as wind and solar. A significant drawback of these

compared to conventional energy sources is that they cannot easily be controlled by the

operator; there is no way to “turn up" the sun when more energy is needed. Worse still,

even predicting the natural variability of wind and solar is non-trivial.

As solar forecasters, our goal is to provide accurate estimates of power availability

to allow the operators of the electrical grid sufficient advanced warning to ensure that

there is always enough energy available on the grid to meet customer demands. Today,

this means that sudden drops in output from renewable generators must be offset with

additional power from fossil fuel plants or energy storage systems. In the future, utilities

will likely also have some ability to request that customers defer low-priority loads during

times of reduced availability of renewable energy; energy storage is expensive, while in

many cases the cost of running the dishwasher a few hours later is negligible.

1
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1.1 Background

Predicting availability of solar energy can be subdivided into two main tasks:

predicting the available solar resource and determining how much of that resource can

be converted into electricity by a given photovoltaic (PV) panel or solar thermal plant.

Although modeling of the conversion process is important, it is understood to relatively

high accuracy for most PV technologies [48]; we will focus here on resource prediction.

Solar resource is measured as irradiance—radiative power per unit area. Global

irradiance includes all the light falling on a surface, while direct irradiance (sometimes

called beam irradiance) does not consider the diffuse light that has been scattered while

passing through the atmosphere. Because the angular distribution of light is non-uniform,

and because the projected area of a beam changes as it falls on a surface at different

angles, irradiance measurements also depend on the orientation of the measurement

surface. Global Horizontal Irradiance (GHI) is measured on a horizontal plane, and is a

standard measure when no more specific requirements are present. However, to predict

the energy produced by a given PV system, which will likely be installed at a tilt, the

Plane-of-Array (PoA) irradiance is a more useful measure. Furthermore, for systems that

concentrate sunlight—either to produce higher temperatures in a solar thermal plant or

for use in a concentrated-PV system which can have much higher efficiency than standard

PV—only the direct beam can be concentrated, so the most relevant measure is Direct

Normal Irradiance (DNI), the direct beam irradiance on a plane facing the sun.

For timescales less than a few days, the dominant factors influencing solar irradi-

ance are clouds and the diurnal cycle of the sun; on longer timescales, the most accurate

forecasts must also account for changes in atmospheric aerosols, although the influence

of these is generally small in comparison to clouds. As changes in aerosols have a smaller

influence and the diurnal motion of the sun is well understood and easily accounted for,
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we will interest ourselves primarily with forecasting clouds.

In what follows, we will largely treat the forecasting of DNI and GHI as being

similar, though in fact it differs slightly. Clouds scatter light, effectively converting

irradiance from direct to diffuse (in addition to scattering some of it back into space). As

such forecasting DNI is less forgiving because small errors in cloud cover tend to lead

to much larger changes in irradiance. On the other hand, forecasting GHI depends on

knowledge of cloud state over a wider area, and produces a wider variety of results (DNI

can often be well approximated as a binary value).

Solar irradiance forecasting can be accomplished by a number of means, typically

dependent on how far into the future one wants to forecast, hereafter referred to as

the “forecast horizon." For the very shortest time horizons—from a few seconds out

to 30 minutes—forecasts are typically based on local measurements or imagery. For

example, one might try to guess future irradiance based on a history of recent irradiance

measurements. A more sophisticated technique uses a sky imager to capture photographs

of clouds as they move overhead, which allows forecasting over a larger area, and with

more information about what clouds will be arriving in the future (as opposed to clouds

that have already affected the sensor) [70]. Another related technique uses a camera

mounted at a high point looking downward to capture images of cloud shadows moving

past on the ground [26]. For longer forecast horizons, say, out to a few hours, knowledge

of past conditions and very local clouds are not typically sufficient, so forecasts switch

to being based on satellite imagery. Satellites can see clouds over a much larger area,

however the images are recorded much less frequently, and have much lower spatial

resolution (0.5 km) than local imagery, so satellite forecasts are not capable of predicting

or measuring fast fluctuations in irradiance. Beyond 4-6 hours, the current state of the

clouds is not sufficient to predict the future state of the atmosphere. To predict from a

few hours up to (with decreasing accuracy) as much as two weeks ahead, forecasters
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rely on numerical weather prediction (NWP) models, which attempt to calculate the

fluid dynamics and thermodynamics of the atmosphere, and can therefore predict the

formation and dissipation of clouds, which none of the previous models can do. Although

modern computers are pushing the bounds of what is possible, NWP models require

steadily increasing computational power to resolve details at small spatial and temporal

scales, and so forecasts based on satellite or local imagery are typically preferred over

NWP models for applications where high spatial or temporal resolution and low forecast

horizon is needed.

For all methods on all timescales, it is common to do some additional statistical

post-processing to a forecast in order to produce more accurate results. For example,

if historical trends indicate that a NWP model tends to under-predict clouds at UC San

Diego on average, forecast outputs can be adjusted accordingly and will typically then

perform better in the future. Statistical comparisons with historical data can also be

used to combine forecast models into an “ensemble" forecast, which may simply include

multiple slight variations of a given model, or can be used to incorporate different types of

models as well in order to perform well across all time scales. Of note, machine learning

has recently become a popular [10, 67, 20] tool for forecasting, however by-and-in-large

it can be considered in the category of statistical post-processing, as it typically combines

current measurements and results of other physical forecasts to produce a more accurate

forecast, albeit using very sophisticated techniques.

1.2 Overview of the Dissertation

In this dissertation, our focus will be on physical models for forecasting using

local sky imagery. These forecasts consist, at a high level, of three major steps (illustrated

in Figure 1.1): 1. detection and geolocation of clouds in the sky image, 2. detection of
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Example USI Image Detect Clouds Map Clouds to
3D Position 

Forecast Future
Cloud Positions

Calculate Irradiance
at Surface

Figure 1.1: Steps in a typical sky imager forecast

Figure 1.2: Photographs of UC San Diego Sky Imager (USI) hardware

cloud motion and prediction of future cloud positions, and 3. prediction of irradiance

based on those positions. Our team at UC San Diego has developed both sky imaging

hardware and a corresponding forecast algorithm. The imaging hardware (shown in

Figure 1.2) has been described and characterized in multiple publications [63, 64] and

consists of a high-quality CCD camera with a fisheye lens housed in a weather-tight,

climate-controlled enclosure. The hardware system also includes an embedded CPU

which manages image capture and data transfer, and can be used to process images

using the forecast algorithms when such real-time processing is desired. The forecast

algorithms [9, 15, 70] will be the basis for our present discussion. More details on

the functionality of the forecast algorithm are given in Section 3.2.3, as well as in our

previously published work [70].

While we have primarily been interested in sky imagers as a technique for

solar forecasting, other methods (particularly satellite imagery, as data rates and spatial
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resolution have increased in recent years) have begun to encroach on the traditional

domains where sky imagery is preferred. The remaining domains—very high spatial

and temporal resolution for time horizons less than 15-20 minutes on domains only a

few km in size—are of questionable interest to the electrical grid operators who are

conventionally the users of a solar forecast. In particular, utilities often do not need

detailed solar forecasts at these small spatial and temporal scales because power is

usually balanced on much larger spatial scales on which spatial aggregation effects [27]

dramatically reduce the effects of local variability, making forecasting on those larger

spatial scales more relevant. Despite this, we consider studies of sky imagers to have some

merit. First, there remain a few cases—for example, large PV generating stations—where

spatial aggregation/smoothing may not be sufficient to alleviate need for a fine-grained

forecast. In addition, we have used sky imagers (in a non-forecasting capacity) to study

congestion due to PV in electrical distribution systems [39], for which satellite resolution

is insufficient. Furthermore, while satellite resolution may increase to the point that

ground-based imagers are no longer relevant, many of the techniques for forecasting

cloud positions based on imagery will remain relevant. Finally, ground-based imagers

will always have an advantage where resolution is concerned, and the ability to accurately

detect clouds in these images (particularly in 3D [32]) could be very beneficial for

research that attempts to understand the details of cloud structure and evolution, for

example to inform development of advanced NWP models.

The chapters that follow describe work by the author to further the application of

sky imagers to the field of solar resource assessment and forecasting. Chapter 2 docu-

ments a technique that allows DNI and GHI to be measured with a sky imager. While

the accuracy of the sky imager does not match traditional instruments for measuring

irradiance, it will be sufficient for many purposes, and in particular we hope to use it to

reduce the dependence of our sky imager forecast algorithm on external data streams,
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as needing to combine data from multiple sources greatly complicates operational de-

ployment. Chapter 3 describes a setup for validating sky imager forecast algorithms at a

high level of detail using simulated clouds and irradiance. This allowed us to determine

with greater certainty than ever before that the lion’s share of the errors in our forecast

algorithm originate from the non-3D nature of our cloud map and from the frozen cloud

advection (clouds stay a constant size and shape; they only move) that we originally used

to predict future clouds. A colleague is addressing the 3D issue as part of his dissertation,

and Chapter 4 investigates more advanced techniques for cloud advection and evolution.

Finally, Chapter 5 provides some concluding remarks and thoughts on directions for

future work.



Chapter 2

Measuring Diffuse, Direct, and Global

Irradiance Using a Sky Imager

2.1 Introduction

Global horizontal irradiance (GHI) and direct normal irradiance (DNI) are two

essential parameters in solar resource assessment. GHI is the standard measure of total

available solar radiation, and is typically measured using a thermopile or photodiode

pyranometer. DNI is the intensity of the direct solar beam and is the portion of the solar

resource used by concentrating solar technologies; it is also important for calculating

total irradiance on a tilted plane. DNI measurement is typically accomplished using

a pyrheliometer on a solar tracker. Radiation coming from the rest of the sky, diffuse

horizontal irradiance or DHI, can be measured by shading a pyranometer with a shade

ball mounted on a solar tracker [56]. Measurements of GHI, DNI, and DHI made with

high-quality, well-maintained instruments have 95% confidence intervals around ±2%

for DNI and from ±3% to ±10% for GHI, depending on the solar zenith angle [56].

Researchers at the National Renewable Energy Laboratory (NREL) find that compared

8
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to standard-class reference measurements of GHI, thermopile pyranometers have 1-

hour RMSE between 1.5 and 5% depending on the configuration (ventilation, thermal

corrections, etc), while silicon-based pyranometers such as the LI-200 have 1-hour RMSE

of 3.5% [19]. Accuracy of silicon-based sensors can be improved by correcting for their

angular and spectral response. For precise angular measurements, scanning radiometers

or spectroradiometers have narrow fields of view and can be positioned at will to sample

radiance from various parts of the sky.

Alternative techniques intended to have lower upfront and maintenance costs

are often proposed. Rotating Shadowband Irradiometers (RSIs) are devices that have

a single pyranometer and a rotating shadowband to measure both GHI and DHI from

which DNI can be computed. Typical 95% confidence intervals for the resulting DNI

measurement are around ±5% [56]. However, the single axis of rotation and the typical

use of a diffuser rather than an optical dome mean that RSIs are much less sensitive to

maintenance schedules [56]. Another approach, taken by the SPN1 sunshine pyranometer,

involves measurements using seven miniature thermopiles underneath a complex shading

dome. The shading dome is constructed so that for any sun position, at least one sensor

is fully shaded and at least one is fully exposed, so that in principle direct and diffuse

components of the irradiance can be calculated. This eliminates moving parts, but has

been found to result in a systematic positive bias in DNI measurements of 1.1−4.1%

with 1-minute RMSE of 8 to 14% even after advanced calibration as reported in Badosa

et al. [2]. An NREL study found that the SPN1 had reasonable MBE (mean bias error)

and RMSE (of 3% and 5%, respectively) on 1-hour GHI, but larger errors (MBE 7.2%

and RMSE 9.5%) on 1-hour DNI [19].

There is a long history of using cameras to measure the brightness pattern of the

sky. They have an advantage in angular resolution over hemispherical sensors, and an

advantage in speed over scanning radiometers. As early as 1970, film cameras [11] and
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later CCDs [55, 38] were used to measure the sunshapes—the normalized azimuthal

average profile of broadband radiance about the sun. Techniques generally involve

imaging the sun through one or more dark filters to bring it in range of the camera, and

researchers were generally concerned only with relative brightness. However, Kaluza

and Neumann detail the use of a CCD in concert with a flux gauge to produce absolute

readings [24]. A modern commercial device called the Sun and Aureole Measurement

system uses two cameras with different filter settings to image a larger region around the

sun, and can be calibrated using a sun photometer to give absolute radiance as well [66].

On the wide angle front, many researchers over the years have used fisheye lenses to

measure the radiance distribution of the sky [57, 50, 49, 71, 62], generally with absolute

calibrations, but the direct beam is generally either blocked or saturated and therefore not

measured, although Tohsing et al. estimated the direct beam at either its clear-sky value or

0 depending on whether the sun was obscured by clouds [62]. Several of these researchers

were interested in luminance distributions (weighted for the human visual spectrum) for

daylighting applications rather than solar energy production, but the procedures are much

the same.

More recently, as whole-sky cameras have become common tools for solar energy

forecasting, a few groups have extracted image features (such as textures, colors, and

cloud coverage [54] or cloud locations [14]) to build empirical models for GHI and DNI

without trying to measure the exact spatial distribution of radiance.

We propose a system that allows the use of a camera system described by Urquhart

et al. [63] (the UCSD Sky Imager, or USI) to measure both DHI and DNI based on the

photon fluxes incident on the image sensor. This physicality differentiates our method

from those which rely on an image classification layer [54, 14], while our ability to make

a non-binary determination of DNI is an improvement over radiance-based methods [62].

After introducing our data sources (section 2.2), we proceed with a discussion (section
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2.3) of the methods used to measure and calibrate irradiance, with particular emphasis

on the technique we have developed for measuring DNI using CCD smear. We then

compare these results against LI-200 GHI and SPN1 DNI measurements (section 2.4)

and show good qualitative and quantitative agreement. Finally, we conclude (section 2.5)

with some ideas for improvement and additional applications.

2.2 Data

USI images for this study were captured every 30 seconds during daylight hours

beginning on August 18, 2014 and ending on August 17, 2015. Data points corresponding

to sun positions less than 20 pixels (2.5◦) above the obstructions on the horizon were

omitted in order to ensure that both the reference sensor and the USI were unaffected by

said obstructions.

The reference GHI sensor, used for both calibrations and validation, is a LI-COR

LI-200 silicon pyranometer located approximately 10 m from the camera. Reference

data points are 3-second averages of 20 Hz samples centered at the time of the image.

The data logger was intermittently overloaded with data acquisition instructions, and

occasionally dropped up to a few minutes worth of data. Additionally, there were a

few periods of longer downtime. In total, 15% of 3-second average data points at times

corresponding to camera images were missing from the data set.

In April 2015, a Delta-T SPN1 sunshine pyranometer was added on a rooftop

1.25 km from the camera in order to be able to compare DNI and DHI as well. The SPN1

uses seven miniature thermopiles and a complex shading mask to measure both GHI and

DHI, from which it calculates DNI. Data is sampled at 1 Hz. However, these validation

data presented issues due to the spatial displacement. Purely random differences in high

resolution data due to spatial displacement could be reduced by temporal averaging,
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but in this coastal climate (1 km from the ocean) systematic differences in cloud cover

exist with a bias towards more cloudy conditions near the ocean. While these clouds are

typically thin and do not significantly affect GHI, DNI differences can be large. Since

occasionally different cloud conditions persist for several hours these data are therefore

suitable for quantitative comparisons only during time periods that are cloud-free. While

differences in aerosol loading between the two sites could also change the partition from

GHI to DNI, the strong sea breeze flow typically causes air masses of oceanic origin to

exist at both sites.

2.3 Methods

We will decompose GHI into three separate components to be extracted from

each set of images.

GHI = DHIraw +DNI · sin(α)−DHIstray, (2.1)

where α is the solar elevation above the horizon. The raw measurement of DHI will be

derived from most of the pixels in the 16-bit high dynamic range (HDR) image captured

by the camera described in Urquhart et al. [63]. Three images with adjacent exposure

times varying by a factor of 4 are combined by averaging pixel readings exposed in the

linear range of the detector. Unfortunately, without a filter changer, the camera does not

have enough dynamic range to capture the intensities in the solar region directly—the

sun is at least 15 times as bright as the brightest object the camera can record at its

shortest exposure time. Therefore, pixels near the sun are always saturated when the sun

is unobscured. DNI will be measured instead by measuring the intensity of CCD smear

that results from the presence of very bright light sources such as the sun. As smear

occurs during readout, it is expected to be independent of exposure time. This can lead
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to complications in the HDR compositing process which expects pixel values to scale

with exposure time. For this reason, a single exposure at the camera’s shortest exposure

time (75 µs) is used for smear measurement. The short exposure time enhances the

brightness of smear relative to the rest of the image. Finally, DHI is corrected downward

to account for stray light that is scattered off the camera optics when they are illuminated

by direct sunlight. Note that the stray light correction does not have to be added back to

the DNI measurement since the DNI method utilizes a scaling factor that is also expected

to correct for stray light losses to the DNI signal.

Although insufficient to measure the direct solar beam, the dynamic range of

the camera is generally sufficient to capture the remainder of the sky scene with a fixed

set of exposures under all sky conditions. This simplifies the conversion from pixel

values to radiance. Capture time for the sequence of four images (three for HDR plus

a minimal-time exposure) is approximately 830 ms, of which roughly 200 ms is delay

between frames.

All three components of Equation 2.1 require calibration in order to provide

values in meaningful physical units. While optical setups could be calibrated in the lab,

small changes in focus and alignment can lead to nontrivial changes in calibration factors;

our objective is therefore to present an algorithm that can be self-calibrated using field

measurements.

2.3.1 Diffuse Irradiance from HDR Image

Methods for absolute radiance calibration of the camera are fairly standard and

are presented by other researchers [57, 62]. Essentially, a uniform, calibrated, Lambertian

reflectance plaque is illuminated by a calibrated light source, and the distance from the

source to the plaque is varied along with the camera exposure time, thereby recording

the mapping from pixel values v and exposure times t into radiance L. DHI is then
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a straightforward sum of the product of radiance, cosine of the angle of incidence

θ , and solid angle δΩ over all pixels above the horizon and outside the direct beam

region (typically between 2 and 5 degree radius from the sun, depending on the desired

characteristics).

DHIraw = ∑
sky hemisphere

L(v, t)cosθ δΩ (2.2)

However, under many circumstances, a precise radiance calibration for a given instrument

will not be available. Even a lab calibration alone may not be enough, as the relative

position of the lens and the sensor may change slightly during camera deployment. When

an accurate field calibration is unavailable, the pixel’s radiance L is assumed to be linearly

proportional to the pixel value v and exposure time t. Previous work has found pixel

brightnesses to be linear within 10% for this camera [63]. The proportionality constant β

typically has a small spatial variability due to nonuniform pixel sensitivity and optical

effects. Pixel sensitivity is generally small and in any case varies from camera to camera.

On the other hand, rolloff (the decreased transmission of the optics with increasing

view-angle, sometimes known as vignetting) is primarily a function of the optics and the

distance from the optical axis and is expected to be comparable between cameras of the

same model and optical configuration. Radiance is therefore approximated as

L(v, t) = β0β
′(r)vt, (2.3)

where β0 is now a constant across the image (assuming homogeneous pixel sensitivity)

which can be estimated using reference GHI data. β ′(r) can be measured by capturing

images under uniform illumination (e.g. several rotations of an integrating hemisphere).

In the event that measurements for β ′(r) are unavailable, it is expected that reasonable

results could be obtained taking β ′(r) = 1 independent of r (i.e. assuming rolloff is

negligible). Thus, a range of accuracy levels can be achieved, depending on the calibration
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equipment available: fully calibrated radiance should give the best accuracy, but may be

hard to achieve in most scenarios; GHI-calibrated, radially variable response is easier

to achieve; and GHI-calibrated constant response requires no extra calibration of the

camera, but results may be lower in accuracy. Here, we have taken the second approach,

i.e. approximating L(v, t) as indicated in equation 2.3 with β ′(r) dependent on r. We note

that many low-cost cameras compress pixel values for storage with the result that values

are no longer linearly related to brightness; users of such cameras may require extra steps

to recover radiance from pixel values.

To determine β0, DHI is calculated during times when DNI and therefore stray

light contributions in equation 2.1 are expected to be nearly zero. β0 is then determined

using a linear fit against data from a nearby GHI sensor (see Fig. 2.11 later for an

example). In our experience, one day with at least 40% low-DNI conditions is sufficient

for the determination of β0. Low-DNI conditions can be conveniently defined in this

context as 1. average pixel brightness in the solar region (< 2.5◦ from the sun) is less

than 2.5 times the average pixel brightness outside the solar region, 2. raw DNI (h from

equation 2.6 below) is nearly zero, specifically h is less than 1% of the 98th percentile,

and 3. reference GHI is between 75 and 250 W/m2. The first condition ensures that the

difference between DHI and GHI is less than about 0.25%, which the second confirms

by checking that measured DNI is low. The third condition avoids low solar elevations as

well as bright and dark conditions in which nonlinearities were observed.

A standard pyranometer measurement includes the influence of any obstructions

to its field of view. To replicate those conditions, we have opted not to mask trees

and distant structures along the horizon before summing diffuse irradiance. However,

an advantage of camera-based radiance measurements is that such obstructions can be

removed if desired. Masked regions could then be filled with the average value from

the rest of the sky, or with values interpolated from nearby portions of the sky using an
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Figure 2.1: Red, green and blue lines illustrate the relative spectral sensitivity of the
associated color channel in the USI image sensor [1, 12]. For comparison, the effective
combined (RGB weights 1, 0.65, 0.5) sensitivity for DHI is shown in black, along with
the sensitivity of the LI-200 reference instrument (dashed gray) [28].

appropriate model for anisotropic diffuse radiance.

The spectrum of DHI is markedly different under clear and overcast skies. It is

therefore advisable to use a weighted combination of the different color channels in order

to obtain a desired spectral response. Thermopile pyranometers are typically designed to

have uniform spectral response (measurement of 1 W/m2 is independent of the spectral

content of the radiation). However, for some resource assessment applications, it may

be desirable to select weights to match a particular instrument or a specific model of

photovoltaic device. For the camera used in this study, weighting factors of 1 for red,

0.65 for green, and 0.5 for blue were found to provide the best match to the reference

sensor (based on a linear least-squares fit of the spectral response in the 400-700 nm

range where the camera has significant sensitivity), as illustrated in Figure 2.1.

2.3.2 Stray Light Correction

Previous work found stray light to contribute as much as 10−20% of the observed

radiance in some areas of the image [63]. Therefore a correction term was introduced in
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Figure 2.2: Difference between DHIraw and DHISPN1 as a fraction of DNI for several
clear days between April and July 2015. The red line at the right indicates the frequency
of a given stray fraction across all solar elevations. Strong dips (e.g. at α = 70) arise
from times where no single SPN1 sub-sensor is completely unshaded.

Eq. 2.1. Stray light is assumed to be due only to reflections and scattering of the direct

beam in the optics. In the general case, we expect that the amount of scattering might

depend on solar elevation, α , due to changes in angle of incidence and intersected area.

We shall refer to the ratio of stray DHI to DNI as the stray fraction, S:

S≡
DHIstray

DNI
= S(α) (2.4)

Although there is potential for a more complex relationship between stray fraction and

solar elevation, Figure 2.2 indicates that the camera used in this study does not exhibit

any appreciable relationship at all, i.e. S(α) = const. We suspect that this is not true for

all cameras.

One potential issue with modeling stray light as a function of DNI is that localized

areas of strong scattering in the optics—for example, scratches, smudges, or dirt—tend to

cause increased stray light while simultaneously resulting in a lower DNI measurement
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due to the increased attenuation. As this effect is similar to that of passing thin clouds, it

is nontrivial to correct for, and we do not attempt to do so in this work.

2.3.3 Direct Beam Estimation

Smear and blooming in CCD sensors

As DNI of 5 W/m2 is sufficient to saturate pixels in the solar region, it is impossi-

ble to measure the direct beam radiance directly using pixel values. Instead we turn to

the smear effect of CCD sensors. In an interline-transfer CCD such as is used in the USI,

charges are collected in a capacitor-like potential well at the site of each pixel during

integration, and then shifted off of the chip into an A/D converter. Charges are shifted

into and then down a so-called “interline transfer" column (illustrated in Figure 2.3),

which is behind a mask to prevent additional light from changing pixel values during

readout. However, in the presence of very bright light, some photons or excess electrons

can still overflow into the interline transfer column during readout, causing smear. Note

that as smear occurs during readout, the intensity of the smear effect will depend on

frame readout time, rather than exposure time. For a review of CCD operation or more

details on smear, readers are referred to [69, 41].

Smear is often accompanied by another effect known as blooming, which de-

scribes pixels that overflow into their neighbors during the exposure. These effects are

illustrated in Figure 2.4. Blooming is difficult to separate from the saturation in the solar

region, whereas smear extends through the entire column, making it easier to measure.

Smear intensity

In order to separate the smear from the rest of the image, we calculate the

average value of each column, and then look for columns that have elevated values in



19

ADC

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

3 3 3 3

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

Interline Transfer Columns

Very
Bright
Light

Figure 2.3: Illustration of CCD smear at the sensor level. Colored rectangles represent
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sensor behind a light-blocking mask. The CCD readout process first shifts charges into
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Figure 2.4: Solar region (67× 147 pixels) of a 75 µs exposure exhibiting blooming
and smear. Blooming is the overflow of CCD cells into neighboring cells, resulting in a
pointy “tail" on the sun. Smear results in excess signal penetrating the interline transfer
columns, which brightens the entire column as charges are shifted off the chip to the
A/D converter.
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comparison with those nearby. Removing 5 to 10% of the rows immediately around the

sun reduces the influence of the saturated portion of the image on the column-average

values. Additionally, some rows need to be removed due to side-effects of hardware

cropping (discussed in Section 2.6.1) of the image.

Rows are therefore removed from about 300 pixels above to 200 pixels below the

position of the sun. When there are saturated pixels in the image, the sun is taken to be

at the center of the saturated region; otherwise, a modeled sun position is used, based

on the geometrical calibration procedure described by Urquhart et al. [64]. If neither a

calibration nor saturated pixels are available, sun position can be approximated based on

the brightest pixels in the image.

Note that when taking column averages, it is important to separate the color

channels of the image, as they are apparently affected differently. More specifically, half

of the columns of the image contain red and green pixels, while the remainder contain

green and blue as shown in Figure 2.3. Red filters have the highest transmissivity and blue

the lowest, so alternating columns experience different amounts of smear. For reasons

that are not well understood, the red pixels also exhibit higher smear than the green pixels

in the same column, though the green and the blue in the other column are nearly the

same as might be expected given that they share the same interline transfer column (see

Section 2.6.2). We have opted to work primarily with the red pixels, as they exhibit the

highest smear signal on the lowest background, since Rayleigh scattering is weakest for

longer wavelengths (the sky is blue). Our feeling is that the reduction in error realized

by a more careful consideration of spectral effects is likely to be small in comparison

with the improvement from resolving outstanding difficulties with the DNI calibration

procedures.

Next, the location and magnitude of the stripe are determined. The coarse

sampling (only every second column contains red pixels, see Figure 2.3) and nonzero
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Figure 2.5: Column means for (a) all columns and (b) columns near the smear stripe,
of the red channel before (dashed gray line, vx) and after pattern matching (solid black
line, h?) with a 1.07 pixel Gaussian template as defined in Eqns. 2.5 and 2.6.

background (natural variation of red irradiance across the image) mean that using the

maximum point of the column-wise average signal vx is incorrect. Instead, taking the

cross-correlation of vx with a Gaussian template (kernel) yields a robust pattern-matching

metric (Figure 2.5).

h?(x0) = ∑
x0−19<x≤x0+19

vx ·
(

T (x− x0)−〈T 〉
)

(2.5)

Here, T (x) = exp(−x2/2σ2) is the Gaussian template, which has mean 〈T 〉 over the

range of x. A template width of σ = 1.07 pixels with a window size of 39 pixels (20 red

pixels) was empirically chosen.

Figure 2.5 shows column-wise means of the red channel before and after pattern

matching. The coordinates of the maximum point in this curve give the smear intensity

(h) and the location of the smear stripe.

h = max
x0

(h?) (2.6)

Note that h?(x0) can be evaluated for non-integer x0.
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Calibration

The computed smear intensity, h, should be proportional to DNI, however as

sensor manufacturers typically design to avoid smear rather than provide consistent smear,

sensitivity and linearity vary considerably over the image. We expect the magnitude of

the smear effect to depend on the location of the pixel on the sensor. This may be due, for

example, to spatial differences in pixel sensitivity, and differences in the alignment of the

metal mask covering the sensor. We also expect that there may be some variation with

solar elevation, which affects various angles of incidence and the path length through the

optics.

The raw smear intensities h therefore need to be calibrated to yield DNI. We

begin by applying the same β ′(r) roll-off correction discussed for DHI, but an additional

calibration factor (C) is required.

DNI =C(x,α)h′ =C(x,α)β ′(r)h (2.7)

C(x,α) are determined by one of two methods, and then the roll-off-corrected

smear intensity h′ is multiplied by the calibration factor to yield DNI. The simpler of the

two methods is to assign a fixed calibration to each column (C(x)) based on a look-up

table. The more complicated method also takes into account the elevation angle for each

pixel (C(x,α)), and uses an artificial neural network (ANN) for obtaining the relationship.

The advantages of the simple method are its ease of implementation and predictable

behavior for data outside the training period. The ANN generally produces better DNI

values when interpolating within the range of solar elevations covered by the training

data, but may not be reliable outside.

C(x,α) is trained using data from several clear days. Predominantly clear days

were selected by manually screening a GHI time series, followed by removal of short
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cloudy periods by visual inspection of images. As clouds will cause significant distur-

bance in the calibration factors, a cursory inspection of calibrated results helps confirm

that clear training data was used.

As a reliable source of DNI is not generally available to calibrate against, linearity

of smear response is assumed and calibration is performed against the residual GHI after

DHI (including stray light) is accounted for:

DNInom =
GHI−DHIraw

sin(α)−S
, (2.8)

where the GHI measurement here is taken from the reference sensor, while DHI comes

from the camera. If available, data from a nearby well-maintained DNI sensor would be

preferred and could alleviate the requirement of an empirical model for stray light, but

such a sensor with sufficient data quality was not available for the present study.

Calibrations were found to change significantly when camera focus or other

optics were adjusted, so the year of data was divided into three periods for calibration, as

documented in Section 2.7. Example values of C as well as fits using both methods for

one day are illustrated in Figure 2.6a. For comparison against the results in Section 2.4,

the figure lists errors calculated using the standard metrics defined in Section 2.8.

The lookup-table based method estimates C from x alone. Training data are

placed into 10-pixel bins in x, and the median value of each bin is used for the lookup

table. Cubic spline interpolation in x is used between bin centers, and nearest neighbor

extrapolation is applied to x below or above those present in the training data.

The ANN is implemented using MATLAB’s neural network toolbox (fitnet)

with a single 5-node hidden layer and is trained using Bayesian regularization (trainbr).

Standard procedure for training neural networks is to divide the calibration data into a

training set and a validation set. The error is minimized over the training set, while the
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Figure 2.6: (a) Calibration factors (Eq. 2.7) and (b) DNI on a clear day (January 3,
2015) before and after calibration using a 1D lookup table (as a function of image
column) and a neural network (which considers image column and solar zenith angle).
On this day, squared errors are below average and bias errors are larger than average
for both the ANN calibration (RMSE 4.5%, MBE 3.9 W/m2) and the 1D lookup table
calibration (RMSE 2.3%, MBE −7.0 W/m2).

validation set is used as an independent measure of the error, which avoids overfitting

by allowing training to stop before the minimum error is reached on the training set if

validation set errors are increasing. In order to preserve the independence of the validation

set, data from a given day are placed in one of the three sets (training, validation, testing).

Specifically, in this case, the first two and last two clear days (generally the days with the

highest and lowest solar elevations at solar noon) in each calibration period were placed

in the validation set, while the remaining days were divided evenly between the training

and testing sets. The ANN is trained 10 times with random starting weights, and the

network with lowest errors on training and validation days combined is selected as the

final calibration model. Since the USI employs separate A/D converters for the right and

left sides of the sensor, there is a discontinuity in C(x) near the center of the image. As a

result, separate ANNs are trained for the left and right halves of the image.

The 1D lookup table method is less sensitive to the selection of clear days than

the ANN-based algorithm. Nevertheless, best results are obtained if the clear days

selected span the full range of seasons; of particular interest are long summer days which
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potentially provide data for a wider range of x values than shorter winter days. For

comparison purposes, we chose to train the lookup table method using the same clear

days that were used for the training and validation sets for the ANN.

Sample calibrated results are shown in Figure 2.6b, along with DNI from the

clear sky model of Ineichen and Perez (PV Lib implementation) [47, 44]. While the raw

data do not correspond to a typical DNI signal, the calibrated data follow the clear-sky

DNI with an RMSE of about 5%. About one sixth of the RMSE is due to short-term

random fluctuations from localized variations in the optics.

2.3.4 Validation

GHI data during the study year are compared at all times when the sun is more

than 20 pixels (approx. 2.5◦) above the horizon and data are available from both the

camera and the reference sensor, leaving a total of 424,033 images for comparison. Of

these, 47,122 were used for calibration and validation, leaving 376,911 images for testing.

RMSE and MBE against the reference sensor are computed using the standard definitions,

given in Section 2.8 for completeness.

As previously mentioned in Section 2.3.3 and enumerated in Section 2.7, cali-

bration was performed in three separate periods due to optical configuration changes.

However, errors were similar across all three periods and are reported without reference

to a particular period.

2.4 Results

Figure 2.7 shows example results from a partly cloudy day. The camera-derived

GHI generally follows the reference sensor, increasing as the sun rises above the horizon

in the morning and then dropping steeply as clouds move in the afternoon. Of particular
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Figure 2.7: Results for a typical day, 2015-02-11, with the ANN calibration. GHI on
this particular day exhibits slightly-below-average RMSE (8.1%) but has worse-than-
average negative bias (−5.6%). Inconsistencies in the DNI calibration give rise to the
dip (indicated by an arrow) in the DNI curve at 10:30 PST and contribute significantly
to the negative bias.
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note is the accuracy with which the camera follows the steep drops that result from

shading of the direct beam. However, this example also illustrates several of the most

prevalent sources of error. Although reference DNI measurements are unavailable for

this day, conditions are essentially clear until 11:00 PST. This would normally suggest

a relatively smooth DNI curve, which is not observed. In actuality, there appears to be

significant random noise and a drop in DNI appears around 10:30 PST, both of which are

carried over to GHI as well. Inspection of the raw smear intensity and calibration signal

reveals that while the dip in DNI around 10:30 PST originates in the smear intensity,

on other nearby days (including the two nearest clear days used for calibration), this

dip is smaller and is properly corrected. For unknown reasons, some days (including

2015-02-11 and the second clear day before it) have a larger dip in smear, which in this

case leads to poor performance even after calibration. Analogous errors on other days can

lead to positive bias in DNI as well. Meanwhile, the increased noise in the camera’s DNI

measurement arises primarily from localized optical defects. When target calibration

factors are displayed as a function of image position, some of these optical defects can

be visually associated with dirt and scratches on the dome. To verify that noise is not

caused by the sensor, for one day a burst of 10 images was taken within 0.7 sec rather

than a single image every 30 sec. For each set of 10 images, the path through the optical

system is essentially identical. Over the course of two clear hours, fractional variation of

smear intensity within a burst of images was only 0.15% to 0.6% compared with 12%

for images that were 30 seconds apart. Finally, DHI measurements are too small during

times of high diffuse; on this day, this can be seen most clearly shortly before 15:00 PST

when DNI ≈ 0, but is also demonstrated in Figure 2.11 later.

Daily error statistics for instantaneous GHI are presented in Figure 2.8. Errors

tend to be lower on and near days used for calibration. Yearly statistics broken down by

training and testing are shown in Figure 2.9a with RMSE for instantaneous GHI around
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10%, and MBE < 2%. RMSE for 1-hour average GHI is around 7%. The data generally

follow the expected trends that data used for training or cross-validation should have

lower errors than testing data, that the neural network should perform better than the 1-D

lookup method, and that 1-hour averaging helps reduce errors due to random processes.

The relatively small MBE is not surprising as the calibration of both DHI and DNI is

based on the reference sensor.

A distribution of errors is shown in Figure 2.9b. Large overpredictions are

significantly less common for the ANN calibration than for the lookup table calibration.

Both calibrations have similar probabilities for large underpredictions. Figure 2.10 breaks

out errors for low-DNI periods and clear days, which exhibit fewer large errors than the

overall data set. However, the error distributions for hourly-averaged data no longer show

this distinction; this suggests that many of the large errors may be due to the larger spatial

and temporal variability in GHI under partly cloudy conditions, rather than because

measurements are inherently better under clear or low-DNI conditions.

The fact that relative hourly errors for low DNI are comparable to other conditions

suggests a prominent source of errors in conditions dominated by diffuse. By definition,

low-DNI periods have GHI ≈ DHI, and therefore can be used to evaluate the quality

of the DHI measurement. Figure 2.11 presents these errors for three different days

as a function of GHI. June 27 was the day used to calibrate DHI for this period, and

shows both positive and negative errors with no overarching trend. In contrast, data from

June 15 and 16 have a strong non-linear trend toward more negative errors with larger

GHI, which is also apparent on several other nearby days (not shown). Mornings and

afternoons on these days also differ slightly, though not as much as from the conditions

on June 27. Some of the error in DHI appears to be related to the difference between

spectral channels; for example, on June 27, the errors tend to be positive when the blue

channel is brighter than the red, and negative otherwise. However, attempts to correct
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Figure 2.9: Error statistics for the test data set over the course of approximately one
year. In (a), colored bars indicate error rates for instantaneous data, while black bars are
for 1-hour averages that are often used in performance simulations. The right axis is
scaled to the left axis using the mean of the testing data (cf. Equation 2.9); therefore the
error percentages are not entirely accurate for the training data. Probability densities of
instantaneous GHI errors are shown in (b) with the same color scheme as in (a).
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Figure 2.10: Error distributions for clear and low-DNI conditions, for (a) instantaneous
data, and (b) 1-hour averaged data. The black “All" curve in (a) represents essentially
the same data as the light-blue “ANN test" line in Figure 2.9. Low DNI periods are
selected using the first two criteria from DHI calibration (no limitations on GHI, see
Section 2.3.1), while clear conditions were determined manually. Error metrics in W/m2

and image counts are given in (a).



32

0 100 200 300 400 500
−40

−30

−20

−10

0

10

20

Reference GHI (W/m2)

G
H

I E
rr

or
 (

W
/m

2 )

 

 
Jun 16 AM
Jun 15 PM
Jun 27 (cal)

Figure 2.11: Error as a function of GHI under low-DNI conditions, where GHI ≈ DHI.
Data shown are for the ANN calibration. Dashed vertical lines indicate the limits used
for DHI calibration on June 27 and two other days (Figure 2.8).

this by altering the balance between the channels required unphysical combinations with

negative weights on at least one channel, and were still unable to remove trends entirely.

Some additional spectral mismatch is expected due to the near-zero sensitivity of the USI

in the region from 700 to 1100 nm where the reference sensor has significant response

(see Figure 2.1). Additionally, previous work has suggested nonlinearity on the order of

5% in camera sensitivity, which would lead to errors in DHI measurement without better

calibration. Despite these issues, the vast majority (95%) of these low-DNI periods have

errors either < 15% or < 15 W/m2.

To validate the DNI performance of the camera, Figure 2.12 compares the DNI

measured by the camera and the SPN1 sensor located 1 km inland. Due to the spatial

separation between the sites and the proximity to the ocean, the sites are not expected

to experience matching DNI in the presence of clouds. To focus on data points where

spatially homogeneous conditions prevailed, a reduced set of data from clear periods

between April 15 and September 22, 2015 is shown. Because images on these days
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Figure 2.12: DNI validation of the USI against SPN1 measurements under clear
skies. July 10 was the last full clear day used for calibrating DNI measurements, so
measurements after that exhibit larger errors, particularly when the sun is low in the sky.
DNI errors: RMSE of 66.0 W/m2 (7.7%), MBE of −26.0 W/m2 (−3.0%). DHI errors:
RMSE of 45.4 W/m2 (53%), MBE of 41.7 W/m2 (49%). GHI errors: RMSE of 51.8
W/m2 (7.1%), MBE of 0.2 W/m2 (0.02%).

during these periods were visually observed to be completely clear, both sites should be

cloud-free, so that DNI should be comparable. While the measurements generally agree

to within 10%, the USI produces lower measurements on average, except at very low

solar elevations where a strong positive bias is present. Additionally, there are several

dozen instances of very localized larger negative bias, which were found to correspond to

the sun passing behind scratches or dirt on the camera dome. While some of the overall

negative bias is likely due to calibration errors in the camera, other researchers [2] have

also observed a positive bias between 4.8 and 14% in DNI measurements from SPN1

instruments due to the min/max procedure used to separate diffuse and direct irradiance.

Although it would be possible to calibrate DNI against the SPN1, we are hesitant to do

so given its reputation for overestimation of DNI.
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2.5 Conclusions

This paper details the use of an all-sky camera for measuring DNI and DHI from

which GHI can be computed. While measuring DHI is relatively trivial by integrating

over radiance across the sky hemisphere, the method for measuring DNI is novel and has

not been presented before in the literature to our knowledge. Our results confirm that

the method is generally effective, albeit with lower accuracy than can be achieved with

well-calibrated conventional sensors. However, compared to comparable technologies,

accuracy is actually improved. For example, Schmidt et al. [54] report GHI RMSE of

nearly 25% (10-second instantaneous samples) for their image-based method, while

Gauchet et al. [14] managed RMSE of 17% for five-minute average data using cloud

position information. Both relative errors are normalized by average daytime irradiance.

However, as errors are generally lower under clear conditions, the comparison of data

from different sites does not constitute conclusive evidence as to which method is supe-

rior. Different spectral sensitivity of the reference instrumentation further complicates

comparisons. These other algorithms generally suffer from limited information about

DNI due to saturation in the solar region, and as a result are unable to follow some

of the large fluctuations that originate primarily in the direct beam; their performance

improves considerably with time averaging (e.g. the algorithm by Schmidt et al. achieves

RMSE of 11.7% on hourly-averaged data). Meanwhile, 1-hour satellite-derived GHI

data experiences RMSE from 12% to 25% and more, depending on the location [45].

Furthermore, in many cases, the ability to measure radiation using a camera may

be useful where only a camera is present. For example, it can simplify data acquisition

for a sky-imager based solar forecast [70], since it alleviates the need for a separate GHI

data source to assign cloud optical depth. Separating DNI and DHI is also of use when

forecasting output from tilted systems, and for determining cloud thickness near the
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sun where pixels are generally too saturated to contain useful information. Additionally,

the ability of a camera to capture the directional dependence of radiance may prove a

valuable tool for developing non-isotropic diffuse radiation [7] and transposition [16]

models.

The primary source of error in our methodology is expected to stem from the

poorly understood relationship between CCD smear intensity and DNI. Although we

have derived means of empirically calibrating away these irregularities as a function

of pixel position and solar elevation, their exact causes are unknown and it is therefore

unlikely that our empirical method captures all underlying relationships and parameters.

Furthermore, some observational evidence suggests that smear is nonlinear in intensity

(distinct from sensitivity varying spatially), or that smear may not account for all the

irradiance typically considered DNI. Indeed, DNI is typically defined to include every-

thing within 2.5◦ of the sun, but the smear stripe only results from very bright pixels,

likely only within the solar disk itself (closer to 0.5◦). If the ratio of brightness within

the solar disc to brightness within the standard DNI cone remains constant, then this

discrepancy would be accounted for by calibration; however, if the ratio changes as

atmospheric conditions change, it would mean that smear stripe alone does not contain

enough information to measure DNI. Due to the difficulty of determining the proper ratio

in which to combine the two signals, we have elected not to consider the remainder of

the solar region or any nonlinearity of smear at this time.

Additional sources of error include variations in the transmissivity of the camera

dome due to dust, dirt, and scratches on the outside of the camera dome, but these

are expected to primarily result in random errors. Dust and dirt affect all radiation

measurement systems, and present special challenges because they change on a daily

basis. We have anecdotally observed the camera-measured DNI increasing by several

percent on a day when the optics were cleaned. Temperature also affects the camera
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sensor, but it has a relatively small influence on the value of “normal” pixels, though

there is no guarantee this applies to smear.

Although the calibration procedures developed here are general, i.e. they could

be applied to any compatible camera, the overall technique places several restrictive

requirements on the camera system. In order to capture sufficient dynamic range to

measure GHI and DNI, multiple exposures with different integration times are required. In

a system with limited dynamic range, allowing the exposure time to respond dynamically

to the observed radiation intensity, and using smear from that single exposure rather

than a minimal integration should still work; data quality would, however, be expected

to be lower. Furthermore, use of dynamic exposure times complicates the conversion

between camera measurements and radiance/irradiance. Finally, only certain sensor types

actually exhibit smear at all. Indeed, CMOS sensors (which are increasingly common)

use in-pixel read-out electronics and therefore are not subject to smear; in fact, CMOS

sensors are preferred for sky imaging by some groups because they are immune to smear.

Potential improvements to the method presented in this paper revolve primarily

around the DNI calibration procedure. In particular, it would be valuable to have a field

calibration procedure that can eliminate the need to extrapolate DNI calibration factors to

different solar zenith angles, and to determine with more certainty which properties of the

various calibrations are potentially affected by redeployment or configuration changes

of the instrument. Additionally, further automation of calibration procedures would be

beneficial, particularly with respect to detection of clear-sky periods. Nevertheless, we

expect the correlation between smear and DNI to be robust and applicable to all interline-

transfer CCDs, and we expect that in the near future we will make use of this data in our

solar forecast algorithm, if not in more demanding resource-assessment applications.
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2.6 Supplemental Camera Details

2.6.1 Cropping

As mentioned above, hardware cropping is performed in the camera by skipping

the A/D conversion step for whole rows. This means that as pixels are shifted off the im-

age sensor, rows immediately adjacent to the sun will have less time to be “contaminated"

by smear, resulting in a lower smear signal in these rows.

Empirically, it is observed that cropping the top of the image by N pixels affects

the N rows immediately below the sun, while cropping the bottom of the image by M

rows affects M rows somewhat above the sun in the following image. The distance above

the sun is unfortunately somewhat dependent on time between image captures; in a test

data set, it was approximately 130 pixels.

Our current recommendation is to remove the entire region affected by cropping

(from 300 rows above to 200 rows below the sun for the USI), or perhaps, better yet, to

disable hardware cropping for the exposure used to measure DNI and an extra frame

before it, which can be discarded.

Astute readers will note that, since cropping the top of the image affects rows

below the sun that this implies that the horizontal shift register is actually located at

the top of the image sensor, which is contrary to the way the sensor is drawn in most

literature!

2.6.2 Color Channel Differences of Smear

Since smear results from overflow of signal into interline transfer columns, we

would expect the increase in pixel value due to smear to be uniform throughout each

column of the image since each image column shares an interline transfer column.

Specifically, while smear is expected to be higher in the red/green columns than in
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the green/blue columns due to higher average filter transmissivity, we do not expect to

observe any difference between the two different colors within a column. Although more

light will cause smear at the location of the red pixel on the sensor, the signal which is

altered could have originated in either a red or a green pixel.

Observed smear signals, in contrast, are highest in red pixels, followed by green

pixels in the red column. Blue pixels and green pixels in the blue column exhibit lowest

smear, and are both about the same, as is expected. We are unsure as to the cause of this,

but would welcome proposals, as they might shed further light on the underlying physics,

which might in turn help us to improve our calibration procedures and accuracy.

2.7 Calibration Periods

Period 1 begins at the start of the study period. The starts of periods 2 and 3 each

coincide with attempts to improve image focus. While at least some of the changes in

calibration are due to the focus change directly, it is anticipated that accidental changes

in alignment between the dome, lens, and camera body could require re-calibration any

time the device is opened.

The first two and last two days in each “DNI Calibration" set were placed in the

validation set for the ANN, while the other listed days were used as training data.

Table 2.1: Calibration Periods

Period 1 Period 2 Period 3
Start [UTC] 2014-08-18 08:00:00 2014-12-05 19:54:00 2015-03-16 19:10:00
End [UTC] 2014-12-05 19:45:00 2015-03-16 18:40:00 2015-08-18 08:00:00
DNI Calibration Aug 18, 27, 28; Oct

02, 05, 29; Nov 04,
06, 08, 26, 28

Dec 09, 22, 23, 29;
Jan 02, 06, 17, 24;
Feb 07, 24; Mar 05,
07, 12

Mar 25, 26, 27; Apr
12, 16, 18, 28; Jun
23, 24; Jul 10

DHI Calibration Oct 7 Jan 20 Jun 27
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2.8 Error Metrics

Error rates are reported in RMSE (root-mean-square error) and MBE (mean bias

error), following their standard definitions:

RMSE =

√
∑(GHI−GHIref)

2

N
, MBE =

∑GHI−GHIref

N
, (2.9)

where GHI is the sky imager, and GHIref is the reference pyranometer measurement, or

analogously for DNI or DHI. When RMSE (or MBE) is reported in percent, it has been

normalized by the average value of the reference sensor during the same time period:

RMSE
∑GHIref

N

. (2.10)

In addition, in some places we report errors for hourly-averaged data. In order to

avoid biasing the results for or against hours near sunrise/sunset (which are much more

likely than others to have partial data due to horizon exclusion rules), hours in which 45

or more (of 120 possible when sampling every 30 seconds) data points were missing or

excluded from were omitted from the hourly statistics.
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Chapter 3

A Virtual Sky Imager Testbed for Solar

Energy Forecasting

3.1 Introduction

In recent years, whole-sky imagers have become popular for forecasting solar

energy availability on short time horizons [70, 14, 53, 6, 43]. However, validation of these

forecasts can be tricky; reference data is often limited to at most a few irradiance sensors,

and even in the case where many sensors are present over a large area, detailed validation

data on the cloud field itself is uniformly unavailable. Under these circumstances,

validation can determine the forecast accuracy, but apportionment of the forecast error

to different components of the algorithm is difficult due to the lack of data about the

actual state of the atmosphere and the resulting radiation field. Therefore prioritization

of forecast development work is usually not well-informed and is unable to follow

cost-benefit principles.

We propose to address some of these limitations by producing a virtual sky

imager testbed, in which the configuration of the clouds and resulting irradiance is

41
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known. The purpose of this paper is to describe the setup of the virtual testbed and briefly

illustrate its potential through a case study. The virtual testbed is used to design and test

improvements to whole-sky imager forecast methodology developed at UC San Diego,

but it is straightforward to adapt it to any other algorithm.

Simulating clouds is one of the grand challenges of atmospheric physics as it

includes scales from micrometers (cloud condensation nuclei) to kilometers (cloud size),

multiple phases (vapor, liquid, ice), and even chemistry (hydrophobicity of aerosol

species). In terms of short-term (order of 10 minutes) cloud dynamics that are most

relevant to sky imager solar forecasting, the multi-scale and multi-phase fluid dynamics

need to be represented. In particular atmospheric turbulence plays a critical role in cloud

formation (e.g. thermals) and cloud dynamics. Not only do clouds “live” in the turbulent

atmospheric boundary layer flow field, but they also generate their own turbulence due to

longwave radiative cooling at the cloud top and latent heat release. Large Eddy Simulation

(LES) is a uniquely suited tool to simulate these boundary layer and cloud dynamics. In

LES the large turbulent eddies that are responsible for most of the momentum, heat, and

moisture transport are explicitly resolved and simulated faithfully based on the Navier

Stokes equations. The small scales (less than about 10 meters) cannot be resolved due to

computational cost and are parameterized through subfilter scale models [33]. LES also

simulates all modes of heat transfer, water vapor transport and phase change, as well as

cloud microphysics. LES is a mature field in engineering and atmospheric science and

the resolution, subfilter scale models, and microphysics models have been continually

improved over the past decades [35, 61].

Virtual cloud fields will be produced using LES. Surface-level irradiance fields

and simulated whole-sky images will be derived from a 3-dimensional radiative transfer

model (3D RTM). These tools (LES and 3D RTM) are significantly more physically

grounded and accurate than current sky imager forecast algorithms, so there is con-
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siderable scope for improving sky imager forecasts based on the virtual testbed. It is

worth noting that the virtual testbed need not reproduce a given observed cloud field

for this to be useful, so long as the virtual clouds behave similarly to real clouds. Why

not just use the LES and 3D RTM for forecasting in the first place? First, while recent

GPU-accelerated LES codes [51] approach the speeds necessary to produce operational

forecasts, the computational requirements for LES and 3D RTM tools are currently too

large to be feasible for short-time-horizon forecasting. Furthermore, even in those cases

where LES has been run operationally on a wide variety of measured data [18, 37], the

cloud fields are statistically accurate on timescales from tens of minutes to hours. To

produce meaningful forecasts of individual clouds, LES would require input of a detailed

state of the atmosphere including detailed humidity and velocity fields which, as noted,

are generally unavailable. Even here, the virtual testbed is useful, as it allows improved

testing of 3D cloud detection algorithms for whole-sky imagers, which could eventually

be used as input to an LES-based forecast.

In section 3.2, we present the virtual testbed and whole-sky imager forecast.

Section 3.3 compares the results of the sky imager forecast to those of the virtual testbed,

paying special attention to the newfound ability to determine errors of difficult-to-measure

quantities such as wind speed aloft and 3D cloud structure. Differing geometrical

perspectives and cloud field dynamics constitute the largest sources of error in the

current forecast, with geometry playing a larger role at short forecast horizons, and cloud

evolution dominating the error for further-ahead forecasts. Discussion and conclusions

are provided in Section 3.4.
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3.2 Virtual Testbed Components

3.2.1 Large Eddy Simulation

LES are carried out using the UCLA LES [59, 58, 60], which has been thor-

oughly validated and tested for a number of cases including continental cumulus [5],

raining cumulus [61], and stratocumulus clouds [58]. The UCLA LES uses the Smagorin-

sky sub-gridscale model, and parameterizes cloud microphysics following Stevens and

Seifert [61]. Interactive radiation is implemented via a Monte Carlo version [46] of the

delta-four-stream model [29]. Cloud droplet radius for both radiation and microphysics

is modeled by assuming a fixed cloud droplet mixing ratio.

A single 14.5 hour simulation was carried out using example input data modeled

for continental cumulus clouds, following the base case in [21], which is itself based

on a detailed LES study of measurements taken at the Southern Great Plains (SGP)

site of the Atmospheric Radiation Measurement (ARM) program [5]. Following prior

simulations [21], precipitation was disabled in the microphysics model, leaving cloud

liquid water diagnosed as the total water mixing ratio in excess of the saturation mixing

ratio, and with the fixed cloud droplet mixing ratio of 70× 106/kg. Initial profiles of

atmospheric temperature and humidity, as well as input surface fluxes are shown in

Figure 3.1. Small volumetric forcings are applied as in [5] in order to represent observed

large-scale advection in the periodic simulation domain. This day represents typical

formation of a convective boundary layer due to surface heating, with cumulus clouds

forming at the top of the (initially clear) boundary layer. As the day progresses, the cloud

base rises from 1000 m to around 1500 m, with maximum cloud thickness of around

1250 m. Both the boundary layer and the clouds continue to deepen until late afternoon

when solar radiation has decreased significantly. Typical horizontal cloud size is 400 m.

Hemispherical cloud cover peaks just above 65% around solar noon; Figure 3.6 later
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Figure 3.1: Profiles of temperature and humidity at simulation start, along with surface
convective heat fluxes during the simulation.

shows hemispherical cloud cover over the course of the day.

LES grid cells are 50 meters across in both horizontal dimensions and 40 meters

high, spanning a 6.4 km domain that is 5.1 km deep. Periodic boundary conditions are

used in the horizontal dimensions. A 10-cell thick sponge layer is used at the top of the

domain to prevent wave reflection, while the lower surface uses a no-slip boundary with

roughness length of 0.035 m, representative of long grass.

LES requires on the order of an hour of simulation time to properly “spin-up” the

turbulent flow and cloud field. After spin-up, the 3D state of the atmosphere (velocity,

temperature, pressure, humidity, and liquid water content) is saved every 60 seconds of

simulation time for input into the 3D RTM and reference against the sky imager forecast

results.

3.2.2 3D Radiative Transfer Model

The Spherical Harmonic Discrete Ordinate Method (SHDOM) [13] is used to

solve the 3D Radiative Transfer Equation. SHDOM is the most computationally intensive

portion of the virtual testbed, requiring over half of the approximately 5000 CPU-core-

hours used for the run presented here. SHDOM inputs are derived from the liquid water

content output by UCLA LES, combined with the aerosol loading shown in Figure 3.2,
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Figure 3.2: Aerosol loading and effective radius used to produce blue sky in SHDOM.

which is based on the nauru19990707 data file included with SHDOM adjusted to match

the observed annual-average aerosol concentration, and effective radius at the ARM SGP

AERONET site in 2013. This rapid decrease in aerosol concentration with height matches

the exponential decay proposed in [17]. SHDOM also uses atmospheric temperature

when computing scattering properties; input vertical temperature profiles were derived

from LES outputs. In order to simplify interpretation of the results, SHDOM is run with

a constant sun position (solar zenith angle of 45◦) for the entire simulation time period;

this avoids changing clear sky irradiance and geometric perspectives.

At each time step, SHDOM produces a map of surface global horizontal irradiance

(GHI) across the simulation domain. In addition, it produces one or more simulated sky

images (essentially a map of radiance versus direction at a single location) that can be

fed into the sky imager forecast routines. SHDOM results at three different wavelengths

(450 nm, 550 nm, and 670 nm) are combined to produce full-color images, and are

averaged to approximate broadband GHI. As in the LES, periodic boundary conditions

are used.

Figure 3.3 shows an example of clouds from the LES and the corresponding
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Figure 3.3: Example LES clouds and virtual sky image at 10:43 local time.

Table 3.1: Naming shorthands for modified versions of the forecast algorithm. The
standard forecast is si-pix-kthist.

Cloud Map Cloud Motion Radiation
Sky Image (si) Pixel Motion (pix) kt Histogram (kthist)
LES Converging Ray (conv) LES Layer Mean (llm) Per-class Mean (ktmean)
LES Zenith Parallel Ray (zen) No Quantization (noquant)
LES Sun Parallel Ray (sun) kt Advection (ktadv)

virtual sky image from SHDOM.

3.2.3 Sky Imager Forecast

The sky imager forecast [70] investigated here models clouds as occurring in a

single plane at the height of the cloud base. Current cloud positions are detected based

on the color of the input image, and future positions are forecast using the “frozen cloud

advection" assumption, which assumes that the entire cloud field moves in a uniform

direction without changing shape. Inputs to the sky imager forecast are a sky image, cloud

base height (usually derived from lidar (Light Detection and Ranging) data), and recent

measured GHI—used to estimate average cloud optical thickness, which is difficult to

determine from the image. Figure 3.4 illustrates data flow through the sky imager forecast

algorithm, along with inputs from the virtual testbed. In addition, several variations of

the algorithm are discussed as part of the virtual testbed; naming conventions for these

variations are given in Table 3.1.
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Figure 3.4: Data flow through sky imager forecast algorithms with inputs from virtual
testbed. Solid arrows indicate the standard flow of data through the algorithm, while
dashed lines show where “correct" data from the virtual testbed can be used in place
of a step in the forecast algorithm. Outputs of LES or SHDOM are shown with a thin
solid outline, while derived results have a dashed outline; steps in the basic sky imager
forecast have no outline.

Cloud Detection and Geometrical Mapping

In the virtual sky imager testbed, cloud base height is determined based on the

first grid cell to have significant liquid water content. As lidar point measurements

of cloud base height are generally accurate, the “correct” LES-derived cloud height is

used directly for forecasting. In practice, errors would be introduced in the process of

interpolating point measurements of cloud height into an accurate height for an entire

layer, particularly in the presence of topography or heterogeneous land surface and over

larger areas. In the interest of brevity, we do not address these errors here.

Cloud detection operates on the virtual sky images in the same manner as real

sky images, and classifies each pixel of the input image as clear sky, thin cloud, or

thick cloud, by applying thresholds to the difference between the red-blue ratio (RBR)

of the image being analyzed and RBR of a clear sky. Pixels with RBR−RBRclear ≥

0.4591 are considered thick cloud, while those with 0.4591 > RBR−RBRclear and

RBR−RBRclear ·HCF≥ 0.3044 are considered thin cloud. These thresholds generally
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vary with camera and location, and these values were manually selected specifically for

use with the virtual testbed based on five images. HCF is the haze correction factor, and

helps distinguish thin clouds from background haze. It is iteratively determined for each

frame so that the average RBR of portions of the image detected as clear matches the

RBR of the haze-corrected clear sky.

Reference cloud maps are derived from LES optical depth, with optical depths

greater than 1.5 considered thick clouds and any smaller non-zero optical depth consid-

ered thin cloud. Optical depth is the integral of extinction coefficient µ along the rays of

the projection, normalized by ray orientation.

Optical Depth =
∫

µ
dz
ds

ds (3.1)

µ =
3
2

LWC
ρlre

, (3.2)

where LWC is the liquid water concentration in kg/m3, ρl is the density of water, and re

is the effective droplet radius, here fixed at 8 µm.

As there is no obviously “correct" way to compress a 3D cloud into a plane,

reference optical depth maps are computed using three different geometries (illustrated in

Figure 3.5): zenith projection, sun projection, and converging-rays projection. Zenith and
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sun projected cloud maps compute the cloud optical depth along parallel rays, while the

converging-ray projection computes cloud optical depth along rays emanating from the

location of the camera. Because it uses the same projection function as the camera, the

converging-ray projection is representative of the best results we can expect to achieve

with a pixel-by-pixel cloud detection on a sky image, while the sun projection is most

relevant to the actual irradiance received at ground level. The zenith projection is similar

to the view from a satellite positioned directly overhead.

Cloud Velocity and Cloud Map Advection

The sky imager forecast computes cloud speeds based on pixel motion between

adjacent frames. Motion vectors are determined for small regions of the image, and then

clustered and averaged to produce a single wind vector that will be used to advect the

entire cloud field. Assuming that clouds travel on the background flow, reference wind

vectors can be obtained directly from the LES as the vector average wind at the cloud

base height.

Shadow Mapping and GHI Forecast

The final step of the forecast is to place cloud shadows and estimate GHI(x,y, t).

The correct way to estimate surface GHI is to run a 3D RTM on a 3D field of extinction

coefficients, which accounts for attenuation of the direct beam and 3D photon transport

for diffuse radiation. Sky imager forecasts require simplifications both because 3D fields

are not available and due to the computational complexity of 3DRTM. At present (kthist

in Table 3.1), effects on direct and diffuse irradiance are lumped by assigning a clear-sky

index kt (fraction of clear-sky GHI that will be received) to each cloud class:

GHI(x,y, t) = GHIcsk(t)× kt(cloud class(x,y, t)) (3.3)
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with cloud classes projected from the cloud plane to the ground using “sun projection"

geometry from Figure 3.5. The kt for each cloud class is selected by finding three peaks

(modes) in the histogram of measured GHI data from the past 2 hours. If fewer than three

peaks are found, defaults of 0.42, 0.70, or 1.06 (for thick, thin, and clear respectively) are

used. “Correct" kt for each class is determined by averaging the SHDOM GHI of pixels

located in the shadows of each class.

In addition to reference GHI computed in SHDOM, we also compare several other

radiation schemes, designed to illuminate the errors that arise in the existing forecast

model. 1. Following the current sky imager forecast method, but using the “correct" kt for

each class (ktmean). 2. Converting directly from optical depth (Eq. 3.1, any projection)

to kt at each point via an exponential model fit at each time step, without quantizing into

cloud classes (noquant). 3. kt advection, i.e. kt(x,y, t) = kt(x−ut,y− vt,0), for clouds

moving with velocity (u,v), without reference to detected clouds (ktadv). 4. Persistence,

i.e. kt(x,y, t) = kt(x,y,0). Method (1) removes errors in the kt assignment, while (2)

removes errors due to quantization. Methods (3) and (4) are initially perfect, and are

included primarily to illustrate model performance as the cloud field changes. We note

that methods (2) and (3) require more detailed information about the cloud field than is

generally available outside the virtual testbed.

Error Calculations

Comparison of each of these intermediate forecast quantities to the reference

values can obviously be done directly, but it is also beneficial to compare the relative

effects of errors at each step. For example, it is not clear how a cloud-speed error of 1 m/s

relates to an error in cloud-cover of 10%. For this purpose, we compare the final forecast

errors that result from substituting various reference values into subsequent forecast steps.

For example, we might calculate forecast cloud positions and shadows using the “correct”
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sun projection reference cloud map rather than the cloud map derived from the sky image

(corresponding to sun-pix-kthist in Table 3.1). This and other varying paths through

the forecast algorithm are drawn in Figure 3.4. Naming conventions for variations are

summarized in Table 3.1.

Note that domain-average GHI is nearly constant over short periods of time,

so errors are computed for all points, rather than for the domain average. Errors thus

obtained are representative of validating sky imager forecasts against point measurements

at weather stations. Forecasts for power plants exhibit reduced random error magnitudes

due to spatial averaging. Forecasting and error reporting commence 15 minutes before

the formation of the first clouds and extend through the end of the simulation.

When comparing the error E of different methods to a baseline case, it is also

useful to define forecast skill,

forecast skill = 1− E
Eref

, (3.4)

which is small positive number (up to 1 for a perfect forecast) if a method performs better

than the baseline, and a negative number if the method under consideration is worse.

3.3 Results and Discussion

3.3.1 Errors in Intermediate Quantities

Time series of cloud cover, cloud velocity, and kt results are illustrated in Fig-

ure 3.6 and demonstrate the forecast’s ability to match overall atmospheric conditions.

During the simulation run, the sky imager forecast had errors (RMS) of 2.0 m/s and 1.7

degrees for the detected cloud velocities compared to LES wind at the cloud base height.

Considering multiple cloud classes, 83% of pixels were correctly classified, with 7% that
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Figure 3.6: Time series comparison of cloud motion, hemispherical cloud cover, and
per-class kt against reference values derived from LES. Cloud motion filtering smooths
data and removes points where cloud cover < 0.05. Clear-sky kt exceeds 1 during much
of the simulation due to cloud enhancement.

were classified as a cloud of the wrong class, and the remaining 10% classified as clear

when they should have been cloud or vice versa. Detected kt values from the existing

histogram-based method were also relatively reliable, with errors (RMS) of 0.033, 0.078,

and 0.079 for clear, thin, and thick categories.

Based purely on these error numbers, only the cloud speed error appears large

enough to be of concern; the following sections consider the relative importance of

these different errors to the GHI forecasts. Errors at short time horizons will mainly

be influenced by the cloud mapping and radiation models, while longer forecasts rely

significantly on the ability to predict the evolution of the cloud field.

3.3.2 Projection

Figure 3.7 illustrates the difference between the different cloud projection schemes.

The standard sky imager forecast errors and persistence forecast errors follow the trend
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Figure 3.7: GHI forecast errors for several methods (X-pix-kthist) of mapping 3D
clouds onto a horizontal plane at the cloud base height. All methods increase in error as
the forecast horizon grows, however the methods with converging rays (Sky Imager and
LES Converging) are unable to beat a persistence forecast. For reference, the typical
range of GHI at any given time is around 670 W/m2.

observed in previous work involving real-world data [70]. The converging-ray reference

cloud map produces slightly better short term forecasts, but does no better at longer

time horizons. Most notable, however, is the significant improvement that comes from

using one of the parallel-ray projections, particularly at short time horizons. The sun

projection method works best for short forecasts because it best matches the actual path

light takes through the atmosphere, while zenith projection seems to work better at

longer time horizons. We suspect this is because cumulus clouds form convectively, and

as a result are more dynamic in the vertical dimension (which is hidden in the zenith

projection) than the horizontal dimensions. Converging-ray projection was generally

known (e.g. [25]) to cause some degree of perspective error, but the authors had not

previously realized just how much of the error (over 2/3 at the shortest time horizons)

was a result of this. The remaining error at zero time horizon (“nowcast") is due to cloud

detection (thresholding of optical depth) and the complex 3D diffuse irradiance field that
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is not captured by the kt assignment; this error is further investigated in the following

section. The inadequacy of the frozen cloud advection hypothesis and to a lesser extent,

cloud speed errors (Figure 3.6), result in all the methods having larger errors at long time

horizons.

3.3.3 Radiation

To investigate the remaining nowcast errors, we consider the radiation component

of the forecast algorithm. The current algorithm makes two significant approximations.

First, it treats GHI as depending only on the value in the 2D cloud map at a single point.

This is accurate for the direct beam, but not at all representative of how diffuse irradiance

propagates. Secondly, as a result of this single-point approximation and our quantized

cloud map, the cloud shadows are also quantized. To assess the performance implications

of these assumptions, the results of relaxing each of these assumptions are demonstrated

in Figure 3.8. The sun projection is used for this comparison as it is most physically

representative, and performs best (Figure 3.7) at short time horizons.

Nowcast errors are independent of cloud motion and therefore reveal the radiation

model errors. Choosing the optimal (mean observed at zero horizon) kt for each class

(red line) results in modest (around 12%) improvements in the radiation model. However,

even eliminating the quantization (blue line) leaves over 40% of the nowcast error. The

remainder requires properly dealing with diffuse irradiance and 3D cloud structure.

At longer time horizons, the difference between the various methods decays as

the advected static cloud map becomes less representative of the real cloud field. The

kt advection scheme uses the initial measured kt(x,y), and is thus perfect initially, but

by 5 minutes is hardly any better than the standard algorithm. Interestingly, the mean

kt method actually performs better at long time horizons, presumably because localized

fluctuations about the mean values tend to change more quickly with time and smoothing
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For comparison, a persistence forecast (constant kt at each point) is also shown.

forecast fields therefore tends to reduce errors.

It should also be noted that this cloud scene contains only medium-thickness

fair-weather cumulus clouds which probably tends to improve the performance of the

baseline radiation model compared to conditions with a mix of thin and thick clouds. In

particular, the algorithm would likely have more difficulty selecting the correct peaks

from a more complicated kt histogram.

3.3.4 Cloud Evolution

To address errors at longer forecast horizons, additional comparisons were run

using the nominal average wind vector from LES. As illustrated in Figure 3.9, using the

nominal wind vector from LES results in less than 4% improvement in forecast accuracy.

For the sun and zenith projections, these improvements are relatively small (median 1.1%

and 1.6% respectively across forecast horizons) in comparison to the overall increase
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Figure 3.9: Forecast errors for frozen cloud advection compared with reference motion
vectors from LES. Algorithm variations shown are X-Y -kthist. Similar behavior is
observed for other forecast variants not shown.

in error with forecast horizon, suggesting that the current sky imager forecast’s motion

vector algorithm works well (at least, for this simple, one-layer cloud case), and that we

have essentially saturated the capabilities of the frozen cloud advection model; further

improvements would require a more dynamic model for cloud development. After a

forecast horizon of 5 minutes, a forecast that assumes constant kt thoughout the domain

(not shown) outperforms all other forecast variants. Thus, 5 minutes can be considered

to be the decorrelation time scale of this cloud field and an upper bound for the validity

of the frozen cloud assumption; the decorrelation time scale is expected to vary with

atmospheric conditions.

Some additional attention is required to the motion estimation algorithm as ap-

plied to the sky image or converging cloud map. In Figure 3.6 previously, a significant de-

viation was observed between the detected cloud speed and the LES reference speed—the

pixel motion estimation consistently under-predicts speed. While the contribution to

overall error is still always less than 4% (median 2.9%) in this case, approximately half

of the forecast-horizon-dependent error is attributable to this velocity under-prediction.
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This under-prediction appears to be related to the vertical geometry of the cloud, as

Figure 3.10 shows that the detected speeds in the sun and zenith projections match the
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Figure 3.10: Cloud speed estimates based on pixel motion for the different projections
in comparison to the LES reference speed. The black (llm) and red (si-pix) lines are
also shown in Fig. 3.6.

LES results much more closely. Furthermore, experiments with non-physical clouds

occupying only a single grid layer showed no issues with motion estimation, suggesting

that cloud depth or wind shear is involved. At present, a complete explanation for this

under-prediction of velocity is lacking; it will be investigated in more detail in future

work. As noted above, the more accurate projections also yield more accurate motion

estimates without additional work, so this investigation is primarily of interest until it

becomes possible to generate 3D cloud maps from sky imagery.

3.4 Discussion and Conclusions

The virtual sky imager testbed is a valuable and versatile tool, allowing us to

validate the quality of outputs from many steps of the sky imager forecast algorithm,

and to assess the source of remaining errors. Here, the testbed demonstrated that for
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a simple cloud scene with scattered cumulus clouds, nowcast errors already negated

most of the utility of sky imager forecasting. Nowcast errors primarily originated in

the converging-rays projection of 3D clouds into a 2D plane, while cloud detection

contributed relatively minor errors.

Sky imager forecast errors further increase from the nowcast errors, never manag-

ing to outperform a persistence forecast. The virtual sky imager testbed allowed cloud

motion estimation errors to be examined separately and these errors were found to be

small except for converging-ray projections, and of minor consequence there. Further, the

virtual sky imager testbed demonstrated that even with projection errors in the nowcast

corrected, the frozen-cloud-advection assumption for forecasting future cloud positions

increasingly deteriorates forecast accuracy at longer time horizons.

However, the virtual testbed suffers from a number of limitations as well. LES is

mostly limited to boundary layer clouds over flat and homogeneous or at least idealized

(periodic) ground surfaces. The current LES setup is therefore limited in its ability to

produce high clouds, including cumulonimbus and cirrus, as well as multiple cloud layers

and topographic clouds. In principle, use of a larger domain, non-idealized measured

inputs, and advances in numerical codes can enable simulations of these other cloud types

(e.g. as in [52, 18]), but with considerable computational and human resource investments.

Varying types of clouds and topography would likely influence the measured errors

quantitatively, but qualitative conclusions would likely be similar to those for cumulus

clouds. For example, clouds with smaller vertical extent such as stratocumuli would

likely reduce projection errors, but sun or zenith projection would still be expected to

outperform converging-ray projection. Therefore, while not necessarily sufficient to

validate forecasts under the variety of conditions seen in the real world, for development

of generic forecast algorithms it is preferable to utilize simpler-to-implement, well-

studied cases. Multiple cloud layers, on the other hand, considerably complicate cloud
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detection (shadows of upper layers on lower layers), cloud mapping (single-cloud-plane

model is no longer accurate), and motion estimation (distinguish multiple layers moving

independently), and are therefore more likely to reveal qualitatively different results. In

a future iteration of the virtual testbed, multiple cloud layers might be approximated

by running multiple separate LES simulations and stacking the results, though this is

obviously not physically realistic. Finally, the process of producing virtual sky images

currently omits both stray light and sensor noise. Noise, and in particular stray light tend

to cause issues with cloud detection, so cloud detection in the virtual testbed is likely

more accurate than for real images. Models for noise and stray light could be added in a

future version of the virtual sky imager testbed.

Despite these limitations, the virtual testbed is expected to be a valuable tool for

validating and improving sky imager forecast algorithms. The authors would be happy to

share the virtual sky images and ancillary data with other researchers.
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Chapter 4

Cloud Advection

4.1 Motivation

Inspired by our work with the virtual sky imager testbed in Chapter 3, we know

that the projection of 3D clouds onto a 2D hemisphere (the imaging surface of a fisheye

lens) and the evolution of clouds over time are the two largest sources of error in the

forecast. Other researchers have successfully demonstrated binary 3D cloud detection

using multiple sky imagers [40], and another student in our lab is working to develop full

3D reconstruction techniques [32], so I will focus here on cloud evolution. Rather than

struggle with the geometrical issues of real sky images, we will take advantage of the

virtual testbed to use clouds in the “sun projection" cloud maps that yield best results

for the virtual testbed (see Sections 3.2.3, 3.3.2). Although it is currently impossible

to generate such cloud maps from real images, the aforementioned work in 3D cloud

reconstruction should enable it in time. In addition, the techniques discussed in this

section should be generally applicable to satellite imagery as well.

61
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4.2 State of the Art

Most sky imager forecasts use either the frozen cloud advection assumption

(a uniform, constant velocity field) [70, 43, 31] or a simple warping model (constant,

non-uniform velocity field) [23]. Warping models typically act by taking the original

grid of points for which cloud values are known and adjusting their locations so that the

known cloud values lie at new (irregularly spaced) coordinates. An alternative approach

often used in NWP models is to maintain a regular grid and adjust the values in the grid

based on local gradients and wind. We will refer to this class of methods as “numerical

advection" as they implement the standard advection-diffusion equation numerically

(often with diffusion set to zero). We are not aware of any sky imager forecasts that

also evolve the velocity field over time, nor any that use numerical advection or allow

formation of clouds. At least one group has used numerical advection and non-constant

velocity fields for forecasting with satellite images, by using the Weather Research and

Forecasting (WRF) NWP model to perform their cloud advection [34], however they also

derive their motion vectors from WRF rather than from the satellite image.

For motion detection, many authors track points, either on a grid [70] or by

locating “feature" points with strong gradients [53]; others make use of various “optical

flow" methods that generate a dense motion vector field across the entire image. For sky

images, a variational method for optical flow (such as the Horn-Schunck method [22])

is typically used. These methods use a regularization parameter to encourage spatial

uniformity of the resulting velocity fields, which is important for cloud scenes where

much of the scene (i.e. the clear sky) may not appear to be moving at any given moment.

More recently, a number of authors have found that variational methods that use a robust

error function (one that reduces the error penalty for very large discontinuities in velocity)

can help to work around natural edges in a scene [30, 4, 8].
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Of note, these optical flow algorithms are typically derived from the computer

vision field, where they are expected to give a relationship between two known frames

and only those two known frames; typically if the relationships to a third frame are

needed, they are simply calculated based on that additional frame. In contrast, for solar

forecasting, we would ideally like to apply a given motion field to predict future cloud

maps that are unavailable at the original time.

4.3 Proposed Methods

4.3.1 Warping

Flow Estimation

For a robust variational optical flow method, we turn to Liu [30], who provides

both a methodology and a publicly available implementation in C++. His code uses

successive over-relaxation and iteration over smoothed downscaled images to minimize

an error term

E(u,v) =
∫

ψ

(
|I0(p−w)− I1(p)|2

)
+αφ

(
|∇u|2 + |∇v|2

)
dp (4.1)

Where I0 and I1 are two images, ψ(x) and φ(x) are the robust function
√

x2 + ε and α is

a regularization parameter.

Our group has previously dabbled in optical flow for cloud advection, with

promising results [8]. However, in more recent work with the virtual testbed (discussed

in Chapter 3), we found that the optical flow method was consistently outperformed by

frozen cloud advection. This turns out to be due in part to the necessity of choosing an

optimal value of the regularization parameter α . As can be seen in equation 4.1 above,

for a given degree of smoothness in the flow field, the corresponding value of α actually
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scales with the image brightness I(p); that is, if we compute the optical flow for the

contrast-adjusted images I′ = γI (for some constant γ) and wish to obtain the same flow

field as for the original image, we should use a regularization parameter α ′ = γα . On

the other hand, we can see that adding a constant to each image I would not change the

required value of α , since the two frames are subtracted from each other.

Motivated by this, we tried several different approaches for automatically se-

lecting α , including basing it on the mean value of I and on the standard deviation. At

present, we have settled on scaling by the average magnitude of the image gradient

α = 1.5
√
|∇I1|2, (4.2)

however we feel there is further room here to optimize. In particular, selection of the

best choice of α is complicated because the error in forecast cloud states depends not

only on the regularization parameter used to determine the velocity field, but also on the

advection scheme used to apply the that velocity field to produce a future cloud state.

The typical procedure of minimizing model error therefore involves optimizing over a

large domain. Unlike with some other parts of the virtual testbed, it is not immediately

clear that we can rely on the LES wind velocities for reference values, because the LES

wind applies to the 3D clouds while the sky imager is working with 2D clouds.

Advection

Typically [8], cloud fields at points in the future are forecast by a “warping”

operation. We shall refer to forward warping as warping that uses velocities at a given

given grid position to project point positions forward in time

I2(p+w) = I1(p), (4.3)
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while a backward warping model looking to find the value at a point p looks backward

along the velocity vector to predict a value from the previous time

I2(p) = I1(p−w). (4.4)

Forward warping feels intuitively more correct, because it aligns well with our mental

model of how the system works (backward warping appears to move cloud values using

velocity vectors from different points in the cloud map), but the mathematical structure

of backward warping bears more similarity to Equation 4.1. This bears some similarity

to the difference between explicit and implicit methods for numerical integration.

Additionally, we have considered separating the motion into a mean flow and

a perturbation, w = w+w′. The perturbation would then be applied first in order to

produce a distorted cloud map, followed by a simple linear advection of the clouds.

This distinction is unimportant when used with forward warping as it is mathematically

identical there (at least for single time steps), but tends to lead to improved results for

the backward model. Intuitively, this is because it results in the cloud type and motion

vectors being derived from closer points in the cloud map; often when backward warping

is done for the full velocity vectors, non-uniform velocities derived for the cloud are

often applied to empty spaces between clouds where they do little good. We have found it

productive to think of this as a hybrid warping scheme, because the distinction between

backward and forward warping is irrelevant for uniform motion, so this is somewhat like

using the backward scheme for distortion and the forward scheme for mean motion.

Both warping schemes will result in a warped coordinate grid and therefore

require interpolation to convert back to the regular grid used for storing cloud maps and

computing forecast errors. This interpolation is more efficient for the backward grid

because in that case we wish to sample from a regular grid at warped grid points; in
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contrast, for the forward warping scheme, the known values lie on the warped grid, which

is more difficult to interpolate from (e.g. MATLAB proposes to perform a triangulation

on the warped grid, which can then be used to look up nearest neighbors of regular grid

points more efficiently).

In our experience, the hybrid warping scheme produces results with the lowest

errors, however it is not immediately apparent that it should outperform forward warping,

and it remains a possibility that this feature is due as much to an incorrect motion field as

to any superiority of the hybrid warping scheme.

Furthermore, there are two additional considerations for producing forecasts more

than one time step in the future. Forecasts can either be produced directly

IN(p) = I1(p− (N−1)w) (4.5)

or iteratively

IN(p) = IN−1(p−w). (4.6)

If we are iterating, we must also consider whether the velocity field is to be distorted in

each step, or only the cloud field.

Results for these different procedures will be discussed in more detail in Sec-

tion 4.4 below.

4.4 Results and Discussion

After consideration of several of the options discussed above (Sec. 4.3.1), we

settled on 1.5 as the best value for the proportionality constant in Equation 4.2, so that α

is 1.5 times the root-mean-square magnitude of the image gradient. This was coupled

with a hybrid warping scheme applied iteratively for subsequent time steps. Physically,
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Figure 4.1: Forecast errors showing results of improved motion algorithm. Forecast
skill is computed relative to the baseline sun-projection forecast, and results using the
LES-derived cloud speed and for a mean-persistence forecast are also shown.

one would expect an iterative approach that also adjusts the velocity field to perform best.

In practice, we found that results with adjusted velocity fields to be disappointing.

Results are shown in Figure 4.1. We found that while the iterative approach

produces better short term forecasts, the resulting forecasts are actually worse by the

15-minute-ahead mark. In contrast, a non-iterative hybrid warping scheme did slightly

worse in the first several minutes of the forecast, but performed better at the 15-minute

mark. Although better long-term forecast performance is obviously desirable, we have

elected to prefer the iterative approach at present because it is more intuitively correct,

and because both forecasts have higher error than a mean persistence forecast after 6

minutes, at which point any operation that pulls the cloud field toward its mean value

tends to reduce error.

Figure 4.2 shows forecast skill as a function of time through the day. Forecast skill

is positive for the new method for most of the day except during times of strong cloud

formation and dissipation at the beginning and end of the day respectively. Additionally

periodic sharp drops in skill during the course of the day correspond to changes in cloud

height in the model that were not properly accounted for during the first run. The model

has been updated to address this issue, but the changes are not reflected in the plots above.



68

08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00

Simulation Time [hh:mm]

-0.3

-0.2

-0.1

0

0.1

0.2

F
or

ec
as

t s
ki

ll 
[-

]

1-minute-ahead Forecast

Standard Motion
LES Cloud Motion
Optical Flow, Iterative

08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00

Simulation Time [hh:mm]

-0.3

-0.2

-0.1

0

0.1

0.2

F
or

ec
as

t s
ki

ll 
[-

]

5-minute-ahead Forecast

Standard Motion
LES Cloud Motion
Optical Flow, Iterative

Figure 4.2: Forecast skill through the day for improved motion algorithm. Skill is
computed relative to the sun-projection forecast using uniform motion computed via
cross correlation.

4.4.1 Directions for Future Work

In the immediate future, a more in-depth investigation of parameters in the optical

flow setup could produce further improved results. Specifically, it seems likely that a

more exhaustive search of the regularization parameter (α) space would likely lead to a

more robust rule for selecting that parameter. This search would necessarily also include

a variety of different warping schemes as it’s possible that poor determination of the flow

field causes the otherwise-best warping scheme to perform poorly. We strongly suspect

that a truly good warping scheme should also distort the motion field at each time step,

and that our failure to observe promising results is due to either an implementation error

or poor velocity fields.

In addition, we would very much like to see numerical advection tested for cloud

forecasting. In particular, the framework of numerical advection nicely accommodates a



69

source term, which might particularly aid forecasting during times of strong formation

and dissipation of clouds.

Finally, some effort will likely be required to extend this work to multiple cloud

layers which may be moving in different directions. Other authors have suggested using

detected cloud blocks to split the cloud into potential layers which can be assigned

consistent motion [42], or initializing optical flow search based on cross-correlation

motion tracking at strong gradients [68].



Chapter 5

Concluding Remarks

In the preceding chapters, several novel algorithms for sky imager forecasts are

discussed.

Chapter 2 proposed algorithms for measuring DNI and GHI using the UC San

Diego sky imager. Although other authors have proposed similar techniques, both our

correction for scattered light and our technique for measuring DNI using CCD smear are

unique; other authors typically neglect to account for stray light and either do not attempt

to measure DNI or approximate it as a binary function.

In Chapter 3, we document our virtual sky imager testbed, which we then use

to validate the individual steps of our sky imager forecast algorithm. The testbed

shows that while both cloud detection and motion estimation work well by themselves,

that geometrical limitations of a single sky imager limit the accuracy of initial cloud

positions and the assumption of constant, uniform velocity limits our ability to predict

cloud positions no matter how accurately the mean velocity may be. While these were

previously known to be significant drawbacks of the forecast algorithm, we can now say

with certainty that they account for the vast majority of the errors and should therefore be

our primary targets for future algorithm development.
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In keeping with that, Chapter 4 investigates two more advanced advection schemes

inspired by optical flow techniques from computer vision. These techniques show moder-

ate improvements in forecast error, but still leave considerable room for improvement.

5.1 Directions for Future Work

As touched on in Chapter 3, LES is a powerful tool, and with modern GPUs, it has

become feasible to simulate a domain of the size used for sky imager forecasting in real

time. Perhaps the holy grail of sky imager forecasting would be full 3-dimensional cloud

detection followed by forecasting cloud positions with LES and radiation with SHDOM.

GPU accelerated LES codes already exist [65]; SHDOM or another 3D radiative transfer

model would need to be correspondingly accelerated. However, the most challenging

aspect of such an endeavor would be to develop an algorithm for ingest sky imager data

into the LES model; LES requires humidity and momentum initializations at every grid

point, not just those with condensed water vapor that can be tracked with a sky imager.

Perhaps simply repeatedly nudging the LES model towards sky imager observations

would be sufficient to produce good results, but perhaps not.

No matter how accurate a forecast becomes, it will never be error-free. As

important as low errors is the ability to tell forecast users the expected uncertainty of

the forecast. For example, most solar forecasts are more accurate under clear skies than

partly cloudy skies. However, there will be other important factors as well. If sky imager

forecasts are ever to be useful operationally, they will need to come with uncertainty

bounds, perhaps even adjusting these bounds in real-time. A few authors have proposed

sky imager forecast methodologies with support for uncertainty forecasts [3]. Other

promising approaches include quantile regression [36] or propagation of uncertainties

with linkages determined using the virtual sky imager testbed.
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