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Abstract 

Many common tasks require or are made more efficient by 
coordinating with others. In this paper we investigate the 
coordination dynamics of a joint action pick-and-place task in 
order to identify the behavioral dynamics that underlie the 
emergence of human coordination. More precisely, we 
introduce a task dynamics approach for modeling multi-agent 
interaction in a continuous pick-and-place task where two 
agents must decide to work together or alone to move an object 
from one location to another. Our aims in the current paper are 
to identify and model (1) the relevant affordance dynamics that 
underlie the selection of the different action modes required by 
the task and (2) the trajectory dynamics of each actor’s hand 
movements when moving to grasp, relocate, or pass the object. 
We demonstrate that the emergence of successful coordination 
can be characterized in terms of behavioral dynamics models 
which may have applications for artificial agent design.  

Keywords: Behavioral Dynamics, Affordances, Multi-agent 
Coordination, Dynamical Modeling, Joint action, Pick-and-
place, Dynamical Systems Theory, Decisions 

Introduction 

Often, everyday tasks can be accomplished more quickly and 

efficiently when individuals work together and coordinate 

their actions to accomplish task goals. However, increasing 

the number of individuals engaged in a task constructively 

increases the complexity of the task by expanding the degrees 

of freedom and interactions that define the task action space. 

Computational approaches to dealing with the increased 

complexity of joint action tasks largely focus on reducing 

complexity by identifying representational or neural 

structures that support successful joint action (Graf, Schütz-

Bosbach, & Prinz, 2009; Rizzolatti & Craighero, 2004; 

Sebanz & Knoblich, 2009). Equally important, however, is 

understanding what aspects of successful multiagent 

coordination naturally emerge from the physical and 

informational dynamics of a given task context (Richardson 

& Kallen, 2016; Richardson, Marsh, & Schmidt, 2010; 

Richardson et al., 2015). The aim of the current project was 

to identify these task dynamics for a simple joint action pick-

and-place task. Of particular interest, was the degree to which 

the complex patterns of interpersonal movement coordination 

and action (affordance) selection that emerge could be 

captured by extending a low dimensional behavioral 

dynamics (Warren, 2006) model of individual environmental 

route navigation (Fajen & Warren 2003) and pick-and-place 

behavior (Lamb et al., under review, Washburn, et al. 2015). 

Because the pick-and-place behaviors exhibited by the 

proposed low dimensional model emerge from the physical 

and informational dynamics of a given task context, the 

proposed model may be developed as a simple artificial agent 

system that can interact with human co-actors. An artificial 

agent system based on the model would be able to interact 

with human co-actors in the task without access to a co-

actor’s cognitive states, i.e. without a theory of mind.  

Methods 

Participants 

20 University of Cincinnati students (aged 18 to 28 years) 

were recruited to participate in the experiment. Participants 

received credit as a part of a class requirement for an 

undergraduate Psychology course. All participants provided 

written consent prior to completing the study, with the 

procedures and methodology employed reviewed and 

approved by the University of Cincinnati Institutional 

Review Board.   

Materials and Apparatus 

An illustration of the experimental task setup is provided in 

Figure 1. Participants stood at a 1.65m x 0.89m x 0.995m 

table in a laboratory room and completed a joint action pick-

and-place task in a virtual environment. The virtual 

environment consisted of a room similar to the laboratory 

room and a table that was isomorphic in size and location to 

the table in the laboratory room. The virtual environment was 

displayed to each participant using Oculus Rift DK2 virtual 

reality headset (Oculus VR, Irvine, California). The physical 

table acted as a solid surface limiting the participants’ 

movements within the virtual environment and creating a 

surface on which the participants could move a hand-held 

wireless Polhemus Latus motion-sensor (Polhemus Ltd, 

Vermont, USA) that tracked their right hand movements 

within the virtual environment at 96 Hz. The participants’ 
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head movements were also tracked using Oculus Rift DK2 

head tracking system. 

The virtual environment, task objects, and task controllers 

were designed using the Unity 3D game engine (version 

5.2.0; Unity Technologies, San Francisco, California) and 

Sketchup 2015 (Tremble Navigation Technologies, 

Sunnyvale, California). The maximum display latency 

between the participants’ real-world movements and their 

movements in the virtual environment was 33ms. The 

experimental task states were continuously recorded at 70 Hz.  

As indicated in Figure 1, Participant locations were 

identified in terms of the “A” side or the “B” side of the table, 

where the body of the participant on the A side of the table 

(participant A) is nearer to the center of the appearance range 

than the body of the participant on the B side (participant B). 

Participant A was positioned on the A side of the table, 

standing half way between the middle of the table and the 

pickup location. Participant B was positioned such that their 

right shoulder was directly across the table from the right 

shoulder of participant A (see Figure 1).  

Within the virtual environment, the participants were 

represented as identical virtual avatars modeled after a crash 

 

 
Figure 1:  Illustration of experimental setup. At the 

beginning of each trial a virtual disc would appear on the 

left side of the table within the appearance range. Disc color 

indicated target location for that trial. The targets squares 

(M = magenta, Y= yellow, G = green, B = Blue, R = red) 

were always visible on the right side of the table.  

test dummy with a height of 1.8m. Both the participants’ right 

hands were represented by a semi-transparent blue sphere at 

the end of the dummy’s right wrist in order to simplify 

interaction with the task environment. An inverse kinematics 

controller (model and controller supplied by Root Motion, 

Tartu, Estonia) driven by the Polhemus motion sensor 

movements and the head movements of the participants 

controlled the right arm and body movements of the 

participants’ virtual avatar, respectively. The resulting arm 

and body movements were not identical to the real world arm 

and body movements of the participants, but were close 

enough to render any differences between the real and virtual 

body postures of the participants unnoticeable or not 

functionally relevant.   

Experimental Task 

The experimental task required participants to work together 

to move virtual disc objects (henceforth disc) that appeared 

on one end of a virtual tabletop to one of five evenly spaced 

target locations on the other end of the table (see Figure 1). 

The target location for a given trial was indicated by the color 

of the disc. A trial involved successfully moving a disc to the 

correct target location. Target colors and locations did not 

change during the task. However, discs appeared in random 

locations along the y table axis within the middle third of the 

table (appearance range). Participants completed 2 blocks of 

150 trials, 30 trials for each target color. Target colors were 

randomly presented. 

The participants were instructed to pick up the disc when it 

appeared and attempt to move it to the target location. Either 

participant could pick up the disc, but they were instructed 

not talk or gesture to one another during the task. A pickup 

occurred when a participant’s sphere came in contact with the 

disc. When picked up, the disc moved with the participant’s 

sphere until it reached the target or the participant passed the 

disc. The participants were informed that if the target was 

either too far away or uncomfortable to reach, they could pass 

it to the other participant. A pass involved picking up the disc 

and then releasing it somewhere on the table by lifting their 

hand from the table. To complete a pass, the other participant 

would pick up the disc and move it to the target. A trial was 

completed when the disc reached the correct target.  

Procedure 

Participants were told that the experiment was investigating 

the dynamics of joint action pick-and-place behavior and that 

they would be completing a simple pick-and-place task with 

one another. The participants were then embedded within the 

virtual environment using the HMD and viewing height and 

sensor calibration was performed. Task instructions were 

then provided to the participants and after participants 

indicated that they understood the task procedure and goal, 

they were given an opportunity to complete 2 practice blocks. 

The first practice block consisted of 12 trials where the disc 

always appeared in the center of the appearance region and 

indicated the middle (green) target. Each participant took 6 

turns picking up the disc and either passed it or took it to the 

target. The second practice block involved 20 trials, 4 trials 

for each target location. In this practice block, the pickup 

location was randomly assigned within the appearance range 

on each trial.    
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As mentioned above, experimental trials were broken up 

into 2 blocks of 150 trials. After the first experimental block 

participants switched sides of the table, i.e. the participant on 

side A moved to side B and the participant on side B moved 

to side A. Participants switched HMDs and moved to the 

other side of the lab room table to effect this switch. 

Experimental blocks lasted between 10 and 15 minutes. 

Results 

In order to model the emergence of successful joint action 

during the current pick-and-place task, the analysis was 

directed towards answering two general questions. First, 

what task variables determined the participants’ decision to 

pickup and/or or pass. In other words, what were the 

affordance (action opportunity; Gibson, 1979) based action 

selection dynamics that characterized pickup and pass 

behavior? Second, what were the trajectory dynamics of the 

participant’s hand movements when moving to grasp, 

relocate, or pass the disc within a two-dimensional task space. 

Below we consider each of these questions in turn.  

Decisions 

For the pick-and-place task investigated here there were two 

affordance based action selection decisions that we 

examined. First, participants had to decide whether or not to 

pick up the disc when it appeared. In order to understand the 

basis for this decision we applied the C4.5 decision tree 

algorithm (Quinlan, 1993) using a 10 fold cross validation to 

participant pick decisions (n = 2998) in order to create a 

decision tree with a minimum node size of 50 instances. This 

analysis revealed that the only attributes used to build the tree 

were the current location of each actor’s hand to the disc, with 

the resulting decision tree able to correctly predict 87% of the 

pick decisions. Attributes that were considered for each 

participant included: hand’s current distance to the disc, 

hand’s current distance to target, disc location, and target 

location. These attributes were not considered relevant to 

modeling the decision behavior if it was not included in the 

decision tree produced by the C4.5 method or if its exclusion 

resulted in a change in predictive success of < 3%.  

The C4.5 decision tree algorithm was also applied using a 

10 fold cross validation to a data set of 2998 passing decisions 

in order to create a decision tree with a minimum node size 

of 50 instances. When the only attribute used to build the tree 

was the distance of the resting location of one of actor’s hand 

to the disc the resulting decision tree was able to correctly 

predict 79% of the pickup decisions. Resting hand location 

for each side was defined as a position 0.15m from the edge 

of the table directly in front of the participant’s right shoulder. 

The same set of attributes considered for the pickup decision 

were considered for the pass decision, with the addition of the 

previous pass decision. None of these other attributes 

                                                           
1 For each side of the table, subtask trajectories examined include: 

rest-to-pickup, pickup-to-target, pickup-to-pass, rest-to-receive, 

receive-to-target, pass-to-rest, and target-to-pickup. 

significantly increased pass prediction beyond that predicted 

by actor resting location alone.  

 
Figure 2:  Heat-maps of example participant (top) and 

model simulation (bottom) trajectories during the 

experimental task.  

Movements 

An example of the complete set of participant pair trajectories 

are illustrated in figure 2 (top) as a heat map. This heat map 

plot was created by dividing the table into 125x108 grid and 

for each trial, the number of times a participant’s location was 

recorded in a given grid cell was tallied to create a histogram 

of trajectory locations in table coordinates. A greyscale value 

was assigned to each cell from a scale of 64 shades. All 

participants exhibited a qualitatively similar sideways 

“spaghetti monster” heat-map, with concentrations of 

trajectories (brighter areas), corresponding to discs (far left 

side of heat-map plot), pass/rest locations (top and bottom left 

of center on the heat-map plot), and target locations (5 

distinct points across the right of the heat map plot). Because 

of the number of subtask trajectories, trajectory heat maps 

provide a relatively straightforward tool for comparing 

qualitative similarities between both human participants and 

between human data and simulation data.1  

Participant trajectories tended to curve slightly away from 

straight-line trajectories. This may be due to the fact that after 

completing a subtask goal participants employed a simple 

strategy of heading in the general direction of the next 

subtask goal instead of taking an initial heading defined by 

the straight-line angle from their current location to the goal 

location. 

Participant subtask movements exhibited a bell shaped 

velocity profile with the peak velocity occurring around half 
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way through the trajectory. Across all subtask trajectories, the 

average peak velocity was 1.231m/s (Mdn = 1.252m/s, Q1 = 

0.924m/s, Q3 = 1.373m/s) and the peak velocity occurred on 

average around 57% (SD = 15%) of any given subtask 

trajectory. For the 14 subtask trajectories examined, average 

peak velocity for each subtask trajectory was significantly 

correlated, r(14) = 0.89, p<0.001, with the average straight-

line distance of each subtask trajectory. Shorter trajectories 

had lower average peak velocities than longer trajectories. 

In order to identify where participant’s passed the disc on 

pass trials, cluster analysis was conducted, using the K-means 

cluster analysis algorithm, which finds cluster centers that 

minimize the sum of squared error (SSE) for a given number 

of clusters, k. We analyzed the release/pass locations to 

determine whether these locations typically clustered around 

1, 2, or 3 cluster centroids. The optimal number of clusters 

was defined as the value of k such that the difference of the 

SSE for a reference distribution, determined by Monte Carlo 

sampling of a reference distribution, was greatest compared 

to the other values of k. For each pair, separate evaluations 

were run for each side of the table. For side A, when a 

participant on side A passed at least once during the 

experiment (n = 8 pairs), the optimal number of clusters was 

1 for all passes on this side of the table. Likewise, when a 

participant on side B passed at least once during the 

experiment (n = 9 pairs), the optimal number of clusters was 

1 for most pairs (n = 7). When a participant on side A passed 

during the experiment (n = 8), the passes clustered around an 

average (x, y) table location of (0.24m, 0.62m). When a 

participant on B side of the table passed (n = 9), the passes 

clustered around an average (x, y) table location of (0.33m, 

0.18m). 

Model 

The current study had two overall aims. The first aim was to 

identify the behavioral dynamics that underlie a continuous 

joint action pick-and-place task, in which two participants 

had to move objects from one tabletop location to another 

either alone or by passing the object to another co-actor. Our 

second aim was to develop a behavioral dynamics model that 

can characterize the joint action behaviors and choices 

(pickup or not; pass or not) of the participants engaged in 

during the joint action pick-and-place task. With respect to 

this aim we developed a model of both the participant’s 

movement in the task space and their decisions to both pick 

up the object when it appears on a given trial and to pass the 

object.  

Movement Dynamics 

In order to model the dynamics of each participant’s, 

henceforth agent, hand movements throughout the task, a task 

specific parameterization of the Fajen and Warran model of 

human locomotory navigation was employed (Fajen & 

Warren, 2003, 2004, 2007; Warren & Fajen, 2008). This 

model has also been extended to model single actor pick and 

place behavior (Lamb et al., under review). In the current 

context, the model characterizes a heading direction or 

angle, 𝜑𝑖, of an agent’s hand or end-effector (where each 

agent is indexed by 𝑖) during each task trial was defined by  

 

𝜑̈𝑖 = −𝑏𝑔𝑖
𝜑̇𝑖 − 𝑘𝑔𝑖

(𝜑𝑖 − 𝜃𝑔𝑖
)(𝑒−𝑐1𝑑𝑔𝑖 + 𝑐2), (1) 

 

where 𝜑̇𝑖, and 𝜑̈𝑖, correspond to the velocity and acceleration 

of the agent’s end-effector heading angle, respectively, and b 

and k are damping and spring/stiffness terms, such that 

−𝑏𝑔𝑖
𝜑̇𝐴𝑖

 acts as a friction force on turning rate, and the 

function −𝑘𝑔𝑖
(𝜑𝑖 − 𝜃𝑔𝑖

) operates to minimize the difference 

between the current heading angle, 𝜑𝑖, and the angle 𝜃𝑔𝑖
, of 

the corresponding subtask goal/target location (i.e., the 

pickup location for pickup movements, the release/pass 

location for passing movements, and the target/drop-off 

location for target movements). The distance of the agent i’s 

end effector to the current goal location is defined by 𝑑𝑔𝑖
. The 

presence of the factor (𝑒−𝑐1𝑑𝑔𝑖 + 𝑐2) in the second addend of 

the right-hand side introduces an exponentially decaying 

function characterized by a constant offset parameter c2 and 

an exponential decay rate, which is a function of the constant 

parameter c1 and the Euclidean distance, dg, between an 

agent’s current hand location and the current goal location. 

The parameter c2 ensures that the rate of change in heading 

direction never goes to zero (Fajen & Warren, 2003). Note 

that the parameters 𝜃𝑔𝑖
 and 𝑑𝑔𝑖

 change continuously as the 

position of the agent’s hand/end-effector moves through the 

task space. 

Finally, in order for to capture the non-constant velocity 

profile observed in participants, 𝑣𝑖 is introduced to 

characterize the movement velocity of the agent’s end-

effector (hand).  𝑣𝑖 is defined by means of the additional 2nd 

order differential equation 

 

𝑣̈𝑖 = −𝑏𝑣𝑖
𝑣̇𝑖 − 𝑘𝑣𝑖

(𝑣𝑖 − 𝐶𝑣𝑖
(1 − 𝑒−𝑑𝑔𝑖 )), (2) 

 

where 𝑏𝑣𝑖
 and 𝑘𝑣𝑖

 act as damping and stiffness terms on the 

rate of change of 𝑣𝑖, which increases and decreases as a 

function of the target (goal) distance, 𝑑𝑔𝑖
. When the agent’s 

end-effector or hand is far away from the target location (1 −

𝑒−𝑑𝑔𝑖 )  ≈ 1 and 𝑣𝐴 increases. As the distance to the goal 

location decreases, however, (1 − 𝑒−𝑑𝑔𝑖 ) approaches zero 

and 𝑣𝑖 decreases accordingly. 𝐶𝑣𝑖
 is a constant parameter that 

specifies the maximum velocity in m/s, such that the same 

equation can be used for a wide range of different movement 

distances, with differential peak velocities resulting for 

shorter and longer distances (see Lamb et al., under review 

for more details on this velocity function).  

Action Selection Dynamics 

In the experimental task there are two task defined choices. 

First, one of the agents must choose to pick up the task object 

while the other agent chooses to stay out of the way. Second, 

once an object is picked up, the agent with the object must 

decide to either take the object to the goal location or pass it 

to their co-actor. In both cases, the decision can be 
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characterized as a selection between action modes or 

affordances, i.e. pick up the object or wait and take the object 

to goal or pass. Moreover, previous research using a non-

random pick-and-place task paradigm suggests that recent 

action modes may affect the current action mode selection 

(Lamb et al., Under Review). As a result, in the current 

context the action mode selection dynamics may be captured 

by  

 

𝑥𝑖̇ =  −𝛼𝑗𝑖
+ 𝑥𝑖 − 𝑥𝑖

3 (4) 

 

where 𝑥𝑖 represents the state variable for action section (i.e., 

affordance mode) of the previous action selection process and 

𝑥𝑖̇ is the action selection state variable for the current trial. 𝛼𝑗𝑖
 

corresponds to the specific subtask action mode and agent-

normalized E/A ratio where the decision to pick up an object 

can be defined for Agent 1 by  

 

𝛼𝑠1
= (𝜎𝑠1

−
𝑑𝑔𝑠1

𝑅1
) 𝛿𝑠1

− (𝜎𝑠2
−

𝑑𝑔𝑠2

𝑅2
) 𝛿𝑠2

  
(5) 

 

and for Agent 2 by  

 

𝛼𝑠2
= (𝜎𝑠2

−
𝑑𝑔𝑠2

𝑅2
) 𝛿𝑠2

− (𝜎𝑠1
−

𝑑𝑔𝑠1

𝑅1
) 𝛿𝑠1

 
(6) 

 

where 𝑑𝑔𝑠𝑖
 is the distance from current location of the ith 

agent’s end effector to the disc’s location. Similarly, the 

decision to pass was defined by  

 

𝛼𝑝𝑖
= (𝜎𝑝𝑖

−
𝑑𝑔𝑝𝑖

𝑅𝑖
) 𝛿𝑝𝑖

 
(7) 

 

 𝑑𝑔𝑝𝑖
 is the distance of the agent’s resting end-effector (hand) 

location to the target location, and 𝑅𝑖 is a measure of the 

agent’s maximal preferred reach. In both equations equation, 

𝜎𝑗𝑖
 and 𝛿𝑗𝑖

 are constant scaling factors. In Eq. 5, 6, and 7, d is 

a subtask action mode parameter that identifies the state of 

the subtask action relevant environmental property.  

 

Model Simulation 

To determine whether systems defined by the movement 

trajectory dynamics (Eq. 1 and 2) and the action selection 

dynamics (Eq. 4, 5, 6, and 7) of the current model could 

complete the task independently complete the current pick-

and-place task, a MATLAB (2016a) simulation was 

conducted. A flow diagram illustrating the structure of the 

simulation is provided in Figure 3. The simulated 

environment consisted of a 1.5m x 0.89m rectangular space 

matching the experimental table’s dimensions. The 

simulation target and disc locations were initialized in the 

same manner as in the experimental task. 10 different 

simulation sequences were conducted, with each simulation 

sequence consisting of 400 trials. Each simulation sequence 

was initialized with the same pickup/target order used for a 

participant pair. The passing location centers corresponded to 

the observed passing location centers for each participant 

pair.  Cluster centers corresponding to each participant pair 

were used to initialize the simulation sequence based on that 

pair’s appearance/target order. Experimentally observed 

within pair variability in pass locations was likely due to the 

many complex interactions from which this passing behavior 

emerges (Holden, 2002; 2005; Stephen & Mirman, 2010). 

However, in our simulations this variability is produced by a 

sequence of random values generated from a lognormal 

distribution that were added to the passing location centers in 

order to produce a pass location distribution that was similar 

to the experimentally observed data.  

For each action selection the pickup and passing solutions 

to parameter equations, action selection dynamics, Eq. 4, 

were integrated for 1500 steps using the MATLAB ODE45 

function with the end state of the integration used to drive the 

pickup and pass decisions (and return to rest position). The 

output state of the action selection equation was stored as an 

input for integration of the action selection equation in the 

next trial (x = 0 for the first trial in a sequence). Heading 

angles were initialized in the cardinal direction of the next 

subtask goal, e.g. pick up to target trajectories initialized with 

a heading angle of 0° heading directly to the right side of the 

table. Random noise was added to the initial angle from a 

uniform distribution with min/max values of ± 17°. The 

movement dynamics, Eq. 1 and 2, were integrated for each 

subtask movement using the Euler integration (.01 time step), 

with integration terminated when the model location was 

within 4 cm of the target location. Random noise was added 

to the model heading direction, 𝜑𝑖, at each time step of the 

integration using a uniform distribution with min/max values 

of to ± 1.14°.  

 

 
 

Figure 3: Structure of simulation. Eq. 1 and 2 are 

implemented in the upper loop and Eq. 4 through 7 are 

implemented in the lower goal selection loop.  

An example simulation run is illustrated by the bottom 

heat-map in Figure 2. For all simulation runs, the simulation 

agents successfully completed the pick-and-place task within 

the task constraints.  All simulation agent trajectories 
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remained within the task space and subtask trajectories were 

within the same regions as those produced by human 

participants. Simulation agent trajectories exhibited less 

variability as can be seen in figure 2, though the importance 

of this variability for a human co-actor engaged in the task is 

something that will require further research. To the extent 

that it is relevant, this variability may be replicated in an 

artificial agent implementation of the model by the addition 

of noise terms, through coupling to the human agent, and 

possibly by noise introduced by the agent’s hardware 

instantiation (e.g. motor variability in a robotic system).  

The simulation agents were also able to spontaneously 

select between picking up the object or not and between 

passing the object or completing the task alone in a manner 

similar to the real participants. For pickup trajectories it is 

notable that pickup decisions may be made and changed as 

co-actors move or do not move throughout the task space. If 

both simulation co-actors are roughly the same distance the 

pickup location at the beginning of a trial, noise and velocity 

profile variations still results in just one agent picking up the 

object. If a simulation agent picked up an object, that agent 

always passed for the farthest target and often did for the 

second farthest, with the decision to pass for this target 

fluctuating due to previous pass decisions and noise in the 

system, matching experimentally observed participant 

behaviors. 

Conclusions 

The current model is useful for providing insight into how 

complex movement and decision dynamics might emerge 

from a system given relatively simple information structures. 

Notably, the model does not assume the need to understand 

or predict co-actor intentions or beliefs. This makes the 

model an ideal candidate for implementation in an artificial 

agent system that can interact in real-time with human co-

actors but does not have access to sophisticated sensory or 

computational systems for interpreting high level cognitive 

states. We are currently in the process of implementing a 

version of this model in virtual and robotic systems to test 

with human co-actors in order to validate the capabilities of 

behavioral dynamics models applied in this way. 
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