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THE PARTICLE LIMIT OF FIELD THEORY - A NEW
. STRONG-COUPLING EXPANSION’ '
M.- B. Halpern and W. Siegel

Department of Physics and Lawrence Berkéley‘Laborétory
University of California, Berkeley, California 94720

April 14, 1977
ABSTRACT

"We study a new semiclassical expansion of field
théory.‘ In this expansion, phé natural variasbles are geo-
metrical (particle coordinates), and the expansion is
about sclutions to the classical mechanics of such var-
iableé. It is a stfong-coupling expansion, and it offers
considerable hope for bridging the gap between quantum
field theories and.theories of quantized geometrical

objects.

I. INTRODUCTION

Effort in fundamental physics has turned increasingly toward
the problem of quark confinement. There is reason to believe that

we know the beginnings of such a program (quantum chromodynamics)

formulation:. the,formgr in termsAof_field;variables, the latter in

terms of particle/string/bag variables. It is.of course well known

:how to regain the semiclassical limit of a quantum field yheory in

such a manner as to preserve the classical fileld equations.l What
is not well knownz-is that there is another semiclassical limit of
field theory in which classical meéhanics is (may be) obtained. We
shall refer to the former limit as_the_giglgfﬁ—limit. It is associated

with a weak-coupling expansion, which we call the field W-expansion.

We shall refer to our new limit as the partiéle'n>1imit. It is asso-

ciated with a strong-coupling expansion, which we will call the par-

ticle h-expansion.

Just as in the field M-expansion the natural yériables are
fields, and the expansion is around solutions to classical field
equations, so, in the particle M-expansion the natural variables are
geometrical, and the expansion is around solutiong to classical
mechanical equations. It is our feeling then that the barticle
T-expansion provides the patural language with which tobexcavate
geometrical objects in field theory. Senjanovid and one of the

3.4 have been engaged for some time in a program of

5,6

present authors

rewriting field theories in terms of geometrical variables. Indeed,

and the end (string-like and/or bag-iike theories). What is not .
with some approximation, and in two dimensions, a direct bridge was

clear is the path, the Tao from such a local quantum field theory ) :
found in this way from gauge theories to strings. One of the pur-

to such theories of quantized geometrical variables. )
: poses of this paper is to put those approximations on firmer footing

.We note that both tyﬁes of theories are based on a classical
: : by embedding them in an organized context - the particle W-expansion.

This work is supported in part by the U. S. Fnergy Research and By no means, howeyer, is the particle‘ﬁ-expansion limited to two

: ' R P imensi . 1 i i i i
Development Administration under the auspices of the Division of dimensions Inéeed, in this paper we shall work primarily in four
Physical Research. dlmgn31ons. Results for arbitrary dimensions will also be given.



' 'Bécause they have no charged loops, nonrelativistic field
» 'theoriesAoffer the simplest applications of the particle h-expansion.
| They alse illustrate almost éll the general prihcipiesbnecessary_to
study the.relativistic case, and so will be discussed first, in
Section II. The general program, discussed in detail thére, involves
three steps: (1) Reexpress the field theory in terms of particle
(geometrical) variables; (2) in this language, find the "particle
action"; (3) use the particle action to define the particle h-limit,
in which classical mechanics is obtained. For the nonrelativistic
models, bécause they have no charged locps, we will find ordinary
nonrelativistic classical mechanics dominating this strong-coupling
limit of the field theory. '

The particle h-expansion for the relativistic case, discussed
in Section III,‘follows the same linés, butvis one level more com-
plicated. It is not difficult to isolate a "naive" particle action,

neglecting charged‘loops, which has the form of classical relativistic

particlé dynamics. We will define our particle tfi-expansion in such
a way (in complete analogy with the nonrelativistic case) that this
classical mechanics dominates all structures with no charged loops
(1t domiﬁates the strong-coupling limit of processes with no charged
loops; e.g., the cracked eggshell diagrams important in finite QED?
whose one loop. can be obtained by sewing together the ends of an
electron propagator. ). |

In general, howgver, we must proceed to study the behavior
of the charged loops themselves uﬁder this particle'ﬁ—expansion;

The question is: Doeé the classical relativistic dynamics dominate

the charged loops in the 1limit ® + O, or do the charged loops dom-
inate, defining a more sophisticated particle dynamies? A general

expansion of the ioop contribution in pbwers of h isﬁdeyeloped

in Section IV, with calculations detailed in the Appendix. The

expansion is essentially an expansion in powers of momenta, and it
is not difficult to compute exactly the first few terms. The answer
to our quéstion is model-dependent: In the cases of scalar and
spinor quantum electrodynamics, the classical dynamics does in fact
dominate the loops; for theories of the typeJﬂ 1° —gw*w¢, the
loops dominate. In the latter case, the particle fi-limit is a much
more complicated dynamics, much more what is expected of strong
coupling.

Section V generalizes the discussion of Section IV to an
arbitrary number of dimensions D. For D < 5 scalar and spinor QED
are still dominated by classical mechanies; for D 25, the loops
dominate or (for D = 5) are of the same importance. ForJ(I = —gw*w¢,
the loops dominate in any number of dimensions. A few brief remarks
about quantum chromodynamics are also included. This section also
deals briefly with some possible directions and some new features of
the expansion, including the need for a "classical renormalization"

in the relativistic particle W-1limit.
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II. A NONRELATIVISTIC EXAMPLE

The simplest illustration of our new particle h—expan31on
will be 1n terms of nonrelativistic fleld theory. We will- examine -
the nonrelativistic analog of scalar electrodynamics, described by

the field action
(‘13-312
c

: *
Sp =‘fd4x v ’:.iao-eAO- — +isJ w-%AUv’ZA“ . (2.1)

The interaction due to the photon is instantaneous. It will be
instructive to compare particle and field h-limits, so we will first

review the usual field T-expansion for this model.

A.- The Field h-Expansion

To discuss the usual field h-limit, it is useful to have

the action in three forms:
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or, more conéisely,
Sple,msy,4) = Splepupivp,Ap)/n = Sp(/Mepmp syp//A,AL/E ). (2.3)

Therefore, we have

e = A e'F;m = mp; ‘1’;"4‘}*/"5’ A= AF//ﬁ . (2.4)

The first form is the h-free form which we started with in (2.1).

The second form defines the field T-limit by the prescription of

-multiplying by-an overall factor of 1/M. It shows that .in this limit -

(n~o, ep and mg fixed) the theory is dominated by solutions to
the classical field equﬂtions.a We can also seé from this form that
the field h-expansion is a loop expansion: The propagators and ver-
tices (as functions of ep and mF) have factors of ® and 1/h,

respectively. Finally, in the third form, we see that the field ®-

- 1limit is a weak-coupling limit: it is equivalent to the replacements

e = A ep and m = o in the fi-free Feynman diagrams.
After finding a "particle action" (Section IIC), we will treat

it just as one treats SF:» we will define the particle h-limit as

" that which is dominated by classical mechanics. The particle fi-limit

will turn out to be totally different, and is in fact a breed of
strong-coupling limit. Toward finding the particle action, we mustl

first reexpress the field theory in terms of particle mechanics.

B. From Field Variables to Particle Variables

We start with the Green-function generating functional in

terms of the YN-free form of thg field action:

Z(n,n",3,) =jﬁm*m“ exp[i(sF(w,w*,A“) ffd4x(n*w+ﬁ- JuA“))].

(2.5)

Our first step is to integrate out the charged field:

z(n,n*,Ju) =f/ﬁA“(det G exp[i[d"x(-n*cn -2 AlﬁZAu - g )J,

_.§ -8z 2 '
(id -eA)-g—l——cZ+ie-l. < (2.6)
o 6] 2m

G



G 1is the propagator for y in an extefnal A¥ rield. The deter-
minant of . G gives theicharged-loop contribution to Z. 1In thg
relativistic theory this determinant will give corrections to Z, but
in nonrelativistic theory det G = 1. This is because the nonrelativ-
istic fheory has no antiparticles, and therefore no charged loops.
More formally, althoﬁgh the it prescription above is the usual
Euclidean (and therefore time-ordered) prescription, the fact that

Y contains only positive frequencies means that time-ordered products

immediately degenerate to retarded pfoducts:
<OR (W (yN0> = a(x® - y)<ol¥(xW (y)|o>.  (2.7)

Having dealt with det G, we then have the following expreé-

sion for the Green functional with 2N external y-lines and the A

source:
K2t 5Tt 33 ) 1Hr< S 8 >Z(nnJ)

2. N AR = 3 i - 7 Ny *
MR e Nien (2t ) 16n(y,,t ) M n=n"=0

k=1

. TN :
JﬁA“Z T i(}(%k,t"ﬁk,t') exp[ifdl*x(--]é'Au'V)zAu—JuAu].

yk,z'k ’ (2.8)

Notice that if we had chosen ¢ to be a spinless fermion, the only
change in the above expression‘would be the inclusion of minus signs
for the odd pefmutations, due to the anticommutativity of fermion
sources. |

The next step is té introduce particle variables by reexpres-

sing the propagators G in terms of Feynman path-integra1s5:

Z A 4

"o

. 1 " v
®z,t 5¥,t ) = -i8(t -t )| A& expdi dt(5mx = e +§§ . X%,

)y t

(2.9)

The A" integration in KN ~1s now Gaussian and can be done exactly:

2y .
K =6(t"-t')}l?AZ(—D- f AFx) «
" Yy

t" 3
‘ , 1 "2 e xk -+, >
exp{ ft' dt 1; (mek - er(Xk,t) +e —E-‘A(x.k,t)) +
4 1 2,1 u
+fd x(-EAu'V'A - 34"

jdl’x %- Au‘v’zi“ ot -t )Z(Wf&%() expliS,y

= exp(i

The factor with exponent A§2A is'the Greeén-function generating

functional for a free A field: It gives free A propagators

t" :"
_ 1 -;2 ~ > x'k . 2+
Sp = 'dt E; (zmx, = er(xk,t) te— K(xk,t)) -
t
... 2 ¢
1 e2 1- ?.ii/c ‘
27 5k AT
N % S RS I 3) = - Ls¥3) - L
K.u(x,J) fdxA(x X )Ju(x ,xo), A(x) v2<5(X) IR
(2.10)
" In the above, we have used
- _ 4 - 3/ >
(%) = fdxAu(x,xO)é(x—xk)d(xo—t). (2.11)
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V adlsconnected from the rest of the graph

" The rest of KN 15 the

Green functional of particles interacting through 1nstantaneous

* Coulomb and Biot-Savart forces, in. the presence of an external field

-~ -~

A. A 1is just the classical A field due to the source - J. The.:-

divergent interaction terms in 'SP' for j = k. correspond to

renormalization of mass ém = (e2/c2)A(0)
21 2 ’
8E = 5 e_A(O). .
We have now completed our transition to particle variables

(SP is our particle sction), and are in a position to define the

particle h-expansion.

C. The Particle-h-Expansion

In analogy with our treatment of the field T-expansion

(in terms of Sp )}, we write out three forms for SP

IdtZ(— -elo+e

and ground-state energy

(2.12)

or, more concisely,-

Si,(e,frx;-gj s, (eP mP Ap)/n .=' Sé(ep/v'ﬁ,imp/ﬁ;ﬁp/‘vﬁ.)._ (2-v13')‘
We therefore haQe
e = ep/vﬁ, m = my/M; ‘ A =Y>EP/}5. >(2.i4)

We will define the perticle ﬁ-limit as ihe limit.‘h + 0 at fixed
€p and g Thus, in this 1imit (as seen in the second form of
(2.12)), the theory is dominated by solutions to classical mechanics.
If we allowed scaling of }k’ we would have a more general (but
equivalent ) prescription for the particle limit. However,‘tpis-
would be equivalent to scaling ;% and ;k in KN’ while leaving
X in Ju(f) unscaled, éausing unnecessary complications in notation
(Similarly, complications arise from scaling t).

‘We can now rewrite the field action in terms of ep - and oy,
by substituting (2.14) into the h-free form of Spin (2.1):

' 4R Ly
U VS TS A - (-iV- 2
SF —vj'd b'e w éao -E;AO

o >2
-.——-—WP _ + ie ‘p-?Au_'v’ s
(2.15)

Thus, we see that our particle N-limit is a kind of strong coupling;

however, it is not the:usual‘strong coupling beceuse'it’elso has"

mP/h > o, For comparison with the field h-expansion, | SF may
‘also be written-as e K‘
R P 1 F\2
* ~iV - =
] ) ( v T A ¢ A v
s. = d4x F ia' €p FO
F % %) 2my /R i 7
| 1 A a2 %
- ZE ¥ (2.16)
2 A %3



Notice that if the photon had a mass u (replacing Aﬁg with - Vzaua-'

in (2.1)), then, by the arguments of this section, we would find
u= up = uF: The mass u acts as a field mass, not a particle mass.
Therefore, in the particle h-limit  becomes a classical particle,

but A becomes a classical field.
III. EXPANSION FOR RELATIVISTIC FIELD THEORY

Following the nonrelativistic example as closely as possible,
we examine scalar electrodynamics, with the field action and Green-

function generating functional

SF = jd4x

z(n,n J) fﬂwﬂw@!&u exp [F(ww A‘() j X(H‘IJ ‘pn_JAJ)
(3. 1)

* _ 2_ 2, . 1 u
w[(iau eA) -m +1e]w+5Au[]A ,

We have chosen the Lorentz gauge. In fact, all of our results are
gauge-independent, and the reader is invited to work things through.
in an arbitrary gauge.

As in the nonrelativistie cése, the field ‘h-exbansion is

described by

SF = [d/’x

%fd4x “’; [(ia - eF‘AF) mF * 15]“’1-‘ Ap()Ap

\U A 2 ¥ Al
4 F 2 . F_ 1 F
Jetxd g (o - forh) - mF+1€]I’H+-§7fTD7H} ;

<

w*[(ia eA) -m +iEW+—AD}
1
2

(1]
"

v o= yp//h, A= ALVE; (3.2)

/ﬁeF,m=mF;. e

" or, more concisely, -

Sple,msv,A) = Splepmpivp, A0/ = Sp(VR ep,mpiug/ M, Ap//A).
AR i o (3.3)

Again the field M-limit (% » O with ep and m, fixed) is a

weak-coupling limit, ‘dominated by classical field theory.

A. Particle Répresentation of Propagator G

To f‘indv the particle fi-expansion, we again start by rewriting

ihe Green functions in terms of the particle variables. The first

step is the same, doing the y and y integrals in Z:

z(n,n*,Ju) =JrA?Au(det o(A)) expdija‘x(-n*cn + %AUDA“ - 34M0,

- [(iau - eAu)z -+ ie];l ) (3.4)

Now the determinant is not unity,(Its logarithm is the effective

action for A due to all one-Y-loop diagrams, as will be discussed

in Section IV.). We also have

MMMy sy MM [ aderdl _
- Ky(25¥,50) f/\?AZ[ﬂlu(zk,yk)] exp 1[(1 x(3 ADa JA)] (det G).
(3.5)
As above, we next need to express G as a path-integral

over particle variables. The technique'is well known. We introduce

5,6,9 1 2,
s -

a proper-time parameter canonically conjugate to Tl

-]

2

f(n?) = aT expq-iT 3 m (1) - (3.6)

-00

Then we write a path integral for G instead of G5’_6_:
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&2, my%,0) =
Yy .14 0
(3.7)
Finally we have the desired path-integral expression for G:
&z,y) = daT exp 11‘% n?? &(2,T57,0)
re Z T |
—-—;—l 4T p(9x exp i dT(—%—mz—Ex - ex * A)
J 0 y 0
(3.8)

B. Properties of G

It will be useful in what follows to know two properties of

the propagator G. The first is the form of the equations of motion

at the saddle point:

3 3%(1) - $0° = o,

‘U
ex"(1) FuV(X(T)), P

&vgr)
(3.9)

where F (X) ] A (x) -3 WA (x) The former comes from varying the

actlon w1th respect to x ’ the latter from varylng with respect to T.

To do thls latter varlatlon, the T dependence of‘[ and of the
implicit &(z - x(T)) (from the endpoint constraint) must be con-

sidered. The result in total is as expected: A derivative with res-
pect to T brings down the Hamiltonian at the endpoint, %—iz(T) -%mz,

which must then vanish. Taken together, these equations of moticn

Thus, at least near the saddle point,

T 1s the ordinary proper time 10111

imply x (T) m (for all T).

-do(m)| Ak exp i( o {_ 70 - e’.‘u(‘)Au(X(r)")J} |

The second useful property is that
T

Glz,y) =-%j [lﬁx exp{i dT(-—)\mg-lxz(T)/k-ex-A)
/I 0 . .

(3.10)

for arbitrary AX. The ‘proof of this identity follows immediately
from the change of variables T =+ AT, T + A1, x(At) » x(1) .

C. The Naive Particle Action

Inserting (3.8) into {3.5), the expression for KN is now

ar, "k x 12 12 . -
= f/@AZ(ﬂ- 7[ ,Oxk) exp 1[—2] d'r(-2-m. v tex .
6] Yy 0

. 4y(L , '
ACx,)) +[d x(iADA JA)] (det G).
(3.11)
Due to the determinant, the A integration cannot be done in closed

form. Our procedure is as follows: We define the naive particle

action as that which we will obtain (in the manner of Section IIB)
by neglecting det G. Similarly, we will define the particle %i-
1limit as that for which KN’ neglecting det G, is dominated
by solutions of the classical mechanics of that acticn. Whether the
naive particle action in fact dominates the exact KN (including

det G) is a question of the behavior of det G is thish-limit.

This is properly the subject of the next secfion, but it will buoy
the reader to know that for certain theories (including scalar
‘electrodynamics), the determinant does not contributg to 1eadipg

order in the particle ¥i-expansion we are defining.



Setting the determinant equal to one, the A integrati_on gives6

4

N exp _i‘Ed4x % ala Z (ﬂf%—T—Jv&x) exp isPl s
N )
- dT(Em

=
i

N

g ek Ax)) -

wn
"

T. T,
J k [N . t 1
-%ez Z[ atf o aT (1) x, (T A1) = x (),
0

3ok 0

~ ' 1 1 3
i) - fd"x blx = x (), alx) = =dae $h0) A S
a- (2m)* x%ie
(3.12)

SP is our naive particle action. It is similar to the- Fokker

action12 for classical, relativistic, charged particles, except that
the ranges of integration in T are finite, and AF(x) is the
Feynman propagator instead of cS(x2 )/4m (so 'SP. is not even real;

also, /;z? is replaced by the classically eqin‘.valent %).(2).

D. The Particle h-Expansion

Using (3.10), K can be put in the form

- exp{—ljd AUA} NZ(TU x) expdisp(A)p

Sp(A) = Z/GT(— + % X2/A 4 ex k) - %e2Zdede'i -iléF(x-x').

(3.13)

Then, we find,ll choosing A =1

Si;,(‘ﬁ) = -Zfir(%—‘hmz + %—iz/'ﬁ + _e:'c -.:\) - %eZZ[dr_ d'r'a'(‘ i'AF(x-x')

(Equation 3.14 continued on next page)

= %{-Zﬁr(%mz %x +eP£- -—e Hi-rjdrx'xA X~ X )}
. e ) A . e 2 ) . R
= Zjd'r( ( )2 %i?/h *%ﬁ-'%)-%(—v—;)Zﬁ'{dr’x-'x'AF(x;x').'
(3.14)
This is the analog of Eq. (212). . Thus we identify
e = ep/f, mo= /M A = Z\P/»’h'; (3.15)
and
Sp(ﬁ;e,m;i) = SP(l;eP,mp,;P) = Sp(ﬁ;ep/vﬁ,mpﬁlsﬂp/&),

(3.16)

whichis the analog of (2.13). Finally, then

Ky = e-xp{—i[i"x KDA Z (Wf%fv\ﬂx) exp{isp(l;e,m,X)
= exP{_-ﬁﬁx = AQA ﬁNZ(Wf%P' A9x ) exp{iSP(‘h;e,m,I\:)
= exp{- %[ % ;P NZ(TT] Adx) exp %Sp(l;ep,mp;gp)}.

(3.17)

LS Ed

Nl

In the last step we used Eq. (3.16), and
- ~ .%o 1 2 ) . Ty
Sp(lsepsmp,Ap) = Sp = 'Zf‘”(imp + 53 v epx i)

-%eéZfd"f[dr'i-i'AF(x-x'). (3.18)

Clearly then, we want to define our particle h-limit as h »+ O

nji—

with e

p and m, fixed. If the naive form dominates (1. e., if



det G can be neglected as T + 0), then the theory will be dominated .

by the classical mechanics of Sp-
In fact, the classical mechenics is what was presaged in ‘
(3.9). As mm ~0 with ep and my fixed, we find the equations of

motion (varying with respect to x, and Tk)

i‘.k\,(’f) = eiku(-[) ﬁw(xk(T)) R _]2;%2((._1—-]‘)_ _]2;_m2v = 0

o T , ,
. - 4 Z * x, (T)A( (1)) ‘ (3.19)
Au(X) = AU(X)'e A at ‘kuTAFx'xk . . |

Therefore, T 1s again the proper time.
The prescription e ep/vﬁ again identifies the particle
h—expansion'as a strong-coupling expansion, with the modification

m = mP/h: We can rewrite the field action as
e 2
R R AN p N2 (% . 1
e = Jetxdy [(*’E ) (?) i+ 34Dy

We see that, in the relativistic theory, the particle h-expansion for
the case m = 0 is formally a EBéE strong-coupling expansion. This
distinction may disappear aftef renormalization (If we renormalize_

~ about p2 ='M? to avoid infrared divergences, should we choose .

M= Mp/h?). We can also rewrite the field action as

* ' : : '
2 e, Ay 2 2 ¥ Ap A
NN N B AL i‘ir;)+ MR St ]
Sr f s m{(“’ A %) @ ,“Jﬁf il U

(3.21)

Again, we see that, if the photon had.a mass u, we would have

W= My T gt In the particle h-limit o becomes a classlical particle

(3.20) -

but A becomes a classical field.. .

7 We will show_in the next’§ection that} to leading order in
our particle ﬁ—expansion,foy scalar QED, the determinant is negii-v
gible.  However, note that the naive action ﬁas éome applicatiohs in
its own right (regardless of the behavior of the determinant):

It is not hard to see that the cracked egg-shell graphs, populér in

finite QED,7 are summed as

: ® .y
s 6>/i4 o] afey [ £
G.Ju(u))(i'é.;)(v) v WLy ).J=O y 2 y’ﬁ’_‘ !
_ | )

T T
. dr J.LHA (x - u)
. F .
0 0

(1=

dt ivAF(x -v)le .%[ dr(%—mg + %viz) +

o]
T AT
1T e e ! t
+%e§[.d{d'r x'xAF(x—x)
0 0

(3.22)

Our method then points the way to a strong-coupling approximstion for
these graphs (One needs search for periodic classical solutions,

quite possibly in Euclidean space. Could these be the old runaways? ).



IV. PARTICLE M-EXPANSION OF DETERMINANT

iﬁ defining our (strong-coupling) partiéle h-expansion in
the relétivﬁstic casé, we temporarily suspended éharged.loops. - In
this way, we defined a "nalve'" particle action: Essentially-ordinary
(or "naiye")relativistic classical mechanics dominates the no-loop
dynamics as R + 0 at fixed ep and mp - An atfractive feature of
our naive contribution to the action was that the photon field was
quadratic and could be integrated out.

Our task now is to compute and compare the‘stfength of the
loop contribution in various theories. For some theories, such as

scalar electrodynamics, we will find that our naive action dominates

the determinant. Thus, in the particle N-1imit scalar electrodynamics

is dominated by ordinary relativistic classical mechanics. 1In other
theories, things are not as simple. For example, in the case of
*
J(I = -gY Yo the determinant itself provides the leading order in

our expansion, undercutting the "naive" contribution. We still have

a particle~variable description, -but things are much more complicated:

The appearance of the leading terms is much more what is usually ex~
pected in a strong-couplipg expansion, and we camnnot explicitly
integrate out the ¢ field (even for the leading term).

We begin by reviewing the fact thét ‘fn-det G is (up to a
constant) just the sum of one-Y-loop diagrams in an external AR
field. This can easily be seen by comparing its perturbation expan-
sion with that of G- itself. We can look in general at the ‘Green
function G = (GE)1 - V)_l of a particle in an external field, with

free Green function 'GO and interaction V (In the case of scalar

electrodynamics, 'V . represents both one-photon and two-photon .

vertices.). The expansions are:

VI = Gy v GVG, GV OV Gy *

-1, .
- 0 0 0 cee,

G = (G0

4n det G - 2n det G -¢n det (1 - GOV) -tr (1 - GOV)

0
. 1 1
= tr (GOV *s GOV GOV + 3 GOV GOV GOV + 000,
(4.1)
. s -1
From this we see that 2n det G - fn det GO is just G GO -1

with its ends sown together, along with a combinatoric factor

1/n for n interactions (due to the symmetry of the one-loop

diagram under rotation). These expansions are shown diagrammatically
in Fig. 1.

In order to define the particle t-expansion, we made the
replacement SP hd SP/II, and reexpressed this as the identifications
e = eP/Vﬁ, m = mp/h. This in turn determines the fh-dependence of
det G, through its dependence on e and m. We therefore expect

Ian expression for KN of the form

Ky =f¢[9AF (_ﬂ_f’%i-/&x) exp{iZhnSnfy,Z;TBAF)

Sa -ij(%mg "%;‘2 * eP;"AF) +fd4x ('12'AFUAF - At

(4.2)
The limits of summation for }:ﬁPsn will be determined by analyzing
the N dependence of 2n det G. We have chosen to use AF =/h A.
Sincé A 1is only an integratiqn variable, this choice is arbitrary,
but it is the choice which makes explicit, even before gluon

integration, that the naive contribution is order 1/Ah: .
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f@AF Z(ﬁf%}c) Vexp % S_; (“ 495() exp —(S ﬁ XA UAP
(4.3)

Here we have included only the first two terms of S_l from (4.2)

(i. e., the naive contribution). Any other choice of T dependence

" for A would hide this fact.

We therefore want to evaluate

= det{[(ia I- ‘ePAF/ﬁ )2

det G = det{[(ié -éa) - . i)t
ml2> + ie]_l

- mf,/‘h2 + ie]_l T det [(iha - ePAF)2 -

(4.4)
(The proportionality constant is unimportant, since we are only
concerned with det G/det Gy.). If we define AF(x) = KF(x/n),
then.since x is only a dummy variable (the determinant is over

x), we can replace x with ‘X = x/E. We then have

det{[(ina - ePAF(x))2 - m2 + ie]—l = “det [(1'5' - ePAF(x)) -m +1]
' ’ ' ( 4.5)
All explicit T dependence has been eliminated (It is hidden in
K_.) .
The next step is to expand _ILn det G - £n det GO in

momenta about p' =

fn.det G - fn det GO = fd X. fO{A(x)} + E[BA(X)] fl[A(x)] + J
' : _ (4.8)
(Lorentz indices suppressed; fi are ordinary functions, not func-

tionals). According to the Landau-Cutkosky rules, such an expansion

exists when the charged particle is massive ( i. e., there are no

singularities at p = 0). Finally, we restore the . T dependence

%—[BA(XV)]%‘]‘[A(X)] ... } .

(4.7)

by returning from A and x_ to A and x:
tn det G - in det G, = “h-[’jdl’x {fO[A(x)}’r 1’

It is now clear that the particle h-expansion for the deter-

minant is just the expansion in derivatives: There is an H for

each derivativé and an overall ‘ﬁ_4 (in 4 dimensions) for fn det G.
Compare this with the field t‘[-expans_ion of the proper-vertex functional,
used in studying spontaneous breakdown. There, the expansion is in
two variables: field-h (the number of loops) and the number of’—
derivatives. The no-derivative term (effective potential) contains
all orders of field-n (all numbers of ldops).' The particle Fh-expan-
sion of the determinant isv»much simpler: &n det G can be computed
entirely from one-loop diagrams, and* there is only one variable,
particle-Ti, whose power is the power of momentuﬁ.

We now see that, in four dimensions, the exponent of KN

o0
in (4.2) is i Z . In general (but see below), the lowest

n=- :
order term is 5_4, which dominates the naive contribution to S-—l
in the 1imit & > O. As an explicit example, we consider the theory

where the photon interaction is replaced by the scalar interaction

XI = -g\b*d@ . In that case we find (see the Appehdix)
S_4(¢) S > jd4x_[(m2 + g¢)29~n(1 + g¢/m2)-( flnite countert,erms)] .
327 o

(4.8)



Therefore, the particle h-1limit of this theory is not classical

mechanics. This theory illustrates a typical strong-coupling form:

‘Kinetic-energy terms :are not regained.until a higher order (1l7h).. . -
.One coﬁld say that this theory has no classical-mechanical limit,
though it does have a quantum particle mechanics.

On the other hand, in scalaf electrodynamics gauge invariance

restricts the form of the expansion. The determinant is itself gauge

invariant: ]
1 = . --
det G = det{[(ia —ea' ) - nf s ie] 1} = det [(e 15 - ea)st)2-
T -{}
= det{el)‘[(ia - eA)2 -me o+ ie]_l e—l)‘} = det G. (4.9)
Therefore, dgt G depends §n A only through va = auAv - aVAu .
The expansion for £n det G thus becomes:
- YA VA 21.2. bl b1
in det G - in det Gy = if jd x (o + BEFF £ +87(Z; aF* SoFOF) G,
(4.10)

where the fi are constants (Lorentz indices again suppressed; the

f2 term actually consists of many terms, one for (Fquuv)z,

one for (equTFquOT)2, etc.). In fact, f,. = 0, since an det G(A=Q)-

0

- &n det G, = 0. Also, the‘ f. term is only a renormalizétion of the

0 1
free A action, and so can be absorbed into the similar term of S-l'
Explicitly, it is (see the Appendix), in 4 - 2¢ dimensions,

5P - - (ié- - ) eF V. (4.11)
: 1927 .U

Hereafter, we shall ignore such renormalizations. Therefore, the

lowest order remaining contribution of 4&n det G is SO. S_l

consists only of the naive contribution SP’ which dominates

gn det G in the particle F-limit: The (strong-coupling) particle

f-1limit of scalar électrodynamics_is the {naive, relativistic)

classical mechanics of charged particles.
In the following section we will extend our results to >

arbitrary dimension, and to other theories.
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V. GENERALIZATIONS AND DIRECTIONS

'The résults of the previous section can easiiy be generalized
to arbitrary Aimensién D' The only change in the deriQation of
the form of the particle h-expansion of the determinant is the gen-
eralization of the overall ‘factor T -4 to & (in (4.7)). This
means that .the dominant term in the exponent of X is now S_D

N

*
for the Y Y¢ theory, and S for scalar QED. Therefore, the

4-D
naive action never dominates for w*w¢ theory. However, for
sc;iar QED the situation is dimension-dependent: For D < 5, the
nai&e action dominates. For D = 5, the naive action and lowest-
order contribution of thé determinant are of the same order, and a
non-naive classicél mechanics results in the particle B-1imit. For
D > 5, the determinant dominates.

The generalization to include fermions is also simple. The
path integral for the fermion propagator in an external field can be
written with the aid of anticommuting particle variables, in addition

to the commuting particle coo:"dinates.4

The © counting is the same:
In particular, for spinor QED we have the same expansion (4.10) as
for scalér QED, with different values for the coﬁstants_ fi (See
the Appendix). '

As a special case, we see that in the massive Schwinger model
the nai?e action S_1 dominates the lowest-order determinant con-

tribution S This justifies the neglect of the determinant in a

5
paper by Senjanovié and one of the authors.3 It was shown in that
reference that the resulting (dominant) "naive relativistic classical

mechanics" is the classical mechanies of the'two-dimensional string

of Bardeen, Bars, Hanson, and Peccei (BBHP).

In the massless Schwingerrmodel, the masslessness of the

' fermion’cauées a singulaiity at 'p'= O, and the expansion j;self

needs modification. For that model we have

éa '
M vy v
7[ ( )A (e~ g )
. 2
L fox(g) nu 0. o
h _ .

The Ti-counting and gauge-invariance arguments are still correct, but

"

2n det G - &n det GO

the expansion begins (and ends) with a negative power.
The particle h-expansion can also be extended to two-
dimensional quantum chromocdynamiecs with massive fermions, since,
in linear gauges, the fiel& Lagrangian simplifies to a form similar
to that of the massive Schwinger model. Again the naive action
dominates the determinant, justifying the neglect of quark loops
in Ref. 4. The naive classical mechanics is again essentially the
classical BBHP string. v
If we extend the particle h-expansion without modification
to QCD (with D > 2), we find the expansion has characteristics simi-
‘lar to ihe w*w¢ theory. OGauge invariance again restricts the
particle fi-expansion of the determinant to the form (4.10); where
now Fuv = (auAV -3 A ) + — A A ] Thus, we have all powers
of A contributing to order h D. However, a modification of the
particle h-expansion which brings it into accord with non-Abelian.
gauge invariance may improve this situation. It is of interest to

. . 14
note that a phenomenological model of Cornwall and Tiktopoulos




’uses.a first-quaniized path-integral formalism for . QCD which
ﬂheglebps the determinant- and still describes the”leadiﬁg—logarithm'
infrared behavior of the theory.
of a modified partic;é“h-expansion'in-which the naive action dominates.
Furthermore, thé particle h—expansionimay have particular relevance
to QCD, since the particle -h-limit probes the infrared behavior:
It is not only a strong-coupling limit g = gP/VE>+ © , but also a
large-distance limit, since the length scgle 1/m = ﬁ/mP +0
(i. e., dimensionless lengths mx -+ ),

The particle Ti-expansion may also be the natural expansion.

for the Abelian field theory of charges and monopoles.15

The rglevance
of the.particle'ﬁ—expansion to magnetic flux quantization already

shows at the classical-field level: In the Nielsen-Olesen model
of vortices,16 magnetic charge is quantized even in-the classical
field solutions - no h's appear. However, when the theory is written
in terms of . eP ipstead'of eps the magnetic flux‘quanﬁization takes
the forﬁ of a Bohr-Sommerfeld quantization, familiar from the first-
quantizedb(i. e., particle) monopole theory of Dirac. Explicitly

(since e = VﬁeF, = eP//ﬁ, i - K-F/*'ﬁ),'

<> > > -> >
4s - = . = . 3 D=
95 - (eB) Sﬁds (eBp) = 2m, qus (eBp) = 2mn.
: : : : (5.2)
Thus, what may be viewéd on the one hand as a "purely classical

quantization" may also be seen as a (particle-h) semiclassical quan-

tization.

This lends support to thé possibility - -
‘charged fields.

Another 1ndlcat10n of the relevance of the particle h-

expansion to monopoles is the fact that there is no classical rela—

‘tivistlcglly-lqvarlanﬁ,fleld tpeqryipf.elegtrlcally-Agnd magnetically-

This can easily be seen by comparing the form of the
charge—quantlzatlon conditlon for charge-monopole field theories in

terms of particle and field couplings. By the symmetry of the La-

grangian with respect to charges and monopoles, we see that besides
e = /A ep = ep//f we also have g = A g gP/Jﬁ: The

charge-quantization condition is thus

eg =vﬁngF = ePgP/n = -27m. . (5.3)

Therefore, the field f-limit is n + O, which does not satisfy the
chargevquantization condition (and therefore violates relativistic

invariance ), since n is not an integer (0 <n<<1). On the

other hand, the particle N-limit is n + o, familiar from quantum
mechanics, where the classical limit is always the limit of quantum

numbers becoming large{

We can also see the advantages of the particle *h-expansion
for Abelian charge—mOnopolé field theory by applying the methods of
Section IV. In monopole theory, there are two detérminants, one

‘for charged loops and one for monopole loops. The charged-loop deter-

minant is the same as for QED; the monopole-loop. determinant is of
the same form, but with ‘Fuv = auAv - avA]J replacgd with

9B -9 B , where BU is the monopole vector potential. Therefore,

v v i

the naive action again dominates. Also, the determinants are mani-

festly éovériant: A1l string dependence is isolated in the naive

action; higher order corrections are independent of the string
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direction. Explicitly, the particle fi-expansion for thatbtheory is

e = eP/Vﬁ, g = gP//E,' m /ﬁ

=.In m =
e e,P/ﬁ’

, g mg,P

Thé'utility of the partlcle h-expansion may be enhanced
for theories of the ¢*w¢ type (where.the determinant dominates)
byAthe simultaneous-use of another expansion, the 1/N expansion.17
By giving the Lagrangian a (global) U(N) symmetry, and by choosing N
to tend fo infinity as an appropriate inverse power of %, the naive
action.can be made to dominate the one-charged-loop. graphs of the
dgterminant.

We conclude with a discussion of the need for a "classical
renormalization” in the.particle h-limit. When calculating classical
solutions in ofder to find the leading behavior of a theory in its
particle h-1imit, divergences are found in the classical action.

The source of trouble is the AF(XJ(T) - xj(T')); The divergences

are of the form of self-interaction divergences found in, e.g., clas-
sical relativistic eiectrodynamics. Such troubles could have been
anticipated from the point of view that our expanéion is a strong-
coupling expansion, and,as such, includes much loop structure in the
leaéing approximation. By using a regularization (such as a cutoff
for small proper times), we -have shown that the divergénces can beb
absorbed by‘renofmalizations of ‘the mass and action (Additioﬁ of a
constant term to the action is equivalent to wave-function renormal-~

~ 18, '

ization, since K . The resulting renormalized {naive)

N
action involves a principal-value prescription for the singularity.

This will be reported more fully elsewhere.

APPENDIX: CALCULATION OF DETERMINANT
A, GENERAL METHOD

We wiil now describe éhergenéréi method for calculating the
jeterminant to finite order in the particle fi-~expansion, with explicit
examples. The first step, as in Section III, is to reexpress the
determinant in terms of the proper-time Green function G. We use

the identity9

A _ 1

fn det G - fn det Gy = Tz
o«

(D dT X

-jd xf T(@Iexp -iHT/R ) |32> - <x|exp oI/n |x>)
0 (a.1)

We therefore need to evaluate
<x|exp(-iHT/h ¢ {x> = G&(x,x;T,0). (4.2)

0f course, we cénnot evaluate G exactly, sinece H involves an
arbitrary external field (¢(x) or A¥(x)). However, we can evaluate
an arbitrary, finite number of terms in the semiclassical expansion
of 5; as shown in Section III, this is the particle h-expansion.
Since we also know (frbm Section IV) that this expapsion is an ex-~
pansion in the number of derivatives of the external field, it will

clearly be helpful to employ the expansion18

o(x) = ¢(x)+[(X—X)'3} d(x) + ... . (4.3)

Here, X 1is the position operatdr in the Hamiltonian H(P,X), and

x is the c-number in <x|exp{-iH(P,X)T/ﬁ} |x>. Inserting this



expansion ‘into H, we have H as an explicit function only of P,
X - x, and &(x) (and derivatives). Exhibiting this dependence

explicitly as H(P,X —.x,¢(x)), we have the further simplification

<x|exp{-iH(P,X - x,¢(i))T/ﬁ [x> = <Olexp ~1H(P,X 4 (x))T/m|0> .

(A.4)
This result follows immediately from translation invariance.

9 or the usual

From either the path-integral I‘ormalisml
operator formalismzo we know that G can be evaluated exactly

when H is_quadratiq in P and X. In that case, the result is
, 2 is\3 _ism
<x|exp{-iH(P,X)T/R ) |[y> = (detw m) e - (A.5)
where S 1is the classical action. Therefore, we can easily evaluate
the determinant for the first few orders in T by keeping only as
many terms in the expansion (A.3) as will'keep H quadratic. For
the cases of J(I = -gw*w¢_ and scalar electrodynamics, respectively,

we then have

H(P,X,0(x)) = - %[Pz - n° - go(x) - X+ 3(x) - %x“x“aua\,q»(x)} :

H(p,x,Au(xj) . %[(Pu -e %.x"pw(x))2 -,mz] ) (4.6)

Here we have used gauge invariance to drop some terms in the

expansion

Au(x) Au(x) + (X - x)vavAu(x)

1 ) . 3
Jo- oM, - a0 2 [(x - )% (x) +

+ % (x - ;c)"(x - x)G(a\)Ao + BOAV)(X)] . (A.7)

By the.arguments of Section IV; we'see that this approximation will

give us all of 5_4 and S'._2 (in aryitrary D, S-D -and 'S2-D)’ plps

‘parts of higher orders (Tﬁé rougher approximation ¢(¥) = ¢(x)

would gi&e us all of S_4 plus parts of higher orders.). Therefore
(for D = 4), along with the naive action S_1 with which we started,
we can easily calculate all contributions to the particle action of
order 1 with n £ -1. To calculate higher orders, we can consider
the non-quadratic part of H .as a perturbation to the quadratic pgrt,
and use elther old-faéhioned perturbation theory in the operétor
formalism or Feynman-diagram-like perturbation theory in the path-
integral formalism. In the cases of scalar and spinor ' QED, due to
gauge invariahce, there-is a simpler method: Since the determinant
depends on Au only through Fuv (which is itself a first deriva-
tive of Au), to finite order in 4 it consists of only a finite
number of Feynman diagrams. Specifically, s2n-D depends only onl

one loop diagrams with at most 2n external lines.
B. EXPLICIT CALCULATIONS

In this section we will use the method described above -

the quadratic approximation to the Hamiltonian - to calculate the
lowest orders in T. Combining Eqs. (A.1), (A.4), and (A.5), we have

o0
_ 2 LNb .
tn det G - a det G, =dixf et (det'—a-—--l—s’-) I5/P (525
- 0 ayuazv 27 ' y=2=0.

(A.8)

»

.



Here S(y,z,T;®(x)) 1is determined from H(P,X,¢(x)) by using -
' L(P;f.l) = le -H(P»Q) ’ ;d-';: BH/3P ] : R (A.9)

" solving for q(T) in terms of q(0) and g(0), integrating -
. . I

< -+ 5(q(0),4(0),T) [ dt L{q(0),3(0),7) , ~(4.10)
O_ - : :
‘ and reinserting q(T)  to find S(q(0),q(T),T) = S(y,x,T).
Here we use. p a,ﬁd q as the c-numbers corresponding to P and’ X;
'¢(x) and its derivatives are considered as constants until the final
j de.
a1 7 . As explicit example's' of these methods, we consider the calcu-
57 lation of the lowest order contribution for w*w theory (S_D),
Ve and the lowest non-zero contributions for scalar and spinor QED
. ( SZ-D; which is merely a wave-function renormalization, but illusf
”“3 trates the nﬁethod). For the former case we need only the approxima-

tion ¢(X) T &(x) (lowest order means no derivatives), so we have
<0 . : 1,2 2

simply the free Hamiltonian H = - 5 (P* - n° - g¢(x)) (Remember:
- ¢(x) 1is a constant as far as P and X are concerned; m2 + go{x)

=3 is a fixed (mass )2 term.). After a trivial calculation (since the

T* ° classical equation of motion is § = 0), we find S(y,z,T;¢(x)) =

o

L

-l{(m +g¢)T+(z-y) /T], so (A.8) becomes
L det G - In det Gg f de 21rm)D/2 exp{- & n® 1/mp-
- ;

. - -(exp-;gvﬂ/ﬁ -1) =

@ . _
B iun)'w 'Dr( )fa x[un +g¢(x))"/2 mDJ :

©(a.11)

We have analytlcally contlnued in D in order to apply dimensional

regularlz_at_lon As usual we take D+D-2¢, € >0, and use

A’_D even: ' -l)/2

T'(_D72:—+T (1/€ + w(D/z + 1))

~T(e-D/R2) = : Y

D odd: (-1)T (a.12)

1 .
I'I'DT2+1) T

4
'whlch follows from F(z)I‘(l - z) = 1r/sm Tz (Wx) = ) &n T(g)).

Note that the result (A.11) is already finite for D odd. The

result is therefore

1
T2z +1)

fn det G - fn det Gy = i(4x yD/

D even: (l)D/Zf {(%;' *W(D/2+1))[(m + g¢(X))D/2 ﬁlD] +
_ X .
+ [(m2 + gcp(x))D/z & (m_t%i’iX_)) - mD in (m2/41rh2)]} .
4Th -
D1 | o
D odd: (-1) 2 ﬂ[de[(m2 + go(x))P/? - mD] S (4.13)
\

Assuming the 1/€ term can be concelled by a renormalization counter-

.
B

* 'y
term (true for D ¢ 6; for D> 6 x = -gy Y¢ is nonrenormalizable),
the final result becomes

. -D/2 ,-D 1
n det G - in de*t,_GO = i(4m) / h 55T

» JD even: (- 1)D/2[d x[(m +g¢)D/22n(1+ g¢/m2) -~ (finite _counterterms%
D11 .

]ID odd: (-1) 2 1Jdox[(m2 + g¢)D/2'-' (finite _countertei-ms )} .
' ' L h (A.14)
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For the case of scalar QED, we use A (X) = Xvo(x) -

™)

(see (4.6)), L = - 3 (¥ + o) - e (0 - - % L2 n? s XRF (X))
. After a simple calculation, we find S(y,z,T;F(x)) = - %LngT -
eFT -1 L . '
-(z-y)F(1-e-.") (z- y)] , using matrix notation for Lorentz

indices. The solution for all orders in F (which includes parts of

all orders in %, since F is a first derivative of A) is then

[«+]
in det G - fn det G, - idex[ % (2minT) ™2 expq- %sz/h .

EFT -4
. (det ——éﬁ,— -1 . (A.15)

Since we are only interested in the lowest order in f (i. e., the
lowest order in F), we expand in F and get (using det M =

= exp{tr &n MY )

. © ’
tn det G - %n det G, - i[def & (2min1)D? exp{- 1ifm

2
e” 2 2 -
. é.- 78 Ttr F;> -1 =

= (4 y"D/2 22 Dpo 5) D“'/d P

(A.16)
As stated above, the whole termis a wave-function renormalization,
and can be absorbed into fhe similar term in S

The generalization to spinor QED is simple, because9
@

g C 2% T eX_P-“P ef)’~ n° )1/

0 A.17)

~and

(7 - k) : (s, - eAu)z —%ey“yv}“u\) X (A.18)

Since in the leading approximation (Eq. (A.6)) F is a constant, the
matrix yuyVFuv commutes with everything, and so can be treated as
a non-matrix (For higher orders, we can use path-integral methods

4y »

for first quantization with spin. Effectively we just change

the (mass)2 m2 + m2 - % eYquFuv We then have, instead of

(A.15),

I det G ~ fn det G, = 12D/2 lfd x[ dT(zan)D/2 exp-—me‘l‘/h

. det ) ( 572 tr exp ——-eY Y F T/Tl > ,

(A.19)
where the remaining trace is a matrix trace. The factor of 2
for D = 4 is from the % in (A.17) and the 4 from tr 1 = PRI
physically,'it arises because spin % has tﬁice as many spin com-

ponents as spin 0. Again expanding in F, we have

) [+]
tn det G - I det G, = i 2D/2‘lj’def L (2min) ™2 exp-Lufom) -

2 2
&< 2 2 2 2 _
(1-RTtrF+—-24T trF) 1} =

D‘f F F“" ‘»

Azo) i

(2 )—D/2 2 2~D

Also, due to Fermi statisties, it is actually -(&n det G - &n det GO)

which contributes to the exponent in the functional integral over A .
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'FIGURE CAPTION

Fig. 1: Expansion of determinant
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