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Applications of adjoint data assimilation, which is designed to bring an ocean circu-
lation model into consistency with ocean observations, are computationally demand-
ing. To improve the convergence rate of an optimization, reduced-order optimization
methods that reduce the size of the control vector by projecting it onto a limited number
of basis functions were suggested. In this paper, we show that such order reduction
can indeed speed up the initial convergence rate of an assimilation effort in the east-
ern subtropical North Atlantic using in situ and satellite data as constraints. How-
ever, an improved performance of the optimization was only obtained with a hybrid
approach where the optimization is started in a reduced subspace but is continued
subsequently using the full control space. In such an experiment about 50% of the
computational cost can be saved as compared to the optimization in the full control
space. Although several order-reduction approaches seem feasible, the best result was
obtained by projecting the control vector onto Empirical Orthogonal Functions (EOFs)
computed from a set of adjusted control vectors estimated previously from an optimi-
zation using the same model configuration.

taking model and data errors into account. This is accom-
plished by minimizing a cost function which measures
the discrepancy between the model simulation and ob-
servations while adjusting a well-chosen set of uncertain
model parameters, called control parameters. The vari-
ational problem is then solved as a constrained optimiza-
tion problem while adding the model dynamics as con-
straints to the cost function. Ghil and Malanotte-Rizzoli
(1991) and Wunsch (1996) describe applications in physi-
cal oceanography.

Although mathematically rigorous assimilation meth-
ods have been found to be very efficient in bringing a
model closer to consistency with large multivariate data
sets, their computational burden remains one of the main
obstacles to using them in a full eddy-resolving setting
or even to transition existing state-of-the-art technology
to operational centers. For instance, filtering methods
require the manipulation of huge-dimension covariance
matrices of the estimation error. Attempts to reduce the
computational burden of the Kalman filter have received
considerable attention in the past (see, e.g., Fukumori and
Malanotte-Rizzoli, 1995; Cohn and Tolding, 1996; Pham
et al., 1997; Hoteit et al., 2002). Most proposed “sub-
optimal” Kalman filters project the system state onto a
low-dimensional subspace using an order-reduction op-

1.  Introduction
Data assimilation aims at combining numerical mod-

els and observations to obtain an optimal description of
the time-evolving state of a dynamical system. This tech-
nique is widely used in meteorology and has recently
evolved into an important data synthesis element of physi-
cal oceanographic research. The theoretical framework
of data assimilation for oceanographic problems is well
established (Bennett, 1992; Wunsch, 1996) and two sepa-
rate directions are usually followed in oceanographic ap-
plications, one being a filtering approach (e.g., Kalman
filter), the other being a variational approach (e.g.,
Lagrange multiplier or adjoint method). Filtering meth-
ods proceed by incrementally correcting a model predic-
tion each time new observations are available, based on
prior information about uncertainties in the model and
data. The variational approach is a specific case of the
more general framework of the optimal control theory and
belongs to the so-called “whole domain” approaches.
Essentially, it consists of finding the model trajectory
which best fits available data over a given period of time,
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erator which lead to low-rank representations of the error
covariance matrices.

Because of the complexity of the variational optimi-
zation problem, the variational equations are solved im-
plicitly and iteratively in practice, employing the gradi-
ents of the cost function and an optimization code
(Wunsch, 1996). The most efficient way to compute the
gradients of the cost function with respect to the control
variables is to use the adjoint of the numerical model,
which provides this information for the cost of a few
model integrations. These gradients are then used in a
descent algorithm to reduce the model-data misfit. The
computational burden of this procedure is significant as
usually many (ten to hundreds) iterations are needed to
reach a satisfactory solution, each requiring one forward
and one backward integration of the numerical model and
its adjoint. Early attempts to reduce the computational
burden of the variational methods have therefore focused
on the simplification of the adjoint model; using a coarser
grid in the adjoint model as proposed by Courtier et al.
(1994), or through physical considerations and trunca-
tion of the adjoint model (e.g., Vogeler and Schröter,
1995).

Since the optimization is solved iteratively, the com-
putational cost of a 4DVAR problem is also largely de-
termined by the number of iterations required to bring
the model more into consistency with the observations.
Accelerating the convergence process is therefore another
key issue for increasing the applicability of adjoint mod-
els for oceanographic problems. This problem is practi-
cally not present for low-dimensional linear problems,
since it is usually possible to obtain a sufficient approxi-
mation for the preconditioning Hessian to improve the
ratio between the dominant eigenvalue spectrum of the
Hessian which characterizes the convergence speed of the
optimization (Courtier, 1997). However, in nonlinear
4DVAR atmospheric and oceanic data assimilation ap-
plications with large dimensional control space, good
approximations to the Hessian are harder to obtain and
one way to improve the convergence rate of an optimiza-
tion is to carry it in a smaller dimensional space. This is
the idea behind the linearly-equivalent dual formulation
(also called the Physical-space Statistical Analysis Sys-
tem (PSAS)*) of the variational adjoint approach
(Courtier, 1997), which consists of performing searches
for the optimum solution in the smaller data space rather
than the large control space. Although the 4DVAR and
PSAS methods were found to behave similarly when the
simplest preconditioning strategies were employed (Golub
and Van loan, 1996), the latter can lead to a superior con-
vergence rate when the number of observations is much

smaller than the number of control variables if sophisti-
cated preconditioning methods are employed (Daley and
Barker, 2000). However, given the large—and ever in-
creasing—number of observations now available, the
benefits of the dual approach may be rather limited.

Another way to reduce the dimension of the line
search is to project the control vector onto a subspace of
much smaller dimension using an order-reduction opera-
tor. Off course, this entails an approximation which in
general will reduce the performance of the optimization
because of the limited number of allowed search direc-
tions. This loss of accuracy can be insignificant, how-
ever, if a sufficiently representative reduced control space
is available, as argued by Vidard et al. (2000) who ad-
justed the model error in the subspace spanned by the
directions of the fastest growing perturbations. The au-
thors also found that an order-reduction can be beneficial
in preventing the model from fitting model noise and
observation errors. Such an approach would also enable
the use of the full Hessian matrix* in the optimization
algorithm, and therefore naturally allow for improvements
in performance. Recently, Durbiano (2001) and Robert
et al. (2005) demonstrated the efficiency of this method
in speeding up the optimization procedure while control-
ling the model initial conditions in a subspace generated
by a set of Empirical Orthogonal Functions (EOFs). Al-
though they found this application to be very effective in
their twin experiments, the resulting EOFs may not be as
effective when using real data since the variability of the
corrections imposed by the real observations is often sig-
nificantly different from that simulated by the model.

In this paper, an EOF approach has been adopted to
test reduced-order optimization schemes in a realistic set-
ting which usually proves to be much more complex and
less forgiving than in a “twin-experiment” setting. Our
goal is to build an optimization procedure that would
speed up the convergence of ongoing global or regional
synthesis approaches. As an example, the “Estimating the
Circulation and Climate of the Ocean” (ECCO) consor-
tium (see Stammer et al. (2002) for details) performs glo-
bal assimilation efforts using the MIT model with a 1°
spatial resolution and most available data during the pe-
riod 1992 through 2002. In those efforts control variables
are initial temperature and salinity fields and daily fields
of surface momentum, heat and freshwater fluxes. Be-
cause of the large control vector and the associated large
number of iterations required during an adjoint optimi-
zation, its computational cost is a factor of 100 to 1000
higher than regular forward simulations. Here, we essen-

*The PSAS algorithm is equivalent to the indirect
representer method (Bennett, 1992).

*A diagonal approximation of the inverse Hessian matrix
is often used as a preconditioner in Lagrange-multiplier ap-
proaches because of the large dimension of the system (Yang et
al., 1996).
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tially use the same model as in the global approach, but
investigate the effect of an order-reduction scheme only
in a small sub-region of the sub-tropical Atlantic Ocean.
In our present study we use only the atmospheric forcing
fields as control variables, which are adjusted during the
optimization to improve the consistency between the
model and real (anomalies and mean) TOPEX/ERS sea
surface height data, Reynolds sea surface temperature
data, and Levitus temperature and salinity data. The more
general case of including the model initial conditions in
the control vector is straightforward and does not require
any special treatment.

Hereafter, we first describe and discuss the applica-
tion of an order-reduction approach in the context of
4DVAR methods before presenting and analyzing assimi-
lation results of several numerical experiments.

2.  The Reduced-Order 4DVAR Approach
To present the use of order-reduction in the context

of the adjoint 4DVAR assimilation we essentially follow
the notation of Fukumori and Malanotte-Rizzoli (1995).
Consider a linear approximation ũ  of the original con-
trol vector u in a smaller dimensional subspace

u u Eu− ≈ ( )˜ , 1

where E is the order-reduction operator defining the ap-
proximation and can be thought of as a reconstruction
operator that maps the reduced-order control vector ũ
on the original control space. Note that this approxima-
tion is defined, without loss of generality, around some
prescribed reference (mean) state u  in anticipation of
linearizing nonlinear models around such a reference. Let
E be the pseudo-inverse matrix E+ of E defined such that*

E+E = I  (but in general, EE+ ≠ I), (2)

where I is the identity matrix. This operator projects u
onto the subspace spanned by the columns of E defining
the reduced-order control vector ũ  as an identity

˜ .u E u u= −( ) ( )+ 3

The variational assimilation problem can then be simpli-
fied to a so-called reduced adjoint method that consists
of seeking the reduced-order control vector ũ  that mini-
mizes the cost function of the variational problem
(Durbiano, 2001). Once this solution is found, the origi-
nal control vector can be recovered using (1). The gradi-

ent of the cost function J with respect to ũ  can be ob-
tained from the “original” adjoint model by projecting
the “full” gradient onto the reduced control space accord-
ing to

∇( ) = ∇( ) ( )˜ .u uJ E J
T T T

4

From a practical point of view, the advantage of this
set-up is that only two simple steps have to be added to
the entire optimization procedure, and in a very simple
manner one can go from a full order to a reduced order
and vice versa. The computational cost of these opera-
tions is negligible compared to the integration cost of the
numerical model (forward and backward). Starting from
an initial reduced-order control vector, the first step con-
sists of reconstructing the full order control vector using
the approximated formula (1). As in the original adjoint
method, the forward and backward models are then inte-
grated to compute the gradient of the cost function with
respect to u. In the second step, the solution of the adjoint
model is projected onto the reduced control space using
(4). A descent algorithm is then used to adjust ũ  in the
reduced space to improve the model’s performance. No
changes are therefore required for the model and its
adjoint; only the descent algorithm is now applied in the
reduced space, with significantly fewer control variables.
The order-reduction operator and its inverse are applied
to the resulting adjoint gradients and the control vector
prior to and after each linear search step, respectively.

The natural choice for preconditioning and order re-
duction derives from the background (control) error
covariance matrix B (e.g., Fujii and Kamachi, 2003;
Robert et al., 2005). This can indeed be expected to im-
prove the overall behavior of the assimilation system be-
cause of the use of more sophisticated statistics in the
4DVAR problem. Such a choice of B, however, should
be considered very carefully as accurate estimates of this
matrix statistics are rarely, if ever, available in real appli-
cations. As will become clear in Section 4, inaccurate
choice of E would strongly limit the performance of the
optimization because the null space orthogonal to E,
which will never be explored by the optimization, might
contain important information about the descent direc-
tions. In order to explore these limitations, it is assumed
in the present study that B is known a priori (diagonal in
our case, but can be non-diagonal as well) and the adjoint
gradients are projected to an independent reduced con-
trol space. This setup actually enables one to conduct a
straightforward comparison between the full and the re-
duced 4DVAR approaches, which is otherwise not possi-
ble if B was a priori parameterized in the reduced space.
Most importantly, and as suggested in Subsection 4.3, with
this formulation one can still consider a strategy similar

*If E was generated by normalized EOFs, E+ is simply its
matrix transpose.
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to the so-called multi-grid optimization techniques (Nash,
2000) in which the optimization is started in the reduced
space to speed up the adjustments during the early opti-
mization steps and then to continue the optimization in
the full control space in order to capture the missing vari-
ability in the reduced subspace. This study does not fo-
cus on the estimation of the background covariance ma-
trix but on the possibility of reducing the computational
burden of a pre-defined 4DVAR problem, although the
link between the two problems is fully acknowledged.

3.  Choice of the Reduced-Order Control Space
An order reduction of the control vector dimension

is feasible in oceanic and atmospheric models because
only a few modes are needed to represent most of the
observed variability of these systems (De Mey, 1997).
Different methods to construct a reduced space are avail-
able in practice. For example, one may apply the optimi-
zation on a coarser grid (Courtier et al., 1994; Fukumori
and Malanotte-Rizzoli, 1995). Such a method, however,
would only reduce the dimension of the system by a fac-
tor of 10 or 100. Another possibility, used by Menemenlis
and Wunsch (1997), is to apply a series of transforma-
tions based on temporal, vertical, and horizontal filters.
Fast Fourier and Wavelet transforms are also alternatives
to constructing a low-dimensional approximation of the
control vector. In this paper, a statistical approach (the
EOF analysis) has been adopted. This approach has al-
ready been used by Cane et al. (1996) and Pham et al.
(1997) in the context of reduced-order Kalman filtering
and by Durbiano (2001) and Robert et al. (2005) in the
context of the reduced-order adjoint method. It is basi-
cally used to extract the dominant spatial patterns (or
modes) of a system that explain the greatest amount of
variability of a given set of system vector realizations.
The reader is referred to Preisendorfer (1988) for an ex-
haustive discussion of this technique. Adjusting prima-
rily the gravest modes of the control space that carry a
sizeable amount of the control variance in space and time
plus the time-mean biases, is indeed expected to enhance
the system capability for spreading the information con-
tained in the observations, and therefore to dramatically
enhance the performance of the optimization procedure.

Assuming that a set of r EOFs, E = (e1, ..., er), has
been determined, an approximation formula of the con-
trol vector is

u u e u Eui≈ + = + ( )
=
∑ ˜ ˜ .ui
i

r

1

5

Following this representation, the new control parameters
are the coordinates of the reduced control vector ũ  = ( ũ0 ,
..., ũr ). The dimension of this new control space is there-

fore equal to the number of EOFs, r, used to represent the
variability of the full control vector.

The EOFs need to be carefully chosen in order to
efficiently represent the variability of the control param-
eters. The choice of the set of vectors from which the
EOFs are computed is therefore key to building an effi-
cient reduced adjoint method. In our case, the atmospheric
forcing fields are control variables and the EOFs could
be computed from a time series of forcing fields (e.g.,
NCEP) assuming that the structure of the forcing error is
correlated with the variances of the forcing itself. Alter-
natively, one can compute EOFs of the adjustments to
the prior forcing fields, obtained from an earlier optimi-
zation. To the extent that the adjustments represent er-
rors in the forcing or the model itself, the EOFs can be
expected to better represent the uncertainties in the con-
trol parameters and therefore should be more efficient in
reducing any model-data differences. It is important to
notice that since the optimization is carried out over a
given assimilation period [1 T] and the absolute surface
forcing fields are time-varying,

  

u = [ ]( ) [ ]( ) [ ]( )( )
( )

Wind T Heat T Salinity Tstress flux flux

T
1 1 1

6

M M .

In the above identity, V([1 T]) represents all forcing fields
V from time 1 to time T. To determine an approximation
formula as in (5), the EOF analysis should be computed
from a sample of vectors of the same “format” as u. Each
of these vectors should therefore contain a set of forcing
fields over a [1 T] period. In our experiments, for exam-
ple, where the assimilation period is one year, a time se-
ries of N years of NCEP forcing provides a sample of N
vectors (one vector per year) to compute the EOFs.

4.  Experiments
We used the ECCO ocean general circulation model,

which is derived from the MIT model (Marshall et al.,
1997). An adjoint code to the forward model was obtained
using an automatic differentiation tool (Giering and
Kaminski, 1998; Marotzke et al., 1999). To test the re-
duced-order adjoint assimilation approach, we investigate
a simple box of the sub-tropical North Atlantic Ocean
extending from 10°N to 40°N and from 42°W to 4°E. Zero
fluxes of volume, heat and salt were applied to the closed
lateral boundaries. The model is set up on a 2° × 2° hori-
zontal grid and 23 vertical levels, with the first 6 levels
in the upper 100 meters. The model domain has a realis-
tic bottom topography based on the ETOPO5 (1988)
dataset. Free-slip bottom boundary conditions and no-slip
boundary conditions at lateral walls are applied. Laplacian
viscosity and diffusivities are imposed, with νh = 1 × 104
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m2/s and κh = 102 m2/s and νv = 10–3 m2/s and κv = 10–5

m2/s, in the horizontal and vertical, respectively. The sur-
face mixed layer is modeled with the “KPP” code of Large
et al. (1994). The time step is 1 hour. Atmospheric forc-
ing consists of daily heat and fresh water fluxes, and
twice-daily zonal and meridional wind stress components
from the National Center for Environmental Prediction
(NCEP)/National Center for Atmospheric Research
(NCAR) re-analysis project (Kalnay et al., 1996). The
model is started from rest and Levitus temperature T and
salinity S fields. Given the model set up in a regional box
with closed lateral boundaries, it provides meaningful
simulations of the circulation of the eastern North Atlan-
tic only for limited periods. All the following experiments
are limited therefore to one year duration.

Assimilation experiments were carried out over a
one-year period during which the model was constrained
by TOPEX and ERS and sea surface height (SSH) data,
monthly Reynolds surface temperature (SST) data, and
by subsurface Levitus S and T data. To eliminate errors
associated with uncertainties in the geoid, the mean and
time-varying components of the model SSH were sepa-

J B R

R

R

= ( ) − ( )[ ] ( ) − ( )[ ] + −[ ] −[ ]
+ ( ) − ( )[ ] ( ) − ( )[ ]

+ ( ) − ( )[ ]

− −

= ∗

−

=

−

∑

∑

Forcing t NCEP t Forcing t NCEP t SSH SSH SSH SSH

SSH t SSH t SSH t SSH t

SST t SST t

T
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T
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t days
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TP ERS TP ERS
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1 1 7

SST t SST t
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=

−

=

∑

∑ ∑

Rey
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rately constrained to daily along-track TOPEX/ERS SSH
anomalies and mapped TOPEX mean SSH minus the Earth
Gravitational Model 1996 (EGM96) geoid, respectively.
In all experiments, the control vector consists of heat flux,
fresh water flux, and the wind stress, which were adjusted
every two days. Increment forcing values on non-adjust-
able days were linearly interpolated from the adjusted
ones. NCEP forcing fields were provided as first guess
for the optimized parameters; the fields were also used in
the cost function as constraints on the adjusted surface
fluxes. Data and model errors are prescribed only along
the diagonal of the error covariances and are the same as
used by Stammer et al. (2002) in a global approach. They
have been approximated by the error profiles for tempera-
ture and salinity taken from Levitus data and by 50% of
the data variability for the SSH. For the wind stress, prior
errors are provided as standard deviation (STD) of the
differences between NCEP and QuickSCAT scatterometer
wind fields. One-third of the local STD of the NCEP forc-
ing was used as the prior error for the net heat and fresh-
water fluxes. The explicit form of the cost function was
then

where B and R are diagonal matrices. The descent direc-
tions toward the minimum of J have been determined
using the Quasi-Newton M1QN3 optimization algorithm
which has been developed by Gilbert and Le Maréchal
(1989). The standard technique of preconditioning with
the background error covariance matrix was applied for
all experiments as described by Courtier (1997).

Results of assimilation experiments performed in
1993 are now presented. A summary of the different EOFs
sets and the different assimilation experiments is provided
in Tables 1 and 2.

4.1  Sensitivity to the choice of EOFs
To test the sensitivity of the performance of reduced-

order optimizations to the choice of the EOFs-based or-
der-reduction operator E, three distinct reduced-order

Table 1.  Summary of the different EOFs sets.

EOFs Time series

TS1 NCEP forcings 1992 → 2001

TS2 ECCO forcings 1992 → 2001

TS3 1992’s prior control estimates

control subspaces were determined by applying a
multivariate EOF analysis on three different samples of
control vectors. The first two sets of EOFs (TS1) and
(TS2) were computed from: 10 years of NCEP forcing
fields (which are used to force the model), and 10 years
of ECCO global adjustments to the NCEP forcing fields,
respectively. The latter have been optimized with a glo-
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bal state estimation procedure on a 2° × 2° global grid
using the MIT model and a similar configuration to the
one used in the current study as described by Stammer et
al. (2002). Following the discussion in Section 2, the
available NCEP and ECCO forcing provide two samples
of only 10 vectors (one vector per year) to compute the
EOFs. A third set of EOFs (TS3) was computed from a
set of control vectors estimated by a prior optimization
performed during 1992 using the same limited-area model
and the same setup as the one used in our assimilation
experiments. In this experiment, forty iterations were re-
quired to obtain an acceptable convergence using the full
dimension of the control space. These three sets of EOFs
are used in the following to assess the convergence rate
of an optimization performed during 1993, and to study
its sensitivity to the choice and the number of EOFs. Note
that TS3 was computed from the optimized control vec-
tors in 1992 to provide an “independent” set of EOFs for
the experiments with the reduced-order 4DVAR approach
in 1993. To account for approximately 90% of the total
variance for each set, 6, 6 and 4 EOFs were retained from
TS1, TS2 and TS3, respectively. The optimization was
therefore performed in subspaces of dimension 6 and 4
instead of 284,700.

The decrease of the total cost function with the
number of iterations is plotted in Fig. 1 for all three re-
duced 4DVAR experiments using TS1, TS2 and TS3 and
evaluated against the one obtained with the classical
4DVAR run C1 (i.e., full control space). The figure shows
that the performance of the reduced adjoint method de-
pends closely on the choice of the reduced space and that
the overall performance of the adjoint method is always
superior when the optimization is performed in the full
control space. Although a faster convergence rate is
achieved during the first iterations (see below for more
details), the cost-function decrease stagnates after only 8
iterations once optimization explored all descent direc-
tions generated by the few retained EOFs, suggesting that

a large fraction of the variability of the forcing error is
not well represented by these functions. More precisely,
the use of the EOFs computed from the ECCO forcing
adjustments (TS2) clearly improves the assimilation re-
sults as compared to TS1. This is to be expected since the
ECCO solution is already an estimate of the forcing er-
rors and as such should be a better representation of the
gravest forcing error modes, while the NCEP EOFs rep-
resent the entire forcing process variance. However, the
overall performance of this method remains unsatisfac-
tory, even for experiment TS2. Instead, the best assimila-
tion results were obtained when the EOFs were computed
from the prior optimized control vectors obtained from
the same model setup in 1992. The use of these EOFs
reduces the final cost function value by more than 35%
compared to the other two sets of EOFs. This is because
the TS3 approximation contains information from both
the regional closed-boundary model and the assimilated

Table 2.  Summary of the different assimilation experiments.

Experiment Method Number of EOFs EOFs set

Sensitivity to choice of EOFs Reduced 6 TS1
Reduced 6 TS2
Reduced 4 TS3

Sensitivity to number of EOFs Reduced 2 TS3
Reduced 4 TS3
Reduced 6 TS3

Hybrid reduced adjoint method Classical (C1) — —
Reduced 4 TS3
Reduced + Classical (H1) 4 TS3

0 5 10 15 20 25 30 35 40
0.5

1

1.5

2

2.5

3

3.5
x 10

5

Number of Iterations

T
ot

al
 C

os
t F

un
ct

io
n

Classical
EOFsNCEP
EOFsECCO
EOFsOpt:1992

Fig. 1.  Total cost function vs. the number of iterations as ob-
tained with the reduced adjoint method using 4 EOFs com-
puted from NCEP forcing (TS1), from ECCO forcing (TS2)
and from prior 1992 control vectors (TS3).



Efficiency of Reduced-Order, Time-Dependent Adjoint Data Assimilation Approaches 545

observations, providing a better representation of control
vector modes.

4.2  Sensitivity to the number of retained EOFs
Although the previous reduced-order optimization

strategy seems to provide some benefit during the first
iterations, they obviously do not have sufficient degrees
of freedom to bring the model as much into consistency
with the data as the full optimization does. Instead, the
decrease of the cost function in the reduced space stag-
nates quickly after all information contained in the grav-
est error modes has been used. In other words, the order-
reduction eliminates corrections of the forcing on larger
spatial scales and the success of the reduced adjoint
method therefore depends on the number of EOFs that
are actually included in the optimization effort.

To investigate the truncation effect of the reduced
space on the final optimization results we investigate here
the sensitivity of the convergence of the reduced adjoint
method to the number of retained EOFs (dimension of
the reduced space). In the following, all experiments are
based on EOFs obtained from the control vectors of the
previous optimization over 1992 (TS3). We successively
use 2 EOFs, 4 EOFs and 6 EOFs, which account for ap-
proximately 76%, 90% and 93% of the error variance es-
timated during 1992, respectively.

Results are shown in Fig. 2 in terms of the evolution
of the total cost function as a function of iterations per-
formed. Not unexpectedly, the final performance of the
optimization is shown to degrade significantly with fewer
numbers of retained EOFs; however, the initial adjust-
ments are fastest as the dimension of the reduced space
decreases. Therefore the number of retained EOFs should
be small enough to assure a fast convergence rate at the

beginning of the optimization and large enough (up to a
certain level, since the last EOFs generally represent
noise) for an efficient representation of the variability of
the full control space.

Despite a greatly improved convergence rate during
the first iterations, the above experiments reveal that the
overall performance of the reduced adjoint method calls
for further improvements, even with 6 EOFs which ac-
count for 93% of the total variance of TS3, as compared
to the classical solution of C1. The improvements are also
shown to stagnate very rapidly as the number of retained
EOFs increases. This suggests that the performance of
the reduced-order optimization scheme will always be
limited by the representativeness of the prior estimate of
the control subspace.

4.3  A hybrid reduced adjoint method
Figure 3 suggests that a way to further improve the

performance of the adjoint method is actually to start with
a reduced-order approach to first adjust the control pa-
rameters on their graves modes, and to continue the opti-
mization subsequently in the full control space to adjust
important smaller-scale errors that are missing in the re-
duced space. The additional effect is that while a reduced-
order approach relies on the prior error estimate and its
scales, the full-state approach further adjusts the control
variables according to the actual model setup and the ac-
tually used data constraints.

To study the performance of this hybrid strategy, an
extra experiment (H1) was performed that starts with a
reduced-order adjoint method for the first 3 optimization
iterations using 4 EOFs (describing 90% of the total vari-
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Fig. 2.  Total cost function vs. the number of iterations as ob-
tained with the reduced adjoint method using 2 EOFs, 4
EOFs and 6 EOFs computed from prior iterations in 1992
(TS3).

Fig. 3.  Total cost function vs. the number of iterations as ob-
tained with (i) classical adjoint method, (ii) the reduced
adjoint method (using 4 EOFs from TS3), and (iii) the re-
duced adjoint method (using 4 EOFs from TS3) at the first
3 optimization iterations and then the classical adjoint
method.
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ance of the prior estimates in 1992) and subsequently
continues with the “classical” adjoint method in the full
space. Results for H1 are included in Fig. 3. As can be
seen from the figure, the classical adjoint method leads
to a constant decrease of the cost function, reducing it by
a factor of 4 after 40 iterations. The results of the hybrid
approach show that by continuing the optimization in the
full space after 3 initial reduced-space iterations, one can
get a quite similar solution but with fewer iterations. As
an example, the cost function value obtained with C1
after 20 iterations is reached in experiment H1 after only
10 iterations.

For a more detailed, quantitative comparison of the
solutions from C1 and H1, Fig. 4 shows a plot of the time-
mean adjustment to the heat flux and of the zonal compo-
nent of the wind stress obtained after 20 iterations with
C1 and compared them with similar fields obtained after
10 iterations with H1. The figure reveals that the correc-
tions of the forcing fields from both runs are quite simi-
lar, with differences residing primarily at small spatial
scales, probably not represented in the EOFs subspace.
For comparison, the adjustments obtained after only 10
iterations of C1 (also shown) still look quite distinct from
the results obtained after 20 or 40 iterations.
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Fig. 4.  Left panel: Time average adjustments to the heat flux (in W/m2) after 20 iterations with the classical adjoint method (top),
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A more rapid convergence of the cost function was
not only obtained for the total cost, but also for each in-
dividual contribution during experiment H1, including full
depth potential temperature and salinity, SST and SSH.
The decrease, however, is found to be different for each
model state variable (Fig. 5). Quite clearly, the largest
initial misfit is due to deviations of the model’s tempera-
ture field from the Levitus and Reynolds data sets. Ac-
cordingly, the optimization tried to remove those large
misfits during the first iterations. The associated adjust-
ment of the model’s temperature field seems to be stabi-
lized after about 15 iterations with the classical adjoint
method. However, more iterations were needed to cor-
rect errors in the salinity field and particularly in the SSH
field. The improved convergence rate of H1 is particu-
larly clear from the salinity misfit: fewer than 10 itera-
tions are now required to reduce the initial salinity misfit
to a level that was reached only after almost 20 iterations
during C1: In H1 the rate of salinity improvement be-
came comparable to the temperature’s rate. This can be
explained by an efficient propagation of the information
extracted from the different data sets through a strong
EOFs-coupling of the fresh water flux with the other con-
trol variables. In stark contrast, the slow adjustment of
the SSH field in C1 did not change fundamentally during
experiment H1.

Finally, Fig. 6 shows in the left column the differ-
ence between the time-mean Reynolds SST fields over

1993 minus the models SST obtained during C1 after 10
iterations. The lower two panels in the same column show
similar differences by using model results from C1 after
20 iterations and from H1 after 10 iterations. The right
column shows similar difference fields, but now from a
meridional section of the salinity field along 32°W rela-
tive to the time-mean Levitus salinity (reference). The
comparison of both variables illustrates that model-data
differences obtained after 20 iterations from C1 and after
10 iterations from H1 look very similar and are both sig-
nificantly smaller than differences found during iteration
10 of C1. This holds for surface and subsurface values.

5.  Discussion
We have shown here that a reduced-order optimiza-

tion method, which limits the size of the control vector
of a 4DVAR ocean assimilation system by projecting it
onto a small number of basis functions, can speed up the
initial convergence rate of an assimilation effort in the
eastern subtropical North Atlantic using real in situ and
satellite data as constraints. The following findings are
noteworthy:

Using a reduced-order control space, a significant
speed-up of the convergence was found only during the
initial first few iterations. Here the actual choice of EOFs
was important for the convergence rate. In this paper we
used three different sets of EOFs: one based on NCEP
reanalysis forcing fields, one based on the control vector
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Fig. 5.  Contributions of the individual data misfit terms to the total cost function vs. the number of iterations as they result from
the classical adjoint method and the reduced adjoint method (using 4 EOFs) at the first 3 optimization iterations and then the
classical adjoint method.
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Fig. 6.  Left panel: Difference of the time average between Reynolds and estimated SST after 10 iterations (top in °C), 20
iterations (middle) with the classical adjoint method, and 10 iterations with the reduced adjoint method (bottom). Right panel:
Difference of the time average between salinity cross-section at 32°W from Levitus and estimated Salinity in PSU after 10
iterations (top), 20 iterations (middle) with the classical adjoint method, and 10 iterations with the reduced adjoint method
(bottom).
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fact that the forcing variability and the forcing errors do
not have the same space-time scales. It can also mean
that internal model errors compensated by changing the
surface forcing fields during the optimization have a sig-
nificant effect on the parameter adjustments.

While the use of a reduced-order control subspace
does speed up initial convergence rate of the optimiza-
tion by adjusting the estimation parameters in the direc-
tions of the gravest modes of the control space, such an
optimization never actually reached the quality of the full
optimization. Instead, the optimization stagnated fairly
early on and never reached a final solution that was any-

of a previous global optimization using essentially the
same model setup and data constraints, and one using the
control vector obtained from a previous optimization us-
ing the same regional model setup. The best performance
was obtained in the latter case, which accounts for both
forcing errors and errors of the regional model set up alike.
The results show that the chosen EOFs should give the
best possible representation of the errors of the control
parameters—in our case the surface forcing fields. We
can conclude that using the gravest modes of the forcing
variability as a prior estimate of the forcing errors was
not a useful approach. To some extent this is due to the
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where near the one obtained with a full control space. A
full control space is also required to adjust finer scales of
the control parameters representing smaller scales in the
forcing errors over the open ocean or near boundaries. A
hybrid strategy was therefore found to be most effective
in assimilating real data while controlling atmospheric
forcing fields: it starts in a reduced space and finishes the
optimization subsequently in full space. Such an approach
can be viewed as a way of obtaining the solution of the
classical adjoint method, but with fewer iterations:
roughly 50% of the iterations that were required to reach
the quality of a convergence solution using the full con-
trol space have been saved in our simple setting using
this approach. Although in this study the control vector
was composed of atmospheric forcing fields only, results
can easily be extended to include the model initial tem-
perature and salinity conditions. Moreover, although the
assimilation experiments were conducted here in a sim-
ple configuration of the North Atlantic ocean, they do
demonstrate the effectiveness of the reduced-order opti-
mization strategy.

The fact that the best result was obtained by project-
ing the control vector onto EOFs of the parameter errors
estimated previously from an optimization using the same
model configuration means that an important prerequi-
site for speeding up an optimization is a good prior knowl-
edge of parameter errors and their structures in space and
time. However, a serious drawback is that a previous as-
similation experiment was needed. But while this seems
impractical at first glance, in practice it is still very help-
ful: any sustained estimation effort, whether for the pur-
pose of re-analysis or routine forecast, needs to extend a
previous optimization in time or needs to improve a pre-
vious optimization by repeating it with a higher spatial
resolution or with more complete data constraints. In all
those cases it would still be helpful to use the EOFs of
the previous control vector to obtain a significant speed-
up of the optimization.

In some sense the existing ECCO efforts (Stammer
et al., 2002; Köhl et al., 2006) have made use of this fact
already by using the time mean forcing correction esti-
mated during a previous optimization as priors for the
parameter adjustments in a new optimization (on higher
resolution or over longer periods). The extent to which
the respective speed-up could be further enhanced by us-
ing several EOFs as proposed here still has to be evalu-
ated on a global scale. But the ECCO experience can hold
already as a first indication that the results obtained here
in a small basin do have relevance for global ocean
reanalyses as well.
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