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Route lengths in invariant spatial tree networks
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Abstract

Is there a constant r0 such that, in any invariant tree network linking rate-1 Poisson
points in the plane, the mean within-network distance between points at Euclidean
distance r is infinite for r > r0? We prove a slightly weaker result. This is a continuum
analog of a result of Benjamini et al (2001) on invariant spanning trees of the integer
lattice.
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1 Introduction

Parts of classical stochastic geometry [12], for instance Delaunay triangulations on
random points, implicitly concern random spatial networks but without direct motivation
as real-world network models. Substantial recent literature, surveyed in the 2018
monograph [9], concerns toy models of more specific types of real-world spatial network,
studied in statistical physics style rather than theorem-proof style. Intermediate between
those styles, and envisioning examples such as inter-city road networks, one can model
the city positions as a Poisson point process, and one can study the trade-off between
a network’s cost (taken as network length) and its effectiveness at providing short
routes [4, 5, 6]. It is often remarked that tree networks are obviously very ineffective at
providing short routes, and the purpose of this article is to give one formalization, as
Theorem 1.2.

As background we mention two results for lattice models. Consider m2 cities at the
vertices of the m ×m grid. Any connected network must have length Ω(m2), and the
mean route-length between two uniform random points must be Ω(m). Observe that
these orders of magnitude can be attained by a tree-network; from each vertex create a
unit edge to a neighbor vertex nearer to a central root. This type of construction extends
readily to the Poisson model. But this apparent “linearity of mean route lengths” is in
some ways misleading, in that it depends on a finite network having a central region.
Infinite tree networks with a spatial stationarity property are different, as shown by
the following elegant result of Benjamini et al. [10] in the infinite lattice setting. Here
invariant means the distribution of the network is invariant under the automorphisms of
the lattice.1

*U.C. Berkeley. E-mail: aldous@stat.berkeley.edu
1Theorem 1.1 was stated in [10] Theorem 14.3 for a particular model, but as noted in [15] Exercise 4.48 it

holds in the general automorphism-invariant case.
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Invariant spatial tree networks

Theorem 1.1 ([10]). For any invariant random spanning tree in the infinite 2-dimensional
square lattice, the (within-tree) route length D between lattice-adjacent vertices satisfies

P(D ≥ i) ≥ 1
8i , i ≥ 1.

In particular, ED =∞.

A relation between finite models and infinite invariant models is provided by local
weak convergence, discussed briefly in section 3.2.

The proof of Theorem 1.1 exploits symmetries of the lattice which clearly are not
directly applicable in the Poisson model. So what is the analog of Theorem 1.1 in the
rate-1 Poisson model on the plane? Here invariant means the distribution of the network
is invariant under the Euclidean group.2 We would like to consider

ρ(r) := mean route length between two Poisson points at distance r. (1.1)

As noted in section 3.1, the MST (minimum spanning tree) provides a model in which
ρ(r) <∞ for small r. It seems natural to conjecture that there exists a constant r0 <∞
such that, for all invariant tree networks over the rate-1 Poisson process, ρ(r) =∞ for
a.a. r ≥ r0. To avoid possible very artificial examples (see section 3.3) we actually prove
a slightly weaker assertion, by considering instead the route-length Dr between Poisson
points at distance at most r.

To be precise about the meaning of tree-network , we allow Steiner points (junctions,
envisaging road networks) as vertices in addition to the given Poisson points. And we
take edges to be line segments between vertices. The tree property is that there are no
circuits.

Theorem 1.2. There exist constants r0 < ∞ and β > 0 such that, in every invariant
tree-network connecting the points of a Poisson point process of rate 1 in the infinite
plane, for r ≥ r0

P(Dr > d) ≥ βr/d, r ≤ d <∞
and so EDr =∞ for r ≥ r0.

So this is a continuum analog of Theorem 1.1. The proof in section 2 relies on the
fact that a finite tree has a centroid from which each branch contains less than half the
vertices; the route between two vertices in different branches must go via the centroid,
so the route length is lower bounded by the sum of distances to the centroid. Consider
the partition of a very large square into a large number of large subsquares. If there are
a non-negligible number of subsquares in which points from more than one branch have
non-negligible relative frequency, then the point-pairs within such subsquares provide
the desired long routes. Otherwise almost all subsquares have almost all points from
the same branch, but therefore (and this is the key intricate technical issue, Lemma 2.2)
there must be some number of pairs of adjacent subsquares for which these are different
branches, and so (by the easy Lemma 2.1) some overlapping square has a substantial
proportion of its points from different branches, which as before provide the desired
long routes.

Our proof is technically elementary, albeit rather intricate, using only very basic facts
from percolation theory. It seems quite likely that some shorter proof could be found,
using some more sophisticated percolation theory.

Remarks on analogous questions for general networks are given in section 3.5. Note
also that, for Theorem 1.2 to be interesting in the sense of generality, one would like
to know that there are many different ways to construct invariant tree-networks over
Poisson points, and we discuss this in section 3.2.

2In fact only translation-invariance is needed in Theorem 1.2, because we can impose a uniform random
rotation over a given translation-invariant model, and this does not change Dr .
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Invariant spatial tree networks

2 Proofs

2.1 Technical lemmas

Here we give two lemmas. The first, which is elementary, will enable reduction to
a lattice percolation setting, and the second is the key technical ingredient we need in
that setting. To aid intuition we state these in terms of colorings, though with different
interpretations in the two lemmas, and it is not the graph-theoretic coloring notion in
which adjacent vertices must have different colors.

Fix a large integer m. Call a configuration of points in general position in the
continuum m × m square S1 = [0,m]2 balanced if, in each of the ten sub-rectangles
[(i− 1)m/5, im/5]× [0, 1], 1 ≤ i ≤ 5 and [0, 1]× [(i− 1)m/5, im/5], 1 ≤ i ≤ 5, the number of
points is between 0.98m2/5 and 1.02m2/5. Make the analogous definition for the adjacent
square S2 = [m, 2m]× [0,m].

Lemma 2.1. Suppose S1 and S2 each contain a balanced configuration of points. Con-
sider a {blue, red} coloring of the points in S1 ∪ S2, and suppose that neither
(a) S1 and S2 both contain less than 0.1m2 blue points
nor (b) S1 and S2 both contain more than 0.88m2 blue points
is true. Then the number of blue-red point pairs at distance at most 21/2m apart is at
least 0.088m4.

Note we are counting all such pairs, not asking for a matching where a point can be
in only one pair.

Proof of Lemma 2.1. First, if either S1 or S2 contains between 0.1m2 and 0.88m2 blue
points, say y blue points, then (from the definition of balanced ) there are at least
0.98m2−y red points, and so at least y(0.98m2−y) ≥ 0.1m2×0.88m2 blue-red pairs within
that square. Such a pair is at most 21/2m apart. The only remaining case is w.l.o.g where
S1 contains less than 0.1m2 blue points, and S2 contains more than 0.88m2 blue points.
In this case, consider the successive translated squares [im/5,m + im/5] × [0,m], i =

0, 1, 2, . . . , 5. At each step the number of blue points can increase by at most 1.02m2/5,
so in at least one of the translated squares there are between 0.1m2 and 0.88m2 blue
points, and the result follows as in the first case.

For our key technical lemma, fix a large integer k and consider the k × k grid graph
with vertices Gk = {0, 1, , . . . , k − 1} × {0, 1, , . . . , k − 1}.
Lemma 2.2. Given an arbitrary subset ξk of Gk, let c(ξk) be the minimum, over all
{green-yellow} colorings of Gk with at least k2/4 vertices of each color, of the number of
green-yellow adjacent pairs where neither vertex is in ξk. Then there exists q > 0 such
that, taking Ξk to be the random subset in which each vertex is present independently
with probability q,

P(c(Ξk) < k/400)→ 0 as k →∞.

As motivation, in the proof of Theorem 1.2 we will apply this where the vertices
represent large squares and the two colors indicate a relatively large or relatively small
number of points in a given tree-branch in the square. The proof of Lemma 2.2 is
in essence just the classical Peierls contour method [16], in that it involves counting
self-avoiding paths, but applied in two different ways at (2.1) and (2.7).

Proof of Lemma 2.2. To recall basic percolation theory, in any coloring a green-yellow
adjacent pair specifies an edge in a dual graph, and these edges form the boundaries
of colored components. More precisely, as illustrated in Figure 1 (left), the set of such
edges is a disjoint union of
(i) self-avoiding circuits within the k × k grid
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Figure 1: Maximal circuits and paths in the finite grid.

(ii) self-avoiding paths starting and ending on the external dual boundary.
We write path* for “path or circuit”. Fix ` > 4 and consider a self-avoiding path* (in the
dual graph) π of length ` in Gk. Each edge separates some pair of vertices in Gk. A pair
of adjacent vertices overlaps with 6 other pairs, and so (by listing the ` pairs associated
with π and greedily choosing pairs not overlapping with previously chosen pairs) we can
find a set Sπ of b`/7c disjoint adjacent vertex pairs separated by some edge within π.

Consider the event Aπ that at most `/20 pairs within Sπ have neither end-vertex in
Ξk. This event has probability

P(Aπ) = P(Bin(b`/7c, (1− q)2) ≤ `/20).

The number of length-` self-avoiding paths* π is at most 4k23`−1. So the expected number
of events Aπ that occur is at most

4k23`−1 × P(Bin(b`/7c, (1− q)2) ≤ `/20).

We claim that for sufficiently small q > 0

lim
k→∞

∑
`>log k

4k23`−1 × P(Bin(b`/7c, (1− q)2) ≤ `/20) = 0. (2.1)

To verify this, tidy by setting p = 1− (1− q)2 and m = b`/7c; now we need to prove that
for sufficiently small p > 0

lim
k→∞

k2
∑

m> 1
7 log k

37m × P(Bin(m, 1− p) ≤ 2m/5) = 0. (2.2)

The Chernoff bound says that P(Bin(m, 1 − p) ≤ 2m/5) = P(Bin(m, p) > 3m/5) ≤
exp(−mψ(p)) for a certain function ψ(p) ↑ ∞ as p ↓ 0. Then (2.2) follows easily.

The impact of (2.1) is that for sufficiently small q we may assume

(*) For every self-avoiding path* π of length ` > log k in the dual graph of Gk,
there exist at least `/20 disjoint adjacent vertex pairs separated by some edge
within π and with neither vertex in Ξk.

Note this is a property of Ξk, not involving any coloring.
Now consider a green-yellow coloring of Gk with at least k2/4 vertices of each color,

By an elementary argument, the length of the boundary within Gk between colored
regions, that is the sum of lengths of the paths* at (i,ii), is at least k/2. Split that sum
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Invariant spatial tree networks

as Slong + Sshort according as the path* lengths are longer or shorter than log k. If
Slong > k/10 then property (*) implies there are at least k/200 green-yellow adjacent
pairs where neither vertex is in Ξk, and because a vertex can be adjacent to at most
2 paths* these contain a subset of at least k/400 disjoint green-yellow adjacent pairs
where neither vertex is in Ξk.

So it is enough to consider only colorings in which

Slong ≤ k/10 and Sshort ≥ k/2− k/10 = 2k/5. (2.3)

Fix such a coloring, and consider the associated paths and circuits, as described in
(i,ii) above and illustrated in Figure 1. Note that a circuit splits Gk into an exterior
and an interior region. Also a path , which by (2.3) has length ≤ k/10, splits Gk into a
well-defined larger and a smaller region, where (somewhat confusingly) we designate
the smaller region meeting the boundary of Gk as the interior of the path. Now a circuit
of length c fits inside some square of side c/2 and so its interior has at most c2/4 vertices.
A path of length c fits inside some square of side c and so its interior has at most c2

vertices. Because
∑
i c

2
i ≤ (

∑
i ci)

2, under (2.3) we have

at most (k/10)2 = k2/100 vertices are in the interior of long paths*. (2.4)

A short path starts and ends on the boundary of the square and so the interior vertices
are within a distance log k from the boundary. So by considering the number of vertices
within distance log k from the boundary of the k × k square

at most 4k log k vertices are in the interior of short paths. (2.5)

We remark that the point of this argument is that, from the upper bounds above and
the lower bound on Sshort in (2.3), we will next be able to lower bound the number of
vertices within short circuits, as (2.6) below.

A maximal circuit is one that is not contained inside another circuit or path, and
a maximal path is one that is not inside3 another path. Figure 1 (right) shows the 5
maximal paths and the 1 maximal circuit in that example. Note that, by definition, there
is a single-color path4 immediately inside and a single-opposite-color path immediately
outside each maximal path or circuit. Moreover the colors of these immediately-inside
paths are the same (say •) for each component, because a path in G between a vertex
in each component must cross component boundaries an even number of times. Every
vertex of color • at distance at least log k from the sides of Gk is either inside some
path, or inside some circuit and therefore inside some maximal circuit. By hypothesis
there are at least k2/4 vertices of each color, so using (2.4, 2.5) and considering maximal
circuits we have shown that property (2.3) implies that for large k

there exist circuits, each of length less than log k, with disjoint interiors

and containing a total of at least k2/5 vertices. (2.6)

So it is enough to consider only colorings with property (2.6). To analyze this case
we need to set up some notation. Write Ξ∞ for the random subset of the infinite square
lattice Z2 in which each vertex is present independently with probability q. Define the
cost of a dual circuit C in Z2 to be the number of edges for which neither adjacent vertex
is in Ξ∞, and similarly for dual circuits in Gk and Ξk. Consider the event

Aq∞ := some circuit in Z2 around the origin has zero cost.

3Here inside means “in the interior of”.
4In this specific context the path may include diagonals.
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By a simpler use of the Peierls contour method used for (2.1), P(Aq∞)→ 0 as q ↓ 0. So
we can fix q sufficiently small that

P(Aq∞) ≤ 1
20 . (2.7)

Consider a coloring of Gk (depending on Ξk) satisfying (2.6): to complete the proof of
Lemma 2.2 it will suffice to show that

Nk := number of green-yellow adjacent pairs in Gk with neither vertex in Ξk

satisfies
P(Nk < k/400)→ 0 as k →∞. (2.8)

Write Ck for the set of circuits guaranteed by (2.6), and write Gk for the union of their
interior vertices. For v ∈ Gk write Ck(v) for the circuit in Ck containing v and area(Ck(v))

for its area (= number of interior vertices). Now

Nk ≥
∑
Ck∈Ck

cost(Ck)

=
∑
v∈Gk

1

area(Ck(v))
cost(Ck(v)).

Now, taking Ξk as the restriction of Ξ∞, we have cost(Ck(v)) ≥ 1Ac
k(v)

where Ak(v) is the
event that some circuit around v in Ξ∞ with length ≤ log k has zero cost. Note by (2.7)

P(Ak(v)) ≤ P(Aq∞) ≤ 1
20 (2.9)

and write

Nk ≥
∑
v∈Gk

1

area(Ck(v))
1Ac

k(v)
.

By (2.6), the circuit Ck(v) has length at most log k, and so lies within a square of side
log k, and so each area(Ck(v)) is at most log2 k, so

Nk ≥
1

log2 k

(
|Gk| −

∑
v∈Gk

1Ak(v)

)
≥ 1

log2 k

(
|Gk| −

∑
v∈Gk

1Ak(v)

)
. (2.10)

By (2.9)

E

(∑
v∈Gk

1Ak(v)

)
≤ k2

20 .

If v1 and v2 are more than log k apart, the events Ak(v1) and Ak(v2) are independent, so

var

(∑
v∈Gk

1Ak(v)

)
= O(k2 log2 k)

and then Chebyshev’s inequality gives

P

(∑
v∈Gk

1Ak(v) > k2/10

)
→ 0 as k →∞. (2.11)

By (2.6) we have |Gk| ≥ k2/5, and combining with (2.10) we find

P(Nk < k2/(10 log2 k))→ 0 as k →∞

which is stronger than the desired bound (2.8).
To check the logic of this argument, note that the event in (2.11) involves only Ξ∞.

The other inequalities are deterministic, and show that, outside event (2.11), for every
coloring satisfying (2.6) and for large k, we have Nk ≥ k2/(10 log2 k).
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We actually need the following modification of Lemma 2.2, to say that the same result
holds if we insist that we count only pairs outside an arbitrary subsquare of side 0.001k.

Corollary 2.3. Let Ξk be the random subset of Gk in which each vertex is present
independently with probability q. Let 2k be a subsquare of Gk of side asymptotic to
0.001k, dependent on Ξk. Let c′(Ξk) be the minimum, over all {green-yellow} colorings
of Gk with at least k2/4 vertices of each color, of the number of green-yellow adjacent
pairs where neither vertex is in Ξk or in 2k. Then there exist q > 0 and α > 0 such that

P(c′(Ξk) < αk)→ 0 as k →∞.

Outline proof. Re-color the vertices in the small subsquare to become all the same color,
and apply Lemma 2.2 to the new configuration. We omit details.

2.2 Proof of Theorem 1.2

Take large integers k and m, and set n = km. Consider the n× n square [0, n]2 in the
plane. Write Σm,k for the index set of the natural partition of the square [0, n]2 into k2

subsquares σ of side m – call these the natural subsquares. The set Σm,k is isomorphic
to the k × k vertex grid Gk. In particular a subsquare 2 of Gk, say with s× s vertices,
corresponds to a subsquare 2+ of the square [0, n]2, with side sm, consisting of s2 natural
subsquares.

Write qm for the probability that a realization of a rate-1 Poisson point process on
a m×m square is not balanced , in the sense of Lemma 2.1. By the weak law of large
numbers for the Poisson distribution,

qm → 0 as m→∞. (2.12)

Given a rate-1 Poisson point process, the collection of not-balanced subsquares can be
identified with the random subset Ξk in Corollary 2.3 with q = qm. In the bounds below
we assume that m and k are sufficiently large, independently,

Now consider a rate-1 Poisson point process on the whole plane and a tree-network
connecting them. Write N for the number of Poisson points in the square [0, n]2. Consider
the subtree spanned by all the Poisson points in that square. This subtree will typically
extend outside the square. But there will exist a centroid, in the sense of a vertex v∗
(maybe a Steiner point, and maybe outside the square) such that, writing B1, B2, . . .

for the sets of Poisson points within the square that are in the different branches from
v∗, the largest such set has size at most N/2. It is then always possible to merge (if
necessary) these sets into a bipartition {B,Bc} of the points in the square such that
N/3 ≤ |B| ≤ N/2. The key observation is that the path from any v ∈ B to any v′ ∈ Bc
must go via v∗. We will use this to prove the following key result, from which Theorem 1.2
will follow quite easily.

Lemma 2.4. There exists β0 > 0 such that, with probability → 1 as m, k → ∞, there
are at least β0m4k pairs of points from B and Bc within straight-line distance 21/2m but
whose route-length is at least 0.001mk.

Proof. Color red the points in B, and color blue the points in Bc. The “probability”
parts of the argument are the following easy consequences of the law of large numbers.
Outside an event of probability→ 0 as m, k →∞:

the total numbers of blue and of red points each exceed0.33m2k2; (2.13)

the total number of points not in balanced natural subsquares is at most m2k2ψ(m),

where ψ(m) ↓ 0 as m→∞. (2.14)
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The remainder of the argument is deterministic, and the precise numerical constants
are not important.

Write 2 for a subsquare of Gk with 0.001k × 0.001k vertices, and write 2+ for the
corrresponding square of side 0.001n within [0, n]2. The essential issue is to find a lower
bound for

Npair := min
2+
Npair(2+), where

Npair(2+) := number of blue-red point pairs outside 2+

and at distance at most 21/2m apart.

Write bσ for the number of blue points in the natural subsquare σ. Recall that a balanced
natural subsquare must have between 0.98m2 and 1.02m2 points – call this the size
condition. Amongst balanced natural subsquares, σ, consider

• the number S for which 0.09m2 ≤ bσ ≤ 0.89m2,
• the number S< for which bσ < 0.09m2,
• the number S> for which bσ > 0.89m2.

If a balanced natural subsquare σ has 0.09m2 ≤ bσ ≤ 0.89m2 then, by the size condition,
there are at least 0.98m2 − bσ red points, and so at least 0.08m4 blue-red pairs in σ. So
we immediately have

Npair ≥ 0.08m4S∗, where S∗ := min
2
S(2) and

S(2) := number of balanced natural subsquares outside 2 for which

0.09m2 ≤ bσ ≤ 0.89m2.

where (as above) 2 is a subsquare of Gk with 0.001k×0.001k vertices. A given subsquare
2 cannot intersect more than 0.000001k2 natural subsquares, and so

Npair ≥ 0.08m4(S − 0.000001k2). (2.15)

If S is indeed of order k2 then this inequality gives all we require (see (2.17) below)
but the key issue is to analyze the case where S is small. We can lower bound the total
number Nblue of blue points by (2.13) and upper bound it by (2.14) and the definitions of
(S, S<, S>): this gives

0.33m2k2 ≤ 0.09m2S< + 0.89m2S + 1.02m2S> +m2k2ψ(m).

Using S< + S + S> ≤ k2 to eliminate the S< term, this rearranges to

0.24m2k2 ≤ 0.8m2S + 0.93m2S> +m2k2ψ(m).

With the corresponding inequality arising from counting red points, we obtain that for m
sufficiently large

if S ≤ 0.005k2 then min(S<, S>) ≥ k2/4. (2.16)

Color a natural subsquare σ yellow if bσ < 0.1m2, or green otherwise. In the case
min(S<, S>) ≥ k2/4 we can apply Corollary 2.3 provided m is sufficiently large (recall
(2.12)), to conclude that (outside an event of probability→ 0 as k →∞) the number of
adjacent balanced green-yellow pairs is at least αk, and these can be taken to avoid any
choice of 2 corresponding to a choice of 2+. A given subsquare can be in at most 4 such
green-yellow pairs, so we can find αk/4 disjoint pairs. By Lemma 2.1, within each such
pair there exist at least 0.088m4 blue-red pairs and so in this case

Npair ≥ 0.088m4 × αk/4 := β0m
4k (2.17)

for some constant β. In the opposite case, that is by (2.16) if S > 0.005k2, inequality
(2.15) gives an essentially larger bound, so we may assume (2.17).

Apply the bound (2.17) where the given subsquare 2+ is a square of side 0.001mk

centered near the tree centroid: we obtain the conclusion of Lemma 2.4.
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Completing the proof of Theorem 1.2. Take expectation in Lemma 2.4 and re-write
in terms of

r := 21/2m, d := 0.001mk = 0.001n

as follows.
(*) There are constants β1 > 0 and r0, ρ0 <∞ such that, for r ≥ r0 and d/r ≥ ρ0, and

for any invariant tree model, the mean number of pairs of Poisson points within [0, n]2 at
distance ≤ r apart and with route-length ≥ d is at least β1dr3.

Let χ(r, d) be the probability, in a given model of an invariant tree-network over the
Poisson points, that between two typical Poisson points at distance ≤ r the route-length
is ≥ d. The mean total number of pairs within [0, n]2 at distance ≤ r apart is bounded
above by 1

2n
2πr2. So the mean number of such pairs with route-length ≥ d is bounded

above by 1
2n

2πr2χ(r, d). This holds in particular when d = 0.001n, and now comparing
the upper and lower bound we find

χ(r, d) ≥ β2 rd ; r ≥ r0, d/r ≥ ρ0 (2.18)

for a constant β2. In the notation of Theorem 1.2 we have χ(r, d) = P(Dr ≥ d), and this
inequality is equivalent to the form stated in Theorem 1.2.

3 Remarks

3.1 The Euclidean MST

Consider the random geometric graph G(r0) whose vertices form the rate-1 Poisson
point process and whose edges link all pairs of points at Euclidean distance at most r0.
Write N(v, r0) for the number of vertices in the component C(v, r0) of G(r0) containing a
typical vertex v. It is well known [16] that

for sufficiently small r0, all moments of N(v, r0) are finite. (3.1)

Consider now the Euclidean MST over the Poisson process. Fix r0 satisfying (3.1). By
considering Prim’s algorithm started from a vertex of C(v, r0), we see that the algorithm
first constructs a spanning tree within he component C(v, r0), using edges of length ≤ r0,
before using any edge of length > r0 needed to escape that component. In other words,
the restriction of the MST to C(v, r0) is a spanning tree within C(v, r0). So the route
length in the MST between v and another vertex v′ at distance ≤ r0 is at most r0N(v, r0).
We can now use a size-biasing argument to show that, for r0 satisfying (3.1),

EDr0 :=

∫ r0
0

2πrρ(r)dr

πr20
<∞ (3.2)

which is essentially saying that ρ(r0) < ∞. Consider a component Cn,m of G(r0) with
n ≥ 2 vertices and some number m of pairs of vertices with inter-pair distance ≤ r0.
Note n− 1 ≤ m ≤

(
n
2

)
. Such components appear at some rate β(n,m) per unit area. In

the entire Poisson process, the rate of pairs at inter-pair distance ≤ r0 is

rate(r0) = 1
2πr

2
0 =

∑
n≥2

(n
2)∑

m=n−1
mβ(n,m). (3.3)

The route length between such a pair within Cn,m is at most nr0, so the contribution
to “sum of route lengths between such pairs in a component” from one such Cn,m is at
most mnr0. So the contribution to that sum “per unit area” from such components is at
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most r0mnβ(n,m). Writing (N0,M0) for the values (n,m) in a typical (uniformly chosen)
component of G(r0), we have

EDr0 ≤ r0
E[M0N0β(N0,M0)]

rate(r0)
.

Using (3.3) we have β(n,m) ≤ rate(r0) and we also know M0 ≤
(
N0

2

)
, so

EDr0 ≤ r0E[N3
0 ]/2.

NowN = N(v, r0) at (3.1) is the size-biased transform ofN0, that is P(N = n) = nP(N0 =

n)/E[N0]. So E[N3] ≥ E[N3
0 ] and (3.2) is established.

3.2 Constructing invariant tree-networks

Some examples are given in [14]; here is our general discussion. Take an arbitrary
tree-network linking m2 independent uniform random vertices in the continuum square
[0,m]2, and write `m for the expectation of the average (over vertices) length of the
edge from the vertex toward the centroid. Randomly re-center, that is translate the
plane as (x, y)→ (x− U, y − V ) for (U, V ) uniform on [0,m]2, and then apply a uniform
random rotation. A sequence of such networks with `m bounded as m→∞ is tight in the
natural “local weak convergence” topology, and any subsequential weak limit network
has invariant distribution. This very general construction suggests that the class of
invariant tree-networks should be very rich. But there are two issues.

In general the weak limit structure is guaranteed to be a forest with infinite tree-
components, but is not guaranteed to be a single tree. The planar MST limit is known
to be a tree [7] but the proof heavily exploits its explicit structure; there seem to be
no useful general methods for proving that a construction via local weak convergence
gives a limit tree. To illustrate a more algorithmic construction, consider “Poisson rain”
on the plane – rate 1 per unit area per unit time over time 0 < t ≤ 1. The construction
rule “each arriving point is a child of the nearest existing point” gives a genealogical
tree studied in [2]. Representing the parent-child relation by drawing a line segment,
the network is not a tree because such lines may cross, but instead one can draw just
the part of the segment from the child to the existing network, and the analysis in [2]
implies this will be a tree. Presumably other rules for connecting arriving points to the
existing network within this Poisson rain framework will also yield invariant trees.

The second issue is illustrated by the notion of minimal (shortest length) Steiner tree.
In the finite random setting this is a.s. unique. The local weak convergence scheme
produces limit random forests attaining the minimum length-per-unit area possible, but
(even if one could prove that limits are trees) it is not clear how to prove there is an a.s.
unique limit tree attaining that minimum.

More abstractly, infinite trees arising as local weak limits are unimodular: general
theory for unimodular trees at the graph-theoretic level is given in [11, 8] but is not
specifically adapted to the spatial setting.

3.3 Outline of possible counter-examples to the natural conjecture

Take ri →∞ very fast and δi → 0 very fast. Draw a line segment between the Poisson
point pairs which are at some distance in ∪i[ri, ri + δi]. One can arrange that the density
of intersections of these lines is arbitrarily small. Break the (rare) circuits. Then assign
random arrival times and use a “Poisson rain” construction as in the section above. In
this way it might be possible to construct an invariant tree-network such that ρ(r) <∞
for r ∈ ∪i[ri, ri + δi].
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3.4 Possible generalizations

For Theorem 1.2, can one replace the Poisson point process by a more general point
process satisfying some spatial mixing condition? The centroid argument outlined below
the statement of Theorem 1.2 seems heuristically to require very little beyond invariance.
A more sophisticated proof of the Poisson case might allow such generalizations, and
this might be a good starting project for a student wishing to engage percolation theory.

3.5 General spatial networks

For general (i.e. non-tree) invariant networks over Poisson points, the quantity

ρ(r) := mean route length between two Poisson points at distance r

at (1.1) is a natural object of study. From [1, 13] we know that under very weak
assumptions (which roughly correspond to “not a tree”), not only is ρ(r) <∞ for all r,
but also (by subadditivity, heuristically) there exists the limit

lim
r→∞

r−1ρ(r) := ρ∗ <∞.

That is, average route lengths are asymptotically linear in straight-line distance. But
quantitative analytic study of ρ(r) or ρ∗ seems very difficult even in simple-to-describe
network models.

For reasons explained in [6], it is not always wise to use ρ∗ as a summary statistic
for efficiency at providing short routes. Instead, in [6] we recommend the statistic
supr r

−1ρ(r) to ensure that the network provides short routes on all scales. This line of
thought also motivates study of exactly self-similar networks (so r−1ρ(r) is constant) on
the continuum plane [3].
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