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THE PARTICLE LThUT OF FIELD TI!EORY - A NEW 

STRONG-COUPLING EXPANSION 

M. B. Halpern and W. Siegel 

Department of Physics and Lawrence Berkeley Laboratory 
University of California, Berkeley, California 94720 

April 14, 1977 

ABSTRACT 

· We study a new semiclassical expansion of field 

theory. In this expansion, the natural variables are geo­

metrical (particle coordinates), and the expansion is 

about solutions to the classical mechanics of such var-

iables. It is a strong-coupling expansion, and it offers 

considerable hope for bridging the gap between quantum 

field theories and theories of quantized geometrical 

objects. 

I. INTRODUCTION 

Effort in fundamental physics has turned increasingly toward 

the problem of quark confinement. There is reason to believe that 

we know the beginnings of such a program (quantum chromodynamics) 

and the end (string~like and/or bag-like theories). What_ is not 

clear is the path, the Tao from such a local quantum field theory 

to such theories of quantized geometrical variables. 

* 

We note that both types of theories are based on a classical 

TQis work is supported in part by the U. S. ~ergy Research and 

Development Administration under the auspices of the Division of 

Physical Research. 

formulation:. the, fo:m~r il1 terms of. field yariables, the latter in 

terms of particle/string/bag variables. It is of course well known 

ohow to.regain the_.semiclassical ·limit of a quantum field theory in 

such a manner as to preserve the classical field equations. 1 What 

is not well known2- is that there is another semiclassical limit of 

field theory in which classical mechanics is (may b~ obtained. We 

shall refer to the former limit as .the field"tt-limit. It is associated 

with a weak-coupling expansion, which we call the field-n-expansion. 

We shall refer to our new limit as the particle 1r-limi t. It is as so-

cia ted with a strong-coupling expansion, which we will call the par-

ticle 11-expansion. 

Just as in the field 1r-expansion the natural variables are 

fields, and the expansion is around solutions to classical field 

equations, so, in the particle 1r-expansion the natural variables are 

geometrical, and the expansion is around solutions to classical 

mechanical equations. It is our feeling then that the particle 

~-expansion provides the natural language with which to excavate 

geometrical objects in field theory. Senjanovic and one of the 

present authors3 ' 4 have been engaged for some time in a program of 

rewriting field theories in terms of geometrical variables. 5' 6 Indeed, 

with s_ome approximation, and in two dimensions, a direct bridge was 

found in this way from gauge theories to strings. One of the_ pur-

poses of this paper is to put those approximations on firmer footing 

by embedding them in an organized context - the particle 1r,-e)(pansion. 

By no means, however, is the particle-n-expansion limited to two 

dimensions. Indeed, in this paper we shall work primarily in four 

dimensions. Results for arbitrary dimensions will also be given. 



·Because they have no charged loops, nonrelativistic field 

theories offer the simplest applications of the particle ~-expansion. 

They also illustrate almost all the general principies necessary to 

study the relativistic case, and so will be discussed first, in 

Section II. The general program, discussed in detail there, involves 

three steps: (1) Reexpress the field theory in terms of particle 

(geometrical) variables; (2) in this language, find the "particle 

action"; ( 3) use the particle action to define the particle 1i-limi t, 

in which classical mechanics is obtained. For the nonrelativistic 

models, because they have no charged loops, we will,find ordinary 

nonrelativistic classical mechanics dominating this strong-coupling 

limit of the field theory. 

The particle-n-expansion for the_ relativistic case, discussed 

in Section III, follows the same lines, but is one level more com­

plicated. It is not difficult to isolate a "naive" particle action, 

neglecting charged loops, which has the form of classical relativistic 

particle dynamics. We will define our particle 1'1-expansion in such 

a way (in complete analogy with the nonrelativistic case) that this 

classical mechanics dominates all structures with no charged loops 

(It dominates the strong-coupling limit of processes with no charged 

loops; e.g., the cracked eggshell diagrams important in finite QED; 

whose one loop can be obtained by sewing together the ends of an 

electron propagator.). 

In general, however, we must proceed to study the behavior 

of the charged loops themselves under this particle1'i:-expansion. 

The question is: Does the classical relativistic dynamics dominate 

the charged loops in the limit 1'1 ~ 0, or do the charged loops dom­

inate, defining a more sophisticated particle dynamics? A general 

expansion of the loop contribution in powers of 1'[ is developed 

in Section IV, with calcul~tio~~ det~iled in the Appendix. The 

expansion is essentially an expansion in powers of momenta, and it 

is not difficult to c~mpute exactly the first few terms. The answer 

to our question is model-dependent: In the cases of scalar and 

spinor quantum electrodynamics, the classical dynamics does in fact 

dominate the loops; for theories of the type;\ I = -g~*~~' the 

loops dominate. In the latter case, the particle ~-limit is a much 

more complicated dynamics, much more what is expected of strong 

coupling. 

Section V generalizes the discussion of Section IV to an 

arbitrary number of dimensions D. For D < ) scalar and spinor QED 

are still dominated by classical mechanics; for D ? 5, the loops 

dominate or (for D = 5) are of the same importance. * For}\ I = -g~ ~~~ 

the loops dominate in any number of dimensions. A few brief remarks 

about quantum chromodynamics are also included. This section also 

deals briefly with some possible directions and some new features of 

the expansion, including the need for a "classical renormalization" 

in the relativistic particle~-limit. 
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II. A NONRELATIVISTIC EXAMPLE 

The simplest illustration of our new particle n-expansion_ 

will be in terms of nonrelativistic field theory.· We will· examine 

the nonre1ativistic analog of scalar electrodynamics, described by 

the field action 

'jd4x{·,.*[ia - eA - (-i~- ~!)2 
+ i£] ,,, -lA ~2AIJ} (2.1) 

· 't' . 0 0 2m 't' 2 IJ · 

The interaction due to the photon is instantaneous. It will be 

instruc~ive to compare particle and field n-limits, so we will first 

review the usual field ~-expansion for this model. 

A. The Field n-Expansion 

To discuss the usual field n-limit, it is useful to have 

the action in three forms:' 

or, more concisely, 

Therefore, we have 

e ( 2.4) 

The first form is then-free form which we started with in (2.1). 

The second form defines the field 1i-limi t by the prescription of . 

-multiplying by- an overall factor of 1/!L It shows that .in this .limit . 

(~ ~ 0, eF and mF fixed) the theory is dominated by solutions to 

the classical field equations. 8 We can also see from this form that 

the field n-expansion is a loop expansion: The propagators and ver-

tices (as functions of eF and ~) have factors of 1i and 1/fi, 

respectively. Finally, in the third form, we see that the field n-

limit is a weak-coupling limit: it is equivalent to the replacements 

e = ..t' eF and m = ~ in the Ti-free Feyrunan diagrams. 

After finding a "particle action" (Section IIC), we will treat 

it just as one treats ~: we will define the particle ft-limit as 

that which is dominated by classical mechanics. The particle~-limit 

will turn out to be totally different, and is in fact a breed of 

strong-coupling limit. Toward finding the particle action, we must_ 

first reexpress the field theory in terms of particle mechanics. 

B. From Field Var-iables to Particle Variables 

We start with the Green-function generating functional in 

terms of the~-free form of the field action: 

* Z( 11' 11 'J ) 
].I 

=j h~~A]..l exp[i(~(ljl,q/,AIJ) +jd4x(n*ljl+ljl;- Jl~)J. 
( 2. 5) 

Our first step is to integrate out the charged field: 



G is the propagator for ~ in an external A~ field. The deter-

minant of G gives the_charged-loop contribution to Z. In the 

relativistic theory this determinant will give corre~t.ions to Z, .but 

in nonrelativistic theory det G.= 1. This is because the nonrelativ-

istic theory has no antiparticles, and therefore no charged loops. 

More formally, although the i£ prescription above is the usual 

Euclidean (and therefore time-ordered) prescription, the fact that 

~ contains only positive frequencies means that time-ordered products 

immediately degenerate to retarded products: 

( 2. 7) 

Having dealt with det G, we then have the following expres-

sion for the Green functional with 2N external ~-lines and the A 

source: 

~ Tr-( *
0

... .. 
k=l ion (zk,t ) 

0 ) I . ... , Z(n,n,J ) * 
ion(yk,t ) ~ n=n =o 

( 2.8) 

Notice that if we had chosen ~ to be a spinless fermion, the only 

change in the above expression would be the inclusion of minus signs 

for the odd permutations, due to the anticommutativity of fermion 

sources. 

The next step is to introduce particle variables by reexpres­

sing the propagators G in terms of Feynman path-integrals5 

~ H 4 I 

G( z 't ;y' t ) 
II 

-i9( t 1-+ e~ 71 dt( .,.rnx-' eA + -x • A • 
2 0 c 

( 2.9) 

The A~ integration in ~ is now Gaussian and can be done exactly: 

"" • e(t" - t' )?A Lq;r r-<1 'k) • 
yk 

• Jd4x(- ~ ""''•" - J,A"~} 
•xp{1 •4x Pl•"} •<," - t {< rr jbx) .. +sp} 

1 2 \ 
-2 e L 

j,k 

. 
-+ 
~ e- • 
c 

A ( x;J) 
~ 

1 3 -+ 1 -- o (x) = -,:;;r:rr. v2 47TIA1 

( 2.10) 

In the above, we have used 

A~(~,t) = ~d4x A~(~,x0 ) 63(~- ~) o(x0 - t). (2.11) 

The factor with exponent A~A is the Green-function generating 

functional for a free A field: It gives free A propagators 

"'­• 
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disconnected-from the rest of the graph. The-rest of KN is the 

Green functional of pa;rticles interacting through_ instantaneous 

· Coulomb and Biot-"Savart forces, in the presence o( an ~xt~rnal field 

A. A is just the classical A field due to the so~ce J. The , 

divergent interaction terms in sp· for j k correspond to 

renormalization of mass om = (e2;c2 )6(0) and ground-state energy 

1 2 oE = 2 e 6( o ). 

We have now completed our transition to particle variables 

(Sp is our particle action), and are in a position-to define the 

particle ~-expansion. 

C. The Particle-n-Expansion 

In analogy with our treatment of the field -n-expansion 

(in terms of ~F)' we write out three forms for Sp: 

4 . ~ ~ 2] 
f [L 1 -'2 - ~ .::; 1 2 L 1-x j • ~/c 

sP dt k (2 m ~ eA
0 

+ e- • A) c 2 e j,k 4TII1j-fkl 
-

p.l2) 

or, more· concisely, 

(2 .13) 

We theref-ore have 

e A ( 2.14) 

We will de_fine the particle 11-limit as the limit 1I-+ 0 at fixed 

ep and .ffip· Thus, in this limit (as seen in the second form of 

( 2.12)), the theory is dominated by solutions to classical mechanics. 

If we allowed scaling of ~' we would have a more general (but 

equivalent) prescription for the particle limit. However, this 
-+ -+ . 

would be equivalent to scaling yk and zk in KN' while leaving 

i in J~(x) unsealed, causing unnecessary complications in notation 

(Similarly, complications arise from scaling t). 

We can now rewrite the field action in terms of ep . and ffip 

by substituting (2.14) into the ~-free form of SF in (2.1): 

J { I? ( -iV-~ l J/ ] } 
SF = d4x lj!* l~()O- ~~,AO 2mp/R c + i£ 1j!- ~ ~\12A~. 

( 2.15) 

Thus, we see that our particle ~-limit is a king of strong coupling; 

however, it is not the·usual·strong anupling because-it also has· 

m = mp/h -+ oo; For comparison with the field 11-expans~on, . SF may 

also be written·as 

(2.16) 



Notice that if the photon had a mass ~ (replacing . v2 with 

in (2.1)), then, by the arguments of this section, we would find 

~ = ~P = ~F: The mass ~ acts as a field mass, not a particle mass. 

Therefore, in the particle fl.-limit lji becomes a c-lassical particle, 

but A becpmes a classical field. 

III. EXPANSION FOR RELATIVISTIC FIELD THEORY -

Following the nonrelativistic example as closely as possible, 

we examine scalar electrodynamics, with the field action and Green­

function generating functional 

SF ".r••x {•'[<•av- e A")2- m2 + <•]• + !•vD•"}' 
_ Z(n,n*,J~) = J,91ji,8~A~ expfi[sF(Iji,lji*,f) +jd4x(n*lji+ /n-JiJ 

l (J.l)f 

We have chosen the Lorentz gauge. In fact, all of our results are 

gauge-independent, and the reader is invited to work things through 

in an arbitrary gauge. 

As in the nonrelativistic case, the field fl.-expansion is 

described by 

s = 
F J•4

x {•'[<"- ed- m
2 

• ••]• • ~•D•} 
-H '4x {•: [ (ia - .,..F)2 -,; • +F •! ".O"F} 

f•4x{~ (ia -.1\ 'F~ 2- ~ + ie] ~ + ~~0 ~) 
e = m = (3.2) 

· or, more concisely, --

SF( .1i eF,Inr;ljiF/.11, Ap/..f;). 

(3.J) 

Again the field 11-limi t (1\ -. 0 with eF and Inr fixed) is a 

weak-coupling limit, 'dominated by classical field theory. 

A. Particle Representation of Propagator G 

Tc find the particle ~-expansion, we again start by rewriting 

the Green functions in terms of t~e particie variables. The first 

step is the same, doing the lji and lji integrals in Z: 

zc •.• ·,J.) "I"'•"<••t G(A)) ·x{+•xc-.'o. +} •.O•"­
G = [(io~- eA~)2 - m

2 
+ iEJ-1 

• 

Now the determinant is not unity.(Its logarithm is the effective 

action for A due to all one-lji-loop diagrams, as will be discussed 

in Section IV.). We also have 

<,< z~,y~;J"l "f Af•L[Tiwc Z::·Yil] •xpf[d4x(~ AOA - JA)]1c det G). 

~ ( J. 5) 

As above, we next need to express G as a path-integral 

over particle variables. The technique is well known. We introduce 

- 569 1 2 a proper-time parameter ' ' , canonically conjugate to 2 m : 

f(m
2

) " [ dT exp{-iT ~ ~1· fcTJ . ( 3.6) 

Then we write a path integral for G instead of 



.-
T .. 

-Y 

• 

G ~ [ i<l1 + ~iCl].J ~ e AJ.l)
2 

+ ie:)-
1

, 

G< ,, , T;y",oJ i e( rf',,h .,J,( d' [- ~ ;2(, 1 
y .l~ 0 

,;J ')A"(x (<)f 
( 3. 7) 

Finally we have the desired path-integral expression for G: 

G( ,,y I J~ dT •x+1 •j G( '• T;y ,o I 

d{,.9x "~{ d'(- ~ m2 
- ~ ; 2 

" , 

B. Properties of G 

It will be useful in what follows to know two properties of 

the propagator G. The first is the form of the equations of motion 

at the saddle point: 

X ( T) v 0, 

( 3.9) 

where F].JV(x) ~ a].JAV(x) -ClVA].J(x). The former comes from varying the 

action with respect to x , the latter from varying with respect to T. 

To do this latter variation, the T dependence of~: ~ of the 

implicit o(z- x(T)) (from the endpoint constraint) must be con-

sidered. The result in total is as expected: A derivative with res­

pect to T brings down the Hamiltonian at the endpoint, ~ :i(T) -~2, 

which must then vanish. Taken together, these equations of motion 

imply ~2(T) = m2 (for all T). Thus, at least near the saddle point, 

T is the ordinary proper time.10•11 

Y-~e seco~d useful property is that 

G(,,y) ·+f>{ ,<!,.xptJ: d,,_ ~·2 +2(,)/,- .x ·AJ 
( 3.10) 

for arbitrary A. The proof of this identity follows immediately 

from the change of variables T-> AT, T-> AT, x(h)-> x(T) . 

C. The Naive Particle Action 

Inserting (3.8) into (3.5), the expression for KN is now 

jAIA[<ITi d:k fk.O,I "+ -[lak d,<~' 

• A( 'I,)) • Jd4x(~ AQA- JA)l} (dot G). 

(3.11) 
Due to the determinant, the A integration cannot be done in closed 

form. Our.procedure is as follows: We define the naive particle 

action as that which we will obtain (in the manner of Section IIB) 

by neglecting det G. Similarly, we will~ the particle~-

limit as that for which ~· neglecting det G, is dominated 

by solutions of the classical mechanics of that acticn. Whether the 

naive particle action in fact dominates the exact KN (including 

det G) is a question of the behavior of det G is this11-limit. 

This is properly the subject of the next section, but it will buoy 

the reader to know that for certain theories (including scalar 

electrodynamics), the determinant does not contribute to leading 

order in the particle ~-expansion we are defining. 



Setting the determinant equal to one, the A integration gives6 

K 
N "P{-t'' P oj L err J 'i )~' 1 ·~'sp} , 

\71 1 2 1 •2 • - . 
-~ dt( 2 m + 2 ~ + e~ • A(~)) -

0 

I l T. lTk 1 2 J I • • I 
-2e _dT dtx.(t)•x (t )t.F(x.(t)-

J'k J K J 
' 0 0 

SP is our naive particle action. It is similar to the·Fokker 

I 

~(T )), 

( 3.12) 

action12 for classical, relativistic, charged particles, except that 

the ranges of integration in T are finite, and t.F(x) is the 

Feynman propagator instead of o(x2 )/4n (so SP is not even real; 

,r2 . 1•2) also, vx- is replaced by the classically equivalent 2 x . 

D. The Particle 11-Expansion 

Using ( 3.10), K can be put in the form 

•• ~ "{1A ~ Ao + •Lc Tf f "Jjox 1 '""}sp 1} , 
Sp(A) = -r..Jdt(~ >un2 

+ ~ i 2;>. + ei •A) ~ ~ e2L_jdrpt 1 ~ ·~t.F(x-x'>. 
(3.13) 

Then, we find, 11 choosing >. = n 

Sp(n) = -'[pr(~fun2 + i ~2;n +. e~ •A)- ~ e2
Lpr dt 1 ~· ~ 1 t.F(x-x1 ) 

(Equation 3.14 continued on next page) 

- ![_\fdrc!m2 + .!.X.2 +eX.· A_)- !e2\fctrjdr
1x ·x 1

t.-(x- x
1

)] n ~J· 2 p 2 P -~ 2 p~- F 

( 3.14) 

This is the analog of Eq. (212). . Thus we identify 

m = ~/Ii; A ( 3.15) 

and 

( 3.16) 

whichis the analog of (2.13). Finally, then 

"N ~ "+J.' x P OA} L (IT J "J J .Jx I ""'{isP( 1; •, m,A 1} 

"+J.4x ~ AoA} ••L ( TT J 'J{.dxl •><Ph(•;•,m,Ay 
r ' [4 1 - -} N\ TIJdTf {· -1 expr k Jd X 2 ~0 ~ fl. L (II 2/{Jx) exp ~ Sp(l;ep,ffip;~r· 

( 3.17) 

In the last step we used Eq. (3.16), and 

- 2 ePL dt dt x • x t.F( x- x ). 1 2\f 1 I, ,I I ( 3.18) 

Clearly then, we want to define our particle fl.-limit as fl. ~ 0 

with ep and ffip fixed. E£ the naive form dominates (i. e., if 

-. 

• 
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det G can be neglected as ~ ~ 0), then the theory will be dominated 

by the classical. mec·hanics of SP. 

~n fact, the classical mech~ics is what was presaged in 

(3.9). As n ~ 0 with ep and mp fixed, we find the equations of 

motion (varying with respect to ~ and Tk) 

0; 

::: 
- J:Tk A (x)- e L dT ~ (T)~(x- ~(t)). 
~ k ~ 

0 

(3.19) 

Therefore, T is again the proper time. 

The prescription e ~ ep/l.fi again identifies the particle 

~-expansion as a strong-coupling expansion, with the modification 

m = mp/0: We can rewrite the field action as 

s, " J••+• [ ("- ~ A) 2 _ (~/ +io]% • ~A [)A} 
(3.20) 

We see that, in the relativistic theory, the particle ~-expansion for 

the case m = 0 is formally a pure strong-coupling expansion. This 

distinction may disappear after renormalization (If we renorrnalize 

about p2 = Mf to avoid infrared divergences, should we choose 

M = .MF~?). We can also rewrite the field. action as 

.. " J ••• { ~ [ ~· -~ ~f -(~); '']k . ! ~ 0 k J. 
( 3.21) 

Again, we see that, if the photon had a mass ~, we would have 

~ = ~p = Vr: In the particle ~-limit ~becomes a classical particle 

but A becomes a classical field. 

We will show in the next section that, to leading order in 

O\U' particle fl-expansion .for scalar QED, the .determinant .is negli-

gible. However, note that the naive action has some applications in 

its own right (regardless of the behavior of the determinant): 

It is not hard to see that the cracked egg~shell graphs, popular in 

finite QED, 7 are summed as 

{~ 0 \(1'1 0 \ £4 I - f4 ('dTJYA. \TOIJU>; T~)jd Y IS_(Y,Y;J) J=O = fl d Y Jo 2 Y,.,.._ ~ 

T T(T 
+ ~ e~ L dJ 0 dT 

1 
• 0 I I ~1 

X • X fli X - X )! , 
( 3. 22) 

Our method then points the way to a strong-coupling approximatipn for 

these graphs (One needs search for periodic classical solutions, 

quite possibly in Euclidean space. Could these be the old runaways?). 



IV. PARTICLE 1'1-EXPANSION OF DETERMINANT 

In defining our (strong-coupling) particle fl-expansion in 

the relativistic case, we temporarily suspended charged loops. In 

this way, we defined a "naive" particle action: Essentially-ordinary 

(or "naive")relativistic classical mechanics dominates the no-loop 

dynamics as ~ ~ 0 at fixed ep and ffip· An attractive feature of 

our naive contribution to the action was that the photon field. was 

quadratic and could be integrated out. 

Our task now is to compute and compare the strength of the 

loop contribution in various theories. For some theories, such as 

scalar electrodynamics, we will find that our naive action dominates 

the determinant. Thus, in the particle 11-limi t scalar electrodynamics 

is dominated by ordinary relativistic classical mechanics. In other 

theories, things are not as simple. For example, in the case of 

~I = -g$*$~ the determinant itself provides the leading order in 

our expansion, undercutting the "naive" contribution. We still have 

a particle-variable description,·but things are much more complicated: 

The appearance of the leading terms is much more what is usually ex­

pected in a strong-coupling expansion, and we cannot explicitly 

integrate out the~ field (even for the leading term). 

We begin by reviewing the fact that ~n det G is (up to a 

constant) just the sum of one-$-loop diagrams in an external A~­

field. This can easily be seen by comparing its perturbation expan-

sion with that of 

function G = ( G-l 
0 

G itself. We can look in general at the Green 

V)-1 of a particle in an external field, with 

free Green function G0 and interaction V (In the case. of scalar 

electrodynamics, · V represents both one-photon and two-photon . 

vertices.). The expansions are: 

G 

~ n det G - w det G0 
-~n det (1 - G

0
V) -tr ~n(l - G0V) 

tr ( G
0 
v + ~ G

0 
v G

0 
v + }- G

0 
v G0 v G0 v + . • . ) . 

From this we see that ~n det G - ~n det G0 is just G G01 
- 1 

with its ends sown together, along with a combinatoric factor 

1/n for n interactions (due to the symmetry of the one-loop 

( 4.1) 

diagram under rotation). These expansions are shown diagrammatically 

in Fig. l. 

In order to define the particle~-expansion, we made the 

replacement Sp ·~ Sp/n, and reexpressed this as the identifications 

e ep/15, m = ffipln· This in turn determines the ~-dependence of 

det G, through its dependence on e and m. We therefore expect 

an expression for KN of the form 

CT!j~!J.#x) exprr ~nsn:y,<;T;'F~ 
-'[_ J d1( ~ rn;. + ~ ~2 + ep~ • ~) + J d4

x ( ~ AFO AF - J A~+ ... 

( 4.2) 

The limits of summation for [nns will be determined by analyzing 
n 

the ~ dependence of ~n det G. We have chosen to use AF =lfi A. 

Since A is only an integration variable, this choice is arbitrary, 

but it is the choice which makes explicit, even before gluon 

integration, that the naive contribution is order 1/fi: 

... 

• 

... 



.-
(4.3) 

Here we have included only the first two terms of S_1 from (4.2) 

(i. e., the naive contribution). Any other choice of ~dependence 

for A would hide this fact. 

We therefore want to evaluate 

det G 

(The proportionality constant is unimportant, since we are only 

concerned with det G/det G0 .). If we define AF(x) = AF(x/h), 

then.since xis only a dummy variable (the determinant is over 

x), we can replace -X With X x/Ii. We then have 

( 4.4) 

det{((i!- e,A.(Y))
2

: m
2•ij-1. 
(4.5) 

All explicit ~ dependence has been eliminated (It is hidden in 

A.) 

The next step is to expand ~n det G - ~n det G0 in 

momenta about p = 0: 

tn det G - tn det o0 " J"'xf0 [xc:<>] • q"lli(ii)J'r,p<("i)J • ... J 
(4.~) 

(Lorentz indices suppressed; fi are ordinary functions, not func­

tionals). According to the Landau-Cutkosky rules, such an expansion 

exists when the charged particle is massive (. i. e., there are no 

singularities at p = 0). Finally, we restore the 1'i dependence 

by returning from A and x to A and x: 

~ n det G - m det G0 "fl-'jd4x{ro[A(x)J+ 1i
2 HoA(x)] 2

f 1 [A(x)] + .. -}. 
(4,7) 

It is now clear that the particle ~~expansion for the deter­

minant is just the expansion in derivatives: There is an 1'i for 

each derivative and an overall n-4 (in 4 dimensions) for R-n det G. 

Compare this with the field ~-expansion of .the proper-vertex functional, 

used in studying spontaneous breakdown. There, the expansion is in 

two variables: field-~ (the number of loops) and the number of 

derivatives. The no-derivative term (effective potential) contains 

all orders of field-n (all numbers of loops). The particle "''i-expan-

sian of the determinant is much simpler: ~n det G can be computed 

entirely from ~-loop diagrams, an& there is only one variable, 

particle-"''i, whose power is the power of momentum. 

We now see that, in four dimensions, the exponent of ~ 
(X) 

in ( 4. 2) is i L '!inS . In general (but see below), the lowest 
n=-4 n 

order term is s_
4

, which dominates the naive contribution to s_1 

in the limit 1i -+ 0. As an explicit example, we consider the theory 

where the photon interaction is replaced by the scalar .interaction 

f(I = -g~*~~ In that case we find (see the Appendix) 

S _4 ( q,) - J~1T2 J d
4
x[( m

2 
+ g~ )2 ~n( 1 + g$/m

2
)-( finite counterterms)] . 

(4.8) 



Therefore, the particle 11-limit of this theory is not classical 

mechanics. This theory illustrates a typical strong-coupling form: 

Kinetic-energy terms ·are not regained_ until a higher order ( 1/fl.). 

One could say that this theory has no classical-mechanical limit, 

though it does have a quantum particle mechanics. 

On the other hand, in scalar electrodynamics gauge invariance 

restricts the'form of the expansion. The determinant is itself gauge 

invariant: 
I 

det G 

Therefore, det G depends on A only through F~v a A 
~ v 

a A 
v ~ 

The expansion· for in det G thus becomes: 

R.n d•t G - R.n d•t o0 . ,.-j•4
x {r0 • •

2 ~F'r1 ••
4<1 aF"+rOF)~·+ 

(4.10) 
where the f. are constants (Lorentz indices again suppressed; the 

1 

f 2 term actually consists of many terms, one for (F~vF~v)2 , 

one for ~\1 OT )2 ) (e: FF ,etc .. 
~\XJT 

In fact, f 0 0, since in det G(A=O)-

- R.n det G
0 

= 0. Also, the f
1 

term is only a renormalization of the 

free A action, and so can be absorbed into the similar term of 

Explicitly, it is (see the Appendix), in 4- 2e: dimensions, 

1 (1 ) 2 ~v -----yeFF. 
i 92712 £ . ~\I 

(4.11) 

Hereafter, we shall ignore such renormalizations. Therefore, the 

lowest order remaining contribution of R.n det G is s0 . S_1 

consists only of the naive contribution SP, which dominates 

ln det G in the particle 1i-limi t: The (strong-coupling) particle 

Ti-limit of scalar electrodynamics is the (naive, relativistic) 

classical mechanics of charged particles. 

In the following section we will extend our results to 

arbitrary dimension, and to other theories. 

-. 

• 

• 
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V. GENERALIZATIONS AND DIRECTIONS 

Tne results of the previous section can easily be generalized 

to arbitrary dimension D: The only change in the derivation of 

the form of the particle ~-expansion of the determinant is the gen­

eralization of the overa~l,factor n-4 to ~-D (in (4.7)). This 

means that.the dominant term in the exponent of KN is now s_D 

for the w*w~ theory, and s 4_D for scalar QED. Therefore, the 

naive action never dominates for w*w~ theory. However, for 

scalar QED the situation is dimension-dependent: For D < 5, the 

naive action dominates. For D = 5, the naive action and lowest-

order contribution of the determinant are of the same prder, and a 

non-naive classical mechanics results in the particlen-limit. For 

D > 5, the determinant dominates. 

The generalization to include fermions is also simple. The 

path integral for the fermion propagator in an external field can be 

written with the aid of anticommuting particle variables, in addition 

to the commuting particle coordinates. 4 The~ counting is the same: 

In particular, for spinor QED we have the same expansion (4.10) as 

for scalar QED, with different values for the constants fi 

the Appendix). 

(See 

As a special case, we see 'that in the massive Schwinger model 

the naive action s_
1 

dominates the lowest-order determinant con­

tribution s 2 . This justifies the neglect of the determinant in a 

paper by Senjanovic and one of the authors. 3 It was shown in that 

reference that the resulting (dominant) ":qaive relativistic classical 

mechanics" is ·the classical mechanics of the two-dimensional string 

of Bardeen, Bars, Hanson, and Peccei (BBHP).
13 

In the massless Schwinger model, the masslessness of the 

fermion causes a singularity at p = 0, and the expansion itself 

needs modification. For that model we have 

in det G - in det G0 
i fd2 (e2)All (g - 'V)\)) A\) ;1 X lT lJ\) Q 

(.5.1) 

The fi-counting and gauge-invariance arguments are still correct, but 

the expansion begins (and ends) with a negative power. 

The particle ~-expansion can also be extended to two­

dimensional quantum chromodynamics with massive fermions, since, 

in linear gauges, the field Lagrangian simplifies to a form similar 

to that of the massive Schwinger model. Again the naive action 

dominates the determinant, justifying the neglect of quark loops 

in Ref. 4. The naive classical mechanics is again essentially the 

classical BBHP string. 

If we extend the particle ~-expansion without modification 

to QCD (with D > 2), we find the expansion bas characteristics simi­

lar to the w* w~ theory. Gauge in variance again restricts the 

particle ft-expansion of the determinant to the form ( 4 .10), where 

now F (a A - a A ) +§.[A ,A\)] . Thus, we have all powers 
lJ\) lJ \) \) lJ H lJ 

of A contributing to order ~-D However, a modification of the 

particle ~-expansion which brings it into accord with non-Abeli~• 

gauge invariance may improve this situation. It is of interest to 

note that a phenomenological model of Cornwall and Tiktopoulos
14 



uses a first-quantized path-integra1 formalism for ·QCD which 

ne gle·c~s the determinant and still describes the leading-logarithm 

infrared behavior of the theory.· This lends support to the possibility· 

of a modified particle~-expansion·in which the naive acti~n dominates. 

Furthermore, the particle ~-expansion may have particular relevance 

to QCD, since the particle~-limit probes the infrared behavior: 

It is not only a strong-coupling limit g = gp/1.5 ~ oo , but also a 

large-distance limit, since the length scale 1/m =~Imp~ 0 

(i. e., dimensionless lengths mx ~ ~). 

The particle ~-expansion may also be the natural expansion 

for the Abelian field theory of charges and monopoles. 15 The relevance 

of the particle ~-expansion to magnetic flux quantization already 

shows at the classical-field level: In the Nielsen-Olesen model 

of vortices, 16 magnetic charge is quantized even in·the classical 

field solutions - no ~·s appear. However, when the theory is written 

in terms of instead of eF' the magnetic flux quantization takes 

the form of a Bohr-Sommerfeld quantization, familiar from the first­

quantized (i. e., particle) monopole theory of. Dirac. Explicitly 

(since e ~;.£), 

27Tnfi. 

( 5.2) 

Thus, what may be viewed on the one hand as a "purely classical 

quantization" may also be seen as a (particle-~) semiclassical quan­

tization. 

Another indication of the relevance of the particle ~-

expansion to monopoles is the fact that there is no classical, rela-

ti vistically-if!-variant; field tJ:e?ry, of ele~trically- !illd magnetically­

charged fields. This can easily be seen by comparing the form of the 

charge-quantization co~dition for charge-monopole field theories in 

terms of particle and field couplings. By the symmetry of the La-

grangian with respect to charges and monopoles, we see that besides 

e ..£ eF = ep/.1f we also have g 

charge-quantization condition is thus 

eg = hi e~F 2m. ( 5. 3) 

Therefore, the field ~-limit is n ~ 0, which does not satisfy the 

charge-quantization condition (and therefore violates relativistic 

invariance), since n is not an integer (0 < n << 1). On the 

other hand, the particle ~-limit is n ~ oo, familiar from quantum 

mechanics, where· the classical limit is always the limit of quantum 

numbers becoming large. 

We can also see the advantages of the particle ~-expansion 

for Abelian charge-monopole field theory by applying the methods of 

Section IV. In monopole theory, there are two determinants, one 

for charged loops and one for monopole loops. The charged-loop deter-

minant is the same as for QED; the monopole-loop determinant is of 

the same form, but with F 
IJV 

= a A - avA replaced with 
ll \) ll ' 

B is the monopole vector potential. 
ll 

Therefore, 

the naive action again dominates. Also, the determinants are mani-

festly covariant: All string dependence is isolated in the naive 

action; 'higher order corrections are independent of the string 

• 



direction. Ercplicitly, the particle 1'1-expansion f.or that theory is 

m = m /5, m = m /fi. e e,P g g,? 

The'utility of the particle 1'1-expansion may be enhanced 

* type (where the determinant dominates) for theories of the 1jl ljlljl 

by the simultaneous use of another expansion, the 1/N expansion. 17 

By giving the Lagrangian a (global) U( N ) symmetry, and by choosing 

to tend to infinity as an appropriate inverse power of n, the naive 

action can be made to dominate the one-charged-loop graphs of the 

determinant. 

We conclude with a .discussion of the need for a "classical 

renormalization" in the particle h-limit. When calculating classical 
·:x'). 

solutions in order to find the leading behavior of a theory in its 

particle fi-limit, divergences are found in the classical action. 
I . 

The source of trouble is the ~F(x.(T) - x.(T )). The divergences 
J J 

are of the form of self-interaction divergences found in, e.g., clas-

sical relativistic electrodynamics. Such troubles could have been 

anticipated from the point of view. that our expansion is a strong-

coupling expansion, and,as such, includes much loop structure in the 

leading approxi~tion. By using a regularization (such as a cutoff 

for small proper times), we·have shown that the divergences can be 

absorbed by renormalizations of the mass and action (Addition of a 

constant term to the action is equivalent to w~ve-function renormal-

• . i - iS) 1zat on, since KN e .• The resulting renormali zed (naive ) 

action involves a principal-value prescription.for the singularity. 

This will be reported more fully elsewhere. 

N 

APPENDIX: CALCULATION OF DETERMINANT 

A~ GENERAL METHOD 

We will now describe the general method for calculating the 

jeterminant to finite order in the particle ~-expansion, with explicit 

examples. The first step, as in Section III, is to reexpress the 

determinant in terms of the proper-time Green function G. We use 

the identity9 

R.n det G - R.n det G0 
1 1 

R.n det H _ 1£ - R.n det H _ h 
0 

We therefore need to evaluate 

<•l•xp{-1HT/f>} I» - G(>,>;T,O). (A.2) 

Of course, we cannot evaluate G exactly, since H involves an 

arbitrary external field (ljl(x) or A~(x)). However, we can evaluate 

an arbitrary, finite number of terms in the semiclassical expansion 

of G; as shown in Section III, this is the particle h-expansion. 

Since we also know (from Section IV) that this expansion is an ex-

pansion in the number of derivatives of the external field, it will 

clearly be helpful to employ the expansion18 

$(X) $(x) +[ex- x) • a) $(x) + (A.J) 

Here, X is the position operator in the Hamiltonian H(P,X), and 

x is the c-number in <xI exp{-iH( P ,X )T/fl} I x>. Inserting this 



expansion·into H, we have H as an explicit function only of P, 

X- x, and ¢(x) (and derivatives). Exhibiting this dependence 

explicitly as H(P,X- x,¢(x)), we have 

<xloxp{,iH(P,X, x,;(x))T/Il} I<> 

the further simplification 

<O l•xp{,fH( P,XA>(') )T/Ir}O>, 
(A.4) 

This result follows immediately from translation invariance. 

19 . 
From either the path-integral formalism or the usual 

20 ~ 
operator formalism we know that G can be evaluated exactly 

when H is quadratic in P and X. In that case, the result is 

~)! e iS/tl. 
27Th ' 

(A. 5) 

where $ is the classical action. Therefore, we can easily evaluate 

the determinant for the first few orders in n by keeping only as 

many terms in the expansion (A.J) as will keep H quadratic. For 

the cases of ;(I = -g~*~¢ and scalar electrodynamics, respectively, 

we then have 

H(P,X,¢(x)) - - ~[P2 - m
2

- g¢(x)- X • a¢(x)- ~ xllx'\}v¢(x)J , 

H(PXA( )) - _l_[(P -el_XvF (x))2 -m2]. (A.6) 1 
' IJ X 2 IJ 2 \!IJ 

Here we have used gauge invariance to drop some terms in the 

expansion 

A (X) 
IJ 

A (x) + (X- x)va A (x) 
IJ \1 IJ 

-
2
1 (X- x)v(a A -a A )(x)'+ _a_ [(x- x)vA (x) + 

· v JJ JJ v axil v 

+ 2:. (X- x)v(X- x)0 (a A + a A )(x)] . 4 . v a a v 
(A. 7) 

By the arguments of Section IV, we see that this approximation will 

give us all of s_
4 

and. S~2 (in arbitrary D, S_D -and s2_D), plus 

parts of higher orders (The rougher approximation. ¢(1).; ¢(x) 

would give us all of s_
4 

plus parts.of higher orders.). Therefore 

(for D = 4), along ·with the naive act ibn S _
1 

with whfch we started, 

we can easily calculate all contributions to the particle. action of 

order ~n with n ~ -1. To calculate higher orders, we can consider 

the non-quadratic part of H as a perturbation to the quadratic part, 

and use either old-fashioned perturbation theory in the operator 

formalism or Feynman-diagram-like perturbation theory in the path-

integral formalism. In the cases of scalar and spinor QED, due to 

gauge invariance, there is a simpler method: Since the determinant 

depends on ~ only through FIJV (which is itself a first deriva­

tive of ~), to finite order in ~_it consists of only a finite 

number of Feynman diagrams. Specifically, S2n-D depends only on 

one loop diagrams with at most 2n external lines. 

B. EXPLICIT CALCULATIONS 

In this section we will use the method described above -

the quadratic approximation to the Hamiltonian - to calculate the 

lowest orders in li. Combining Eqs. (A.l), (A.4), and (A.5), we have 

R. n det G - Rn det G
0 J D J:"" dT[/ a

2 iS~)! iS/fl (S S~ = d x - \det --- -- e - -+ 

O T · ay IJ azv 2Trti · y=z=O. 

(A.8) 

'·· 



o. 

• 

Here S(y,z,T;Ijl(x)) is determined from H(P,X,<P(x)) by using 

L( p,q) pq - H(p,q) 

solving for q(T) in terms of q(O) and q(9), _.integrat~ng 
T 

S(q(O),q(O),T) = i· dT L(q(O),q(O),T) , (A.lO) 

and reinserting q(T) to find S(q(O),q(T ),T) ·= S(y,x,T). 

_;'-·r .. 

Here we use. p and q as the. c-numbers corresponding to P and X; 

ljl(x) and its derivatives are considered as constants until the final 

JdDx. 

As explicit examples of these methods, we consider the calcu­

lation of the lowest order contribution for ~*~¢ theory (S_D)' 

and the lowest ·non-zero contributions for scalar and spinor QED 

( s2_D·, which is merely a wave-function renormalization, but illus­

trates the method). For the former case we need only the approxima­

tion ¢(X) ~ ¢(x) (lowest order means no derivatives), so we have 

simply the free Hamil toni an H = - ~ ( P2 - m2 - g¢( x)) (Remember: 

<P(x) is a constant as far as P and X are concerned; m2 
+ g¢(x) 

is a fixed_. (mass)2 t ) erm .. After a trivial calculation (since the 

classical equation of motion is q = 0), we find S(y,z,T;¢(x)) 

- ~ [<m
2 

+ g¢)T + (z- y)
2
/T], so (A.8) becomes 

l» dot G - l» dot G0 . 1dD { "; ( 2""' T fD/
2 oxpf ~ m 

2 
T/1\} 

. ( oxp{- ~ g+TJ!i} - 1) • 

i( 41r fD/2fi-~ t ~J dDx[( m2 
+ g¢( x) )D/2 _ -m~J 

(A.ll) 

We have analytically continued in D in order to apply dimensional 

re.gularbation~ ·-·As usual, we take D + D - :;?£, £ -+ 0, and use 

· _D even: 
D/2_- 1 · . · · -

( -1) t( D/2 + l) (1/£ + ~(D/2 + 1)) 

T( c - D/2) D+l 

D odd: ( -1)2 1 
f( D/2 + 1 ) 1T ' 

( A.l2) 

d • 
Which follOWS from f( Z )f( 1 - Z) = 1T/Sin 1TZ (~X) = dz R.n f( Z)). 

Note that the result (A.ll) is already finite for D odd. The 

result is therefore 

G R.n .. . "( -)-D/2 -D 1 
R.n det - det G0 = 1 41T fi t(D/2 + l) • 

D even: (-l)D/1dDx{(~ +~(D/2+l))((i + g¢(x))D/
2

- mD] + 

+ [(m2 + g¢(x))D/2 R.n (m:~~¢(x9- mD R.n (m2/4nfi2)J} ." 

D+l 

Dodd: (-1)2 1TfdDx[(m2 
+ g¢(x))D/2 - mD] (A.l3) 

Assuming the 1/£ term can be cancelled by a renormalization counter­

term (true for D i 6; for D > 6,;( I = -g~*~¢ is nonrenormalizable), 

the final result becomes 

"( )-D/2 -D 1 R.n det G - R.n det G0 = 1 41T fi t(D/2 + l) 

f D even: 

l Dodd: 

D/2 ( D [ 2 D/2 2 • . ~ (-1) Jd x (m +g¢) R.nrl+ g¢/m)-(fin1te countertermsJ 

Dol 
( -1 )2 { dDx [ ( m2 + g ¢)D/2 ·- (finite counterterms) J . 

. (A.l4) 



For the case of scalar QED, we use A (X) ; -2
1 XvF (x) 

lJ VIJ 

(see (A.6)), L =- !2 d:2 
+ m2 )- eX11A (X)=- !

2 
(~ + m2 

+ eX11XvF (x)). 
1J . IJV 

. After a simple calculation, we find S(y,z,T;F(x)) = - ~[m2T-: 

- ( z - y )eF( 1 - eeFT f 1 
( z - y) J , u.sing matrix notation for Lorentz 

indices. The solution for all orders in F (which includes parts of 

all orders in n, since F is a first derivative of A) is then 

in d•t G- £n d•t GO ifd0x.Ia"~ (2nifiT)-D/
2 

ox+ t•'T1· 

• [ (d•t ,•F:rT f -1] (A.l5) 

Since we are only interested in the lowest order in ~ (i. e., the 

lowest order in F), we expand in F and get (using det M = 

ox+'"."}) 
R.n det G - R.n det G

0 

(A.l6) 

As stated above, the whole term is a wave-function renormalization, 

and can be absorbed into the similar "term in s_l. 

The generalization to spinor QED is simple, because9 

1 
tr in P - ei - m + ic co { } 

1 dT i 2 2 
2 tr r T exp ~ ( 1 ·e.«) - m )T/fl 

Jo · A.l7) 

and 

( A.l8) 

Since in the leading approximation (Eq. (A.6)) F is a constant, the 

matrix y11yvF commutes with everything, and so can be treated as 
IJV 

a non-matrix (For higher orders, we can use path-integral methods 

for first quantization with spin. 4 ). Effectively we just change 

the (mass)2 2 2 i lJ \)..., m -+ m -- ey y l' 2 . IJV 
We then have, instead of 

(A.l5 ), 

tn dot G - tn d•t GO • I 2°/
2

-
1 J dD xi"~ ( 2n!!i T) -D/

2 
oxp{- ~m'-r/ll} 

• [~et eeF:FT9 -t (2DJ2 tr expf- ~eylJyVF IJVT/fl})- 1 l , 
(A.l9) 

where the remaining trace is a matrix trace. The factor of 2 

for D = 4 is from the ~ in (A.l7) and the 4 from tr 1 2D/2 = 4; 

physically, it arises because spin ~ has twice as many_spin com­

ponents as spin 0. Again expanding in F, we have 

in d•t G - £n d•t G0 • i 2°/
2

- 'fdD x !a • ~ ( 2n!li T r D/
2 ox+ ~ m2Vl} • 

· [ ~ -~ T2 
tri' • ;: T2 

tr F1- 1] 

+ i_ (2rrfD/2e2fl2-Df(2- Q)mD-4~Dx F FIJV. 
12 2 ) c IJV 

(A.20) 

Also, due to Fermi statistics, it is actually -(in det G- in det G0 ) 

which contributes to the exponent in the functional integral over A • 

\. 
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