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Abstract

Emergent communication (EC) is the field that seeks to under-
stand the mechanisms behind the emergence and evolution of
natural language. In EC, the de facto standard has been us-
ing sequential architectures that have not explicitly incorpo-
rated the “tree-structured hierarchy” inherent in human lan-
guage. This study utilizes a stack-based model called RL-
SPINN, which learns tree structures through reinforcement
learning without ground-truth parsing data, and acquires sen-
tence representations according to these structures. We use this
model as the basis for the understanding agents and investigate
the extent to which the inductive bias of an architecture that
explicitly utilizes tree structures affects the emergent language.
The experimental results show that the emergent language gen-
erated by our model exhibits higher communication accuracy
than those generated by other baselines in some settings. This
work is the first to focus on the tree-structured hierarchy of lan-
guage and suggests new directions for future research in EC.

Keywords: emergent communication; stack-based agents;
tree-structured hierarchy of language

Introduction
Human language is one of the essential features of humans
and a vital tool to convey information such as culture, knowl-
edge, and understanding of the world, yet the question of how
language itself emerged and developed remains shrouded in
mystery. One possible approach that may shed light on the
origins of language is the computational study of the circum-
stances and pressures where it may arise, known as emergent
communication (EC) (Lazaridou & Baroni, 2020). In the EC
field, agents composed of neural networks simulate human
conversation, and the message protocols that arise between
them are considered a language, called emergent language.
EC investigates how the emergent language is similar to or
different from human natural language and explores the con-
ditions necessary for the emergent language to acquire char-
acteristics similar to natural language.

In this paper, we focus on the hierarchical nature of hu-
man language and propose to utilize a stack-based model
that respects hierarchy as the basis of the agent architecture.
In previous work, agent architectures have commonly been
based on standard models that are widely used in the general
machine learning literature (Lazaridou, Hermann, Tuyls, &
Clark, 2018; Chaabouni, Kharitonov, Bouchacourt, Dupoux,
& Baroni, 2020), such as Simple RNN (Elman, 1990), LSTM
(Hochreiter & Schmidhuber, 1997), GRU (Cho et al., 2014),
and Transformer (Vaswani et al., 2017). However, such de

facto standard architectures do not necessarily have an ex-
plicit inductive bias to prefer hierarchical structures. The
importance of hierarchical grammatical structures in human
language has been discussed for decades (Chomsky, 1957),
and it has recently been pointed out that it is crucial to mod-
ify the architectures explicitly handle syntactic structures for
modeling human-like sentence processing (Linzen, 2020).
For instance, RNNG (Dyer, Kuncoro, Ballesteros, & Smith,
2016), a model that explicitly deals with hierarchical struc-
tures, has been shown to outperform conventional sequential
RNNs in grasping grammar (Kuncoro et al., 2018; Wilcox,
Qian, Futrell, Ballesteros, & Levy, 2019). Moreover, both
psycholinguistic (Hale, Dyer, Kuncoro, & Brennan, 2018)
and neurophysiological (Nelson et al., 2017) perspectives ac-
knowledge the plausibility of hierarchical syntactic structures
in human cognitive functions. Thus, looking beyond the field
of EC, it is known that the mechanism of tree-structured syn-
tactic understanding is essential from the standpoint of human
language comprehension.

Given this background, it is worth investigating the ex-
tent to which agents composed based on a stack-based model
affect the emergent language. We utilize the model called
RL-SPINN (Yogatama, Blunsom, Dyer, Grefenstette, & Ling,
2017), which learns tree structures with reinforcement learn-
ing. This approach allows us to explore models that include
inductive bias to account for human cognitive functional as-
pects. In EC, the framework often used to get the objective
is the signaling game (Lewis, 1969). The signaling game in-
volves two types of agents: the sender and the receiver, both
of which aim to cooperate and communicate information via
their emergent language. In this study, we applied RL-SPINN
as the basic architecture for the receiver to construct meaning
representations from messages while retaining the other ar-
chitectures as they are.

As an evaluation metric, we adopt communication accu-
racy (ComAcc), which refers to the proportion of successful
games for unseen data during training. Yogatama et al. (2017)
demonstrated that RL-SPINN learns tree structures with a
bias towards better capturing the meaning of natural language
sentences, resulting in improved generalization performance.
Similarly, we hypothesized that RL-SPINN-based receivers
would learn tree structures that better capture the meaning
of messages from the sender, allowing for more flexible con-
struction of meaning representations for each message, thus
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enhancing communication accuracy. The experimental re-
sults show that our model demonstrates high ComAcc in a
setting that is conjectured to be more similar to the seman-
tic space treated by human language. This work represents
the first study in EC that uses agents mimicking human tree-
structured understanding, potentially suggesting new topics
in the field.

Background
This section provides an overview of the stack-based model
used in our work as a tree-structured mechanism for the re-
ceiver agent to understand messages and the framework typi-
cally used in EC.

Tree-Structured Variations of LSTM
In this study, we adopt RL-SPINN (Yogatama et al., 2017),
which can learn tree structures using reinforcement learning,
as the basis of the receiver agent. In EC, where languages
vary with each execution, it is impractical to generate ground-
truth parsing data for each of them. RL-SPINN’s ability to
learn tree structures without relying on parsing data makes it
an ideal basis for a receiver.

Tree-LSTM The approach of using sentence tree structures
to generate sentence meaning representations has been used
in computational models (Goller & Küchler, 1996; Socher,
Lin, Ng, & Manning, 2011). Tai, Socher, and Manning
(2015) also recognized the potential value in the relationship
between sentence meaning and tree-structured syntactic fea-
tures. They attempted to extend the conventional sequential
LSTM (Hochreiter & Schmidhuber, 1997) to a tree-structured
model called Tree-LSTM.

While the conventional LSTM processes tokens sequen-
tially from left to right to build meaning representations,
Tree-LSTM builds meaning representations according to the
additional input parse trees. Given a corresponding parse tree
with each input sentence, Tree-LSTM constructs its repre-
sentation hierarchically according to the parse structure. Tai
et al. (2015) experimentally showed that Tree-LSTM outper-
formed conventional LSTM in two tasks of semantic under-
standing of natural language: prediction of semantic related-
ness (SemEval-2014 Task 1 (Marelli et al., 2014)) and senti-
ment classification (Stanford Sentiment Treebank (Socher et
al., 2013)). Furthermore, subsequent studies have also con-
firmed that tree-structured models outperform conventional
models (Li, Luong, Jurafsky, & Hovy, 2015; Bowman, Man-
ning, & Potts, 2015).

SPINN Tree-LSTM has the drawback of relying on an ex-
ternal parser since it requires inputting parsed results for each
sentence. To mitigate this issue, Bowman et al. (2016) pro-
posed a stack-based model called SPINN (Stack-augmented
Parser-Interpreter Neural Network), shown in Figure 1,
which can determine the tree structure while simultaneously
creating the sentence representation. The parser in SPINN
is based on and motivated by the shift-reduce parsing. The
shift-reduce parser generates a sequence of two types of ac-

Figure 1: Schematic diagram of SPINN. This figure shows
the behavior when REDUCE action occurs to compose young
and man. The red arrows are the paths taken when SHIFT
action is processed, the blue arrows when REDUCE action, and
the black arrows when both actions.

tions, SHIFT and REDUCE, to parse a sentence. The shift-
reduce parser has a stack and a buffer, where initially the
stack is empty and the buffer contains all words of the sen-
tence. SHIFT represents the action of piling the buffer’s fore-
most element to the top of the stack, and REDUCE indicates
the action of combining the stack’s top two elements and re-
turning to the top of the stack. For instance, given a sentence
xxx = (a,young,man,sleeps), the output action sequence aaa be-
comes aaa = SSSRRSR, where S, R represents an abbreviation
for SHIFT, REDUCE, respectively. This sequence parses the
sentence into the tree structure ((a (young man)) sleeps).

As in the shift-reduce parser, SPINN incorporates an in-
ternal stack and buffer, which manage arrays whose length is
equal to the maximum size of sentences. These arrays con-
tain elements that are combinations of two vectors of dimen-
sion D: the hidden vector hhh and the memory representation
ccc. In the initial state, the stack is empty, and the buffer con-
tains the elements of a sentence, each embedded into a 2 ·D-
dimensional space.

In addition to stack and buffer, SPINN has a component
called tracking LSTM. This component consists of a con-
ventional LSTM, which takes as input the stack’s top two
elements and the buffer’s foremost element. The Dtracking-
dimensional hidden vector of this component hhhtracking plays
two roles: composition and transition.
Composition. During a REDUCE operation, the top two pairs
of a hidden vector and a memory representation in the stack,
denoted as ⟨hhh1

s ,ccc
1
s ⟩ and ⟨hhh2

s ,ccc
2
s ⟩, are composed into one pair

of ⟨hhhs,cccs⟩ according to the following eq. (1) and then placed
on top of the stack:

iii
fff l
fff r
ooo
ggg

=


σ

σ

σ

σ

tanh


Wcomp

 hhh1
s

hhh2
s

hhhtracking

+bbbcomp


cccs = fff l⊙ ccc2

s + fff r⊙ ccc1
s + iii⊙ggg

hhhs = ooo⊙ cccs

(1)
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where Wcomp,bbbcomp are learnable parameters, σ denotes the
sigmoid activation function, and ⊙ signifies the elementwise
product. Ultimately, one pair of ⟨hhhlast

s ,ccclast
s ⟩ remains in the

stack, with the buffer being emptied. The hidden vector hhhlast
s

of the remaining pair in the stack becomes the final vector
representation of the message.
Transition. The shift-reduce classifier within SPINN calcu-
lates the probability of determining actions as follows:

pppa = Softmax(Wtranshhhtracking +bbbtrans)

During training SPINN, the classifier is trained using ground-
truth parsing data. At the time of testing, the internal shift-
reduce parser constructs the tree, eliminating the need to pre-
pare a pre-parsed tree as input and removing the dependency
on external parsers.

RL-SPINN While SPINN does not require an external
parser during testing, it still needs syntactic parsing data
during training. To deal with this issue, Yogatama et
al. (2017) proposed RL-SPINN (Reinforcement Learning
SPINN). RL-SPINN does not require input syntactic parsing
results even during training since its shift-reduce parser learns
tree structures via reinforcement learning to optimize the per-
formance on downstream tasks. They showed that the trees
induced by this stack-based model captured structures such as
noun and verb phrases. We hypothesized that the advantage
of this model, which can generate sentence representations
leveraging sentence structures without human-annotated data,
would positively impact resulting emergent languages.

Signaling Game
It is typical to base the process on the framework of the sig-
naling game (Lewis, 1969) in EC.1 Within the game, there
are two types of agents – the sender and the receiver – each
with different roles. Let us denote the input set as I and the
message set as M . The game proceeds as follows:

1. The sender gets an input iii ∈ I , randomly sampled from I .

2. The sender generates a message mmm ∈M based on the input
iii, and passes it to the receiver.

3. The receiver, based solely on the message mmm, guesses the
input that the sender might have gotten and generates an
output îii.

4. The success of the game is determined by comparing iii and
îii; if they match, the game is considered a success; other-
wise, it is a failure.

As the sender and receiver repeatedly play the game and learn
from it, they become able to achieve high accuracy. At this
point, the message mmm can be said to be a sequence with some
common meaning for both agents. In EC, the set of learned
sequences is considered language due to its ability to “indi-
cate things”, an important aspect of human natural language.

1A variant of the signaling game, called referential game, is also
frequently adopted in EC (Lazaridou et al., 2018; Dessı̀, Kharitonov,
& Baroni, 2021; Ri, Ueda, & Naradowsky, 2023).

Figure 2: Diagram of the signaling game with RL-SPINN.

Experimental Methods
This section describes an outline of our experimental meth-
ods.2

Input Set & Message Set Settings
As in many EC works (Ren, Guo, Labeau, Cohen, &
Kirby, 2020; Resnick, Gupta, Foerster, Dai, & Cho, 2020;
Chaabouni et al., 2020), we use the attribute-value setting for
the input set I . Each input iii ∈ I possesses natt attributes,
each of which can take on nval distinct values. The size of the
input set is given by |I | = nnval

att . For instance, under the con-
figuration of natt = 2 and nval = 3, an example input could be
iiisample = {att 1 : 2,att 2 : 0}. Drawing an analogy to the real
world, att 1 represents color with 0 for red, 1 for blue, and
2 for yellow, while att 2 signifies shape with 0 as circle, 1 as
square, and 2 as triangle. In this case, iiisample corresponds to
a yellow circle.

From an implementation perspective, each input iii is repre-
sented as a concatenation of nval-dimensional one-hot vectors
for each of the natt attributes. Consequently, the input iii is
expressed as a vector of dimension ndim = natt×nval.

Furthermore, any message mmm∈M can be composed as fol-
lows. Let there be a finite vocabulary set V ; we concatenate
a token v ∈ V that the sender emits at each time step. Gen-
eration of mmm terminates when the specific token vEOS repre-
senting EOS (End Of Sequence) is output, or the length of mmm
reaches the maximum message length κ.

Architectures
We utilize RL-SPINN as a basis of the receiver, as illustrated
in Figure 2, using senders and receivers whose details are de-
scribed below. Note that layer normalization (Ba, Kiros, &
Hinton, 2016) is incorporated into both agents in this work.

Sender In our architecture for the sender, we employ the
same design as used by Chaabouni et al. (2020). The en-
coder of the sender transforms the ndim-dimensional vector
representation of the input into an nS,hidden-dimensional hid-
den vector. This output hidden vector is then utilized as the
initial vector for the subsequent GRU. This GRU decoder se-
quentially outputs one token v ∈ V at a time. During train-
ing, tokens are chosen through sampling from a categorical

2The code for our models and experiments is available at
https://github.com/porink0424/EmeCom with Stack-Based
Agents.
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(a) left (b) right (c) complete-binary

Figure 3: Diagram of the tree structures handled by baselines.

distribution with |V | categories. In contrast, tokens are se-
lected greedily in testing, i.e., by employing a deterministic
approach that determines the most likely token at each step.

Receiver with RL-SPINN Upon receiving a message from
the sender, the receiver must infer the input that the sender
gets. Initially, RL-SPINN generates an nR,hidden-dimensional
semantic representation from the message. Note that what
Bowman et al. (2016) refer to as D is denoted as nR,hidden in
this paper. After the semantic representation is generated by
RL-SPINN, the decoder of the receiver transforms this vector
representation into an ndim-dimensional vector, which is then
output as the receiver’s prediction.

Baselines
In this study, we prepare four baselines: left-branching,
right-branching, complete-binary-branching, random-
branching. Only the generation of shift-reduce actions is
manipulated, while the other implementations are consistent.

Left-branching and right-branching deterministically se-
lect actions to generate entirely left/right-branching trees. For
instance, for a message of length 8, the action sequences gen-
erated by left-branching and right-branching, denoted as aaaLB
and aaaRB, would be as follows:

aaaLB = SSRSRSRSRSRSRSR, aaaRB = SSSSSSSSRRRRRRR.

aaaLB and aaaRB make trees in Figure 3a and Figure 3b, respec-
tively. Note that the left-branching baseline is almost iden-
tical to the conventional LSTM model since tokens are pro-
cessed in order from left to right.

Complete-binary-branching attempts to generate com-
pletely symmetrical trees as much as possible. For example,
for a message of length 8, the action sequence would be:

aaaPBB = SSRSSRRSSRSSRRR,

resulting in forming a tree as Figure 3c. Specifically,
complete-binary-branching follows algorithm 1, which de-
termines the shift-reduce actions even for messages whose
lengths are not a power of 2 to be as close to complete-binary-
branching as possible.

Random-branching is a baseline where actions are sampled
uniformly at random, if both SHIFT and REDUCE are possible.
Note that REDUCE is impossible if less than two pairs have
been pushed on the stack. Likewise, SHIFT is no longer pos-
sible after the buffer becomes empty.

Algorithm 1 Calculate action sequences in complete-binary-
branching baseline

1: Input: messageLen
2: A← []
3: shi f tCount← 0
4: while len(A)< 2×messageLen−1 do
5: A.append(SHIFT)
6: shi f tCount← shi f tCount +1
7: tmp← shi f tCount
8: while tmp mod 2 = 0 do
9: A.append(REDUCE)

10: tmp← tmp÷2
11: end while
12: end while
13: Output: A[: 2×messageLen−1]

Optimization
The parameters to be optimized in our model are the sender’s
parameters φφφ and the receiver’s parameters θθθ. Additionally,
our model involves the following four types of probability
distributions:

• pinput(iii), the probability of sampling an input iii from the
input set I .

• Sφφφ(mmm | iii), the conditional probability that the sender gener-
ates a message mmm ∈M , given iii.

• Pθθθ(aaa | mmm), the conditional probability that the shift-reduce
parser within RL-SPINN generates a sequence of shift-
reduce actions aaa, given mmm.

• Rθθθ(îii | mmm,aaa), the conditional probability that the receiver
generates an inferred output îii ∈ I , given mmm and aaa.

Our goal is to minimize the expected value of the cross-
entropy loss between the input and the receiver’s inferred out-
put, as described below:

Eiii∼pinput(iii),mmm∼Sφφφ(mmm|iii),aaa∼Pθθθ(aaa|mmm) [L (iii,Rθθθ(iii | mmm,aaa))] .

The gradient of this expected value is:

∇φφφ∪θθθE[L (iii,Rθθθ(iii | mmm,aaa)]

=E
[
∇φφφ∪θθθL (iii,Rθθθ(iii | mmm,aaa))

+ L (iii,Rθθθ(iii | mmm,aaa))∇φφφ∪θθθ log
(
Sφφφ(mmm | iii)Pθθθ(aaa | mmm)

)]
.

(2)

Now, we define the function f as follows:

f :=L (iii,Rθθθ(iii | mmm,aaa))

+({L (iii,Rθθθ(iii | mmm,aaa))}−b) log
(
Sφφφ(mmm | iii)Pθθθ(aaa | mmm)

)
,

where {·} denotes the stop-gradient symbol, and b represents
a baseline.3 In our experiments, the mean-baseline is em-
ployed as the baseline. We leverage that the gradient of f

3Note that the term “baseline” here does not refer to our base-
lines, but rather in the context of reinforcement learning.
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equals to eq. (2) and use f as a loss function. As the form
of f implies, the sender and the parser in the receiver are op-
timized with the policy gradient method and the receiver’s
prediction with standard backpropagation.

Furthermore, to promote the exploration in generating
messages and shift-reduce actions and to facilitate learning,
an entropy regularizer (Williams & Peng, 1991) is used to
maintain high entropy. In summary, the loss function used in
our implementation is as follows:

f −ηS ·ES−ηR ·ER.

Here, ES and ER represent the average entropy during the
sender’s message sampling and the receiver’s action sam-
pling, respectively. ηS and ηR are positive coefficients. Model
parameters are trained using Adam (Kingma & Ba, 2015),
with a learning rate of γ and an L2 regularization coefficient
λ.

Hyperparameter Settings
In the experiments, we use (natt,nval) configurations of
(2,64),(3,16),(4,8),(6,4), as used in Ueda, Ishii, and Miyao
(2023). In all these settings, the size of the dataset remains
constant at |I | = 4096. The entire dataset is split into a 9 : 1
ratio, designated as training and test data. The vocabulary
size |V | is set to 4, and the maximum message length κ is
set to 8. We set the batch size for each iteration at 5120 and
conduct 5000 iterations in a single experiment. The other hy-
perparameters are set as Table 1.

nS,hidden, nR,hidden, Dtracking 500, 500, 300
ηS, ηR

4 0.5, 0.01
γ, λ 0.0001, 0.0001

Table 1: Hyperparameter settings in the experiments.

Evaluation Metrics
In our study, we measure communication accuracy (Co-
mAcc) as an evaluation metric. During each iteration, we
calculate the accuracy of the signaling game on the test data.
The highest accuracy achieved among all iterations is consid-
ered ComAcc. We hypothesize that if the model learns tree
structures that better capture the meanings of messages, al-
lowing for flexible vector representation generation for each
message, then the ComAcc of our model will be higher than
other baselines.

Results and Discussions
Our model obtains higher ComAcc in settings with
more attributes.
We run the experiments with 24 distinct random seeds. The
results of ComAcc are shown in Figure 4. This section com-

4This hyperparameter value is determined as a result of
adjustments within the choices of [0.5,0.1,0.05,0.01], ensur-
ing that the receiver’s entropy value does not diverge but ul-
timately converges around 0 for all configurations (natt,nval) =
(2,64),(3,16),(4,8),(6,4).

(natt,nval) average tree depth average message length
(2,64) 5.872 7.126
(3,16) 5.910 7.215
(4,8) 6.162 7.408
(6,4) 5.957 7.345

Table 2: Average tree depth and average message length in
our model. Values are rounded to the fourth decimal place.

pares and discusses our model with three baselines: left-
branching, right-branching, and complete-binary-branching.
The results of the random-branching baseline are discussed
separately later.

As Figure 4 illustrates, when natt is small and nval is large,
the ComAcc score of our model performs not decisively bet-
ter or worse than the three other baselines. Conversely, in the
setting with the highest number of attributes, i.e., (natt,nval) =
(6,4), the ComAcc score of our model is high.

When nval is large, it can be insufficient only to use a few
tokens to express a value for each single attribute. Instead,
combining more tokens becomes necessary. This is akin to
creating a long word from multiple letters in human language.
The situation is such that the hierarchical structure cannot be
utilized to a great extent, where our model could not show a
high ComAcc. On the other hand, as natt increases, each value
can be represented by fewer tokens, but more semantic com-
ponents (i.e., attributes) have to be conveyed. This is analo-
gous to combining multiple words to understand the overall
meaning of the sentence. In such scenarios, our model is con-
sidered to show higher ComAcc since it can flexibly change
the way to compose tokens for capturing the overall meaning
of messages.

We conjecture that RL-SPINN can approximate human
sentence processing better in that it learns how to combine
tokens to yield the corresponding meaning with more than 2
or 3 semantic components. As an analogous example in lin-
guistics (Aarts, 1997; Carnie, 2007; Radford, 1988; Fillmore,
Bach, & Harms, 1968), human language sentences may con-
tain multiple semantic components (e.g., thematic roles) such
as agent, patient, goal, source, and locative. In contrast, the
baselines with the predefined composition orders may per-
form to some degree when capturing word-like, relatively flat
structures. Experiments with a richer semantics setting may
explain this argument more clearly. This aspect should be
addressed as part of future work.

Trees learned by our model closely resemble
sequential structures.
We calculate the average of message lengths and depths of
trees5 learned by RL-SPINN, which are obtained from each
run at the iteration where the accuracy was adopted as Co-
mAcc. The averages are shown in Table 2. In the set-
ting where (natt,nval) = (2,64), the average message length

5The depth of a tree is defined as the length of the longest path
from the root to a leaf node.
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Figure 4: Communication accuracy (ComAcc) in our experiment. The four figures represent the results for (natt,nval) =
(2,64),(3,16),(4,8),(6,4), respectively, from left to right. Regarding the horizontal axis within each figure, the far left shows
the results of our model, while the remaining four represent, from left to right, the results of the left-branching, right-branching,
complete-binary-branching, and random-branching baselines. The vertical axis indicates the values of ComAcc. The dotted
lines inside the box plots represent the average ComAcc.

is 7.126. It implies that the average tree depth would be
7.126− 1 = 6.126 if the tree structures were completely bi-
ased towards either left or right-branching. In fact, the av-
erage tree depth is 5.872, which is close to the depth ex-
pected in a completely biased tree structure. This pattern is
also observed in other parameter settings, suggesting that the
tree structures learned by RL-SPINN are very similar to those
used in left-branching or right-branching.

Random-branching baseline unduly outperforms
others.
ComAcc of our model is inferior to the random-branching
baseline. Even during testing, the random-branching base-
line determines the tree structure randomly for any message,
virtually ignoring the order of messages. It is close to the
bag-of-words model, which tries to understand messages al-
most without regard to their order. Although such a lan-
guage understanding method is far removed from human lan-
guage comprehension, the unduly high ComAcc of the ran-
dom model can be attributed to the following two issues in
the experimental setup.

First, our experiments adopt the attribute-value format, the
de facto standard for input sets in EC. However, the corre-
sponding semantic spaces may not be sufficiently large, and
the information can be adequately conveyed even with a bag-
of-words approach. In contrast, the information conveyed by
humans in reality is more complex and should be incompre-
hensible without the order of words.

Second, our experiment does not model the incremental
nature of human sentence processing. In human language
comprehension, the succeeding characters and words are pre-
dictable to some extent, given the preceding contexts. Con-
versely, their unpredictability, called surprisal (Levy, 2008),
is believed to be a cognitive processing cost for human listen-
ers and can be a crucial factor for forming the word order. Our
setting and most previous EC work ignore such a surperisal-
theoretic perspective, undesirably allowing the agents to use

order-agnostic sequences. Adding the surprisal term to the
objective would be an important future direction.6

Conclusion

In this work, we leverage a stack-based model called RL-
SPINN, which can learn tree structures using reinforcement
learning without ground-truth parsing data, as a basis of the
receiver agents motivated by the hierarchical nature of hu-
man languages. The experiments confirm that our model can
generate a language with higher communication accuracy on
test data than those of several baselines in a setting that is
presumably closer to the semantic space handled by human
language.

This research has the following limitations. Firstly, in our
experiments, we use an environment setting where the Co-
mAcc of the random-branching baseline, which deviates from
human language comprehension, becomes unjustifiably high.
Future work could include devising input sets with more com-
plex semantics and incorporating objectives that motivate pre-
dicting future tokens, as humans do in incremental language
comprehension. Another limitation is that the evaluation is
limited only to assessing ComAcc. Experiments and discus-
sions on other metrics are desired. Lastly, our experiment
introduces tree-structure inductive bias only on the receiver
side. We assume there are two main reasons: the lack of a
well-developed syntactic theory on the sender side and the
anticipated complexity in implementation and training. In-
troducing a similar mechanism on the sender side is also a
consideration.

This research represents the first study in EC that employs
agents mimicking human tree-structured comprehension, po-
tentially suggesting new topics in the field.

6Contemporary work (Ueda & Taniguchi, 2023) adopted a vari-
ational Bayesian approach to naturally incorporate the surprisal.
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