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ABSTRACT 

 

The Syntactic Bits of Nouns: How Prior Syntactic Distributions Affect Production, 

Comprehension, and Acquisition 

 

by 

 

Nicholas Andrew Lester 

 

Usage-based linguistic theory argues that experience is the fundamental organizing principle 

of language. Linguistic representations are extracted from – and continuously tuned by – 

probabilistic features of language use. Much psycholinguistic evidence supports this 

argument, particularly in the domain of lexical processing. For example, how a word is 

distributed across its various lexical and morphological contexts influences how quickly it is 

recognized and produced in isolation. Fewer studies have explored how syntactic 

distributions affect lexical processing, and of these, even fewer have adopted 

comprehensive, abstract measurements of syntax. In this dissertation, I present several new 

information-theoretic tools for measuring the syntactic distributions of words based on the 

Dependency Grammar formalism. This formalism allows me to contrast two independent 

dimensions of syntactic structure: hierarchical status and word order. Further, I provide a 

new method for teasing apart information bound to syntactic and lexical contexts. I compute 

these measures for nouns based on two large corpora of English. 

These measures are correlated with behavior in several contexts. First, I re-analyze the 

noun-based trials of two previously published databases of visual lexical decision response 
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time data, one simple and the other primed. I then turn to production, reporting two picture-

naming studies. In the first, participants produce nouns in isolation. This task consitutes a 

stong attack on the hypothesis that syntactic distributions affect noun production; at least on 

its face, it does not require participants to access syntactic information in order to 

successfully complete the task. In a follow up, participants were asked to name the images 

using a syntactic frame (the + NAME). This task should promote syntactic access, increasing 

the likelihood that prior syntactic distributions should play a role. Finally, I test whether 

children are senstive to these syntactic distributions (based on adult speech) as they begin to 

produce nouns in syntactic contexts for the first time using a large, densely sampled 

longitudinal corpus of child speech. 

Results show that isolated noun processing is affected by prior syntactic distributions in 

both comprehension and production. However, the specific nature of these effects differs 

across modalities, and in production, as a function of whether the nouns were produced in 

isolation or within a syntactic frame. The measures also predict the age at which nouns first 

emerge in the speech of children.  
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I. Words and syntactic structures 

Traditionally, linguistic theory has drawn a strict divide between what must be 

memorized and what can be predicted on the basis of abstract rules. The motivating principle 

behind such theory is the pursuit of balance between the seemingly infinite generativity of 

language on the one hand, and the arbitrary conventions of how meaning is mapped onto 

form on the other. Clearly we must memorize some aspects of a language; otherwise, there 

could be no cross-linguistic variation in what combinations of sounds encode what 

meanings. Equally clear is the fact that these arbitrary pairings of form and meaning are 

combined according to systematic rules or at least very strong statistical regularities. With 

knowledge of these rules, one can create novel combinations of memorized chunks even if 

no such combination has ever been produced before and yet still be perfectly understood. 

Most theories now agree that lexical items must maintain direct links to syntactic 

structures. For some, these links are represented within the lexical entries. Each word is 

annotated for the set of syntactic frames which it may head (e.g., which argument structure 

constructions fit a given verb), along with categorical information about how it may be 

integrated into the frames of other words  (e.g., part of speech, mass/count distinctions, and 

so on; Bresnan, 2001; Chomsky, 1995; Pollard & Sag, 1994). These theories tend to 

emphasize linguistic competence over performance, grammatical potential over actual 

language use (Chomsky, 1965). Probabilistic aspects of language use are seen as ancillary 

and derived from language-external constraints on human cognition. Other theories argue 

that words and syntactic structures are represented independently, but connected via direct 

links in a network-like mental structure (e.g., Diessel, 2015; Goldberg, 2006; Langacker, 
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1987). These theories emphasize the fact that words and syntactic constructions share certain 

critical properties. For example, both convey meaning, and in the case of partially 

lexicalized constructions (e.g., idioms such as KICK the bucket), both may contain 

phonological content. These theories also tend to emphasize the role of performance in 

structuring competence. In Diessel (2015)'s usage-based construction grammar, for example, 

associative links develop between the words and syntactic structures (among other 

components) based on our experience with language during acquisition and use. The bonds 

themselves mirror the categorical specifications of the theories described above; however, 

they are enriched by probabilistic information at several scales (e.g., single items, classes of 

items, and so on). Diessel's model therefore construes the lexico-syntactic space as a 

distributed stochastic network – one in which words are situated within a rich, 

hyperdimensional syntactic space. In this dissertation, I build on prior research to refine our 

understanding of (i) how these syntactic spaces are structured, (ii) how to measure the 

information carried by these networks, and (iii) how this information impacts lexical 

comprehension and production in adults, as well as lexical acquisition in young children.   

A. From distributional learning to language processing 

Infants learning a language are confronted with a significant problem, what William 

James referred to as a “blooming, buzzing confusion” of raw experience (James, 1890; 

Goldstein, Waterfall, Lotem, Halpern, Schwade, Onnis, & Edelman, 2010). However, as 

Zellig Harris (1991) points out, the buzzing confusion of the raw data are actually highly 

intrinsically structured, even more so when one considers regularities in the extrinsic social 

context in which such data are presented (Goldstein et al., 2010). This structure reveals itself 
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in the biased distributions of repeated content – linguistic, interactional, and contextual – 

which infants can exploit to parse, classify, and predict language use (Saffran, Newport, & 

Aslin, 1996). Over time, the information carried by these distributions allows children to 

generalize more abstract patterns, such as those that constrain the co-occurrence of words, 

that is, syntactic constructions (Goldberg, 2006; Tomasello, 2003). These processes have 

also been observed for adults learning miniature artificial languages (Wonnacott, Newport, 

& Tanenhaus, 2008). Crucially, Wonnacott and colleagues show that even after relatively 

small amounts of exposure, adults show sensitivity to distributional information in 

production, comprehension, and even in abstract linguistic competence (in the form of 

grammaticality judgments). Thus, it is reasonable to expect that the distributional properties 

of words shape acquisition, as well as language processing, all the way into adulthood.  

Indeed, the natural distributions of words, as measured on the basis of very large corpora, 

have been shown to impact child and adult language use across multiple types of context: 

lexical contexts (words in sequence), morphological contexts (stems and affixes), and 

syntactic contexts (words and the structural frames they inhabit).   

1. Lexical context 

The frequency of words has long been known to play a strong role in lexical processing 

(Oldfield & Wingfield, 1965). However, recent work suggests that lexical frequency actually 

summarizes a number of different factors (e.g., Baayen, 2011). One such factor is the 

diversity of lexical contexts in which words occur. For example, more frequent words are 

more likely to surface near a greater variety of other words within small or immediate 

contextual windows. McDonald and Shillcock (2001a,b) introduce a measure which they 
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call contextual distinctiveness to measure the diversity of these lexical contexts. They use an 

information-theoretic measure called relative entropy to capture the amount of information 

carried by the lexical context of a word relative to the prior expected frequencies of words 

within the language generally. They find that this measure outperforms word frequency as a 

predictor of adult performance in visual lexical decision. However, they did not find a 

correlation between contextual distinctiveness and age of acquisition. Instead, they found 

that it correlated strongly with lexical ambiguity, suggesting that the measure taps into 

semantic representations. Later research affirms the usefulness of contextual windows for 

modeling semantics (e.g., Bullinaria & Levy, 2012). 

2. Morphological context 

Studies of the morphological distributions of words have uncovered a number of effects 

in adult processing. In a pioneering study, Kostić, Marković, and Baucal (2003) propose a 

measure capable of accounting simultaneously for (a) the base frequency of inflectional 

variants of words and (b) the number of syntactic functions possible for that inflectional 

category, relative to the overall syntactic variability of cases within the paradigm.
1
 For 

example, the Serbian paradigm for feminine nouns contains six morphological variants. For 

each stem, one takes the probability of its occurring in a particular case-inflected form, then 

divides that by the number of syntactic functions served by the case. This ratio is then 

divided by the sum of the complete set of ratios for each of the possible inflectional variants. 

                                                 
1
 Cases typically differ in the number of syntactic functions they may serve. For example, 

the Serbian accusative case expresses object status, as in Uzeo je svoju knjig-u 'He took his 

book-ACC', as well as temporal adverbials, as in Došao je u sred-u 'He came (on) 
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The negative (base-2) log is applied to transform the value to (positive) bits. The resulting 

value increases when a case-inflected variant is both syntactically heavy and takes up less of 

the overall probability of its stem. Crucially, case-inflected variants with higher values for a 

given stem are processed more slowly, with this measure accounting for up to 88% of the 

variability in visual lexical decision latencies for adults. These results show that inflectional 

distributions carry information about both the likelihood of a word occurring, as well as the 

uncertainty of the syntactic function that the word will serve. 

Building on this research, Moscoso del Prado Martín, Kostić, and Baayen (2004) 

introduce a measure based on Shannon's definition of entropy for discrete distributions 

(Shannon, 1948), known as the inflectional entropy. This measure captures the productivity 

of a stem across its inflectional variants, given the overall probability of encountering a word 

from the same inflectional class, where the probabilities reflect maximum-likelihood 

estimates based on large corpora of naturally occurring language use. Inflectional entropy 

increases as stems are more evenly distributed across the available case-inflectional variants. 

Moscoso del Prado Martín and colleagues find that inflectional entropy correlates negatively 

with response times in a visual lexical decision task for adults. Therefore, words are 

processed best when they have been experienced in a more diverse array of inflectional 

environments. Similar results have been reported for English, which uses analytic means for 

expressing the same inflectional meanings (Lester & Moscoso del Prado Martín, 2015). 

Baayen, Feldman, and Schreuder (2006) explore the correlations between inflectional 

entropy and a number of other variables. Crucially, they find that inflectional entropy 

                                                                                                                                                      

Wednesday-ACC' (Kostić et al., 2003). 
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significantly predicts subjective age of acquisition ratings, such that words with higher 

entropies are learned earlier. Stoll et al. (2012) find that in Chintang, a polysynthetic Tibeto-

Burman language with complex verbal morphology, children begin to produce greater shares 

of verbs as they approach adult-like verbal inflectional entropies for in their own speech. 

Milin, Filipović-Đurđević, & Moscoso del Prado Martín (2009) elaborate these findings 

by introducing the notion of paradigms. They use the relative entropy (basically the same 

measure applied by McDonald and Shillcock, 2001a) to measure the typicality of the 

distribution of Serbian nouns across their inflectional exponents relative to the overall 

pattern for words of the same gender (masculine or feminine). They find that nouns with 

more typical distributions are processed faster. 

3. Syntactic contexts 

Earlier work from theoretical linguistics suggests a strong link between the processes 

that operate within words and those that operate between words (Marantz & Halle, 1993; 

Marantz, 1997). These similarities have also been noted on the typological scale: where 

some languages express a syntactic relationship morphologically, others may encode the 

same relationship analytically. Less research has examined the role of syntactic distributions 

in isolated lexical processing. Baayen, Milin, Filipović-Đurđević, Hendrix, & Marelli (2011) 

modify the approach of McDonald and Shillcock (2001a,b) by restricting the contextual 

variation to a specific syntactic construction, namely, the prepositional phrase. They measure 

the typicality of the distribution of nouns within prepositional phrases (in this case, just 

prepositional trigrams of the form PREP + DET + NOUN, as in on the table) against the 

baseline frequency of prepositions. They found similar results to those reported by 
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McDonald and Shillcock: words with more typical distributions within the syntactic frame 

were recognized faster in visual lexical decision. Effects of this measure have since been 

observed in the electrophysiological signature (Hendrix, Bolger, & Baayen, 2016). Note, 

however, that this approach still relies on small co-occurrence windows and purely lexical 

variability (i.e., variation occurs within a syntactic construction, not across syntactic 

constructions). 

Linzen, Marantz & Pylkkänen (2013) take first steps towards defining a truly syntactic 

distributional space for verbs. Rather than relying on lexical variation within a single 

syntactic construction, they measure the distribution of verbs across the set of argument 

structures that they project. Unlike Baayen et al. (2011), they do not find a behavioral effect 

in visual lexical decision. However, they do find an effect in the electrophysiological 

signature. This could be due to many factors, including a change in the word class being 

investigated. Lester & Moscoso del Prado Martín (2015) create a hybrid syntactic space for 

English nouns based on a large corpus of English text. They model the space after the 

functions encoded by the rich case systems of the Finno-Ugric languages (e.g., Finnish, 

Estonian, and Hungarian). This space was defined using a combination of prepositional 

phrases (e.g., of for the genitive relation) and positions within abstract phrase-structure trees 

(e.g., N heads of NPs that are simultaneously leftward sister to VPs and daughter to S nodes 

for the nominative relation). Unlike Baayen et al. (2011), purely syntactic frames were 

included. Unlike Linzen et al. (2013), measurements were taken for nouns, and specific 

syntactic functions were prioritized over full argument structure frames. Unlike either of 

these studies, the (bias-corrected) entropy of the frequency distributions was taken directly, 
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rather than taking the relative entropy. Similar to Baayen et al. (2011), but unlike Linzen et 

al. (2013), they find a strong negative correlation between diversity and response times in 

visual lexical decision. Lester & Moscoso del Prado Martín (2016) refined this strategy by 

creating three fine-grained, purely syntactic entropies of nouns based on dependency graphs. 

Dependency graphs have individual words as nodes. Arcs connect pairs of nodes, and each 

arc represents a typed syntactic relationship. For each pair, one word “depends” on the other 

(e.g., in the phrase a cake, a depends on cake via the determiner relation). Lester and 

Moscoso del Prado Martín define the syntactic space as the frequency distribution of nouns 

across the different dependency relation types in a large corpus of American English. They 

compute separate entropies for nouns as heads and nouns as modifiers. They correlate these 

measures with production latencies in a bare-noun picture naming task. They find a positive 

correlation for as-head diversity, but a negative correlation for as-modifier diversity, 

suggesting that different aspects of syntactic distributions can impact word processing in 

different ways, at least in word production. However, the dependency formalism used in that 

study presents a potential issue: while the syntactic relationships themselves are abstract, 

they are instantiated by specific words. In many cases, the nature of the syntactic relationship 

may be fully reducible to the identity of the words. This predictivity between word and 

syntactic relationship suggests a potential confound between those measures and the 

contextual distinctiveness measures of McDonald and Shillcock (2001a,b). 

Each of these studies comes with certain shortcomings regarding how they 

operationalized syntax. Baayen and colleagues measure lexical variability while controlling 

for the syntactic form of the utterances. Linzen and colleagues measure syntactic variability, 
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but do not control for differences across hierarchical levels (e.g., as-head vs. as-modifier 

contrasts for verbs), or for the contributions of variability across the component phrasal units 

that make up the argument-structure configurations. Lester and Moscoso del Prado Martín 

account for syntactic diversity, as well as hierarchical asymmetries, but do not control for 

lexical variability. None of those studies accounts for another crucial feature of syntax, 

namely the relative ordering of words bound by syntactic relations. Further, only Linzen and 

his colleagues compare syntactic diversity and typicality as competing predictors of 

behavior. A major goal of this dissertation is to build on the approach of Lester and Moscoso 

del Prado Martín (2016) to solve these issues. Doing so will help to clarify questions 

regarding how syntax guides the distributional learning of words, shaping patterns of use and 

ultimately the language processing architecture itself. A second important goal is to 

generalize the findings reported there to cover multiple aspects of word production and 

comprehension, as well as language acquisition during early childhood.   

Each of the core chapters of this dissertation – Chapters II through IV – is designed to be 

a standalone paper. As such, the reader should expect to encounter some of the same 

information across these chapters, particularly regarding the computation of the measures. 

However, readers interested in specific topics will find everything they need within each 

chapter. Chapter II introduces several new information-theoretic measures of the prior 

syntactic distributions of nouns. Analyses of the effects of these measures on two previously 

published datasets of visual lexical decision, simple and primed, are reported. Chapter III 

explores similar effects in word production. Results of two picture-naming experiments are 

reported. The first experiment requires participants to name pictures with isolated nouns 
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(e.g., “banjo!”), revealing effects of prior syntactic distributions in a non-syntactic task. The 

second explores whether these effects remain when the participants are required to produce 

the names within a syntactic frame (e.g., “the banjo!”). Chapter IV reports a corpus study of 

the first appearance of nouns in a dense longitudinal sample of two- to three-year-old child 

speech. A regression technique based on the logic of survival analysis is used to test whether 

prior syntactic distributions affect the emergence of nouns in the earliest stages of syntactic 

development. Chapter V synthesizes the results of the studies from comprehension, 

production, and acquisition to arrive at a general picture of the effects of prior syntactic 

distributions on how nouns are learned and processed. Limitations of the studies and 

directions for future research are also presented. Finally, the Appendix describes a large 

database – the Syntactic Diversity of English Nouns, or SynDI-EN – which contains 

measures of the syntactic diversity and prototypicality of thousands of English nouns. The 

methods for computing these measures are described in detail, and examples are provided 

for high- and low diversity/prototypicality nouns.  
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II. Effects of Prior Syntactic Distributions on Comprehension 

 A. Simple lexical decision 

Much of what we know about lexical processing comes from studies that analyze 

behavioral or neurological responses to isolated words. The goal of such research is to probe 

the inner workings of the lexicon by limiting interference from syntax and other external 

factors. Accordingly, the focus has been on lexically endogenous variables, including those 

related to orthography, phonology, semantics, surface or lemma frequency, and so on (Balota 

et al., 2007). It has often been claimed that contextual variables do not impact lexical 

processing. For example, Balota, Paul, and Spieler (1999), summarizing the state-of-the-art 

in lexical processing research at the time, state that “discourse-based syntactic and semantic 

information do not contribute to isolated word recognition” (p. 15).  However, converging 

evidence from comprehension and production suggests that isolated word processing is also 

sensitive to the semantic and syntactic contextual distributions of words (Adelman, Brown, 

& Quesada, 2009; Baayen, Milin, Filipović-Đurđević, Hendrix, & Marelli, 2011;  Hendrix, 

Bolger, & Baayen, 2016; Kostić, Marković, & Baucal, 2003; Landauer & Dumais, 1997; 

Linzen, Marantz, & Pylkkänen, 2013; Milin, Filipović-Đurđević, & Moscoso del Prado 

Martín, 2009; Moscoso del Prado Martín, Kostić, & Baayen. 2004). The logic often invoked 

to explain these effects is that our natural experience of language involves simultaneous 

activation of words and syntactic structures (e.g., when we read a sentence, listen to a friend, 

etc.). If the system develops in response to our natural experience, then we should not expect 

words to dissociate from syntax simply because we have contrived to present the former 

absent the latter (Linzen et al., 2013). 
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Several issues remain open, of which I consider three. First, behavioral results have been 

mixed. Baayen and colleagues observe effects of syntactic distributions in both behavior 

(Baayen et al., 2011) and neurophysiological signals (Hendrix, et al., 2016). Linzen et al. 

(2013) replicated the neurological effect but did not find an effect on behavior. This 

discrepancy may come from several sources. First, the two studies considered different types 

of distributions. In the study of Baayen et al. (2011), syntactic distributions were measured 

within a single structure: the prepositional phrase. They compute the frequency with which 

nouns and prepositions co-occur. The label “syntactic” in this context thus refers to 

variability between word forms that share a syntactic bond. That is, the frequencies reflect 

word/word co-occurrence. Such lexical co-distributions are known to reflect semantics 

(Bullinaria & Levy, 2012), thus bringing the syntactic nature of the effect into question. 

Linzen and colleagues, on the other hand, looked at variability of words across syntactic 

structures. They compute the frequency with which verbs occur in each argument-structure 

construction (e.g., the ditransitive construction <NPAGT VERB NPREC NPPAT>, as in The boy 

sent his grandmother a letter). These frequencies reflect word/structure co-occurrence. 

Perhaps a similar measure for nouns would likewise show no correlation with response times 

(RTs). 

Second, the role of probability is not yet well understood. Linguistic models differ in 

whether the relationships between words and syntactic structures are categorical (licit vs. 

illicit; Chomsky, 1995) or probabilistic (usage-based; Diessel, 2015). Distributional 

measures will necessarily capture aspects of both: forms that license more structures 

naturally have more diverse frequency distributions than those that license fewer structures. 
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However, no study to my knowledge has directly pitted these two explanations against each 

other. Simply because probabilistic measures have been successful does not mean that 

analogous categorical predictors could not produce the same effect. 

Third, in reality, syntactic contexts are far richer than simple mappings from word to 

structure. For example, they involve both hierarchy – functional asymmetries between 

related units, often termed headedness – and word order. For example, some theories argue 

that words only carry syntactic information about the structures that they head (e.g., 

Chomsky, 1995). Heads are the functional cores of syntactic structures, as exemplified by the 

noun man in the noun phrase the tall man. In this case, word/structure distributions are 

expected to impact processing only when sampled across structures that the word heads. The 

measures of Linzen et al. (2013) focus on head structures, while those of Baayen et al. 

(2011) focus on non-head structures (nouns are not heads of prepositional phrases). Word 

order, on the other hand, may relate directly to processing speed. For example, structures that 

require words to be produced earlier may have different aggregate effects on word 

processing than those that require words to be produced later. Specifically, the former 

structures may produce facilitatory effects, the latter inhibitory effects, in line with the 

positions they enforce upon the words.    

In the present study, I address each of these points. First, I develop several probabilistic 

measures of the fully delexicalized syntactic distributions of nouns. These measures serve as 

analogues to the measures used by Linzen and colleagues. They differ from prior measures 

by accounting for both hierarchy and word order. Second, I develop an alternative set of 

measures based on the assumption that syntactic information in the lexicon is purely 



 

 

 

 14 

categorical. I carefully decorrelate the probabilistic and categorical predictors and allow 

them to compete as predictors of RTs in lexical decision. If syntactic information does not 

affect lexical decision, the improved noun measures offered here should not correlate with 

RTs. On the other hand, if syntactic information does impact isolated word recognition, we 

should derive a better estimate of the shape and magnitude of this effect from these measures 

compared to those proposed in earlier studies. Finally, if probabilistic syntactic information 

is relevant, then we should find that the probabilistic measures explain a unique portion of 

the variance in RTs, over-and-above what can be attributed to categorical distributions alone. 

1. Effects of syntactic context on lexical decision 

Different aspects of syntactic context have been found to affect how quickly we 

recognize words in visual lexical decision. Early work focused on inflectional morphology 

(the syntactic component of word building). Moscoso del Prado Martín, et al. (2004) found 

that in Serbian, a language with seven inflectional cases, nouns are recognized faster to the 

extent that they spread their probability evenly across the case inflections. Serbian case 

inflections reflect syntactic functions (e.g., status as subject or direct object). Therefore, this 

finding suggests that when nouns are used in a diverse array of syntactic constructions, they 

are easier to process. Henceforth, I refer to this type of effect as a diversity effect. This 

interpretation was later challenged by evidence that similar effects could be simulated using 

distributional semantics alone (Moscoso del Prado Martín, 2007). But later work pointed out 

that these distributions are actually hierarchically organized. Words are nested within 

inflectional classes. These classes define the formal properties of the morphosyntactic 

variants of word roots. Serbian nouns may belong to many such classes depending on how 
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they inflect.  Milin et al. (2009) measured the case distributions of nouns against the average, 

or prototype, distribution specific to their inflectional class. Words that matched the average 

distribution of nouns from their class were recognized faster. I refer to this type of effect as a 

prototypicality effect.  Excusing the homoncular analogy, these lexical prototypes may be 

thought of as the “expectations” of the processor. Words that fit the system better are 

processed more efficiently. However, these prototype measures still suffer from the same 

issues as the general distributional measures proposed by Moscoso del Prado Martín et al. 

(2004). Based on Moscoso del Prado Martín (2007), these effects could be attributed to 

semantic prototypes, though this possibility has not to my knowledge been explored. 

Baayen et al. (2011) scale the investigation up to analytical syntactic relations. They 

treated prepositional trigrams in English (e.g., in the bucket) as proxies for an English 

analytical case system. They computed prototype measures for each noun across the set of 

prepositions in these trigrams given the average distribution of prepositions. I refer to this 

measure as the in-structure approach to reflect the fact that the distribution is calculated over 

lexical co-variability within a single syntactic structure. They found that nouns that matched 

the prototype were recognized faster. In other words, nouns are processed most efficiently 

when they serve best the functions we need most. Importantly, the effect is the same for both 

morphological and analytical manifestations of syntax.   

Linzen et al. (2013) attempted to replicate these effects for verbs. They looked at the 

distributions of verbs across 28 different argument-structure configurations (i.e., the highest 

order syntactic units that must accompany the verb to create an acceptable utterance). The 

distributions so defined differ crucially from those proposed by Baayen et al. (2011) in that 
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they measure variability across instead of within abstract structures. I refer to this as the 

across-structure approach. They computed diversity and prototypicality measures based on 

these distributions. They found neural correlates in areas consistent with syntactic processing 

(Broca's area), suggesting that their measures had successfully tapped into syntax. I refer to 

this as the across-structure diversity effect. However, they did not replicate the behavioral 

effect for either measure in lexical decision. They tentatively conclude that syntactic 

information does not impact lexical decision. Importantly, however, they found that the 

diversity and prototypicality effects had different localizations and time-courses. These 

differences suggest that diversity and prototypicality constitute distinct aspects of word 

processing. 

The in-structure and across-structure measures (as applied in these studies) differ in at 

least two important ways, both of which could help to explain the discrepancy in the 

behavioral findings. First, in-structure measures capture word/word co-occurrence 

distributions while across-structure measures capture word/structure co-occurrence. Any 

approach that measures the distribution of words relative to other words will be sure to 

capture a great deal of semantic information (Bullinaria & Levy, 2012). Therefore, the 

positive effect of in-structure diversity on behavior found by Baayen et al. (2011) could be 

due to semantics (see Moscoso del Prado Martín, 2007). Second, the across-structure 

approach as applied by Linzen and colleagues produces head distributions, while the in-

structure approach as applied by Baayen and colleagues produces non-head distributions. 

Therefore, the discrepancy might be due to a contrast in the effects of head-based and non-

head-based distributions. We should thus prefer a measure that captures word/structure 
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instead of word/word relationships, but which also accounts for headedness. 

2. How is context represented? 

I have so far focused on how context affects responses to stimuli. But we still need an 

account of what types of representations or processes can account for these responses. 

Several possibilities have been considered in the linguistic and psycholinguistic literature. At 

one extreme, some linguistic theories argue that words (specifically, open-class roots) bear 

no syntactic information whatsoever (Borer, 2005; Marantz, 1997). To explain the behavioral 

effects, these theories could argue that reading usually involves syntactic processing. The 

artificiality of the task does not overcome the expectations of the system, and the 

independent syntactic system kicks on when exposed to the word. This syntactic activity 

could feed into the lexical decision. Such an account would be difficult if not impossible to 

distinguish from theories that include syntactic information in the lexicon. 

Other accounts annotate words for syntactic features. In these theories, syntactic features 

are  matched against labeled positions in syntactic trees to ensure that each word is slotted 

into its appropriate position. This is the general logic behind terminal productions in context-

free grammars (CFGs). For example, in the production N → chicken, the nonterminal N 

category is equivalent to a syntactic annotation for chicken that constrains its distribution in 

the broader syntactic system. These annotations can be much more elaborate than simple 

part-of-speech labels. For example, in Lexical Functional Grammar (LFG; Bresnan, 2001; 

Neidle, 1994), lexical entries are marked for the complements (arguments) they take, both at 

the functional (e.g., agent) and structural level (e.g., subject). This information is stored as 

categorical feature labels that allow the word to trigger syntactic building processes. These 
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theories can therefore account for the relationship between verbs and the diversity of 

structures studied in Linzen et al. (2013) without having to invoke spontaneous task-

irrelevant syntactic activity. However, these theories are explicitly non-probabilistic. In order 

for these theories to be correct, the number of syntactic structures should explain the RTs 

better than the frequency distribution of a targets across those structures. Earlier probabilistic 

findings would be recast as noisy approximations of the number of syntactic types per word 

(type count and entropy are positively correlated). 

Another class of theories emphasizes the functional and theoretical similarities between 

words and syntax. Many such theories even go so far as to define syntax as simply the most 

abstract end of the lexicon (e.g., Langacker, 1987; Goldberg, 1995; Diessel, 2015). Words 

relate directly to syntactic structures, similar to the representations in LFG. However, they 

can relate to any type of syntactic structure, irrespective of whether they are functional heads 

of that structure. This more inclusive position predicts that syntactic distributions beyond the 

subcategorization frames studied by Linzen and colleagues should also impact processing. 

Possible support for this comes from Baayen et al. (2011), who found distributional effects 

for a syntactic structure in which the noun is not head. 

Another important feature of these theories is that they treat word–syntax relationships as 

fundamentally probabilistic (Diessel, 2015). Relationships between nodes in the network are 

tuned by experience: the more often and more distinctively that two linguistic units are 

experienced in close syntagmatic or syntactic conjunction, the stronger the connection 

between them (and the weaker the connections between these and other structures). This 

model allows for a straightforward interpretation of the distributional effects observed in 
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lexical decision. These effects could arise through a pattern of feedback between lexical and 

syntactic nodes, where the local feedback potentials are proportional to frequency. 

Psycholinguists have proposed their own set of models of the lexicon and lexical access 

specific to comprehension (Baayen et al., 2011; Coltheart et al., 2001; Davis, 2010; Grainger 

& Jacobs, 1996; Norris, 2006; Plaut, 1997; Morton, 1978; Seidenberg & McClelland, 1989). 

None of these models contains a syntactic component, but neither do any specifically 

preclude syntax. However, as pointed out by Norris (2013), some models are more flexible 

than others. For example, the interactive activation models of Seidenberg and colleagues 

(e.g., Harm & Seidenberg, 2004; Seidenberg & McClelland, 1989) require a new component 

and interfaces between that component and the others. The fundamental organization of the 

model would change, but the functional properties would remain the same. Specifically, a 

tier of syntactic nodes would be added, with connections at least to orthography/phonology, 

and likely to semantics as well. Prototype effects could be modeled by setting resting 

activation at the syntactic tier according to the prototypical distribution. Other models, such 

as the Bayesian Reader of Norris (2006), simply need to “plug” syntax into the existing 

machinery. For example, syntactic information could be fed into the prior probability of the 

Bayesian equation. Similarly, task-specific models such as the Drift-Diffusion Model of two-

way choices (Ratcliff et al., 2004) could also easily accommodate new information streams 

when making predictions about behavior in lexical decision. 

Other models might not need any change at all. Baayen et al. (2011) introduce a two-tier 

network of input orthographic nodes and output meaning nodes. They couple this network 

with an expectation-based, error-driven learning algorithm (Rescorla & Wagner, 1972). The 
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network was able to model the syntactic paradigm effects from Milin et al. (2009). This 

means that a morphological paradigm exerted its effect without being represented in the 

model! They explain the success of the model in terms of discriminative learning. Syntax 

provides stable points of variability within the input. For example, English prepositional 

phrases define a position relatively close to nouns in which prepositions may vary. Over 

time, this variability helps to carve away the incidental aspects of the context to solidify the 

connection between the noun's form and its meaning. What remains is the most cross-

contextually stable meaning that coincides with the presence of the noun. With more diverse 

distributions come stronger and more targeted inferences from noun form to meaning. 

Similarly, prototypical words, whose distributions match the expectations of the system the 

best, stand to benefit the most from the contextual variability that drives learning. This leads 

us to the third hypothesis: 

The argument from discriminative learning runs into a problem with the findings of 

Linzen et al. (2013), who found no effect of diversity or prototype measures on lexical 

decision RTs. Why should the discriminative logic play out for nouns but not verbs? A 

possible answer presents itself if we consider the different ways that the two studies defined 

their syntactic distributions. Baayen and colleagues looked at lexical variation within a 

single syntactic construction. Their measure therefore amounts to a syntactically constrained 

version of the lexical co-occurrence measures discussed in Bullinaria and Levy (2012), 

which are typically interpreted as capturing semantics, not syntax. Furthermore, by looking 

at lexical variation, Baayen and colleagues bias the question in favor of the abilities of their 

two-tier model. By contrast, Linzen and colleagues looked at syntactic variation within a 
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single lexical item. The distributions they considered were based on abstract syntactic 

templates. Therefore, they specifically ignore the lexical contribution of the syntactic 

context, where Baayen and colleagues rely on it completely. Without the overt lexical cues 

for the different syntactic constructions, discriminative learning may not apply. The question 

is swhether other measures of syntactic diversity and prototypicality will likewise produce 

null results for nouns once lexical cues have been filtered out.  

The above literature review suggests three general hypotheses about possible syntactic 

effects on lexical recognition. These three hypotheses relate to syntactic diversity, measured 

categorically and probabilistically, and prototypicality. They are outlined below: 

― categorical hypothesis: words that are attested in more syntactic constructions 

are recognized faster. 

― probabilistic hypothesis: nouns that are distributed more uniformly across the 

syntactic structures in which they occur will be recognized faster. 

― prototypicality hypothesis: nouns with syntactic distributions that resemble that 

of the prototypical noun will be recognized faster. 

There are two points to note about these hypotheses. First, the two diversity measures, 

categorical and probabilistic, are treated separately. This is because the number of available 

syntactic structures is logically independent of the frequencies with which a word occurs in 

those structures, and so may independently affect RTs. Second, prototypicality is treated 

alongside the diversity measures. This is because Linzen et al. (2013) found 

neurophysiological evidence that diversity and prototypicality tap into separate mental 

processes. Therefore, predictions about effects from these two sources are not logically 
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attached to the same null hypothesis. 

Across the three hypotheses, there are eight possible outcomes. Of these, only four are 

seriously associated with (psycho)linguistic theory. These patterns along with the compatible 

theories are given in Table 1. Pluses indicate support for the hypothesis; minuses indicate no 

support. 

 

Table 1: Possible outcomes across hypotheses and compatible theories. 

Diversity   

Categorical Probabilistic Prototypicality Supported theory 

+ + + Baayen et al., 2011  

Diessel, 2015 

Goldberg, 2006 - + + 

+ - + not predicted 

+ + - not predicted 

+ - - Bresnan, 2001 Chomsky, 1995 

- + - not predicted 

- - + not predicted 

- - - Linzen et al., 2013 

 

The discriminative learning and usage-based models are compatible with positive results 

for probabilistic diversity and prototypicality. Two outcomes meet this requirement, shown 

in the first two rows of Table 1. The difference between these outcomes speaks to a 

secondary question regarding the independence of categorical and probabilistic diversity 

effects. Do they tap into distinct processes, or are the categorical measures merely worse 
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approximations of the same phenomenon underlying both measures? If the latter is true, the 

effect of probabilistic measures should swallow that of the categorical measures. If not, we 

should see independent effects of each. Importantly, we shouls not see an effect of 

categorical diversity and prototypicality, but not probabilistic diversity. This outcome would 

require that probabilistic information is represented and exploited by the prototypicality 

system but ignored by the diversity system. No theory reviewed here could explain this 

outcome in a principled way. 

In the next section, I introduce categorical, probabilistic, and prototypical measures of 

the syntactic distributions of nouns. I adopt a lower-level approach than Linzen et al. (2013) 

based on Dependency Grammar (Hudson, 2007; Mel'čuk, 1988; Nivre, 2005; Tesnière, 

1959) that accounts for both word order and headedness in a straightforward way. With the 

help of these measures, we can evaluate whether (truly) syntactic distributions affect isolated 

noun processing and, if so, how. 

3. Measuring syntactic distributions 

Defining the syntactic space for any word is tricky. For one, syntactic constructions may 

be defined at multiple levels of abstraction, ranging from the binding of individual pairs of 

words to the ordering of entire phrasal units. Moreover, these constructions may or may not 

differ as a function of specific lexical content occupying one or more positions in the 

abstract syntactic frame (e.g., the what's X doing Y frame; Kay & Fillmore, 1999). To make 

matters worse, any actual syntactic token of moderate complexity is thought to 

simultaneously instantiate all hierarchically embedded component constructions (Langacker, 

1987; Goldberg, 1995). Therefore, even if you could identify all constructions (you cannot, 
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for several reasons beyond the scope of this study), you would have to decide at which 

level(s) to count. This situation creates serious practical problems. The more inclusive we 

become in terms of what counts as a distinctive syntactic entity, the less likely we are to 

observe sufficient frequencies of those constructional types to form a reliable picture of a 

given lexical item. 

I attempt to side-step these issues by abandoning completeness in favor of compactness. I 

define the syntactic space based on the low-level, relatively economical syntactic categories 

found in the dependency-based grammatical formalisms (e.g., Hudson, 2007; Mel  uk, 1988; 

Nivre, 2005; Tesni re, 1959).  In the more typical phrase-structure model of syntax, syntactic 

structures are viewed in terms of constituency, or functionally bound groupings of words 

(e.g., the    formalism; Jackendoff, 1977 ). Such formalisms require both word nodes and 

abstract/phrasal nodes (e.g., NP standing for a noun and all of its dependents). Dependency 

approaches differ by focusing only on the immediate syntactic relations between pairs of 

words. Each syntactic relation has a tri-fold structure, which I refer to as a bundle. Each 

bundle consists of a head, a modifier, and a typed functional relation, or dependency. The 

head is roughly the semantic and syntactic core of the dependency. For example, the head 

usually (but not always) determines the behavior of the bundle, and is usually modified in 

some respect by the modifier. More precise definitions are difficult to pin down, and vary 

across dependency-based theories. The modifier is defined negatively as the word which is 

not the head. As mentioned previously, it typically modifies some aspect of the meaning of 

the head, though it may also serve other syntactic functions. For example, in some systems, 

conjoined nouns are directly related by the conj relation. In these relations, the non-initial 
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coordinand(s) are modifiers of the initial coordinand. Thus, in the phrase the dog and the cat, 

cat would serve as modifier to dog, even though the relationship between the two is much 

different from that of yellow to bumblebee in the yellow bumblebee. Finally, the dependency 

label specifies the type of syntactic relationship between the words. As an example, consider 

the sentence The rabbit hopped. This sentence consists of three dependencies. First, the 

word hopped is bound to the abstract sentential ROOT via the root dependency. This is the 

dependency version of the starting symbol (for English, the S node) in context-free phrase-

structure grammars. Next, hopped serves as head to modifier rabbit via the nsubj 

dependency. This dependency binds subject head nouns to verbs. Finally, rabbit calls the as a 

modifier via the det dependency, which binds determiners to nouns. The diagram of these 

relationships, known as a dependency graph, is presented as Figure 1. In the diagram, arrows 

point from heads to modifiers. 

 

 

 

 

 

Figure 1: A dependency graph of the sentence The rabbit hopped 

 

Dependency formalisms differ with respect to the types of syntactic relationships they 

recognize. These differences can arise for many reasons, for example, variability in the 

salient features of the languages to be modeled, the goals of the designer (e.g., fine-grained 
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analysis of a single language vs. comparison across many languages), and so on. Despite this 

variability, the most commonly used dependency sets show a great deal of overlap in terms 

of general inventory and how the inventory is mapped into particular linguistic structures. 

For convenience, I use the CLEAR dependency labels (Choi & Palmer, 2012), which have 

been operationalized in the spaCy dependency parser for Python (Honnibal & Johnson, 

2015). The CLEAR labels are somewhat more narrowly defined than other popular 

dependency sets (e.g., the Universal Dependency labels; Schuster & Manning, 2016), and so 

offer a slightly more fine-grained perspective. 

These dependencies provide a compact, low-level representation of the English syntactic 

system. Importantly, they capture similarities between instances of the fully realized 

argument structure that were not captured by previous measures (Linzen et al., 2013). For 

example, intransitive and transitive uses of a verb both involve the nsubj subject 

dependency, and so with dobj object relations in transitive and ditransitive uses, etc. Given 

that language processing has been shown to be highly incremental (e.g., Ferreira, 1996; 

Novick, Kim & Trueswell, 2003), the lower-level perspective offered by the dependency 

parse may present a more realistic picture of the primary units of interaction in everyday 

language processing. And in many linguistic theories, lexical items interface with broader 

structures mostly through intermediary embeddings, from the nested structures of Cognitive 

Grammar (Langacker, 1987) to the maximal projection rules of generative grammar 

(Chomsky, 1970). Moreover, dependencies provide simple operationalizations of headedness 

(the head/modifier contrast) and word order (the direction in which the dependency faces). 

They therefore allow us to go well beyond prior measures in assessing how syntactic context 
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impacts word processing. 

i. Syntactic diversity: Probabilistic vs. categorical approaches.   I define the syntactic 

diversity of a word as its frequency distribution across the binary syntactic dependencies in 

which they occur. The standard tool for summarizing frequency distributions that has been 

employed by all previous studies in this vein comes from information theory, namely, the  

entropy (Shannon, 1948). Entropy is defined as the average negative log probability of any 

given outcome of a random variable, for example, the occurrence of a particular English 

word. The formal expression of the Shannon entropy is given in Equation 1. 

 

          (1)  

 

Higher entropies indicate more diverse distributions. For discrete entropies, the upper 

limit is defined as the negative log of the total number of possible outcomes (i.e., the 

uniform distribution, where all outcomes are equiprobable). This would be the case for 

words that occur equally often in each of the dependencies available to them. Such words 

could be said to carry the maximal amount of syntactic information. The lower bound is 0, 

which arises only under conditions of perfect certainty (i.e., when only one outcome is ever 

attested). This would be the case for words that only occur in a single dependency. Such 

words carry no information about the syntactic system. 

Measuring syntactic diversity in the manner proposed above requires that we consider 

the joint occurrence of nouns and syntactic dependencies. Accordingly, p(w) in Eq. 1 will be 

replaced by the joint probability of the target word t and any given syntactic dependency d, 
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expressed as p(d , t) where d ∈ D, and D is the set of all dependencies. In practice, D must be 

defined relative to a particular dependency annotation scheme. In this case, D is the set of 

unique CLEAR dependencies. 

These probabilities are based on frequency counts, which can be organized into an n x d 

matrix, where n is the number of target nouns and d is the number of dependency types in D. 

Each row stands for a unique noun and each column for a unique syntactic dependency. Each 

cell contains the joint frequency of the noun and the dependency. Thus, for each instance of a 

target noun, I count how many times it occurs with each syntactic dependency, resulting in a 

frequency distribution of length d. Sample frequency distributions are provided in Figure 2. 

 

 

 

 

 

 

Figure 2: Sample syntactic frequency distributions 

 

These distributions still conflate the hierarchical status of the noun in the dependency 

(i.e., whether it is head or modifier) and the local word order (i.e., whether the dependency 

extends to the left or right). I therefore condition the frequency distributions based on these 

dimensions. For example, instead of tallying all instances of a noun in a given dependency, I 

can count only those instances for which the noun serves as head, or as rightward head, or 
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modifier in any direction, and so on. Considering all possible combinations of hierarchy and 

word order yields nine distributions. These are schematized in Figure 3.   

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Schematized vector types.    

 

In Figure 3, arrows point away from heads towards modifiers. Double-headed arrows 

indicate that hierarchy was not considered (i.e., head and modifier dependencies were not 

distinguished). Arrows extend to the left or right of the noun to indicate word order. By 

comparing the entropies of these distributions, I can explore which dimensions of syntax, at 

what granularity, are important for word processing. 

These nine measures can be refined further. As I wish to measure the fully abstract 

syntactic information carried by nouns, I have ignored the words to which each noun was 
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connected. Instead, I have counted only the abstract dependency types. These abstract 

dependency types have been assumed to capture syntactic relationships beyond what is 

available from the words alone (e.g., Lester & Moscoso del Prado Martín, 2016). In this 

respect, it resembles the entropies that Linzen et al. (2013) defined for verbs. However, 

dependencies never manifest apart from the words which instantiate them (setting aside the 

thorny issue of null or zero phenomena; see Fillmore, 1986), and some are restricted to only 

a few words. For example, the det relation, which binds determiners to nouns, allows very 

few words in modifier position (i.e., the, a, this, these, that, those, and so on). Furthermore, 

determiners are almost entirely restricted to the det relation in their own distributions. Thus, 

the information carried by the det category is largely bound up in the information carried by 

the determiners that appear in the context of a noun. No study to my knowledge has yet 

controlled for this relationship. However, as evidenced by the theoretical debate, we must 

tease apart the lexical and syntactic sources of contextual variability if we hope to draw 

sound inferences about the structure of the lexicon. In the extreme case, the information 

carried by words could be indistinguishable from that carried by syntactic structures. If so, 

we should expect naïve discriminative learning to apply just as it does for syntactically 

constrained lexical variation (Baayen et al., 2011). We would be then faced with two 

possible models: the model with word forms and meanings vs. the model with word forms, 

meanings, and syntactic categories. Given equal explanatory power, the former model should 

be preferred because it is simpler; it does not require the additional tier of syntactic 

generalizations. This conclusion – declared for morphology and hinted at for syntax by the 

proponents of discriminative learning (Baayen et al., 2011) – diverges markedly from prior 
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linguistic and psycholinguistic models, and so must be considered carefully and rigorously. 

To address this issue, we need some way to clean the measures of lexical information. 

Information theory provides a measure well-suited to this task: conditional entropy. The 

conditional entropy of distribution D given knowledge of distribution L is defined as H(D | 

L) = H(L, D) – H(L), where H(L, D) is the joint entropy of L and D. Let D be the frequency 

distribution across syntactic dependency types, and let L be the frequency distribution across 

lexical types of words bound to the targets. H(L, D) is the entropy taken over the joint 

probabilities p(l, d) for l ∈ L  and d for d ∈ D. This amounts to the sum of the entropies of 

the words and the dependencies independently minus the 'overlapping' mutual information 

between words and dependencies, or H(L, D) = H(L) + H(D) - I(L ; D).  Based on this 

definition, conditional entropy can be rewritten as  H(D | L) = H(D) - I(L ; D), or the 

information carried by the abstract dependencies minus the information shared between the 

dependencies and associated words. These relationships are schematized in Figure 4. 

H(D | L) has a lower bound of 0 when D = L, and an upper bound of H(D) when D and L 

are completely independent. Conditional entropy applied in this way captures the 

information unique to abstract dependencies, completely divorced from the information 

carried by the surface forms. 

Often, researchers estimate these measures using a maximum-likelihood estimators (e.g., 

Baayen et al., 2011; Kostić, Marković, & Baucal, 2003; Milin et al., 2009; Moscoso del 

Prado Martín et al., 2004), when based on samples, are known to be biased (Miller, 1955): 

they underestimate population-level (i.e., true) entropies. One way to combat this bias is to 

apply an entropy correction to account for the contribution of unobserved tokens. 
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Figure 4: Schematization of the relationships involved in conditional entropy: (a) 

nesting of lexical items within dependency types for target words; (b) Venn diagrams 

depict the calculation of conditional entropy. Shaded areas reflect the portion of the 

entropies corresponding to the label beneath the Venn diagrams. 

 

Moscoso del Prado Martín (2016) proposes using the method of Chao, Wang, & Jost (2013) 

for correcting the estimation bias. 

To test the categorical hypothesis, we need a set of measures to account for the number 

of dependencies licensed for nouns irrespective of their probability distributions across those 

dependencies. This proves to be a much simpler enterprise. Assuming that activation of 

categorical representations is constant, processing should depend on the syntactic coverage 

of the noun, which can be expressed as the number of dependencies attested with non-zero 
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frequency. Higher values reflect more robust interaction with the syntactic system. I assume 

that zero frequencies can be interpreted as “undefined” specifications and hence as 

functionally inert. 

ii. Syntactic prototypicality.  Prior studies have operationalized prototypicality as the 

relative entropy, sometimes known as the Kullback-Leibler Divergence (KLD; e.g., Milin et 

al., 2009; Baayen et al., 2011). Relative entropy measures the average number of bits 

required to recode a signal from one distribution as if it had come from an alternative 

distribution. Formally, it is expressed as Equation 2:   

 

                                    (2) 

 

This measure can be applied to the dependency distribution f(D), similar to the sample 

distribution in Figure 2. T is the frequency distribution of a given target word across 

syntactic dependencies f (Dtarget), and P is the 'prototype' distribution created by summing the 

distributions of all words f(Dtotal). The prototype is thus construed as the average distribution 

of words in the class. 

So defined, relative entropy suffers from two problems. First, Equation 2 defines the 

maximum-likelihood estimate of KLD.  It will therefore suffer from the same 

underestimation bias mentioned above for conditional entropy when applied to samples. For 

pointwise comparisons between distributions, this underestimation basis can be corrected by 

smoothing the frequency counts prior to taking the entropy. Several such methods are 

available. I select the James-Stein plug-in shrinkage estimator (Hausser & Strimmer, 2009). 
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This smooth is optimal for closed-class distributions (i.e., distributions for which the number 

of possible types is known). I assume that the set of dependencies encountered in a 15-

million word corpus of English serves as a reasonable approximation of the total syntactic 

space (given the CLEAR dependency labels used by the spaCy parser). 

The second problem is that relative entropy is asymmetric. The magnitude of 

prototypicality depends on whether the target is measured against the prototype or the 

prototype against the target. Ideally, one would not want to have to decide on a direction a 

priori (unless one's theory allows one to make such predictions). However, the relative 

entropy can be modified to produce symmetrical distance estimates using the Jensen-

Shannon Divergence (JSD; Lin, 1991). The JSD between two distributions P and T is 

defined as the average relative entropy taken from each distribution to the midpoint between 

them M. JSD is defined formally in Equation 3: 

      (3) 

where 

       (4) 

With these refinements in mind, I define the syntactic prototypicality of nouns thus. 

Prototypicality is operationalized as the sum of all noun distributions in the sample. 

However, in this case, I take the sum over estimates corrected via the James-Stein plug-in 

method. Let T be the syntactic distribution of a given target noun fJames-Stein(Dtarget). The 

prototypicality of T relative to P can thus be given as JSD(T||P). As with the diversity 

measures, prototypicality can be measured in each of the nine syntactic distributions defined 

above. 
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4. Materials and Methods 

I test the hypotheses by reanalyzing visual lexical decision RTs for the nouns of the 

English Lexicon Project (ELP; Balota et al., 2007). Only monomorphemic nouns are 

considered. Further, to avoid interference from out-of-class homographs (e.g., the hound 

sniffed the stump [noun] vs. The protesters hound the representatives [verb]), only 

unambiguous nouns are included. Word-class annotations were taken from the British 

Lexicon Project (Keuleers, Lacey, Rastle, & Brysbaert, 2012). 

i. Critical predictors. I calculate the conditional entropy H(D | L) for each noun from 

the sample. The component entropies – the entropy of non-target words H(L) and the joint 

entropy of words and dependencies H(L, D) – were estimated using the Open American 

National Corpus (OANC)
2
, a freely available, approximately 15-million word collection of 

American English writing and transcribed speech from many different genres and registers. 

First, I parsed the OANC using the spaCy dependency parser (Honnibal & Johnson, 2015). 

Then, for each of the target words, I generated 18 frequency distributions, two for each of the 

syntactic spaces in Figure 3. One of the distributions in each pair reflects the frequencies of 

the non-target forms that are bundled with the target f (L). The other reflects the joint 

frequencies of non-targets and the dependencies that bind them to the target f(L, D). Next, I 

compute the entropies of the distributions. I correct the entropies for underestimation bias 

using the Chao-Wang-Jost method (Chao, Wang, & Jost, 2013) before subtracting H(L) from 

H(L, D). Because I correct the entropies prior to taking the difference, some distributions 

                                                 
2
 http://www.anc.org/OANC 
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may produce negative conditional entropies (which is impossible for true populations). 

These obviously incorrect values reflect uncertainty given the limits of the sample. However, 

they are not useless if we shift our focus to the relative magnitudes that distinguish these 

from the other observations. With a reasonable sampling rate (e.g., at least 50 tokens), we 

should not expect that negative conditional entropy estimates would be generated for 

distributions that do not actually fall in the lower end of the entropy range. Next, I compute 

the categorical measures. I begin with the raw frequency vectors for each of the nine 

dependency-only distributions f(D). I count the number of dependencies with frequency > 0 

in f(D) for each noun. Finally, I compute the prototypicality measures, likewise on the basis 

of f(D). 

The nine syntactic spaces that I consider are necessarily intercorrelated. For example, the 

total distribution of a word across syntactic dependencies are decomposable into the head 

and modifier distributions
3
. This is true for both probabilistic and categorical measures. If 

these correlations are strong, a situation known as multicollinearity, statistical models can 

struggle to apportion explained variance across the correlated predictors (e.g., Baayen, 

2008). Multicollinearity leads to untrustworthy parameter estimates and significance tests; it 

violates the assumption of the independence of error across predictor terms that is required 

for most regression techniques (Chapter 2 of Zuur, Ieno, Walker, Saveliev, & Smith, 2009). 

Because these measures are collinear, they cannot be compared directly within the same 

model. Therefore, we need some way to extract the independent sources of information that 

                                                 
3
 Technically, Ht = Hh + Hm + Hc, where Hc is the entropy of the choice between head 

and modifier. 
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are distributed across the predictors. I tease apart these latent sources of information using 

Independent Component Analysis (ICA). The first step of ICA is to rotate (whiten or sphere) 

the raw variables (i.e., the 'mixed signals') to remove correlations between them. This step 

creates maximally Gaussian relationships among the dimensions of the PCA space. Then, the 

whitened space is rotated to maximize non-Gaussianity. Following the logic of the Central 

Limit Theorem, the mixture of independent source signals will be more Gaussian than any of 

the sources individually. Therefore, the rotation that produces the least Gaussian space 

captures the most non-Gaussian (i.e., non-random) structure between the variables. 

Crucially, the resulting components are fully statistically independent. The positions of 

words within the new component space(s) can now be used to predict RTs. The meaning of 

the components can be interpreted relative to the so-called mixing matrix, which contains the 

co-efficients needed to project each word from the raw multi-dimensional space into the 

doubly rotated component space. The higher the absolute value of the coefficient between a 

raw predictor and independent component, the stronger the relationship between that 

predictor and component. Predictors may differ in the signs of their coefficients, allowing for 

contrasts to appear within the components themselves. 

I performed three ICAs, one over each set of nine measures: categorical, probabilistic, 

and prototypicality. I used the FastICA algorithm (Hyvärinen & Oja, 2000) as implemented 

in the R package fastICA (Marchini, Heaton, & Ripley, 2013). The algorithm can be used to 

generate any number n of components. I estimate an appropriate minimum n using Principle 

Component Analysis (PCA). An important difference between PCA and ICA is that for the 

former, the extracted components must be orthogonal (based on a chain from the first or 
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principal component – the most variance explained – to the second, third, and so on). I 

define the number of independent components n to be the number of PCA components 

needed to achieve 95% cumulative explained variance. The PCA performed on the 

probabilistic measures showed that six orthogonal components explain 95% of variance. I 

therefore extracted six independent components. I followed the same procedure for the 

categorical measures and found that a single component captures ~ 93% of the variance. The 

second component added only 3% explained variance, and its factor loadings were virtually 

indistinguishable from those of the first component. I therefore extract one independent 

component. Finally, I perform a PCA on the prototypicality measures. Based on the results, I 

extract three independent components via ICA. 

Pairwise scatterplots of the ten components (6 probabilistic + 1 categorical + 3 

prototypicality) suggested no substantial correlations. This suspicion was confirmed 

statistically: the measure of collinearity k fell well within the acceptable range (κ = 4.18; 

Baayen, 2008, suggests that k < 30 indicates no serious collinearity).  Therefore, these 

variables can be entered as competitors within the same model. Importantly, this allows us to 

(a) compare the categorical and probabilistic hypotheses and (b) treat the prototype and 

diversity effects as independent functional components of lexical recognition (Linzen et al., 

2013). 

ii. Control variables. A number of variables are known to impact response latencies in 

visual lexical decision (VLD). Therefore, it is necessary to exclude these factors as possible 

alternative explanations for any relationship between the target variables and the ELP RTs.  

These variables include 
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― word frequency 

― orthographic similarity 

― orthographic word length 

― age of acquisition 

Together, these variables are known to account for the bulk of unique variance (> 40%) 

compared to other relevant but weaker predictors (~2%; Brysbaert et al., 2011). 

Prior research has shown that word frequency is the strongest predictor of VLD RTs 

(though see Baayen, 2010, for a discussion of the ultimate sources of this effect). In 

particular, word frequencies derived from movie subtitles (SUBTLEX-UK; van Heuven, 

Mandera, Keuleers, & Brysbaert, 2014) perform the best, explaining more of the RT variance 

than even the carefully balanced, 100-million-word British National Corpus. For that reason, 

I include the SUBTLEX-UK frequencies as a predictor. There has been some debate about 

whether to use surface or lemma frequencies. The former refers to the number of 

observations of a single string (e.g., float), while the latter refers to the sum of the surface 

frequencies for all inflectional variants of a word (e.g., float, floats, floating, …). However, 

recent work has shown that (a) lemma and surface frequencies are highly correlated (r > .9), 

(b) they have an almost identical effect on RTs (Brysbaert & New, 2009), and (c) surface 

frequencies are robust predictors of RT for low-frequency words while lemma frequencies 

are not (Baayen, Wurm, & Aycock, 2007). Because the frequency distribution of any set of 

words will carry a strong positive skew, I take the logarithm of the frequency. 

Another relatively strong determinant of visual word recognition is the formal 

(orthographic) similarity of that word to other words in the lexicon. Similarity may be 
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operationalized in a number of ways (e.g., mean letter bigram frequency, Coltheart's N). 

However, Markoni, Balota, & Yap (2008) show that their measure – the orthographic 

Levenshtein distance or OLD20 – accounts for the largest amount of variance in word 

recognition RTs. OLD20 reflects the average number of insertions, substitutions, or deletions 

that would need to be made to a word to produce its 20 closest orthographic neighbors (i.e., 

the average Levenshtein distance). A low value means that the spelling of the word overlaps 

a great deal with other words in the lexicon; a high value means that the form of the word is 

rather idiosyncratic. OLD20 correlates positively with word recognition latencies (Markoni 

et al., 2008), meaning that people are faster at recognizing words that are similar in form to 

many other words. In light of these facts, I include OLD20 as a control predictor (estimates 

taken from the BLP annotation). 

Word length has proven to be a less reliable predictor of recognition latencies. In some 

cases, it has been shown not to exhibit any effect (O'Reagan & Jacob, 1992); elsewhere, it 

has been shown to be inhibitory (at least in the longer extremes; New, Ferrand, Pallier, & 

Brysbaert, 2006); and in some cases, it has been shown to depend on other variables, such as 

frequency (with inhibitory length effects surfacing only for low-frequency words) or age 

(with length effects surfacing only for older participants; Balota, Cortese, Sergent-Marshall, 

Spieler, & Yap, 2004).  New et al. (2006) uncovered a U-shaped effect of orthographic 

length. Each additional character in shorter words (< seven characters) actually facilitated 

response latencies. By contrast, each additional character for longer words (> seven 

characters) was inhibitory. While the source (and shape) of the orthographic length effect 

remains controversial, the majority of studies suggests that it is an important determinant of 
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visual lexical devision latencies. Therefore, I include length in characters as a co-predictor in 

the statistical analysis.   

Another variable proposed to affect visual word recognition is the age at which words 

are typically acquired by native speakers, or age of acquisition (Morrison & Ellis, 1995; 

Cortese & Khanna, 2007; Kuperman, Stadthagen-Gonzalez, & Brysbaert, 2012; cf. Zevin & 

Seidenberg, 2002, for limitations). Generally speaking, the earlier a word is acquired, the 

faster the word will be recognized. I control for this effect by including the mean subjective 

age of acquisition ratings collected by Kuperman et al. (2012). Subjective ratings reflect how 

old people think they were when they first learned a word. These ratings have been found to 

be largely consistent across participants and to correlate strongly with lexical decision 

(Kuperman et al., 2012). 

iii. Response time data. Experimental data were taken from a previously published 

database of visual lexical decision RTs (Balota et al., 2007). Participants in that study 

completed approximately 3,400 lexical decision trials in two sessions, each broken into 

blocks of 250 items. Words were drawn from a master list of over >89,000 mono- and 

polymorphemic forms. Sublists for each block were controlled so that no single lexical root 

was viewed too many times (e.g., joy, enjoy, enjoyable, etc. were split across blocks). 

Nonwords were constructed by changing one or two characters in the target words, as long 

as the resulting form was plausible given English spelling conventions. Feedback on 

accuracy and speed was provided. RTs and accuracies were recorded. 

5. Results 
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I fitted a generalized additive mixed model (GAMM) with the R function bam from the 

mgcv package (Wood, 2016) predicting RTs from the ELP. Prior to fitting the model, the RTs 

were log transformed to remove a strong positive skew. Such transformations are not 

inherently necessary in additive models; however, model residuals were substantially 

improved by taking the logarithm. Only trials with RTs within 1.5 times the interquartile 

range of the mean were included in the analysis.  A pilot model revealed persistent 

underestimation problems for faster RTs; this issue was solved by discarding trials with RTs 

< 350 ms. This trim successfully corrected the underestimation, yielding approximately 

normally distributed model residuals. Only accurate trials were considered (i.e., trials for 

which the participant correctly identified the target noun as a word). This left 17,113 

observations of 584 noun types across 815 participants. Spline-based smooths were applied 

to word frequency, orthographic similarity, and age of acquisition, along with the ten ICA 

predictors, to account for possible non-linearity of the effects. Orthographic length was 

treated as linear because it offered too few distinct values to accommodate the smooth. To 

account for autocorrelative effects, I include two terms based on how the participant 

performed on the immediately prior trial: a parametric term for accuracy and smoothed term 

for RT. Further, I include factor smooths for overall trial number per participant. Random 

intercepts were allowed by item. 

To balance explanatory power against parsimony, I conducted a backward model 

selection informed by the method of Zuur et al. (2009; Appendix A). Selection was only 

applied to the critical predictors; control predictors were left intact. I began with the 

maximal model and proceeded to remove each non-significant critical predictor whose 
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removal reduced the Akaike Information Criterion (AIC) the most. I continued this process 

until only significant critical predictors remained. The resulting model is summarized in 

Table 2 below. 

 

Table 2: Summary of GAMM predicting ELP response times. 

Parametric terms β Error t p 

intercept 6.34 .02 389.04 <.001 

orthographic length .01 .003 2.96 <.01 

prior accuracy .01 .004 1.73 .08 

     

Smooth terms eDF refDF F p 

SUBTLEX frequency (log) 4.06 4.61 20.12 <.001 

age of acquisition 1.00 1.00 70.49 <.001 

OLD20 1.00 1.00 0.06 .81 

prior RT 7.99 8.71 372.98 <.001 

trial number by participant 21.82 25.72 7.66 <.001 

within-stimuli variance 275.01 576.00 .92 <.001 

categorical component 1.00 1.00 5.42 <.05 

probabilistic component 6 1.00 1.00 7.37 <.01 

prototypical component 1 2.11 2.43 5.14 <.01 

 

Table 2 shows the coefficient estimates, standard error, t values and p values for the 

parametric terms. Smooth terms are provided with the expected and residual degrees of 

freedom, F values, and p values. Critical predictors are shown in bold. 

First, I consider the controls related to the experimental design and procedure. As 

evidenced by the significant effect of the within-stimuli smooth, the nouns differed in the 

extent to which they differed from the group mean, all else being equal. Hence, some 
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variability among the words lies beyond the control measures taken here (a notion supported 

by the adjusted R
2 

 of .26). The significant sequence-by-participant factor smooth indicates 

strong autocorrelative effects that differed in shape across individual participants. In other 

words, subjects responded differently to cumulative experience with the task. Narrowing in 

on sequential effects, I find that RTs increased with RTs from the previous trial. When 

subjects struggle to make a lexical decision, that struggle bleeds over into subsequent trials. 

Orthographic length surfaced as significant, while orthographic neighborhood density 

(OLD20) did not. These predictors are highly correlated (r = .79, pPearson-Product-Moment < .001). 

Therefore, the lack of an OLD20 effect could be due to interference from length.  I refit the 

model with length but not neighborhood density and neighborhood density but not length. In 

both cases, whichever variable I left in surfaced as highly significant (p < .001). According 

to the AIC, which measures model fit against model complexity, the model with 

orthographic length alone (AIC = -6987.78) should be preferred over that with OLD20 alone 

(AIC = -6983.84). No other effects were substantially altered by omitting either of these 

variables. 

The other two item-specific controls were highly significant, as well. As expected, word 

frequency was strongly negatively correlated with RTs: more frequent words were 

recognized faster. Also as expected, subjective age-of-acquisition estimates were positively 

correlated with RTs: words that people feel they learned later in life are recognized more 

slowly. 

The model uncovered significant effects for three of the ten critical predictors: the 

categorical component, probabilistic component six, and prototypicality component 1. I 
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consider each in turn. Figure 5 plots the loadings for the categorical component (left panel) 

and the effect of the component on RTs (right panel). This component loads in the same 

direction for all distributions, indicating a general diversity effect. Loadings are heaviest for 

headship and total diversity. The smallest contributor is rightward modifiership. Scores for 

this component correlate negatively with RTs: words that appear in more syntactic 

dependencies are recognized faster. From extreme to extreme, this benefit covers an 

approximately 30 ms window (though the specific magnitudes are not at issue here). I 

therefore find initial support for the categorical hypothesis. 

Figure 5: Significant effect of categorical diversity.Left panel: Component loadings 

of the single categorical component. Right panel: Effect of the categorical component 

on RTs. Y-axis shows the effect of the component on (log) RTs. The range of {-0.05, 

0.05} is equivalent to a range of approximately {-40, 40}in milliseconds. Positive values 

indicate slower than average RTs while negative values indicate faster than average 

RTs. The dotted line indicates no effect. Shaded areas indicate 95% confidence 

intervals Density of observations are indicated by a rug along the x-axis. 
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Over and above the categorical effect, I found a significant effect of probabilistic 

component six. The component loadings and effect of this component are plotted in Figure 

6. The loadings show that this component contrasts general modifier, general rightward, and 

rightward modifier diversities from the other measures. The co-loading of these variables 

suggests that  words that score negatively on component six are distinctively associated with 

diverse rightward modifier distributions. Conversely, words that score positively on 

component six are those that distinctively eschew diversity as rightward modifier, but pursue 

it elsewhere in the system. Scores from component six correlate negatively with RTs, 

meaning that distinctively diverse rightward modifiers are recognized more slowly than 

words that avoid those structures. The relationship is nonlinear; the negative correlation is 

most pronounced for words falling in the negative range of the component scores. The 

relationship attenuates sharply around zero (until the density of observations drops off 

between scores of 2 and 3). These findings support the probabilistic hypothesis. 
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Figure 6: Significant effect of probabilistic component. Left panel: Component 

loadings of probabilistic component 6. This component contrasts distinctively diverse 

rightward modifiers (negative values) from everything else (positive values). Right 

panel: Effect of probabilistic component 6 on RTs (range in ms = {-40, 80}). 

 

Finally, I found an independent effect of prototypicality. The left panel of Figure 7 shows 

the loadings for prototypicality component one. Similar to the categorical component, all 

measures load in the same direction, suggesting that distance from the prototype manifests 

itself in the same general way across all syntactic measures. Also similar to the categorical 

component, rightward modifiership stands out. Where it contributed the least to diversity, it 

contributes the most to distance from the noun prototype. The right panel plots the effect of 

this component on RTs. As expected by the prototypicality hypothesis, nouns that are more 

distant from the prototype are recognized more slowly. 

6. Discussion 

The results support all three of the hypotheses proposed above. Nouns that appear in more 

syntactic contexts are recognized faster (categorical hypothesis); nouns that are distributed 

more uniformly across these contexts are recognized faster (probabilistic hypothesis); and 

more prototypical nouns were recognized faster (prototypicality hypothesis). As predicted by 

the neurophysiological findings of Linzen et al. (2013), syntactic diversity and 

prototypicality showed independent, additive effects. However, unlike Linzen and 

colleagues, both types of effect were observed for RTs. This finding suggests that the 

dependency-based measures give more accurate estimates of the syntactic diversity of words. 
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Figure 7: Significant effect of prototypical component.  Left panel: Component 

loadings of prototypicality component 1. This component reflects general distance from 

the prototype. Distances in the modifier and particularly the rightward modifier 

distributions are prioritized. Right panel: Effect of probabilistic component 6 on 

response times.   

 

Several novel effects were also observed. First, syntactic diversity breaks down into additive 

effects of categorical and probabilistic diversity. Second, the diversity and prototypicality 

effects depend most heavily on rightward modifier dependencies. 

 This pattern of findings is inconsistent with theories that posit only categorical syntactic 

representations in the lexicon. In these theories, words either are or are not licensed in a 

particular structure (e.g., Chomsky, 1995). These theories could account for the categorical 

diversity effect observed here. For example, words that activate more syntactic categories are 

processed faster, perhaps through a feedback mechanism. However, if this account were 
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correct, we should not have seen effects from probability and prototypicality (both of which 

depend on frequency distributions). But we did see such effects, indicating that these 

theories are incomplete and underpredictive. Looking closer, we see that many of these 

theories are also unable to account for the modifier-driven diversity effect. Often, categorical 

theories only mark words for the structures that they may head (e.g., Bresnan, 2001; 

Chomsky, 1995). But the model revealed that the as-modifier diversities contributed the 

most to the categorical effect (Figure 5, left panel). 

These findings also differ from those observed by Linzen et al. (2013) for verbs. In that 

study, they found no effect of either diversity or prototypicality on RTs. Other work on nouns 

has reported a syntactic effect; but the measures used there were actually based on lexical 

variation (Baayen et al., 2011). Lexical variation is known to reflect semantics (Bullinaria & 

Levy, 2012). Therefore, it was possible that the findings for nouns were tainted by semantics. 

Linzen and colleagues were the first to use fully abstract, cross-structural syntactic diversity. 

Therefore, it was possible that similarly abstract measures applied to nouns would likewise 

show no correlation with RTs. However, the opposite was true: syntactic distributions impact 

the processing of isolated words. This discrepancy could stem from at least three differences 

between the study of Linzen and colleagues and this one. First, they based their measures on 

phrase-structural subcategorization frames, whereas as I based mine on binary dependencies. 

From a construction-grammar perspective, both levels should be involved simultaneously: 

an argument-structure construction embodies the entire argument configuration, as well as 

the lower-level constructions that fill out the individual arguments (Goldberg, 1995; 

Langacker, 1987). The dependencies studied here correspond to those lower-level 
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relationships. Perhaps these are more intimately tied to word processing given that they mark 

the point of entry for words into constructional frames. Second, I carefully corrected the 

entropy estimates to avoid underestimation biases. Noise attributable to biased estimates 

could have interfered with the model estimates for Linzen and colleagues. Third, regarding 

diversity, I made sure to remove all lexical information from the entropy estimates. Linzen 

and colleagues did not control for lexical information. This lexical information could 

interfere with the estimate, again obscuring the effect.    

Several theories can explain all three effects. Usage-based construction grammar 

(UBCG; Diessel, 2015; see also Goldberg, 2006) proposes that language is best modeled as a 

complex network of interactions between linguistic units at all levels of abstraction. 

Categorical specifications on word forms are replaced by arcs between word-level and 

syntax-level nodes. Statistical information derived from the input tunes the strength of these 

connections, thus accounting for the probabilistic diversity effect. When these connections 

and connection strengths match up with the expectations of the system, words are recognized 

more quickly. System expectations can be modeled in several ways. For example, patterns of 

resting activation may develop over time based on the average behavior of the system. When 

a noun deviates from this pattern, it will not benefit as much from the activation that is fed 

back from the syntactic system. Alternatively, prototypical nouns, which better signal their 

membership to the noun category, may provide more compelling evidence to the system 

responsible for making the two-way lexical decision judgment. This could surface as input 

into the drift space between two choices (e.g., Ratcliff et al., 2004) or as an influence on 

prior probabilities of encountering a noun with such-and-such syntactic behavior (Norris, 
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2006; see Linzen et al., 2013, for a similar suggestion). 

The discriminative-learning model of Baayen et al. (2011) could also account for these 

findings. According to this model, variability of contextual cues over time helps to solidify 

the bond between a target form and its meaning. Syntactic dependencies constitute one form 

of contextual cue. These cues are also thought to be paradigmatically bound, such that the 

information carried by a paradigm can influence discriminability of the connection between 

form and meaning. For example, the unconditioned distribution of prepositions (the 

paradigm) in English prepositional phrases represents the generalized potential for a 

preposition to be followed shortly by a noun. Nouns that function as objects to prepositions 

in proportion to the overall distribution of those prepositions will be more likely to surface 

when a preposition has been deployed (e.g., inversely proportional nouns would load too 

heavily on uncommon preposition types). Therefore, they stand to benefit the most from the 

information carried by the 'prepositional paradigm,' where that information comes in the 

form of structured contextual variability. The variability produces stronger, more stable 

connections between form and meaning, leading to more efficient reading. This, they argue, 

is the source of the typicality effect they observe. 

The primary evidence for discriminative learning comes from measures based on overt 

cues – cues that are directly available in the input, for example, inflectional endings or 

prepositions. These types of measure bias the results in favor of the model. This is because 

the model developed by Baayen and colleagues contains only two layers: an input layer for 

letter n-grams (usually 2- or 3-grams) and an output layer for meaning. Therefore, they are 

naturally capable of modeling lexical variation, but ostensibly incapable of modeling 
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variation for abstract categories. However, the measures considered here do not make any 

direct reference to lexical context. They are based solely on the syntactic dependencies that 

attach to the target noun. Information about the word to which the target is bound was 

explicitly removed. Therefore, these results constitute a challenge to the purely syntagmatic 

discriminative learning approach. Specifically, it appears that hierarchical, non-overt aspects 

of the contexts in which nouns appear also affect how well they are learned. We should 

therefore expect learning-through-discrimination to involve a multidimensional network of 

cues, including cues directly associated with the surface code (words built from graphs, 

phones, or signs) and higher-order, more abstract cues that emerge over time (e.g., Bybee, 

2010; Diessel, 2015; Goldberg, 1995). 

The contrast between rightward and leftward modifer distributions deserves further 

comment. Diverse and distinctively rightward modifiers were recognized more slowly, while 

diverse leftward modifiers were recognized faster. Why would diversity help in one context 

and hinder in another? Consider the nature of rightward modification. Nouns that modify 

words to their right participate in a head-final dependency. However, English has dominant 

head-initial word order, at least outside of the noun phrase (NP). Notice that NP-external 

relations of this sort are precisely where modifier relationships apply for nouns. Therefore, 

nouns with negative scores on this component fight against the typological orientation of 

English nouns as modifiers. Typological constraints like this should leave other traces. For 

example, they should affect word frequency. One would expect to find more words with low 

conditional entropies in the dispreferred dimension. Hence, the probability density function 

for rightward noun-as-modifier relations should be bunched up around 0. The density 
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function for leftward noun-as-modifier relations (head-initial ordering) should be spread 

more evenly across the range of entropy values. Figure 8 plots the probability density 

functions for the rightward and leftward variants of the noun-as-head and noun-as-modifier 

conditional entropies. 

Figure 8 supports this intuition. Words are clustered clustered below H(D | L) = 0.5 for 

the typologically dispreferred dimension, rightward diversity for nouns-as-modifiers (shown 

in orange). The greatest peak in density centered on 0.  By contrast, the typologically 

preferred dimension –leftward diversity for nouns-as-modifiers – has a wide distribution, 

with higher rates of occurrence in the upper ranges of conditional entropy (up to ~1.5, a full 

bit higher than that observed for rightward modifier diversity). 

 

 

 

 

 

 

 

 

 

 

Figure 8: Probability density functions for the conditional entropies of nouns.  

Different colors reflect different syntactic dimensions. 
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Typology should also relate to prototypicality: nouns that are diverse rightward modifiers 

should be atypical, hence less like the other nouns of the language. By definition, the 

majority of other nouns would follow the dominant head-initial preference (a point 

supported by the curves in Figure 8). Therefore, the processing disadvantage associated with 

rightward modifiership might actually be due to a typological prototype favoring head-initial 

structures. This intuition is supported by the prototypicality effect observed here. The general 

prototypicality effect was most strongly driven by rightward modifiership. Distance from the 

noun prototype was associated with longer RTs. The common thread is that distributions in 

the rightward modifiership space exert the strongest effect. Following the logic of 

discriminative learning, nouns of this type would not have the same general opportunity to 

occur and hence would not receive the same discriminative benefit as words that fit the 

overall trend. This explanation directly links syntactic typology to the local word processing. 

Such a link clears the path for new predictions regarding the behavior of typologically 

distinct languages. For example, we should observe opposite effects in strongly head-final 

languages, such as Japanese: the processing disadvantage should emerge for leftward-facing 

noun-as-modifier diversity. 

The primary take-away from this study is that reading a noun in isolation invokes the 

syntactic history of that word. While similar results have been observed before, this study is 

the first to demonstrate that purely syntactic distributions impact lexical decision RTs. These 

data falsify any theory that limits syntactic representation in the lexicon (e.g., Borer, 2005; 

Chomsky, 1995; Marantz, 1997; Ramchand, 2008).  These data also provide converging 
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support for the notion that syntactic information obligatorily impacts lexical access, 

regardless of task or whether the word is processed in isolation (e.g., Cubelli et al., 2005; de 

Simone & Collina, 2015; Lester & Moscoso del Prado Martín, 2016; Linzen et al., 2013). 

Even when the task requires no syntax, syntactic information impacts RTs. Finally, they 

underscore the need to decompose lexical frequency well beyond the typical type/token 

counts (Baayen, 2010; cf. Bybee, 2010). Each instance of a word is embedded in a 

multidimensional network of cues. Which cues are important to which tasks, and how 

frequency relates to these cues, are questions that may reveal important information about 

the processing mechanism. 

One unexpected finding of the present study was the typological contrast in diversity 

effects. Words that match the typological properties of language are recognized more quickly 

than those that go against the grain. This question deserves further study. One possible 

extension would be to compare the size of these typological congruence effects across 

languages. I expect languages that have cross-linguistically less preferred orders in a given 

domain to benefit less from congruence than languages with more preferred word orders, 

irrespective of whether the system is consistent within those languages. Such studies would 

help to solidify the links between linguistic representation, processing, and typology. 

B. Primed lexical decision 

Lexical priming in visual lexical decision has a long history. Many models have been 

proposed, but the scope of the effects they have sought to explain has been surprisingly 

limited from the global linguistic perspective. Perhaps the two most important strands of 

research have concerned manipulations of the orthographic and semantic relationships 
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between prime and target. Less studied but equally important are relationships between 

orthographic or semantic similarity and the morphological locus of these effects. However, 

because of the nature of the visual lexical decision task, syntax has been largely ignored. 

Researchers have generally assumed that determining whether a letter string is a legitimate 

word should not involve the syntactic system at all (what good would it do, if no clausal or 

phrasal parsing is required?). However, this assumption may not be warranted. For example, 

usage-based linguistic theory argues for direct connectivity between words and syntactic 

structures. These connections are in principle no different from those which bind word forms 

to conceptual-semantic representations. For example, Diessel (2015) argues that grammar 

can be captured by a network of relations in which any two nodes – including word forms 

and syntactic structures – may in principle become associated given appropriate statistical 

properties of live language use (production or comprehension in any modality). 

The notion that syntactic information may be present in the lexicon is one of the rare 

points of agreement among grammar formalisms in linguistics. For example, even 

generativist approaches to syntax (e.g., Chomsky, 1995), which otherwise propose a strict 

divide between grammar and lexicon, acknowledge that lexical items must be specified for 

syntactic categories. For example, the syntactic operation responsible for constructing noun 

phrases of the form NP → DET N (as in the waffle) must select all and only words of 

category N to fill the second slot. In order to preclude ungrammatical sequences (e.g., *the 

into), words must 'display' their membership in the appropriate category to the syntactic 

generator. Hence, all words are expected to contain information about syntactic categories 

relevant for the application of formal combinatorial rules. However, usage-based models go 
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further, suggesting that words and syntactic structures are directly and statistically related 

based on one's experience with language (e.g., Diessel, 2015). 

Converging evidence for these relationships comes from several sources, including 

language acquisition (Tomasello, 2003), lexical contributions to constructional meaning 

(e.g., Stefanowitsch & Gries, 2003), and semi-productivity of syntactic constructions 

(Goldberg, 2006; Zeldes, 2013). Importantly, such relationships have been demonstrated in 

online processing, even in a putatively non-syntactic task. Lester and Moscoso del Prado 

Martín (2016) showed that production latencies in a bare-noun picture-naming task were 

sensitive to the diversity of the probability distributions of the target names across the 

syntactic relations (as estimated on the basis of a large, syntactically annotated corpus of 

English writing). In the present study, I extend this research by asking two questions. First, 

do these syntactic diversity effects likewise surface in comprehension? And second, are these 

syntactic relations shared across lexical items, such that (dis-)similarity of the distributions 

between words will influence response times in a priming task? 

1. Methods 

To answer these questions, I first define a common syntactic space based on low-level 

syntactic relationships. Next, I estimate the frequency distributions of nouns within the 

syntactic space. I define a measure of distance in that syntactic space and compute this 

measure for prime—target pairs in a previously published database of primed visual lexical 

decision latencies. Finally, I correlate these distance measures with the target response 

latencies. 
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i. Data. Behavioral data come from the Semantic Priming Project (SPP; Hutchison, et 

al., 2013). The SPP contains response times and accuracies, along with a host of norming 

data, that were collected using a visual lexical decision task with overt orthographic priming. 

On each trial, participants were shown a centered fixation cross for 500 ms, followed by a 

prime word (all caps) for 150 ms. The prime was followed by a blank screen lasting either 50 

or 1050 ms (the interstimulus interval, or ISI). Finally, the target word was displayed (all 

lowercase) until a decision was made or 3,000 ms elapsed, at which point the experiment 

would advance to the next trial. 

 I take only the trials containing primes and targets that also appear both in the British 

Lexicon Project (BLP; Keuleers, Lacey, Rastle, & Brysbaert, 2012) and the age of 

acquisition norming database of Kuperman, Stadthagen-Gonzalez, & Brysbaert (2012). I 

limit the data in this way to take advantage of the additional lexical controls afforded by 

these databases. I further limited the trials to include only those for which string-identical 

tokens of both prime and target received majority noun tags in the British National Corpus 

(BNC). I do so to minimize non-noun interpretations of the (potentially ambiguous) strings. 

This procedure leaves us with 1,305 unique primes and 821 unique targets (a total of 1,670 

unique nouns).    

ii. Defining a syntactic space. Now that we have a set of nouns, we can measure the 

relationship between these nouns and the syntactic system. To do so, we must first define the 

scope of that syntactic system. At least a century of research have failed to produce an 

exhaustive list of the syntactic constructions of English (much less any other language), and 

I do not presume to offer such a list here. Instead, I rely on the set of low-level relations as 
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defined within Dependency Grammar formalisms (e.g., Hudson, 2006; Mel  uk, 1988; 

Nivre, 2005; Tesnière, 1959). Dependency Grammars differ from the more commonly 

employed phrase-structure grammars in that they model relations (dependencies) between 

pairs of words only. These relations are asymmetric: each extends from a head (the syntactic 

and conceptual core word) to a modifier (whose appearance is contingent on the head). Each 

dependency is labeled to reflect its syntactic function. For example, the and waffle in the 

noun phrase the waffle would be bound by the det relation, which attaches a determiner (the, 

the modifier) to a noun (waffle, the head). Other examples include the nsubj relation, which 

binds a noun (modifier) to a verb (head) as its subject, and the pobj relation, which binds a 

noun (modifier) to a preposition (head) as its object. Much more can be said about these 

relations and constraints on their implementation in broader phrasal and clausal contexts.  

However, such questions are beyond the scope of the present study. I adopt the dependency 

notation as implemented in the spaCy parser (Honnibal & Johnson, 2015). I do so primarily 

for practical reasons: spaCy provides one of the fastest and most accurate dependency 

parsers on the market (compare e.g., the Stanford CoreNLP toolkit; Manning et al., 2014). 

I define the syntactic space for nouns as the set of dependencies for which at least one 

noun from the sample of SPP primes and targets has been attested either as head or as 

modifier. I accomplish this in several steps. First, for each noun that appears both in the SPP 

and the BLP, I extract all sentences containing that noun from the BNC. Using the simplified 

CLAWS5 annotation (via the XML corpus reader provided in the Natural Language Toolkit; 

Bird, Klein, & Loper, 2009), I condition the search to include only sentences in which the 

word form was indeed tagged as a noun. Next, I parse those sentences in CoNLL format 
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using the spaCy dependency parser (Honnibal & Johnson, 2015). I then compute the 

frequency distribution of each noun across the dependencies for which it serves as head or 

modifier. To increase the reliability of the frequency estimates, I discard vectors for all nouns 

that occurred in fewer than 100 sentences in the BNC (~1 per million words). The total 

syntactic space is defined as a vector in which each column reflects one of the set of unique 

dependencies occurring across all nouns. Finally, I merge the individual frequency 

distribution of each noun into the total syntactic space, creating a matrix of n rows by m 

columns, where n equals the number of total unique dependency types (46) and m equals the 

number of unique SPP/BLP nouns (1,241). The result is therefore a uniform syntactic space 

for all nouns, where individual nouns may or may not be attested in each possible 

dependency. In theoretical terms, I treat these vectors as reflecting the statistical connectivity 

between each noun and the syntactic structures it inhabits, as proposed in the usage-based 

literature. Psycholinguistic support for this treatment comes from an earlier study showing 

that these and similar dependency vectors affect processing latencies in noun production 

independently of other factors, such as token frequency (Lester & Moscoso del Prado 

Martín, 2016). 

iii. Measuring syntactic similarity. We are interested in the possibility that pre-

activation of shared syntactic representations will influence the speed of word recognition. 

Therefore, we need some measure of the similarity between the syntactic distributions of 

primes and targets in the behavioral data. Note that similarity in syntactic space outlined 

above does not reduce solely to shared types of dependencies. For example, consider two 

words, w1 and w2, that occupy the same set of 20 dependency types. Suppose that w1 and 
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w2 have roughly equivalent overall frequencies and that those frequencies are distributed 

equally across the dependency types for both words. In this case, we would call them 

syntactically similar, and consider the number of overlapping types as an appropriate 

measure of the strength of their similarity. Now suppose that the two words have similar 

overall frequencies, but that these frequencies are distributed over complementary sets of the 

dependencies that they share, such that w1 has a frequency of 1 wherever w2 has a frequency 

>100 and vice versa. In this case, we would call them dissimilar; crucially, however, the 

type-based metric could not tell us this. Thus, we need some way of accounting 

simultaneously for shared types, as well as similar apportioning of the probability mass 

across those shared types. One measure well suited to this task is the Jensen-Shannon 

Divergence (JSD; Lin, 1991). JSD is a symmetric variant of the Kullback-Leibler 

Divergence (KLD; sometimes referred to as the relative entropy). The KLD between two 

probability distributions P and Q is defined as follows (Eq. 5): 

 

                (5) 

 

This measure captures the average amount of additional information that one would need 

in order to recode an event from distribution P as if it belonged to distribution Q. 

Importantly, KLD(P||Q) ≠ KLD(Q||P), meaning that one must decide a priori in which 

direction to take the distance. JSD provides a solution to the asymmetry problem by taking 

the midpoint between the two distributions, then taking the mean distance of the 

distributions to the midpoint. Formally, JSD is expressed as follows (Eqs. 6 and 7). 
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       (6) 

 

where 

 

                                                (7) 

 

Using this technique, JSD(P||Q) = JSD(Q||P), with values  bounded such that 0 ≤ JSD ≤ 

1. 

In the most typical case (and in the present study), JSD measurements depend on 

estimates of the probability distributions of events within a distribution, not the actual 

probabilities. Any given frequency estimate necessarily grows with sample size, which 

means that the so-called maximum-likelihood estimates for any given sample size are sure to 

underestimate the true probabilities. Furthermore, this effect will impact lower frequency 

items more heavily than higher frequency items. To guard against this bias, and the attendant 

frequency confound, I smooth the frequency vectors. Because the comparison of any two 

distributions P and Q via JSD requires that they share the same number of cells, I select the 

James-Stein shrinkage estimator (Hausser & Strimmer, 2009). This smoother is optimal for 

vectors for which the number of cells is known (here, I assume that the observed set of 

dependencies is exhaustive, but we know that this is probably not the case; however, note 

that the dependency vectors will grow uniformly in number of cells across noun types as new 

dependencies are uncovered). 
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We now have a means of formalizing the syntactic similarity between primes and targets 

for the SPP data. For each prime—target pair in the sample, I compute the JSD between 

them. A value of 0 indicates identity; a value of 1 indicates complete independence. 

However, we now face a broader issue. According to usage-based theory, (at least the bulk 

of) syntactic structure is meaningful – that is, directly linked to semantic representations in 

the same way as words (e.g., Diessel, 2015). This means that any effect we uncover for this 

measure may actually reflect semantic similarity, which is well known to impact response 

times in lexical priming (e.g., Neely, 1991).  Fortunately, the SPP contains  annotation of the 

degree of semantic similarity between prime and target; cosine similarity in the Latent 

Semantic Analysis space (LSA). LSA measures the extent to which words occur in similar 

stretches of text, with higher cosine values indicating greater similarity (for a detailed 

discussion of this approach, see Landauer & Dumais, 1997).  To keep things simple, I 

transform the cosine measures in SPP by subtracting them from 1. This way, both the 

transformed semantic measure and the syntactic measure reflect distance, such that 

increasing values correspond to decreasing similarity. These measures have the added 

advantage of both scaling from 0 to 1, allowing us to compare the relative strength of their 

effects on response times. 

Figure 8 shows the relationship between the JSD (y-axis) and LSA (x-axis) values for the 

present sample. As expected there is a slight but significant positive (linear) correlation, 

meaning that words that are similar in meaning tend to surface in the same syntactic 

contexts. While not central to the present study, an important feature of Figure 8 is the 

triangular shape of the variance: words that are very close in meaning vary only slightly in 
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syntactic similarity, while words that are distant in meaning vary more widely. This 

relationship supports the account of Jackendoff (2013), who argues for the existence of 

syntactic generalizations (i.e., constructions) that allow structural inheritance among sets of 

semantically heterogeneous sub-constructions. At the very least, it suggests that syntax and 

semantics are not as tightly coupled as some would argue (e.g., Goldberg, 1995).   

 

 

 

 

 

 

 

 

 

Figure 8: Relationship between syntactic and semantic distance measures 

 

To avoid the semantic confound, I 'clean' the syntactic measure of its semantic content. I 

residualize the semantic measure out of the syntactic measure by performing a linear 

regression over the unique prime—target pairs in the SPP database. I predict JSD as a 

function of semantic similarity, then replace the original JSD estimates with the residuals of 

the model. In this way, I capture the information in JSD that is not attributable to semantics 
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(for a recent defense of this method, see Hendrix, Bolger, & Baayen, 2017; cf. Wurm & 

Fisicaro, 2014). 

iv. Further controls. A number of other factors are known to impact recognition 

latencies in the primed lexical decision paradigm. These fall into three categories: effects 

related to recognizing individual words, (other) effects based on the relationship between 

prime and target, and effects related to the nature of the task itself. From the first set, the 

most important predictor is the surface frequency of the target: more frequent words are 

recognized faster. I use the SUBTLEX-UK frequencies, which are based on movie subtitles 

and known to outperform estimates drawn from other corpora, including the BNC (van 

Heuven, Mandera, Keuleers, & Brysbaert, 2014). I also include a measure of the density of 

the orthographic neighborhood of the target known as OLD20 (Yarkoni, Balota, & Yap, 

2008).  The more similar the spelling of the word to its closest neighbors, the faster it is 

recognized. Another important (if controversial) predictor is age of acquisition: the earlier a 

word is acquired in the lifespan, the faster it is recognized (e.g., Kuperman et al., 2012).  

Less important, but nevertheless known to exert an effect, is the orthographic length of the 

word: longer words take longer to recognize (New, Ferrand, Pallier, & Brysbaert, 2006). This 

effect is thought to be physical in nature. Lower acuity in the parafoveal region makes it 

more difficult to extract information from longer words (though see Veldre & Andrews, 

2018, for evidence that semantic and syntactic information is recovered in sentence reading). 

I include two predictors relating the prime and target besides the residualized syntactic 

measure. First, I include the LSA distance. As mentioned above, semantically similar primes 

are known to facilitate access to targets. In addition, I include the Levenshtein distance (LD; 
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Levenshtein, 1966; see van der Loo, 2014, for implementation in the R package stringdist) 

between prime and target. LD reflects the minimal number of changes (reversals, deletions, 

insertions) needed to transform one word into another. Orthographically similar prime—

target pairs should result in slower recognition latencies on the assumption that orthographic 

overlap between prime and target increases competition among candidate word forms 

(Adelman, et al., 2014). In addition to these main effects, I include two-way interactions 

between the (factorized) interstimulus interval on the one hand, and LSA, LD, and 

residualized JSD on the other. In this way, I account for the possibility that priming effects 

will be reliably stronger at shorter offsets between prime and target.   

Finally, I include the (log) sequential position of each trial in the overall experimental 

order of presentation. As participants move through the trials, some degree of fatigue should 

set in (each participant performed over 800 trials), producing generally longer RTs. 

2. Results 

I performed a linear mixed-effect regression predicting response latencies from the SPP 

primed lexical decision database as a function of the variables outlined above. In addition to 

fixed effects, I include random intercept adjustments for participants and prime—target 

pairs. I discard all latencies falling below 400 ms or 2 standard deviations above the mean 

(~1212 ms) as outliers (6.7% of all trials). In addition, I correct for a strong positive skew in 

the response times by taking the logarithm (as suggested by a Box-Cox power analysis; Box 

& Cox, 1964). Visual inspection of the model residuals with and without the corrections 

confirms the necessity of these steps. 
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All main effects for the control predictors besides OLD20 surfaced as significant at the 

α=.05 level, and in the expected direction. The model also uncovered a significant (p<.001) 

effect of the two-way interaction between LD and ISI: at 50 ms ISI, LD had a negative 

impact on response times (-2.5 ms per unit increase in LD), with no effect at 1050 ms. This 

result suggests that orthographic similarity between primes and targets indeed involves a 

(short-lived) competitive process, but I leave this question to future research. More 

importantly, the model revealed a significant interaction (p<.01) between ISI and LSA 

distance, this time in the expected direction: RTs increased by ~5 ms per .1 increase in 

cosine distance at short ISI. At long ISI, this effect was reduced to ~3 ms per .1 increase. The 

more semantically distant the prime—target pairs, the slower the target was recognized, with 

a sharper effect at short offsets.    

Over and above the effects of the controls, the model returned a significant main effect 

(p<.001) of residualized JSD, as well as a marginal interaction with ISI (p=.07). I focus on 

the former: for every .1 increase in residualized syntactic distance, RTs increased by ~4 ± ~3 

ms. Thus, the less related the prime and target in syntactic space, the longer it takes to 

recognize the target. 

3. Discussion 

The present study demonstrates a relatively strong effect of syntactic similarity on 

response times in a previously published database of primed visual lexical decision data. In 

fact, the effect was similar in strength to that of semantic similarity. To my knowledge, this 

study is the first to demonstrate that pre-activating a word's syntactic space affects access to 

that word in a prima facie non-syntactic comprehension task. The effect is perhaps all the 
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more surprising, given that it was revealed for nouns – a word class largely thought to harbor 

the least amount of syntactic information (usually restricted to a few category specifications; 

e.g., Durán and Pillon, 2011).  These findings have important implications for theories of 

language processing and representation. 

Current models of “single-word” lexical priming (Neely, 1991) based on lexical decision 

evidence have not been designed to account for syntactic effects. Instead, they have focused 

on the role of semantic and orthographic relations between primes and targets. However, 

they may be instructive for interpreting the results. While semantic effects have been 

associated with facilitation, orthographic effects have been associated with inhibition. That 

is, priming a target with a semantic associate helps to reinforce the orthographic evidence for 

the target (Neely, 1991), while priming with an orthographic associate interferes with target 

identification (Adelman et al., 2014). The data I rely on here do not provide a non-primed 

baseline, meaning that we cannot be sure whether syntactic similarity is facilitative or 

dissimilarity is inhibitory. I leave this question to future research. However, the similar 

shapes of the syntactic and semantic effects suggest that syntax, like semantics, feeds back 

into lexical candidates prior to the lexicality judgment. Furthermore, it suggests that syntax, 

like semantics, is obligatorily accessed as soon as lexical forms become active. Crucially, the 

relationships between words and syntax become active even when (overt) syntactic structure 

is not built into the stimuli and not specifically required to complete the task. Recent 

psycholinguistic work on single-word production has echoed this point. For example, Lester 

and Moscoso del Prado Martín (2016) report chronometric findings suggestive of large-scale 

feedback from syntax to lexicon in a bare-noun picture-naming task. Other studies have 
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found that syntactic category information is likewise obligatorily activated in non-syntactic 

production tasks (e.g., Durán and Pillon, 2011). The present study extends these findings 

from production to comprehension, from spoken language to written language, and from a 

simple to a primed paradigm. Hence, the converging evidence suggests that obligatory 

syntactic access, along with bi-directional feedback between syntax and lexicon, is a general, 

modality-independent property of  language processing. 

These data also speak to linguistic representation (Branigan & Pickering, 2017). In order 

for lexical priming to take place, some common connection must exist between the words 

and the representations underlying the measurement of their similarity. This notion is 

uncontroversially applied to the relationship between words and conceptual content in the 

semantic priming literature (e.g., Lam, Dijkstra, & Rueschemeyer, 2015). By extension, 

these results can be interpreted as reflecting a common set of syntactic structures to which 

each noun is individually connected. Moreover, the probabilistic nature of the measure 

suggests that connection weights – not just the set of shared syntactic types – are represented 

in the lexico-syntactic network, exactly as predicted by usage-based models of linguistic 

representation (Diessel, 2015). Importantly, these findings are not consistent with modular-

syntactic models (e.g., Chomsky, 1995), which posit a strict divide between the generative 

syntactic mechanism and the memory store of lexical items. Adapting the old jingle, “you 

can take a noun out of syntax, but you can't take the syntax out of a noun.” 

4. Future Directions 

I used Latent Semantic Analysis as a proxy for semantic relation when 'cleaning' the 

syntactic measure of its semantic component. However, LSA has its limitations. It is based 
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on similar distributions across the paragraphs of a large body of texts, regardless of the 

relative proximity of the words within those paragraphs. Hence, it may better capture broad, 

discursive-semantic similarity as opposed to the type of fine-grained, feature-driven 

semantic similarity which has also been demonstrated to impact lexical priming (Hutchison, 

2003). For example, two words may tend to occur in the same paragraphs, but never in the 

same sentence, or in the same positions relative to other words within sentences. To reduce 

granularity, one could consider distributions of words relative to the other words that fall 

within a small window. This technique has been shown to produce quite reliable semantic 

representations (even considering only a one-word window to the left and right of the target 

can be quite effective; Bullinaria & Levy, 2007). Measures of this sort should provide a more 

stringent test of the syntactic (or, at least, the non-semantic) contribution of this measure. 

  Recall that the model revealed a marginal interaction between the measure and the 

temporal offset of the prime and target. The SPP contains only two such offsets: extremely 

fast and extremely slow. Therefore, one may find a more robust interaction at offsets 

intermediate to these extremes. Furthermore, by incrementally increasing the offset between 

50 and 1050 ms, one could treat this variable not as a factor, but as a proper numerical 

variable (true to its nature; Feldman et al., 2015).   he 
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III. Effects of Prior Syntactic Distributions on Production 

A. Introduction 

The relationship between words and syntax – the set of configurations into which words 

may be organized – has been a fraught topic in linguistics. Early theoretical research 

assumed a strict divide between the two, both in terms of function and representation 

(Chomsky, 1957, 1995). A hallmark of these theories is that words are objects in memory 

while syntax is a combinatorial system designed to operate over these memory objects: 

Words present a set of affordances in the form of categories (e.g., part of speech, gender, and 

so on), and syntax uses matching algorithms to map the appropriate word to the appropriate 

position in the syntactic structure (usually some form of hierarchical tree). These theories 

predict that lexical processing can take place in the absence of syntax so long as the 

combinatorial system is not directly engaged (e.g., by the requirement to produce a syntactic 

frame). This prediction has received some, albeit limited, empricial support. For example, in 

a picture naming task, La Heij, Mark, Sander, & Willeboorsde (1998) find that distractors of 

the same grammatical gender as the target response impact performance, but only when the 

picture is named using a noun phrase (DETERMINER+ NOUN), for which the form of the 

response depends on that gender information. When the name is produced by itself, no effect 

was observed. However, others have argued that this gender-congruence effect is a reflex of 

lexical selection of the determiner, a sort of priming effect whereby preactivation of the 

syntactic information necessary to select the correct phonological form of the determiner 

facilitates production of the NP (e.g., Costa, Kovacic, Fedorenko, & Caramazza, 2003).   

An opposed set of theories have posited that words and syntax are inextricably bound up 
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in one another (e.g., Goldberg, 1995). These theories predict among other things, that lexical 

processing should never proceed in isolation, but should always engage the syntactic space 

attached to a given word. More recent work goes further to suggest that words and syntactic 

structures are (potentially) directly related within a single memory network, sometimes 

referred to as the constructicon (e.g., Fillmore, Lee-Goldman, & Rhodes, 2012). These 

relationships go far beyond simple category labels. For example, the word cat is not simply 

annotated for its status as noun or countable; it participates in a broad network of relations 

with morpho-syntactic constructions at multiple levels of abstraction (e.g., stem + -s plural 

inflection, subject of transitive construction, and so on). Importantly, these relationships are 

fundamentally probabilistic. The strength of any single association depends on a complex set 

of cues derived from one's experience with the related elements within the network (e.g., 

Bates & MacWhinney, 1989; Diessel, 2015). I shall henceforth use the language of 

probabilistic distributions and interactive activation networks to refer to the same underlying 

phenomenon. A growing number of psycholinguistic studies support these types of models. 

For example, contra La Heij and colleagues, several studies using different experimental 

paradigms (blocking, picture-word interference) have reported significant effects of category 

(non)congruence in non-syntactic tasks (Cubelli, Lotto, Paolieri, Girelli, & Job,, 2005; de 

Simone & Collina, 2015; Gregory, Varley, & Herbert, 2012). In comprehension, the 

probabilistic associations between words and syntactic structures have been shown to affect 

recognition of isolated words both in behavior (Baayen, Milin, Filipović-Đurđević, Hendrix, 

& Marelli, 2011; Linzen, Marantz, & Pylkkänen, 2013) and electrophysiology (Linzen et al., 

2013). This work has so far looked at distributions within single constructions (nouns in the 
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prepositional phrase; Baayen et al., 2011; Hendrix, Bolger, & Baayen, 2017) or if across 

constructions, only those for which the word is the syntactic head (verbs in argument 

constructions; ;Linzen et al., 2013). Only one study to my knowledge has used a production 

task (Hendrix et al., 2017). While they did find an effect, their task involved a partially 

syntactic component (the pictures to be named were preceded by an orthographic phrasal 

frame, e.g., in the). Therefore, it is still not clear whether production of nouns is sensitive to 

prior syntactic distributions. 

The present study extends this body of work by answering several questions. First, I 

employ a cross-constructional measure of syntactic distributions for nouns (similar to the 

measures of Linzen et al., 2013, for verbs). Next, I distinguish two types of syntactic 

relationships, each with two levels: hierarchy, with a contrast between head and modifier 

functions, and word order, with leftward and rightward directions (measured from the noun). 

Third, I follow Linzen and colleagues by contrasting the information carried by the syntactic 

distribution to the prototypicality of that distribution. In so doing, I improve on the measures 

that Linzen and colleagues use for both of these kinds of information. Fourth, I compare 

production of the noun in isolation with its production in a predictable syntactic frame (the + 

NOUN). In this way, I test whether the syntactic connectivity – its resonance within the 

system – is powerful enough to impact production of the noun in a particular context. If 

syntactic information impacts the production of (truly) isolated words, then we have 

evidence that lexico-syntactic relationships are obligatorily accessed during lexical access. 

Such findings would fit with the probabilistic network account of Diessel (2015) and other 

usage-based accounts (e.g., Goldberg, 2006; Bybee, 2010). They would present a challenge 
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for models of syntax that do not allow direct probabilistic relationships between words and 

syntactic structures of all kinds (including structures for which the word is not a functional 

head; e.g., Bresnan, 2001; Chomsky, 1995; Kay, 2013). 

In what follows, I outline the evidence which links syntax to word processing and 

production. I then introduce two new approaches to measuring syntactic diversity and 

prototypicality, along with a set of 18 possible implementations of these measures. These 

measures are then correlated with response times in two picture naming experiments. Results 

are discussed in the context of the constructicon and how experience interacts with task 

demands to influence naming latencies.   

B. Syntax and word production 

The strongest evidence for obligatory syntactic activation in production comes from 

bare-noun object naming. In this paradigm, participants are presented with images of objects 

and asked to say their names aloud. The measures of interest are what name is produced and 

how long it takes to produce. Ostensibly, the task is non-syntactic in that the participants are 

not required to produce any syntactic structure. Empirically, La Heij et al. (1998) report that 

syntactic effects do not surface in bare-noun naming (e.g., banjo!), though they do surface in 

noun-phrase naming (e.g., the banjo!). La Heij and colleagues demonstrate this difference 

for Dutch nouns and noun phrases. When images are presented with distractor words from 

the same gender as the image name, participants produce the name of the image faster than 

when the distractors come from a different gender. Crucially, this effect only holds when the 

participants must also produce the gender-marked determiner. They interpret this finding as 

evidence for the selective activation of syntactic information under circumstances when that 
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information is needed to complete the task. However, the syntactic interpretation of this 

result has been challenged. Schiller and Caramazza (2003) provide evidence for an 

alternative account which explains the gender effect through lexical selection of the 

determiner – that is, as a lexical effect. In addition, more recent research has reported effects 

from a number of syntactic categories on production latencies in bare-noun production. For 

example, Duràn and Pillon (2011), using a blocked priming task, found faster response times 

for trial blocks containing only nouns or only verbs than for blocks containing nouns and 

verbs (a word class congruence effect). Unlike gender congruence, word class congruence 

cannot be attributed to additional lexical search functions. Thus, it appears (1) that lexical 

access may involve obligatory activation of syntactic information, even in the absence of 

syntactic encoding, and (2) bare-noun naming can tap into this relationship (see also Gregory 

et al., 2012; de Simone & Collina, 2015). 

Much of the prior research has focused on categorial information. In connectionist terms, 

these studies attempt to preactivate an abstract syntactic category node which shares links 

among words belonging to that class. Preactivation can facilitate (priming; Gregory et al., 

2012) or inhibit (picture-word interference; de Simone & Collina, 2015) access to the  target, 

depending on the task and design. Categorial constraints of this kind figure prominently in 

models of sentence production (Dell, Oppenheim, & Kittredge, 2008). However, these 

category labels are actually quite complex generalizations over both morpho-syntactic and 

morpho-phonological distributions. For example, the syntactic and inflectional potential of 

English nouns is not purely predictable by their belonging to the category NOUN. This is not 

a simple matter of exceptions to the rule. Instead, the category label belies a much richer 
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network of semi-productive subgroups that stand at the intersection of a number of other 

features: the mass/count contrast, (historically derived) phonological patterns (i.e., patterns 

of suppletion), semantics (i.e., semantically constrained syntactic distributions; *the pitcher 

gave the water to the cup), lexical prosodic effects (i.e., patterns of stress shift; PERmit, 

noun, vs. perMIT, verb; cf. emBRACE, noun, vs. emBRACE, verb), and so on). As such, it is 

not clear that they actually hold as independent symbols in the lexical network (Schiller & 

Caramazza, 2003; Milin, Filipović-Đurđević, & Moscoso del Prado Martín, 2009; Baayen et 

al., 2011). For example, noun lemmas could connect directly to the set of inflectional and 

syntactic representations with which they combine. When words share similar distributions 

within this space, they should be treated similarly with respect to those distributions – a 

'ghost-category' effect. From this perspective, the different class congruence effects reduce to 

similarity of use. 

A complementary line of research from comprehension has looked at morpho-syntactic 

distributions and their effect on word recognition. This work ultimately descends from 

studies of inflectional morphology (i.e., the syntactic branch of morphological paradigms).  

Moscoso del Prado Martín et al. (2004) show for Serbian that the more uncertain the 

inflection of a given stem, the faster it is recognized. Such a finding supports the 

probabilistic network account of Diessel (2015) and others. Activation spreads between a 

central lemma node and its set of inflectional variants. Where this connectivity is evenly 

distributed across the available forms, the overall lemma receives more efficient support 

from its inflected variants. This support rapidly boosts lexical activation across the network, 

leading to faster recognition in visual lexical decision. Morphological inflection presents an 
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interesting case because it translates syntactic relations into formal variants. That is, 

inflected word forms wear their syntactic functions on their sleeves. For example, Russian 

собак-а [sobak-a] 'dog-NOM' applies primarily to sentential subjects whereas соба к-и 

[sobak-i] 'dog-GEN' would be used to indicate possession. Simply knowing the surface form 

allows us to infer something about its in situ syntactic role. By extension, nouns with diverse 

inflectional distributions are bound to have more diverse syntactic distributions. Thus, for 

inflectionally rich languages, inflectional diversity partially reflects syntactic diversity. 

However, for languages with limited morphology such as English, functions that are 

performed in other languages via inflection are performed almost exclusively through 

syntax. For example, the morphological cases of highly inflecting languages correspond 

largely to phrasal structures in English. Despite the difference in locus, the 'syntactic 

inflections' of English behave similarly to the morphological inflections of other languages: 

nouns that have more diverse distributions across preposition types are recognized faster 

(Baayen et al., 2011; Lester & Moscoso del Prado Martín, 2015) and produced faster 

(Hendrix, et al.,  2017). In the terminology introduced above, these studies measure the 

lexicalized modifier diversity for nouns in a single dependency relation (pobj, for objects of 

prepositions). The diversity is lexicalized in that the frequency distribution is defined over 

prepositions as opposed to abstract syntactic categories. Therefore, these studies effectively 

measure lexical diversity within syntactic constructions. 

An open question concerns the role of prior syntactic distributions in bare-noun picture 

naming. The only study to my knowledge to use a production paradigm did not use an 

isolated-production task. Hendrix et al. (2017) employ comprehension-to-production 
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priming via the presentation of a syntactic context (preposition + determiner, e.g., in the) 

prior to the picture. For this reason, their results are ambiguous: should they be attributed to 

lexical features of the picture name or to aspects of the syntactic processes linking the name 

to the primed context? In this respect, Hendrix and colleagues find that the ERP signals 

reflect the distributional measures in a manner resembling the effects of word frequency. 

Word frequency is typically interpreted as a lexical effect, which suggests that the diversity 

effect is also anchored – at least in part – to the lexical representation. Moreover, the 

presence of the prime could only interfere with this effect by conditioning the likelihood of 

the noun. That the effect remains despite the prime, and that it shares its electrophysiological 

profile with the frequency measure suggests that the latter is most likely lexical in nature. 

What remains to be seen is (a) whether the syntactic information still affects naming in the 

absence of a syntactic context,  (b) whether any such affect will surface in behavior (i.e. 

response times), and (c) whether cross-constructional measures of syntactic diversity and 

prototypicality will likewise impact naming. In the next section, I introduce a method for 

estimating cross-constructional syntactic information for nouns. Points (a) and (b) are 

addressed in the Experiment 1 and 2, reported below. 

C. Measuring Syntactic Diversity 

I operationalize syntactic relations using a dependency grammar formalism (Choi & 

Palmer, 2012). In this approach, syntactic relations  apply to pairs of words – labelled the 

“head” and the “modifier” – with an additional label describing the precise nature of their 

relation. I refer to the triplet of dependency relation, head, and modifier as a bundle (also 

known as a construction). For the set of bundles involving a noun, I am interested in the 
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syntactic information carried by each noun type. Prior work has investigated how the 

syntactic information carried by nouns within syntactic categories influences lexical 

production (Hendrix et al., 2017). This work has shown that each category, for example, the 

prepositional phrase construction, presents its own “paradigm” whose “cells” represent the 

possible head lemmas, e.g., prepositions. Here I apply the same reasoning, but at a higher 

level of abstraction. Instead of lemmas, the cells reflect syntactic dependencies. That is, I 

look at the distribution of nouns across rather than within syntactic structures. This approach 

is therefore similar to that employed by Roland, Dick, and Elman (2007) and Linzen et al. 

(2013), who measured the distributions of verbs across the different argument structures with 

which they combine. However, the dependency formalism allows us to take a finer-grained 

perspective on syntactic relations. Whereas the structures studied by Linzen and colleagues 

are headed by the verb, dependencies allow easy modeling of the hierarchical status of words 

as either head or modifier. Moreover, we can compare the direction of the relation (leftward 

or rightward), as well as any combination of hierarchical status and direction. Counting 

every possible combination, we arrive at nine syntactic distributions: 

― Overall relations (ignoring hierarchy and direction) 

― As-head relations (ignoring direction) 

― As-modifier relations (ignoring direction) 

― Rightward relations (ignoring hierarchy) 

― Rightward as-head relations 

― Rightward as-modifier relations 

― Leftward relations (ignoring hierarchy) 
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― Leftward as-head relations 

― Leftward as-modifier relations 

A second goal of this study is to explore the relative importance of all nine dimensions of 

syntactic information described above. More specifically, we want to determine whether 

word order, hierarchical status, or some combination of the two are important for 

understanding the effects of syntactic diversity on noun production in picture naming. 

Syntactic relations are partially, or in some cases wholly, identifiable based on the lexical 

forms involved. In other words, dependency relations and the lexical identity of heads and 

modifiers should be redundant to some extent. For example, if we see that the noun ship is 

paired with the word the, we immediately know that the relationship is det, for determiner 

modification (as well as that ship is the head and that the precedes ship). To ensure that we 

are dealing with truly syntactic information (and not information derivable from lexical 

context), we must “clean” the syntactic measures of information carried by words alone. To 

accomplish this, I take advantage of an information-theoretic measure called conditional 

entropy. The conditional entropy of a distribution S given a distribution L is defined as 

follows: H(S | L) = H(S , L) – H(L). That is, the conditional entropy is equal to the joint 

entropy of S and L minus the entropy of L. H(S , L) reduces to the negative sum of the 

weighted joint probability p(si , lj) where s ∈  S  and l ∈  L, i ranges over S and j ranges over 

L. If S is defined as the set of syntactic dependencies, and L is defined as the set of lexical 

forms that accompany these dependencies, then H(S , L) reflects the information carried by 

the lexical and syntactic tiers together. H(L) reflects the information carried by the lexical 

tier independently. By subtracting the lexical entropy from the joint entropy of syntax and 
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lexicon, we arrive at the information carried by the abstract syntactic dependencies 

independent of the lexical information. If the information carried by syntactic dependencies 

is entirely redundant given the lexical content of the bundle, then H(S , L) = H(L) and H(S | 

L) = 0. In this case, the syntactic information of the word could be read entirely off of the 

lexical context in which it is embedded. On the other hand, if H(S | L) is greater than zero, 

then some other layer of stochastic generalization must be at work, namely, a syntactic layer. 

Henceforth, I refer to H(S | L) as syntactic diversity. 

Beyond the syntactic information carried by individual words, there is further 

information carried by word class. Word classes can be defined at many levels of granularity. 

Here, I examine part-of-speech. The underlying intuition is that words are not isolated within 

the linguistic system. Instead, they tend to be nested within groups of functionally related 

words. Earlier work on morphology shows that, in comprehension, these paradigms mediate 

processing efficiency. For example, Milin et al. (2009) find that Serbian nouns are 

recognized faster to the extent that they are distributed across their inflectional exponents in 

ways similar to other words of their class. Similar effects have been observed at the level of 

syntax for phrasal classes. Hendrix, et al. (2017) show that English nouns are produced 

faster when they are distributed across prepositional phrases in ways consistent with the 

overall pattern for prepositional phrases. In other words, any given exemplar is processed 

more efficiently when it resembles the prototype of its phrasal class, even in isolation. The 

precise cognitive mechanisms underlying this effect remain unclear. By one account, the 

effect arises as a function of discrimination learning: linking noun forms to meaning is more 

challenging when nouns differ from the rest of the linguistic system in how they are coupled 



 

 

 

 82 

with prepositions, or any other flexible aspects of their lexical context for that matter (i.e., 

the learner will be led by system-wide preferences to make worse guesses about the meaning 

representations for such nouns; Baayen et al., 2011). Another possibility is that lexical 

representations are highly distributed within a feature space that includes syntactic features, 

as well as semantic features, orthographic/phonological features, and so on. Prototypes could 

emerge as stable patterns of activation across words within this space. Such prototypes 

would have a greater impact on baseline activation within the system (as they represent 

larger-scale  aggregates of experience than any of the individual words). In this case, the 

prototype effects might signal a difficulty in transitioning from global activation states to the 

target state (e.g., Plaut & Booth, 2000). Some have challenged the latter argument, saying 

that it would require computationally intractable storage of exemplars (e.g., separate 

representations for every prepositional phrase that one has ever encountered; Baayen et al., 

2011; Baayen, Hendrix, & Ramscar, 2013). However, this “combinatorial explosion” could 

possibly be avoided by re-framing complex exemplars as shared (i.e., simultaneous or 

contingent) activation within the distributed language network. Such lexico-syntactic 

networks stand at the core of functional-linguistic theory, in particular the constructionist 

approaches (Bybee, 2010; Diessel, 2015; Goldberg, 1995; Langacker, 1987). In either case, 

these prototype effects are expected to surface for linguistic relationships only insofar as they 

are functionally relevant, whether to learning or to on-line transitions within a state space. 

The studies above operationalize class-wise similarity using the Kullback-Leibler 

divergence (KLD; also known as the relative entropy) of the probability distribution of a 

given word from the summed distributions of all words. This is an information theoretical 
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measure of the degree to which two distributions differ. The distance from prototype P to 

exemplar E is formalized as KLD(P || E)  = Σ E log E/P. The measure is asymmetric, 

meaning that the divergence from P to E is not necessarily equal to the divergence from E to 

P. As such, one must decide a priori in which direction to take the divergence. This property 

is undesirable in the present context given that the cognitive mechanism underlying the 

effect is still not well understood. Lin (1991) proposes a symmetric alternative, commonly 

referred to as the Jensen-Shannon divergence (JSD). JSD is calculated similarly to KLD, but 

with one addition. Instead of taking the distance between two distributions, JSD first 

requires that we compute the midpoint M between E and P. Then, the KLD is computed from 

E to M and from P to M. JSD is defined as the mean of these two divergences. As with the 

entropies discussed above, the probability estimates entered into the JSD generally 

underestimate the true probabilities. I correct the probabilities in E and P using the James-

Stein shrinkage estimator, which is optimal for cases when the number of columns is known 

a priori (Hausser & Strimmer, 2009). In this case, the number of columns is equal to the 

length of the set of dependencies observed at least once for all nouns in a given condition 

(e.g., the nine dependency conditions I describe above). I refer to JSD(E || P) as syntactic 

atypicality (rather than prototypicality) to capture the fact that the measure refers to distance 

from the prototype. 

1. Computing the estimates 

I derive probability estimates from the OANC (Reppen, Ide, & Suderman, 2005). I first 

parsed the corpus with the spaCy dependency parser (Honnibal & Johnson, 2015). I then 

identified all tokens tagged as nouns, retrieved the lemmas for those tokens, and computed a 
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frequency matrix for all the noun lemmas. This process leaves us with a total of 10,684 noun 

lemma types. To simplify, I consider only monomorphemic lemmas (based on the CELEX 

labels as they appear in British Lexicon Project database; Keuleers, Lacey, Rastle, & 

Brysbaert, 2012). I thus sidestep the complexities of compounds and derivational families 

(Schreuder & Baayen, 1997). Still, some of the remaining lemmas are ambiuous between 

word classes. For example, orange may be a noun, as in Orange is my favorite color, but 

may also be used as an adjective, as in the orange pumpkin. Such cross-category 

relationships may influence the syntactic distributions of the noun forms, or may interfere 

with online processing by engaging multiple subspaces of the syntactic network in parallel 

(e.g., the subspaces associated with the noun and adjective uses of orange). To control for 

possible cross-categorical contamination, I consider only those nouns which appear 

predominantly as nouns (based on the annotation in the database of concreteness norms 

published by Brysbaert, Warriner, and Kuperman, 2014). These cuts brought the sample 

down to 3,124 distinct noun lemmas. 

I constructed three frequency matrices around these lemmas. In the first matrix, the 

columns reflected all pairs of dependencies and related words observed for nouns in the 

corpus (e.g., det + the, det + this, dobj + eat, and so on). In the second, the columns 

contained just the related words (e.g., the, this, eat, and so on). Finally, in the third matrix, 

the columns contained just the dependencies (e.g., det, dobj, and so on). I take the entropy of 

each noun in the first and second formulation to arrive at H(D, L) and H(L), respectively. 

Each of these entropies was corrected for underestimation (see Miller, 1955) following the 

technique introduced in Chao, Wang, & Jost (2013). This technique has been shown to 
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perform well when applied to the distributional profiles commonly found in language (e.g., 

the Zipf-Mandelbrot distribution; see Moscoso del Prado Martín, 2016). I then subtract the 

latter from the former to produce conditional entropies H(D | L) for all of the nouns. As the 

goal is to investigate the role (if any) of delexicalized syntax, we must deal with tokens for 

which we observe zero de-lexicalized syntactic information. I first inspected the overall 

distributions (i.e., ignoring hierarchy and direction). Not so surprisingly, nearly half of the 

nouns in the sample had syntactic distributions that were entirely predictable from their co-

lexical distributions (n = 4908). Under most circumstances, the relationships between nouns 

and other words are clearly defined (e.g., the can only instantiate the det dependency). 

Moreover, the semantic properties of nouns may dictate their distribution (e.g., knowing that 

the verb is eat almost certainly precludes any inanimate noun from being attached as 

subject
\4

). An examination of the frequencies of these lemmas revealed that the vast majority 

(80%) occurred less than 20 times, with 60% occurring less than 10 times. The probability 

distributions of these tokens are highly likely to be unrepresentative of the true distributions 

(even despite the corrections). Erring on the conservative side, I restrict further analysis to 

lemmas with frequency greater than 100 in the OANC (~7 pMw; the maximum frequency 

observed for any lemma with H(D | L) = 0 was 80). These further cuts left us with 1,563 

distinct noun lemmas. 

The third matrix type is needed to estimate the degree to which a noun is close to the 

“prototypical noun”. Unlike in the case of standard entropies, removing lexical information 

                                                 
4
 We stress that the assumed stochastic nature of language renders absolute certainty –

within the limits of grammatical convention– an  impossibility. 
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from divergences is not straightforward. There are many possible ways to approach this 

issue. As a first approximation, I ignore information carried by the other word in the 

dependency by computing the frequency distributions over the dependency types alone. 

Simplifying in this way allows us to compute straightforward divergences. I define the 

syntactic prototype of nouns as the summed distribution of all nouns in the sample (i.e., the 

vector created by taking the sums of all columns in the frequency matrix). I then take the 

JSD between each noun and the prototype (i.e., between each row and the summed vector). I 

consider this an acceptable compromise given that only tokens with reliable and non-zero 

estimates of H(D | L) for their overall distribution are considered. 

2. Decorrelating the measures 

The raw estimates of diversity highly intercorrelated (k>30). This problem, known as 

multicollinearity, can damage the reliability of model estimates. To remedy this issue, I 

subject the nine predictors to independent component analysis (ICA) using the fastICA 

algorithm (Hyvärinen & Oja, 2000; Marchini, Heaton, & Ripley, 2013). The fastICA 

algorithm reconstructs a set of maximally statistically independent components from the 

observed vales. First, the matrix of observed values per word across the nine dimensions is 

centered and decorrelated to produce a matrix of  n non-correlated components (i.e., they are 

subjected to a principal component analysis, PCA, of n components). The number of 

components n is determined a priori, and must fall within the range {1,k} where k is the 

number of original dimensions. I did not have any principled reason to select n on purely a 

priori grounds. I therefore apply an empirical heuristic. I define n as the number of PCA 

components needed to explain at least 95% of the variance in the sample. After this initial 
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decorrelation, the source signals are estimated. To accomplish this, the fastICA algorithm 

rotates the results of PCA to find orientations for which the resulting distribution diverges 

most from a normal distribution. These rotations are constrained to be orthogonal (from the 

observed matrix and from each other)  to ensure that the resulting components are maximally 

uncorrelated. The resulting rotation matrix contains the coefficients needed to project the 

original predictors into new space. These coefficients therefore reflect the strength of the 

association between each original variable and the derived component. 

I run two separate ICAs, one among the nine syntactic diversity measures, the other 

among the nine syntactic atypicality measures. Initial PCAs revealed that the diversity space 

and the atypicality space could be reasonably well expressed in five and four components, 

respectively. I followed this heuristic and produced five components for diversity and four 

for atypicality. The projected values of the nouns in each of the source spaces were recorded 

for each noun. Henceforth, I refer to these source spaces as diversity and atypicality 

components, followed by a unique number (e.g., diversity component 1).    

D. Experiment 1: Bare-noun picture naming 

1. Stimuli and design 

The object images were taken from the set of 520 black-and-white line drawings of 

common objects that were used in the International Picture Naming Project (IPNP) research 

(Bates et al., 2003). Each participant saw 200 of the original 520 images. These 200 images 

were randomly selected at the onset of each experimental session, meaning that each 

participant saw a unique set of images.  The 200 images were randomly divided into four 
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sets of 50. Order of presentation within these groups was also randomized. All images and 

text were presented in black on a white background. The images were normalized to 300 X 

300 pixels. 

2. Participants 

46 undergraduate students  from a public university on the west coast of the United 

States were recruited to participate (N(female) = 35; mean age = 20.91), all of whom were 

native speakers of English with normal or corrected-to-normal vision. All participants were 

treated in accordance with the American Psychological Association guidelines for ethical 

human research. 

3. Procedure 

I follow the same general procedure as described in Bates et al. (2003). The experiment 

was carried out in a dimly lit, sound-attenuated room. All experimental materials were 

presented via the experimental software OpenSesame v. 3.1.2 (Mathôt, Schreij, & Theeuwes, 

2012) on a 17-in LCD display with 1366 X 768 screen resolution. Participants were seated 

approximately 50 cm from the display. They were provided with written instructions which 

stated that they would be shown a series of images, and that their task was to say the name of 

each image aloud. They were instructed to say the name in isolation (“Banjo!”) as quickly 

and accurately as possible, and to avoid producing hesitations or fillers prior to saying the 

word. Finally, they were informed that they had a maximum of three seconds to name the 

image before the next trial would begin, and that they should remain silent if they could not 

find an appropriate name for the image before timeout. In the next phase, participants were 
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trained on a set of three images taken from the database published by Bonin and colleagues 

(Bonin, Peereman, Malardier, Méot, & Chalard, 2003). These images were the same for all 

participants and were selected so as not to overlap with images from the IPNP set. During 

the training and critical trials, participants saw a fixation cross for 250 ms, followed by a 

white  screen for 500 ms, then the image until the participant had named it, or for a 

maximum of three seconds. Stimuli were presented in four 50-image blocks with 

opportunities to rest after each of the first three blocks (to minimize fatigue effects). 

Responses were recorded with a Sony ECM-909 stereo microphone set to 90-degree spread. 

Responses were transcribed and response times were coded by hand using the audio-editing 

software Audacity
5
. 

4. Control variables 

Many factors have been observed to correlate with word production latencies in picture 

naming. To control for these effects, I annotate the picture stimuli with the following 

information: 

― word frequency 

― length in syllables 

― subjective age of acquisition 

― inflectional entropy 

― diversity of names offered for an image 

― shared names across images 

                                                 
5
 http://audacityteam.org 
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― objective image complexity 

 

The effects of the control variables are well established in the picture-naming literature. 

Frequency is known to have a facilitatory effect on production latencies (Oldfield and 

Wingfield, 1967), though the ultimate source of this effect is contentious (e.g., Almeida, 

Knobel, Finkbeiner, & Caramazza, 2007; cf. Bates et al., 2003). Frequencies were estimated 

from the SUBTLEX-US corpus, which contains frequencies for approximately 74,000 

English words taken from a 51-million word sample of American English subtitles 

(Brysbaert & New, 2009). Length in syllables has a generally inhibitory effect on response 

times: longer words take longer to initiate, presumably due to the increased load on 

phonological and articulatory planning (e.g., Bates et al., 2003). Here I take syllabic lengths 

from the CELEX database (Baayen, Piepenrock, & Gulikers, 1995). Inflectional entropy 

(Moscoso del Prado Martín, Kostić, & Baayen, 2004) refers to the distribution of a word 

across its phonologically distinct inflectional realizations. For English nouns, this amounts to 

the relative probabilities of its occurring in either the singular or plural form (genitive clitic 

's is not bound to the noun stem, and so is not considered). The inflectional entropy has been 

shown to have a somewhat weak effect on picture naming that depends on a number of 

factors (nouns: Baayen, Levelt, Schreuder, & Ernestus, 2008; verbs: Tabak, Schreuder, & 

Baayen, 2010). Generally, an inhibitory effect has been observed: more even splits between 

singular and plural realizations lead to longer naming latencies. To estimate these 

distributions, I tagged the 15-million-word Open American National Corpus (OANC; 

Reppen, Ide, & Suderman, 2005) for part-of-speech using the spaCy tagger (https://spacy.io) 
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as implemented in the Python programming language. For each word, I took the entropy of 

its relative distribution across singular and plural realizations. I further corrected the 

entropies using the method introduced by Chao, Wang, & Jost (2013). Diversity of names 

and shared names for images pertain to codeability. Pictures that elicit many different names 

are less codeable; producing any name for these images takes longer as one must decide 

between many alternatives. Pictures that receive labels general enough to match names 

offered for other images are more difficult to differentiate with a basic-level name, which 

may lead speakers to seek hypernymic alternatives after a failed search at the basic level. 

This two-stage process results in later speech onset times. Shared names tend to be formally 

simpler and of higher frequency (Bates et al., 2003), leading to shorter response times for 

images that share names with other images. Finally, visual complexity is expected to be 

inhibitory: pictures with more pixels require heavier visual/conceptual processing before an 

appropriate name can be identified, leading to longer naming latencies.    

5. Results 

I remove all responses that contained hesitations, coughs, multiple naming attempts, or 

for which no answer was provided (n = 572; 6% of overall observations). I only consider 

responses that also appear in my database of noun entropies (n = 272 unique lemmas). RTs 

that fell beyond two standard deviations from the mean in either direction were removed (n 

= 146; 4% of observations). Visual inspection of the pairwise correlations between the full 

array of independent variables revealed a high degree of correlation among the variables, 

with an unacceptable collinearity index (condition number κ > 41). Pairwise scatterplots 

suggested that this high degree of intercorrelation is due to correlations between (log) word 
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frequency, age of acquisition, and the diversity and atypicality measures. I therefore 

residualize these variables out of the frequency measure for unique lemmas by performing a 

linear regression with the lexical variables as predictors and (log) frequency as dependent 

variable. I then take the residuals in place of the original frequency measure and annotate 

each of the observed responses with its residual from model. A second check for collinearity 

with residualized frequency in place of the raw log frequency showed an acceptable degree 

of intercorrelation (κ < 20). 

The remaining 3,492 RTs exhibited heavy rightward skew, which can affect consistency 

of model performance across the range of the response variable. A Box-Cox (Box & Cox, 

1964) analysis suggested an inverse-square transform was most appropriate to approximate 

normality. Model comparison validated this transformation of the data: residuals from 

untransformed-RT models were non-normally distributed (as expected), with a strong 

tendency to overestimate RTs in the middle range. Residuals from the transformed-RT 

models were normally distributed. 

I fitted a generalized additive mixed model (GAMM)
6
 predicting transformed response 

times. Smoother terms were fit for (log) trial number, (log) previous RT, (log) objective 

visual complexity, naming diversity, residualized frequency, age of acquisition, inflectional 

entropy, the five diversity components, and the four atypicality components. Parametric 

terms were fit for number of syllables and shared name. The former was included as a 

                                                 
6
 All models were computed both as GAMMs and as linear mixed effect models (LMM). 

Results from the two analyses converged for all critical predictors. GAMMs are reported 

because several of the control predictors showed strongly non-linear effects. 
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parametric term because of the small number of possible values (1, 2, or 3 syllables).  In 

addition, random intercepts were fit for participant, image, and response lemma. 

Significant predictors from the model are given in Table 3, along with the effective 

degrees of freedom (eDF), the estimated residual degrees of freedom (refDF), F values and 

p-values. 

 

Table 3: Significant predictors of RTs in bare-noun picture naming 

Smooth terms eDF refDF F value p value 

trial number (log) 3.24 4.02 10.54 <.001 

previous RT (log ms) 1.00 1.00 9.67 .002 

age of acquisition 1.00 1.00 20.41 <.001 

name diversity 3.70 4.06 44.90 <.001 

visual complexity (log file size) 1.02 1.03 6.87 .008 

inflectional entropy 1.13 1.18 8.82 .002 

prototypicality component 4 1.00 1.00 4.58 .03 

     

Random effects     

image 146.62 296.00 1.63 <.001 

subject 42.15 45.00 15.49 <.001 

 
 

Control predictors.  Neither of the parametric terms surfaced as significant. 

Surprisingly, neither did residualized frequency. As mentioned above, the word frequency 

effect is one of the strongest and most reliable predictors of behavior in lexical processing 

and production tasks. Importantly, however, word frequency is bound up with other 

variables, as indicated by the high degree of collinearity observed in the present sample. 
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Residualizing the other variables out of word frequency produces a measure closer to pure 

repetition. Baayen (2011) performed a more extensive residualization and found that 

reducing frequency to pure repeition substantially decreased its explanatory power for lexical 

decision. Therefore, the lack of an effect here could be due to the relatively weak influence 

of pure repetition being swallowed by the much stronger predictors. 

 Several controls related to the experimental procedure surfaced as significant. First, 

trial number was negatively correlated with RT. Over the course of the experiment, RTs 

gradually slowed, eventually leveling out in the later trials with a slight upturn for the last 

trials. Because the variable was log transformed, this pattern suggests a mostly linear effect 

for the raw trial numbers. This could be due to fatigue or to interference from a higher 

number of recently experienced exemplars from the prior trials. The RT of the previous trial 

also exerted a strong effect. This effect was log-linear, suggesting a diminishing influence on 

target RTs as previous RTs increased. The diversity of names offered for the image across 

participants also correlated negatively with response times, increasing steadily, but leveling 

out in the upper ranges. This effect suggests that some images activate more possible names 

than others, making it more difficult to settle on the target form. Visual complexity was 

likewise negatively correlated with RT. The higher the number of kb needed to encode the 

image, the longer participants took to produce the name. This effect presumably arises 

during the visual decomposition and conceptual-semantic mapping stages.   Significant 

random effects show that subjects and images varied significantly within their respective 

groups, but lemmas did not. 

Of the lexical variables, only age of acquisition and inflectional entropy were significant. 
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Age of acquisition showed the expected negative correlation: words that are learned later in 

life take longer to initiate. Counter to expectations, inflectional entropy showed facilitation: 

the more balanced the split of occurrences of a lemma across its singular and plural forms, 

the faster the naming RT. There is some precedence for this effect. Tabak, Schreuder, and 

Baayen (2010) report facilitation for the inflectional entropy of verbs, but only for non-

targeted responses to the image. In this study, there was no clear target for the images.  Tabak 

and colleagues suggest that this facilitation could arise because words with complex 

inflectional paradigms (i.e., higher inflectional entropies) make for strong competitors (i.e., a 

“gang effect”) during lexical selection, sometimes overcoming the target. To test for this 

effect, I determined the lemma of the dominant response for each image across participants 

and annotated each observation for whether the response lemma matched (match) or did not 

match (mismatch) the dominant response lemma. I refit the model with separate factor 

smooths on inflectional entropy for the matched and mismatched responses. Based on Tabak 

et al. (2010), I expect a stronger effect of inflectional entropy for the mismatched responses. 

This is precisely what I found (p <.01, adjusted for multiple comparisons using the False 

Discovery Rate; FDR; Benjamini and Yekutieli, 2001). The factor smooths are plotted in 

Figure 9. 

Figure 9 reveals that the matched tokens showed virtually no effect of inflectional 

entropy, while the mismatched tokens showed facilitation. Mismatched responses were 

slower than matched responses for low-complexity paradigms but similar for high-

complexity paradigms).  These findings thus replicate those of Tabak and colleagues 

regarding mismatched responses. However, I fail to replicate the inhibitory effect for  
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Figure 9: Different effects of inflectional entropy for responses that match 

(matched; red) and do not match (mismatched; blue) the dominant responses per 

image. 

 

matched  tokens. This is perhaps due to the fact that inflectional entropy is generally weak in 

production (Baayen, Feldman, & Schreuder, 2006). 

Critical predictors.  An initial model (not reported above) revealed significant effects of 

two of the atypicality components, 2 (p <.01) and 4 (p = .02). Closer inspection of these 

effects revealed curvature that was driven by a few observations at extreme values of the 

predictors. To guard against artifacts due to under-sampling at the extremes, I removed the 

outlying observations and refit the model (this is the model reported in Table 3). The cut 

proved necessary: after removing these values, the effect of atypicality component 2 



 

 

 

 97 

disappeared entirely (p = .72). However, component 4 retained its significance (p = .03). 

This effect is plotted in the bottom panel of Figure 2. The component loadings are given in 

the top panel. 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 10: Effect of atypicality component 4. Top panel: Component loadings for 

atypicality component 4. Loadings indicate that the component reflects distance in the 

rightward syntactic space. Bottom panel: Effect of atypicality component 4 on RTs. 

The solid line plots the regression curve. The shaded area represents the 95% 

confidence interval. 
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The top panel of Figure 11 shows that this variable loads most heavily on the rightward 

JSD estimates to the exclusion of the leftward JSD estimates. The bottom panel shows that 

nouns with typical rightward syntactic distributions are processed more slowly than nouns 

with atypical distributions. As expected based on prior work, the effect is somewhat weak. 

Unexpectedly, the effect was facilitatory: words with more atypical rightward distributions 

are produced faster than words with idiosyncratic distributions. Based on the interaction I 

observed for inflectional entropy, I explore the possibility that the syntactic atypicality effect 

differs between matched and mismatched tokens. To this end, I refit the model, this time 

with separate factor smooths for component 4 based on the matched and mismatched 

responses. Indeed, a marginal difference emerges (p = 0.05). This relationship is plotted in 

Figure 11. 

 

 

 

 

 

 

 

 

Figure 11: Different effects of atypicality component 4 for responses that match 

(matched; red) and did not match (mismatched; blue) the dominant response per 

image. 
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Figure 11 shows that the negative correlation holds for the mismatched responses but not 

for the matched responses. Moreover, the difference in predicted RT is greatest for the most 

prototypical nouns. 

7. Discussion 

I find evidence that de-lexicalized syntactic information affects the production of nouns 

in isolation. While I considered two types of information – syntactic diversity and syntactic 

atypicality – I only find support for the latter. This finding is consistent with the findings 

from morphology for comprehension (Milin et al., 2009). Moreover, the effect was limited to 

atypicality for rightward-facing dependencies. More atypical rightward distributions 

correlated with faster naming RTs. This seems to be at odds with the traditional 

interpretation of atypical words as being more difficult to process. An alternative explanation 

is that prototypicality leads to interference. From this perspective, prototypical words would 

spread activation to a greater number of competitors via their shared syntactic 

representations. This competition takes longer to settle as more competitors become more 

active. If so, this competition only arises when a highly conventionalized form is not 

immediately selected based on the visual input. In this way, the results align with those 

observed for inflectional entropy here and in Tabak et al. (2010). 

This study differs from others that have applied prior syntactic distributions to noun 

production. For example, Hendrix et al. (2017) coupled their picture naming task with an 

overt syntactic context. Picture stimuli in that study were preceded by preposition + 

determiner contexts. Therefore, they observe syntactic effects in a (partially) syntactic task. 

Moreover, the relative entropy that they employ is based explicitly on the same syntactic 
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construction that they test in the experiment (the prepositional-phrase construction). The data 

presented here did not require syntactic processing, and the syntactic measures were based 

on the entire dependency space. They are thus the first – to my knowledge – to demonstrate 

aggregate syntactic effects on RTs in isolated noun production. Crucially, the syntactic effect 

was observed over and above a number of controls known to impact production latencies. 

Moreover, the effect remained even after extreme values were removed. All of this suggests 

a robust, albeit weak, effect of syntax on bare-noun picture naming. I thus add to a growing 

number of studies that have uncovered syntactic effects in lexical production using tasks that 

do not, at least on their face, require any syntactic processing (e.g., Cubelli et al., 2005; de 

Simone & Collina, 2015; Gregory et al., 2012; cf. La Heij, et al., 1998). That syntactic 

representations should participate directly in the processing of words in isolation is also 

compatible with the constructionist theories of the structure of language. Most 

constructionist theories argue for a unified memory-based system, the constructicon, which 

encompasses everything from words to abstract phrasal and clausal templates (Bybee, 2010; 

Diessel, 2015; Goldberg, 1995; Langacker, 1987). 

The atypicality effect was specific to dependencies in the rightward-facing direction. 

This could reflect a system tuned to the future. Much research has documented the highly 

incremental nature of speech production (V. Ferreira, 1996; Allum & Wheeldon, 2007), 

particularly under time constraints (F. Ferreira & Swets, 2002). The participants in this study 

were instructed to produce the picture names as quickly as possible. On analogy to the 

sentence production literature, perhaps the pressure to produce words quickly engaged a 

strategy that privileges forward-facing rather than backward-facing syntactic relations. 

Activation then circulates between lexical and syntactic relationships to produce the 
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interference effect described above. 

Finally, results of the analysis showed an interesting symmetry with earlier findings for 

inflectional entropy. Tabak et al. (2010) report a facilitatory effect for inflectional entropy, 

but only for non-target responses. I replicate that effect here. Interestingly, the atypicality 

measure also depended on whether the response matched the consensus responses across 

participants. Specifically, the effect surfaced only for non-dominant responses. No effect was 

observed for the dominant responses. This suggests that although the effect is robust, it is 

easily swallowed by other factors, including the efficiency of mapping in the pathway from 

visual to conceptual-semantic to lexical processing. 

I have so far demonstrated that prior syntactic distributions affect isolated noun 

production. However, the effect was weak and only surfaced for atypicality, not diversity. We 

know from earlier research that syntactic production tasks are also sensitive to prior 

distributions (Hendrix et al., 2017) and sometimes even bring about effects that are not 

observed in bare-noun naming (La Heij et al., 1998). In a second experiment, I test whether 

requiring participants to produce nouns in a minimal syntactic context alters the relationship 

between prior syntactic distributions and response time in picture naming.    

E. Experiment 2: Noun-phrase picture naming 

 
I performed another picture naming experiment with the same general structure as 

Experiment 1. In this case, I asked participants to produce full noun phrases. Explicitly 

engaging the syntactic system in this way could have one of two effects. On the one hand, it 

could result in much stronger activation of the syntactic representations presumed to underly 

the effect observed for bare-noun naming in Experiment 1. Stronger activation cycling 
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between lexical and syntactic representations could increase the effect of prior syntactic 

distributions, which filter the strength and pathways of these relationships. On the other 

hand, repeated production of a single syntactic construction could overwhelm any effects of 

prior syntactic distributions by 'clamping' the spreading activation within a single lexico-

syntactic pathway (noun ↔ det). I test this possibility by pitting the diversity and atypicality 

measures against measures targeting the specific syntactic and syntagmatic properties of the 

response frame. I perform two RT analyses: one locked to the onset of the, one locked to the 

onset of the noun. 

1. Stimuli and Design 

The stimuli and design were identical to those described for Experiment 1. 

2. Participants 

31 undergraduate students were recruited to participate (N(female) = 24; mean age = 

19.29), all of whom were native speakers of English with normal or corrected-to-normal 

vision. All participants were treated in accordance with the American Psychological 

Association guidelines for ethical human research. 

3. Procedure 

The procedure was almost identical to that of Experiment 1, with two main differences. 

First, participants were instructed to name pictures using the frame the + NAME. For 

example, they should have responded “the banjo!” upon being presented a picture of the 

banjo. As in Experiment 1, the responses were recorded into individual WAV format audio 

files. Second, RTs were automatically derived from the WAV files using forced alignment 
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rather than hand coding. Forced alignment involves mapping phonological representations of 

orthographic words onto audio signals using an algorithm trained on detecting the most 

likely segment given various acoustic properties. I use the Prosodylab-Aligner (Gorman, 

Howell, & Wagner, 2011) to create force-aligned versions of the response files at the whole-

word and segmental level. Performance of the aligner was checked by manual inspection 

using Praat (Boersma, 2001) for 5 randomly selected files per participant and found to be 

satisfactory. Response times were extracted from the time-aligned file for the determiner and 

the noun. Additionally, the quality of the vowel in the determiner was extracted: unstressed 

uh (ə), stressed uh (ʌ), or stressed ee (  j). 

4. Control predictors 

All controls from Experiment 1 were applied here, as well. Due to the phrasal nature of 

the task, I introduce three additional controls related to the syntactic and syntagmatic 

structure of the responses. First, I include a measure of the association of the noun to the 

determiner relation det. I operationalize lexico-syntactic association as the log-odds ratio 

(LOR) of the noun as it appears in the det relation vs. out of the relation given the behavior 

of all other verbs and relations. This measure is best visualized as a cross-tabulation, 

illustrated in Figure 12. 

 det relation all other relations 

target noun a b 

all other nouns c d 

 

Figure 12: Table for calculating log-odds ratio of target words in the det relation 
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In Figure 12, cells a through d represent frequencies. Using these frequencies, the LOR 

of the target noun in the det relation equal to the log of the odds that the target noun occurs 

in the det relation divided by the odds that any other noun occurs in the det relation, or LOR 

= (a / b)  / (c / d). LOR takes increasingly positive values to the extent that the target noun's 

frequency in det is higher than it is in other relations,  and/or to the extent that other nouns 

tend to load in the opposite direction. This situation indicates positive association between 

the noun and the syntactic relation. LOR takes increasingly negative values in the opposite 

situation, in which case the noun is negatively associated with the relation. I expect nouns 

that are strongly associated with the det relation to be prepared and articulated more rapidly 

in this relation than words that disprefer this relation.  This accounts for the statistical 

expectation at the syntactic level. 

At the syntagmatic level, I control for how likely the noun is to follow the in sequence. I 

computed the conditional bigram surprisal of each unique the + NOUN sequence produced 

by the participants. Conditional surprisal is defined as the negative log of the bigram  

probability p(w1, w2) divided by the unigram probability of the first word p(w1), or S(w2 | w1) 

= - log p(w1, w2) / p(w1). This measure captures the unexpectedness of the noun given an 

immediately prior the. Higher values reflect less expected transitions. Estimates of p(w1, w2) 

and p(w1) were drawn from n-gram lists based on the 560-million word Corpus of 

Contemporary American English (COCA; Davies, 2008–).
7
I expect conditional surprisal to 

correlate negatively with RTs, with more surprising transitions taking longer to produce. 

                                                 
7
 These lists are freely available at https://www.ngrams.info/download_coca.asp. 
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Finally, I include a three-level factor for the quality of the vowel of the: stressed and 

unstressed mid central vowels (thuh) and front vowel with palatal off glide (thee). The 

pronunciation of the is known to correlate other signs of production difficutly (e.g., pauses, 

filler such as uh, and so on)/ Specifically, speakers produce thee more frequently when they 

experience problems during production (Fox Tree & Clark, 1997). Furthermore, listeners 

respond to these cues in ways that suggest that they are subconsciously tuned to the difficulty 

faced by the speaker (Arnold, Tanenhaus, Altmann, & Fagnano, 2004). Production problems 

in this experimental context are expected to surface as increase RTs. Based on this reasoning, 

I expect longer RTs for responses introduced by thee. 

5. Results: the RT analysis 

I first fit a GAMM predicting RTs at the onset of the determiner. First, I removed all RTs 

greater than two times the standard deviation from the mean (4% of responses containing 

nouns for which I have diversity and atypicality measurements. The remaining RTs showed a 

strong positive skew. A Box-Cox power analysis suggested the inverse transform to 

normalize the RT distribution. I substitute the negative inverse of RTs (to preserve the 

original sign) for the raw values as dependent variable in the analysis. 2,208 observations 

remained after these cuts. I next checked for collinearity between the predictor variables, 

which proved to be unacceptably high (condition number κ > 80). First, the other predictors 

were residualized out of word frequency. Then, all predictors (except for word frequency)  

were residualized out of  bigram surprisal. Substituting the residualized variables for the raw 

variables revealed that collinearity had been reduced to a moderate but acceptable level (κ < 

12).    
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Smoother terms were included for log trial number, log previous RT, naming diversity, 

objective visual complexity of the image, residual word frequency, residual bigram surprisal, 

LOR, the five diversity components, and the four atypicality components. Shared name, 

length in syllables, and the quality of the vowel in the were added as parametric terms. 

Finally, random intercepts were included for participants, images, and response lemmas. 

An initial analysis revealed significant effects of the diversity component 2 (p =.01) and 

the atypicality component 2 (p = .03). However, the variables showed distant and sparse 

observations at the lower and upper extreme, respectively. To guard against the influence of 

outliers, I refit the model without these observations (7% of remaining observations). Both 

effects remained significant. I report this model (summarized in Table 4) as it represents a 

more conservative perspective on the nature of the effects. 

  

Table 4: Significant predictors of response time at the in the + N picture naming 

Smooth terms eDF refDF F value p value 

previous RT (log ms) 6.49 7.49 74.99 <.001 

age of acquisition 1.00 1.00 11.41 <.001 

name diversity 2.93 3.43 34.18 <.001 

objective visual complexity 1.00 1.00 9.37 .002 

diversity component 2 1.00 1.00 8.26 .004 

prototypicality component 3 2.10 2.44 3.76 .02 

     

Random effects     

name lemma 0.92 1.00 11.95 <.001 

subject 78.94 26.60 0.49 <.001 

  

The significant control variables were all in the expected direction. Unlike Experiment 1, 
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the model did not reveal effects of trial number or inflectional entropy. The former indicates 

that fatigue did not impact participants in this study to the same extent that it did participants 

in Experiment 1. To explore whether the lack of an inflectional entropy effect was due to a 

moderating effect of response type, I refit the model with factor smooths on inflectional 

entropy for dominant responses and non-dominant responses. The interaction was significant 

(corrected p=.006), but opposite of the one observed in Experiment 1: non-dominant 

responses showed no effect but dominant responses showed a slight facilitation at the upper 

registers of the entropy. When the most conventional response was available, participants 

were quicker to produce the for nouns with more even splits across singular and plural 

forms. 

Two of the syntactic components surfaced as significant: diversity component 2 and 

atypicality component 3. These effects along with the component loadings are plotted as 

Figure 13 and Figure 14, respectively. 

The upper panel of Figure 13 shows the component loadings of diversity component 2. 

This component loads positively on the as-modifier dimension with support from the 

rightward-facing as-modifier and leftward diversity. These dimensions are contrasted with 

that of rightward headship.  The lower panel shows that this component has a facilitatory 

effect on RTs at the. This facilitation means that nouns that are used in the most diverse array 

of modifier and leftward-facing dependencies allow for faster production of the noun phrase. 

By contrast, nouns that are used in a diverse array of rightward-facing headship 

dependencies to the exclusion of modifier and leftward dependencies lead to longer 

production latencies. 
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Figure 13: Effect of diversity component 2 (the). Top panel: Component loadings 

for diversity component 2. Positive values reflect increasing diversity as (rigthward-

facing) modifier, with support from leftward diversity; negative values reflect 

increasing diversity as rightward head. Bottom panel: Effect of diversity component 2 

on RTs measured at the. The solid line plots the regression curve. The shaded area 

represents the 95% confidence interval. 
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Figure 14: Effect of atypicality component 3 (the). Top panel: Component loadings 

for atypicality component 3. Loadings indicate that positive values reflect increasing 

distance from the noun prototype. Bottom panel: Effect of atypicality component 3 on 

RTs. The solid line plots the regression curve. The shaded area represents the 95% 

confidence interval. 
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Figure 14 plots the effect of atypicality component 3. The top panel shows that this 

component loads positively on all syntactic dimensions. It therefore reflects general 

divergence from the syntactic prototypes of nouns. The lower panel reveals a non-linear 

effect of this component on the RTs. For positive loadings, no effect was observed; however, 

for negative loadings, RTs become increasingly faster. Therefore, when the nouns are 

produced in a syntactic context, that is, a noun phrase, more prototypical nouns resulted in 

faster initializations of the phrase. Atypical nouns resulted in slower phrasal RTs than 

prototypical nouns, but the effect of increasing atypicality levels out around loadings of 0. 

We now turn to RTs measured at the noun itself. Naturally, these RTs are strongly 

correlated with those measured at the (r = 0.97). However, several of the predictors may be 

more closely aligned with production of the noun. For example, the quality of the vowel in 

the may reflect additional planning that takes place during the production of the. Such mid-

speech lexical selection processes should be expected given that prior research has shown 

that speakers rely on grammatical forms to mitigate on-line planning difficulties (e.g., Clark 

& Fox Tree, 1997). These effects may therefore arise only once the speaker has begun to 

produce the noun phrase. I also guard against possible task-based strategies. For example, 

participants entrained on producing the + N may use the as a crutch, producing it early while 

still searching for the noun. In this case, the noun-locked RTs may be more reliable indices 

of lexical selection processes.   

6. Results: Noun RT analysis 

I fitted a second GAMM predicting RTs at the noun. This model had the same structure 

as that fit for the RTs taken at the. Similar to the the-locked RTs, a Box-Cox analysis of the 
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noun-locked RTs suggested the inverse transformation to normalize the distribution. I again 

removed outlier RTs falling more than two times the standard deviation from the mean. An 

initial attempt at modeling revealed a significant effect of diversity component 2 (p = .002), 

but as with the the-based analysis, this component contained a very sparsely populated 

region at the lower extreme. I removed these observations and refit the model, which 

actually increased the significance of the effect (p<.001). I report results for the refit model. 

The summary of significant effects is given in Table 5. 

 

Table 5: Significant predictors of response time at N in the + N picture naming 

Parametric terms β SE t value p value 

intercept -0.58 0.009 -63.15 <.001 

number of syllables -0.01 0.005 -2.20 .02 

the vowel: stressed uh 0.03 0.004 7.70 <.001 

the vowel: ee 0.03 0.007 3.71 <.001 

     

Smooth terms eDF refDF F value p value 

previous RT (log ms) 6.01 7.03 70.62 <.001 

age of acquisition 1.30 1.46 8.78 <.01 

name diversity 2.90 3.34 42.95 <.001 

visual complexity (log file size) 1.00 1.00 6.15 .01 

diversity component 2 1.00 1.00 8.26 <.001 

     

Random effects     

image 0.95 1.00 21.39 <.001 

subject 104.20 280.00 0.70 <.001 

 
 

Unlike the-locked analysis, this analysis revealed two significant parametric terms. First, 
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the number of syllables resulted in faster naming latency at the noun. This result was 

unexpected on general grounds, but may be accounted for as a function of the experimental 

design. Meyer, Roelofs, & Levelt (2003) find a numerical 18 ms advantage for multi-syllabic 

words over mono-syllabic words, but only when they used a mixed design that included both 

mono- and multisyllabic targets. Participants in the present study produced both 

monosyllabic and multisyllabic words, akin to the mixed condition in the experiment of 

Meyer and colleagues. The effect did not reach significance in that study, and I find 

inconsistent evidence for it here: the effect only arose for RTs taken at the noun in the the + 

N naming condition. Moreover, this study differs from that of Meyer and colleagues in 

several ways. First, in this experiment, participants were not familiarized with the picture 

names. Greater demands were therefore placed on the lexical retrieval system. This increased 

demand, coupled with the mixing of multiple word lengths, could have exacerbated the 

advantage for longer words (if indeed task demands drive this effect). Second, I analyzed all 

responses, regardless of whether they were the “intended” name. However, this is unlikely to 

have had an impact, as I find no evidence for an interaction between word length and 

whether the response matched the dominant response across participants for that image. 

Third, some participants in this sample produced three-syllable responses, hence providing a 

broader range of longer words. Again, this is unlikely to have had an impact. Removing 

these tokens and re-running the model did not alter the significance. Therefore, this result 

may be a function of the task demands, but further research is necessary to determine why it 

surfaces in some conditions and not others. 

Second, the quality of the vowel correlated with the response times in the expected 

directions. When participants produced unstressed uh, the noun was produced earlier than 
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when they produced a stressed uh or ee. Unstressed uh indicates that the speaker has 

cliticized the determiner to the noun, which may suggest that the noun was selected quickly 

relative to the highly available determiner, allowing the two to be integrated prosodically. 

Stressed uh and ee indicate a weaker prosodic bond between the and the noun, which could 

reflect either task-based early production of the or selection-based lags in accessing the 

noun. 

All other control predictors had similar effects to those observed for the-locked RTs, and 

so will not be discussed further. 

Only one of the syntactic components surfaced as significant. As with the the-locked 

analysis, diversity component 2 was a strong predictor of RTs. Unlike the the-locked 

analysis, no effect of syntactic atypicality was observed. The component loadings and fitted 

effect of diversity component 2 are presented in Figure 15. 

The top panel of Figure 15 shows the same component loadings that appear in the top 

panel of Figure 13, but it is repeated here for convenience. Again, these loadings indicate 

that diversity component 2 loads positively for as-modifier diversity, with support from 

leftward  diversity. It loads negatively for rightward headship. Exactly as was observed for 

the-locked RTs, diversity component 2 was negatively correlated with noun-locked RTs. 

Nouns with the most diverse as-modifier and leftward syntactic distributions are produced 

faster within the context of the noun phrase. By contrast, nouns with diverse rightward as-

head distributions are produced relatively more slowly. 
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Figure 15: Effect of diversity component 2 (N).  Top panel: Component loadings for 

diversity component 2. Loadings indicate that positive values of the component reflect 

increasing diversity as (rigthward-facing) modifier, with support from leftward 

diversity; negative values of the component reflect increasing diversity as rightward 

head. Bottom panel: Effect of diversity component 2 on RTs measured at NOUN. The 

solid line plots the regression curve. The shaded area represents the 95% confidence 

interval. 
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7. Discussion 

Experiment 2 demonstrates that the effect found for bare-noun picture naming in 

Experiment 1 is not limited to the (rather artificial) bare-noun naming task. Even when 

names are produced in a fully lexically and syntactically predictable context, picture naming 

RTs vary in response to aggregate prior syntactic distributions.  Notably, these effects hold 

where measures of the syntactic and syntagmatic predictability of the nouns in the the + 

NOUN frame do not. Also of interest is the fact that the syntactic measures affected onsets of 

both the determiner and the noun. This suggests that participants were not simply producing 

the and waiting for the noun to come to mind. Instead, there appears to be a process that 

proceeds as follows:  lexical selection, mediated by prior syntactic distributions, integration 

with the determiner, then articulation of the NP. 

Both the-locked and noun-locked RTs showed an effect of diversity component 2. This 

component was most strongly associated with modifiership and leftward relations. More 

diverse modifiers of leftward content were produced faster at the and the head noun. This 

effect is complex, and could arise from multiple factors. Because this study is largely 

exploratory, especially with respect to the individual contributions of the different syntactic 

dimensions, I offer several possible explanations. 

On the one hand, this component contrasts leftward and rightward as-head diversities. 

Leftward as-head diversity, particularly in the absence of rightward as-head diversity, 

facilitated naming. A common parse of the determiner + noun complex identifies the noun as 

the head. By this analysis, the nouns that are distinctively leftward heads are produced faster 

when they appear in a syntactic construction in which they are leftward heads. Applying the 

connectionist metaphor, activation could spread between syntactic and lexical 
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representations. Syntactic-level activation would stay primed from repeated production of 

the noun phrase. Moreover, some activation should spread from the syntactic nodes to 

various lexical nodes according to the strength of their association. Lexical-level activation 

would also be triggered bottom-up by the visual → conceptual → lexical pathway. Once the 

noun lemma is activated, it spreads activation back into the syntactic nodes. When the 

patterns of activation sync up between the two, the noun with the strongest resonance wins 

out. Nouns that make the strongest candidates for leftward headship have a better chance of 

syncing up with projected determiner relation. Such resonance is at its lowest when the 

syntactic resonance of the noun overlaps not at all with the currently active syntactic space. 

This explanation accounts for the headship (and overall leftward diversity. However, it 

does not explain why these should align with modifiership. Looking into the distributions, 

rightward modifiership is almost exclusively reserved for three categories: the initial noun in 

NOUN + NOUN compounds (written with a space), subject of active verbs, and subject of 

passive verbs. The latter two are much more heavily populated. Now, subjects must be 

selected and articulated early in the production of a sentence. They are often seen as 

“hitching posts” to prior discourse more so than subordinates of the main verb (Chafe, 

1994), and experimental results show that the syntactic structure of the clause tends to be 

built to accommodate whatever noun has been selected to initiate the clause (Tomlin, 1995; 

Myachykov, Garrod, & Scheepers, 2009). Therefore, words that are diverse rightward 

modifiers may have a history of rapid selection as subjects partially independent of the 

clausal structure that follows. As frequent subjects, they may establish a lasting processing 

benefit in production that surfaces even in contexts for which no sentential continuation is 

required. 
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This effect of modifiership could also be driven by the task. I asked participants to 

produce the same structure repeatedly. In each token, the participants produced the 

determiner prior to the head. For one, this means that the determiner was a stable component 

of every trial. Participants likely maintained a high level of activation of the determiner, 

searching only for the noun. This preparation could extend into the syntactic domain: on 

each trial, the participant must hitch a new noun to the trial-stable determiner, The task 

demands could therefore place the in an ad hoc position of hierarchical superiority – it 

functions as the syntactic head. Although the actual parses used to construct the syntactic 

distributions treat nouns as the heads of determiners, the opposite relationship has also been 

proposed – namely that determiners head a determiner phrase in which the noun is 

embedded. This approach is particularly popular within theories that use phrase-structure 

representations (Abney, 1987). Therefore, the hierarchical superiority of the might be a 

general – and not ad hoc – property of the syntactic system of English. However, if this were 

the case, we should have expected a stronger role from leftward modifiership, which is 

nearly absent from this component. Therefore, the role of modifiership (if any) may be to 

privilege nouns that are easily integrated into modifier space when participants are tasked 

with “modifying” the ad hoc experimental frame the + ___. At this stage, this proposals 

remain hypothetical. I leave it to future research to pin down the exact cause of the observed 

facilitation. 

Turning to the atypicality effect, the more prototypical the noun across all syntactic 

distributions, the faster the production of the. However, I observed no such effect at the 

noun. One possibility is that the onset of the determiner is put off until a threshold of 

activation within the lexical system is reached, even if some competition remains among 



 

 

 

 118 

semi-active lexical forms. In other words, participants wait to begin articulating the noun 

phrase until they have a sense that some noun is available. Lexical selection processes then 

continue as the determiner is articulated, allowing the system to settle on a target name. By 

this account, the prototypicality of the head exerts its effect at the phrasal rather than lexical 

level. Or there could be some kind of push-and-pull whereby the facilitation for producing 

the – which should pull production of the noun up in time given the high degree of 

correlation between the the-locked and noun-locked RTs – cuts against the interference 

produced by activating lexemes that occupy densely populated areas of the lexico-syntactic 

space. The end result would then be a null effect atypicality at the noun. 

F. General Discussion 

In two picture naming studies, I find effects of prior syntactic distributions on lexical 

production latencies. Similar effects have been reported in earlier studies (e.g., Hendrix et 

al., 2017). The present study improves on that work in several important ways. First, prior 

syntactic distributions were measured across constructions rather than within a single 

construction. In this way, we arrive at much more complete picture of the syntactic behavior 

of nouns. Second, I explicitly attempt to remove information associated with lexical context 

when measuring cross-constructional information. I thereby ensure that the measures tap into 

the abstract syntactic space, maximally divorced from the surface context. These first two 

steps are necessary given claims that have been advanced recently about the fundamental 

role of surface patterns in determining word learning, hence word processing (e.g., Baayen, 

et al., 2011). Third, different dimensions of syntactic behavior were contrasted, including 

hierarchy and word order. Fourth, syntactic diversity, a measure of breadth and strength of 
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the lexico-syntactic relationships, was contrasted directly with syntactic atypicality, a 

measure of how similar a noun is to other nouns in its syntactic behavior. This contrast is 

necessary given that research from comprehension suggests that the two have independent 

effects, as reflected in the electrophysiological signature (Linzen et al., 2013). Fifth, 

estimates of diversity and prototypicality were carefully corrected for underestimation bias. 

Other studies rely on maximum-likelihood estimates, which are known to be biased (Miller, 

1955). The corrected estimates therefore better approximate the true syntactic behavior of 

nouns. 

In Experiment 1, participants named pictures with isolated nouns. We saw only a weak 

effect of atypicality. Nouns that were more distant from the prototypical noun were produced 

faster. This result resembles that observed for inflectional prototypicality: nouns with 

inflectional distributions that differ from the typical noun given their class take longer to 

produce (Baayen, Levelt, Schreuder, & Ernestus, 2008).  I interpret this as an interference 

effect: when the target name occupies a densely populated corner of the syntactic space, it 

shares its activation with many other lexical items, which makes it more difficult to isolate 

the target. This account invokes the notion of competition, which has been repeatedly 

challenged in recent years (Dhooge & Hartsuiker, 2010; Miozzo & Caramazza, 2003). The 

alternative explanation involves selection by exclusion of competitors. The difference 

between interference by competition and interference by exclusion lies primarily in the locus 

of the effect, that is, whether the competitors interfere with selection of the target 

(competition) or with the removal of competitors from the response buffer (after the target 

has already been selected; exclusion). Either explanation is compatible with the current 

findings, but future research might investigate interference via the syntactic space using, for 
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example, the picture-word interference (PWI) paradigm, especially the delayed variant of 

PWI (e.g., Dhooge & Hartsuiker, 2010). 

Importantly, the atypicality effect was driven by rightward relations. This specificity 

validates the fine-grained approach I adopt here. It also suggests a functional motivation. 

Words are rarely experienced outside of syntactic contexts in natural speech. A central 

principle of usage-based linguistic theory is that experience shapes how language is 

represented and processed (e.g., Barlow & Kemmer, 2000). The effects of the syntactic 

measures are therefore expected to be tuned to the needs of speakers who are producing 

connected speech, including sentences. Much evidence from sentence production suggests 

that the language production system is highly incremental (Allum & Wheeldon, 2009; V. 

Ferreira, 1996; F. Ferreira & Swets, 2002). Incrementality in one sense is concerned with the 

sequencing of elements one after another (i.e., word order). Each choice of a word in these 

sequences constrains the possible continuations, that is, the possibilities for how 

“downstream” (i.e., rightward) may be integrated into the unfolding structural template. 

Some planning happens in advance (e.g., Myachykov, Scheepers, Garrod, Thompson, & 

Fedorova, 2013), but a word at any stage in the production is still related to pre-planned 

structures via rightward-facing dependencies. This focus on the future could influence the 

strength of the relationships between words and syntactic forms, a residue of use that 

constrains production even in the absence of syntax. How this effect fits into the broader 

evidence base notwithstanding, the correlation of prior distributions with isolated noun 

production provides strong support for the probabilistic network models of the 

“constructicon” (e.g., Diessel, 2015). 

When participants were asked to produce full noun phrases – the + NOUN – rather than 
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bare nouns, an effect of atypicality was observed in only one of the two positions, and a 

stronger effect of syntactic diversity in both positions. Regarding atypicality, we saw a 

general distance effect: nouns that most closely approximated the noun prototype on all 

dimensions were produced faster. However, the effect only surfaced for RTs measured at the 

determiner the. Not only do the significant components differ in shape across Experiment 1 

(rightward distance) and 2 (general distance), they correlate with RTs in opposite directions. 

I proposed that the bare-noun effect arose from interference within the densely populated 

space of the lexico-syntactic network. But this cannot explain why prototypical nouns 

produce faster onsets of the in the noun-phrase naming task. To explain this difference, we 

must consider two things: (1) facilitation was associated with general rather than right-facing 

distributions and (2) the facilitation was only observed at the, not at the noun itself. I propose 

that the advantage for prototypical nouns is based on a tendency to delay onset of the noun 

phrase until a threshold of activation has been reached within the lexical network. The 

system uses this activation threshold to determine whether a head noun will be available 

when needed. This could be a general strategy, or one dictated by the time-pressure of the 

task. Once this threshold is exceeded, the processor prepares the determiner for articulation. 

A greater general amount of activation within the lexico-syntactic network ensures that some 

form will be available, though perhaps not immediately. Interference from competing forms 

can delay articulation of the intended noun (as was observed in the bare-noun study). Thus, 

while the earlier production of the puts pressure on the system to articulate a noun soon after, 

the noun is simultaneously delayed by interference. Together, this push-and-pull produces a 

null effect at the noun. The present data do not allow us to evaluate this proposal. 

Nevertheless, the fact that the effect of prior distributions was observed at all is non-trivial. 



 

 

 

 122 

Under any theory, we expect the syntactic system to switch on when the task requires the 

participant to produce a syntactic utterance. However, for theories that separate words from 

syntax, the syntactic system is expected to limit itself to the task at hand (i.e., to look for 

lexical entries labeled as nouns that are compatible with the semantic input and 

communicative intention; e.g., Borer, 2005; Pickering & Branigan, 1998; Bresnan, 2001; 

Chomsky, 1995; Ramchand, 2007). The present findings present a serious challenge to these 

theories. 

An effect of diversity was also observed, and this effect was constant across both the- 

and noun-locked RTs. The precise source of the effect remains unclear, given the complex 

nature of the component loadings, as well as an uncertain relationship between these 

loadings and the demands of the task. I proposed three possibilities. First, increasing 

leftward as-head diversity, as well as total leftward diversity were associated with faster RTs. 

Nouns are often treated as the head of determiners. Therefore, nouns that are most associated 

with left-facing relationships, when produced in a left-facing relationship, are produced 

faster. The fact that the effect is observed at the determiner could be due to a mechanism 

similar to that which underlies the prototype effect. For example, the participants know that 

they must produce the noun phrase, in which the only unknown is the noun. The leftward 

syntactic space may be primed during selection, providing stronger feedback to diverse 

leftward heads, which could boost activation potentials above the threshold required for 

initiation of the determiner. Diversity also speeds production of the noun, unlike 

prototypicality, which generates interference. If this explanation is correct, then syntactic 

diversity plays a role in both lexical selection and integration into syntactic frames. 

Second, the component loaded positively for rightward as-modifier diversity. Inspection 
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of the vectors reveals that rightward as-modifier diversity is defined primarily relative to 

subjects of active and passive clauses. Subjects are produced early within sentences, often 

before the speaker has committed to the overall structure of the clause (e.g., V. Ferreira, 

1996). Subjects are also highly topical and available, providing a bridge between prior 

discourse and the current clause (Chafe, 1994). Repeated topicality and availability may be 

signs of cognitively or culturally salience, which translates into faster processing (for 

experimental evidence, see e.g., Tomlin, 1995; Allum & Wheeldon, 2007). Therefore, nouns 

that are commonly used as subjects may be selected and produced more quickly outside of 

clausal contexts as a matter of general discourse-functional salience, in other words, some 

aspects of the measure provide an index of discourse-level organization . This benefit 

apparently only arises when the noun is produced in a minimally syntactic context; however, 

rightward as-modifier relations also played a role in the atypicality effect for bare-noun 

naming. Future research is needed to clarify whether this effect is truly restricted to syntactic 

contexts. This would involve isolating forms that serve distinctively as subjects relative to 

other syntactic relations.   

Third, the component loaded positively on as-modifier diversity. The repetitive nature of 

the task – producing the + NOUN repeatedly in sequence –  may have led participants to 

develop an ad hoc strategy of linking nouns to the determiner. The predictability of the 

determiner could establish it as an experiment-specific head for a response frame into which 

the noun is slotted.  Another possibility is that the determiner really is the syntactic head of 

the noun (the “Determiner Phrase” hypothesis;  Abney, 1987). In either case, the nouns that 

show high utility as modifiers might be more easily accommodated into the frame. This 

possibility could be tested in future research. 
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The main conclusions to be drawn from these data are as follows. First, cross-

constructional distributions affect bare-noun production. Producing a noun inevitably 

involves some information being passed between lexical and syntactic representations, 

exactly as predicted by usage-based construction grammar. Moreover, these prior 

distributions impact noun phrase production, suggesting that local syntactic contexts interact 

with the aggregate syntactic behavior of individual words. Much work has shown that the 

predictivity of a word in a local syntactic context based on its prior association with that 

specific context affects production (e.g., Gahl & Garnsey, 2004). I extend this work to show 

that syntactic probabilities outside of the target construction can promote integration into 

that construction if certain properties overlap (such as the direction or hierarchical structure 

of the relations). The low-level measures I adopt here do not even begin to approximate the 

complexity of the true syntactic space of a language, which would include higher-order 

argument-structure constructions (e.g., X VERB Y), idioms (kick the bucket), partially-

schematic structures (X puts up with Y), and so on. However, the dependency-based 

perspective is powerful enough to find effects in isolated word production. The dependency 

formalism thus represents an important new tool for understanding how prior contexts 

influence processing within a specific context. However, the system could be expanded to 

include composite dependency structures akin to traditional syntactic constituents (i.e., 

phrase-structural constituents) and the abstract constructional templates of construction 

grammar. Careful construction of such expanded syntactic spaces, along with the statistical 

techniques employed here, presents many opportunities for advancing our understanding of 

the lexico-syntactic interface and its functional architecture. 
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 IV. Effects of syntactic distributions on language acquisition 

A. Introduction 

The linguistic input that children receive was argued by some to be insufficient for 

supporting language acquisition. How could a child extrapolate an infinitely generative 

combinatorial system on the basis of a handful of unsystematic exemplars? This argument, 

known as the “poverty of the stimulus” (e.g., Chomsky, 1980), has been applied with great 

force by those who support a theory of inborn linguistic ability, one driven by the twin 

engines of “Universal Grammar” and the presence of a “Language Acquisition Device”. 

However, much research has since pushed back against this notion, revealing that the 

information contained by linguistic signals experienced by children had been severely 

underestimated. For example, children as young as 8 months old are able to leverage 

distributional biases in sequences of sounds to segment the speech signal, even with only 

small amounts of input (e.g., Saffran, Aslin, & Newport, 1996). Moreover, they can apply 

similar strategies to induce grammatical categories such as the gender classes of Russian 

nouns (Gerken, Wilson, & Lewis, 2005). This research re-frames the problem of language 

acquisition. Instead of asking how an innately specified grammar unfurls within the child, 

irrespective of input, researchers in statistical learning ask what aspects of the input children 

can leverage to produce and comprehend utterances that are consistent with the input. This 

research not only provides a plausible explanation for the development of language without 

the weighty assumption of a uniquely human, inborn mental system of significant 

complexity; it offers a straightforward link between how language is acquired and processed 

(e.g., Romberg & Saffran, 2010; Seidenberg & MacDonald, 1999). 
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Early research on statistical language learning in young children focused on segmental 

transitions (e.g., Saffran et al., 1996). A common finding in this research is that children 

attend to the transitional probabilities of sounds, preferring to segment the speech stream at 

low-probability junctures. Since then, a host of more abstract distributional profiles have 

been proposed to impact the linguistic development of children, including those based on 

morphological (e.g., Baayen et al., 2006; Gerken et al., 2005; Stoll et al., 2012), as well as 

lexical co-distributions (e.g., Mintz, 2003), among others (e.g., those related to features of 

the interactional or prosodic context, and so on; see Romberg and Saffran, 2010, for a 

succinct review). In the present study, I propose two additional sources of information that 

young children may exploit when learning to produce words based on their syntactic 

distributions: the diversity of constructions in which they are observed, and the typicality of 

these distributions relative to other words. Recent work on language production and 

comprehension suggests that adults are sensitive to both types of information (Baayen, 

Milin, Filipović-Đurđević, Hendrix, & Marelli, 2011; Lester, Feldman, & Moscoso del 

Prado Martín, 2017; Lester & Moscoso del Prado Martín, 2016; Linzen, Marantz, & 

Pylkkänen, 2013). Experimental research on infants suggests that even children as young as 

18-25 months have developed abstract syntactic knowledge (e.g., Gertner, Fisher, & 

Eisengart, 2006; Lidz, Waxman, & Freedman, 2003) and that they can use this knowledge to 

learn novel words (e.g., Lidz, White, & Baier, 2017). However, no study to my knowledge 

has examined how aggregate syntactic distributional information contributes to word 

learning in young children. I explore this possibility by correlating the syntactic diversity and 

typicality of nouns with the age at which they are first produced in the naturally occurring 
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speech of English-speaking children. Following work on morphological distributions, I 

expect more diverse and more typical nouns to emerge earlier in child speech. I model 

lexical acquisition using a survival analysis technique (Cox Proportional Hazard Regression; 

Cox, 1972). These results confirm that more diverse and more typical words tend to be 

produced earlier, over and above a number of other control variables. 

Statistical properties of the input that children receive support lexical acquisition on 

several levels. Biased relative positioning of phonological segments (phonotactics) can help 

children carve out candidate words from the continuous speech signal (Saffran et al., 1996), 

and children can rapidly map newly segmented words to meanings (Graf Estes, Evans, 

Alibali, & Saffran, 2007). Beyond single segments, the distribution of stems across their 

morphological variants also correlates with language development. Baayen et al. (2006) 

reanalyzed a previously published database of lexical decision and word naming latencies for 

English. As co-predictors, they include an information-theoretic measure of the 

morphological distributions of simplex English nouns and verbs: the inflectional entropy 

(e.g., Moscoso del Prado Martín, Kostić, & Baayen, 2004). Inflectional entropy captures the 

average uncertainty any particular inflectional exponent of a word. Higher entropies reflect 

stems that tend to occur relatively often across a larger number of exponents; stems with 

lower entropies tend not to display much morphological variability across tokens. 

orthographic words with higher inflectional entropies have been observed for adults in 

production and comprehension (though the effect is much reduced for production). Crucially, 

they also correlated inflectional entropy with subjective age of acquisition norms. They find 

that what adults process more efficiently, children learn earlier. High entropy forms have the 
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earliest age of acquisition ratings. This finding demonstrates that children attend to more 

than how surprising segmental transitions are when learning words. They appear to track 

contextual variability at more abstract levels of linguistic structure. Common to the two 

situations is the fact that a higher degree of variability in the local context promotes word 

learning. 

Effects of inflectional entropy have also been observed for languages with much more 

complex inflectional paradigms. Stoll et al. (2012) report a corpus analysis of child produced 

and child-directed speech in the Tibeto-Burman language Chintang, spoken by roughly 6,000 

speakers in Nepal. Chintang is a strongly polysynthetic language, boasting a massive 

paradigm of obligatory verbal morphology, complicated by derivation and variable affix 

ordering. Stoll and colleagues find that where the inflectional entropies of the child 

productions match those of the adults more precisely, the children produce a greater share of 

verbs relative to nouns. Hence, children begin to produce more verbs once they have begun 

to master the distributional properties of the morphological system as deployed by adults. 

These findings beg the question: what mechanism lies behind this learning? We know 

that children are sensitive to probabilistic distributions, but not yet how this distributional 

information is represented in the mind of the child. Several theories have been proposed. 

One could account for these findings by appealing to exemplar (or memory-based) models of 

linguistic knowledge. According to this family of models, children store specific examples of 

language use. Words, categories, and even syntactic constructions are built gradually through 

categorization processes that generalize across partially variable, partially stable exemplars. 

These exemplars may form “clouds” within a hyperdimensional space, organized around 
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item-specific prototypes (e.g., Abbot-Smith & Tomasello, 2006; Goldberg, 2006; Tomasello, 

2003). As children generalize further, they develop hierarchies that bind representations at 

varying degrees of abstraction (e.g., see Goldberg, 1995, for a thorough discussion of how 

such a system could be organized). Evidence for this explanation comes from several 

sources. For example, children's early syntactic knowledge tends to be highly item-specific 

and dependent on input frequency (Tomasello, 1992), which suggests that children tend to 

use memory of highly frequent input structures as unanalyzed chunks to express complex 

meanings prior to breaking them down into their component parts. Furthermore, adults are 

sensitive to the frequencies of multi-word units (Arnon & Snider, 2010). Frequency effects 

are typically interpreted suggesting the independent status of mental representations. Thus, 

these frequency effects could arise from activation of specific exemplars, similar to the 

unanalyzed chunks that children rely on early in development. However, these models still 

need to explain the nature of the exemplars. As Baayen, Hendrix, & Ramscar (2013) point 

out, this model requires a massive capacity for memory, as well as high-speed retrieval 

operations capable of navigating such bloated networks. One way to get around this problem 

is to reconstrue the chukas as temporally linked patterns of activation within distributed 

networks. Phase transitions between the activation states of words in sequence could be 

facilitated by repeated exposure to multiword chunks, without need for an exemplar to be 

stored. Similar explanations have been offered to account for semantic priming and other 

psycholinguistic phenomena in adults (e.g., Plaut & Booth, 2000).   

Recent computational models have successfully learned to mimic the effects of 

morphological and syntactic paradigms on adult language processing (e.g., Baayen et al., 
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2011). Specifically, a two-tier neural network with orthographic input nodes and semantic 

output nodes formed more stable relationships between word forms and meanings. Words 

that are disributed more typicallyacross the set of possible morphological exponents, based 

on the overall frequency of their exponents. The model uses a simple but powerful learning 

algorithm based on the Rescorla-Wagner equations (Rescorla & Wagner, 1972), which 

determine cue/outcome associations based on how frequently the cue, and not other cues, 

occurs with a specific outcome, and not other outcomes. This approach has been dubbed 

naive discriminative learning, as the model learns to discriminate lexical representations 

without any knowledge other than sequences of elements. The same style of model has also 

been able to reproduce phrasal frequency effects (Baayen, et al., 2013), suggesting that it 

generalizes beyond word-internal structures. Naive discriminative learning therefore 

provides an economical and plausible explanation for lexical and supra-lexical learning, and 

one that links acquisition to processing (in line with the statistical learning literature). 

For present purposes, both types of models make the same general predictions about 

child behavior. First, they both predict that the diversity of syntactic contexts should support 

learning. When children experience words in highly variable contexts, the common points of 

contact between form and meaning stand out more clearly, allowing the child to form more 

stable lexical representations. Beyond that, diverse distributions provide more and stronger 

exemplars for how words should be used syntactically. The more exemplars of verb/structure 

pairings that children experience, the more likely it is that they have experienced a syntactic 

frame compatible with their communicative needs in any given situation. This prediction is 

given as H1: 
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H1:  Children are more likely to produce nouns with high-diversity syntactic distributions 

earlier in their development. 

 

Second, both approaches predict that more prototypical nouns should be produced 

earlier. Prototypical nouns occur in the set of syntactic contexts in which children will most 

often experience nouns. Assuming that these prototypes reflect the communicative needs or 

habits of speakers generally, prototypical distributions better equip the children to integrate 

nouns into syntactic structures that are most often needed for the encoding of nouns. The 

denser the network of exemplars, the more support the word receives from the syntactic 

system. This hypothesis is given as H2: 

 

H2:  Children are more likely to produce nouns with prototypical syntactic distributions 

earlier in their development. 

 

The two classes of models do differ in at least one respect. Exemplar-based models have 

been specifically developed to handle linguistic representations at all levels of abstraction, 

from sequences of specific sounds or words to fully abstract argument structure 

constructions (Goldberg, 1995; Langacker, 1987). They assume direct connections between 

lexical and more abstract representations (Diessel, 2015). By contrast, naive discriminative 

learning has only been evaluated on surface sequences (i.e., for which meanings are directly 

related only to orthographic units in the input). In fact, one fo the key design elements of the 
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model architecture is the lack of abstract representations besides surface forms and meaning 

(Baayen, et al., 2011). If we find support for H1 and H2, the naïve discriminative model 

would have to augment what it allows as input to include syntactic information beyond what 

is available on the surface. 

 Current evidence is inconsistent on whether diversity and typicality measure the 

same or different aspects of language learning. Milin, Filipović-Đurđević, and Moscoso del 

Prado Martín (2009) find that inflectional typicality swallows the effect of diversity in 

lexical decision for nouns. However, Linzen et al. (2013) find different electrophysiological 

signatures of the two variables for entropies taken over the subcategorization frames of 

verbs. Moreover, they found no effect of diversity on response latencies, while they did 

observe a typicality effect on behavior. I let the two compete in the present analysis to 

determine whether syntactic contexts of nouns likewise show a double sensitivity to 

diversity and typicality in the context of language acquisition. 

 In what follows, I introduce the measures of syntactic diversity and typicality. A 

corpus study based on data from a dense longitudinal sample of twelve English-speaking 

children is reported, and findings are discussed with relation to several current proposals for 

the nature of distributional statistical learning. 

B. Methods 

1. Child Data 

Data were taken from the Manchester Corpus (Theakston, Lieven, Pine & Rowland, 

2001), distributed through the CHILDES database (MacWhinney, 2000). The Manchester 
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Corpus contains a dense longitudinal sample of twelve middle-class English-speaking 

children (six girls and six boys) from the areas of Manchester and Nottingham, England. All 

children were monolingual and the oldest or only children in their respective families. Ages 

at the beginning of data collection ranged from 1;8.22 to 2;0.25; the earliest mean lengths of 

utterance (MLUs; i.e., the mean number of words per utterance for a given sample) ranged 

from 1.06 to 2.27. Children were recorded for one hour every three weeks for one year (with 

the exceptions of five missed sessions and two half-sessions across the twelve children). 

Each hour was broken into two 30-minute play periods. During the half hour, children 

played with their own toys. During the second half hour, the children played with a set of 

toys provided by the experimenters. The experimenters interacted only minimally with the 

children and caretakers, meaning that the bulk of the data reflect caretaker-child interactions. 

The sessions were recorded and transcribed. Predictable pieces of language-based games 

(e.g., nursery rhymes, songs, and so on) and proper nouns were treated as single units (e.g., 

Thomas_Tank_Engine; row_row_row_your_boat).   

The Manchester data were selected because they focus on the earliest stages of 

grammatical development. The children have just begun to produce syntactic utterances but 

continue to add rapidly to their vocabularies. This range of ages and syntactic abilities is thus 

well suited to an analysis of how the syntactic information carried by words impacts when 

children will begin to produce those words. It also provides a strong test of the functional 

role of syntax. Any effect observed here would mean that children track syntactic 

information very carefully, even when they have only barely begun to produce multi-word 

utterances. 
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The present question concerns how syntactic diversity and atypicality impact lexical 

acquisition. Specifically, I am interested in when words are acquired for production (I 

acknowledge that the child surely comprehends more than they can produce themselves; e.g., 

Benedict, 1979). I treat a noun as having been acquired once the child produces it for the 

first time. To extract all and only nouns, I first tagged and lemmatized the entire Manchester 

corpus for part of speech using the English model from spaCy, an open-source natural 

language processing library for python (documentation available at http://spacy.io).
8
 Next, I 

cycled through each file for each child, from the earliest to the latest, and extracted each 

unique noun lemma relative to what a given child had already produced. The names of the 

children, as well as the age and MLU at which the lemmas first appeared, were recorded. 

2. Estimating syntactic diversity 

Children demonstrate some lack of syntactic competence at the ages studied here, at least 

relative to adult intuitions (e.g., Gleitman, Gleitman, & Shipley, 1972). In other words, their 

syntactic systems are expected to be incomplete, still under construction. Therefore, they 

may only be able to take advantage of certain gross generalizations about the syntactic 

contexts of words. I attempt to accommodate for this imcompleteness by exploring the role 

of total syntactic diversity and prototypicality. That is, I do not distinguish the full array of 

syntactic features, which include (at higher levels of abstraction) word order, hierarchy (i.e., 

head vs. dependent status), and the crossing of those two variables. Such variables have been 

                                                 
8
 The Manchester corpus already contains part of speech annotation. However, in order 

to maximize comparability across our child and adult data, we derive part-of-speech labels 

for both samples using a single tagging algorithm. 
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shown to impact adult language comprehension and production (Lester & Moscoso del 

Prado Martín, 2016); I leave it to future research to explore their role during the emergence 

of syntax.  

The Manchester data come from children learning British varieties of English. I therefore 

estimate the prior syntactic distributions of nouns from the British National Corpus (BNC; 

The British National Corpus, 2007). Prior research has focused on American English, and so 

has used the largest and most well-balanced corpus for that variety which is freely available 

in its entirety:, the Open American National Corpus (OANC; Reppen, Ide, & Suderman, 

2005). The OANC contains approximately 15 million words of text from spoken and written 

modes, covering many genres, registers, and so on. To improve the comparability of the 

samples across these studies, estimates of diversity and prototypicality were collected for a 

random subset of the files totaling approximately 15 million words. This way, any 

differences in the effects observed between this and prior research on adults cannot be 

attributed to the size of the sample on which the estimates are based. I parsed this 15-million 

word sample of the BNC using the spaCy dependency parser (Honnibal & Johnson, 2015). 

The spaCy dependency parser produces a dependency graph for each sentence. These 

graphs represent the syntactic structure of sentences as a set of binary relationships between 

pairs of words. Within each pair, one word – the head – is hierarchically superior, while the 

other – the modifier – depends on the head for its realization. For example, in the noun 

phrase the bowl, bowl is the head. It is the semantic core of the phrase; the bowl is more 

about bowl than the. It is also the syntactic core, in that it determines how the pair of words 

may be integrated into the broader syntactic frame (e.g., in The bowl sat on the table, bowl 
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can be the subject of the verb sat because it is a noun; the cannot fill this role). The head and 

modifier are linked by a typed functional relation.  For example, in the spaCy conventions, 

the relation that binds the to bowl in the bowl is labeled det (for “determiner”). I refer to this 

triplet of head, modifier, and syntactic relation as a bundle. 

The syntactic measures are defined using these dependency relations for each bundle in 

which the nouns occur. I take the syntactic distribution to be the frequency distribution of 

nouns across the possible relations, either as head or modifier. To measure syntactic 

atypicality, I create a “syntactic prototype” by summing the frequency distributions across all 

nouns. The distribution of each noun is then compared to the summed distribution using an 

information-theoretic measurement known as the Jensen-Shannon divergence (JSD), a 

symmetrical variant of the Kullback-Leibler divergence (KLD). The KLD from distribution 

P to distribution T is given in Eq. 8: 

 

                                    (8) 

 

The KLD is asymmetric, meaning that the divergence from P to T is not necessarily 

equal to the divergence from T to P. However, for present purposes, there is no reason to 

prefer one direction (e.g., from target noun to prototype) to the other (e.g., from prototype to 

target noun). I get around this issue by using the JSD. The JSD is calculated in two steps. 

First, the two distributions P and T are averaged to create a new distribution M “midway” 

between them (i.e., the euclidean midway point). Then, the KLDs are taken from P to M and 

from T to M and averaged together. That way, JSD(P || T) = JSD(T || P). Nouns with high 
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JSD values are those whose distributions least resemble that of the prototype. Nouns with 

low JSD values have more prototypical distributions. I improve the accuracy of the 

frequency estimates by applying the James-Stein shrinkage smoother prior to taking the JSD 

(Hausser & Strimmer, 2009). This step guards against the bias on maximum-likelihood 

frequency estimates based on samples (i.e., using frequency counts as approximations of true 

probabilities). The James-Stein technique works best for distributions in which the number 

of cells is known. JSD requires a common space for all nouns, meaning that all noun 

distributions must share the same number of cells, and that this number must be equal to the 

size of the set of dependencies observed for any noun. While the true number of syntactic 

relations exceeds what I analyze here, I make the simplifying assumption that the set of 

relations encoded in the spaCy parser exhausts the possible dependency types.   

I also measure the syntactic diversity of these distributions. However, the diversity of 

these distributions is affected by at least two distinct sources of information: the relations in 

which the noun appears and the other words with which the nouns are bundled. Often, the 

syntactic relation between two words can be read off of the words themselves. For example, 

knowing that bowl is related to the leaves only one possible relation: det. Furthermore, 

lexical co-distributions are known to capture non-syntactic information, for example, 

semantics (Bullinaria & Levy, 2012). Therefore, we need some way to ensure that we are 

dealing with abstract syntactic information that is decoupled from the surface aspects of the 

use of the nouns. I opt for an information-theoretic measure known as the conditional 

entropy. Eqs. 9-13 define the conditional entropy H(D | L) of the syntactic distribution D of 

each noun given its lexical co-distribution L. 
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      (9) 

where 

    (10) 

so that H(D | L) reduces to 

,                (11) 

where 

             (12) 

and 

.             (13) 

The conditional entropy is equivalent to the joint entropy of the two distributions D and 

L minus the entropy of L (Eq. 9). The joint entropy (Eq. 10) can be rewritten as the sum of 

the individual entropies of D and L (Eq. 12) minus the information shared between the two 

distributions (the mutual information; Eq. 13).  The conditional entropy therefore reduces to 

the information carried by the syntactic distribution minus the mutual information (Eq. 13) 

shared between the syntactic and the lexical distributions (Eq. 11). Mutual information is 

similar to KLD in that it measures how well one distribution (i.e., the joint distribution of D 

and L) approximates another distribution (i.e., the fully random combination of D and L). 

However, unlike KLD, it is symmetrical. With the conditional entropy so defined, I can 

remove the information specific to the lexical component of the syntactic bundles from the 

information carried by the dependency relations, while accounting for any information that 

may be jointly carried by the two distributions. 

Again, if we apply these measures to the raw frequency distributions observed in a 
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corpus, we necessarily underestimate their “true” values. Unlike the JSD, we are here 

dealing with syntactic paradigms of potentially different sizes; we do not need to specify a 

common space for all nouns as we did before. This difference means that we can apply a 

different smoother, one better suited to situations in which the number of cells itself may be 

impacted by the underestimation bias. I select the technique proposed by Chao, Wang, & Jost 

(2013). This technique has been shown to perform well at correcting entropies based on the 

distributional profiles of words (Moscoso del Prado Martín, 2016).    

I apply these measures of atypicality and diversity to all nouns from the 15-million word 

subsample of the BNC described above. I then annotate the nouns from the database of first 

appearances in the Manchester corpus with their corresponding atypicality and diversity 

scores. 

3. Control variables 

I further annotate the Manchester data with a number of variables that might influence 

when a child ventures to produce a word for the first time. These controls include 

― word frequency (log) 

― emotional valence (how positive or negative the word is) 

― arousal (how “exciting” the word is) 

― (conceptual) concreteness 

― syllabic length 

― phonological neighborhood density (PLD20) 

 Word frequencies were taken from the SUBTLEX-UK corpus (Van Heuven, 

Mandera, Keuleers, & Brysbaert, 2014), a corpus of approximately 200 million words of 
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British English based on the subtitles of BBC broadcasts. Higher frequency nouns are 

expected to be produced earlier by children (e.g., Goodman, Dale, & Li, 2008). Frequencies 

were log-transformed to correct for strong positive skew (words in the highest frequency 

ranges are few and far between). Emotional valence and arousal ratings were taken from the 

norming database provided by (Warriner, Kuperman, & Brysbaert, 2013). These norms 

reflect how emotionally positive and exciting the concepts expressed by English words are, 

based on the impressions of a large sample of adults. Recent cross-linguistic studies report 

that children tend to produce positive words earlier than negative words (Braginsky, 

Yurovsky, Machman, & Frank, 2016; Harmsen, 2017). Weaker effects have been found for 

arousal, with a slight trend for more exciting words to be learned later (Braginsky et al., 

2016). Concreteness norms were extracted from the database published in Brysbaert, 

Warriner, and Kuperman (2014). Similar to the valence and arousal variables, these norms 

reflect the intuitions of adults. Prior work has shown strong negative correlations between 

concreteness and the age of acquisition of nouns: concrete nouns are learned earlier than 

abstract nouns (Braginsky et al., 2016; Harmsen, 2017). Syllabic lengths were extracted from 

the CELEX database (Baayen, Piepenrock, & Gulikers, 1995). Weak effects of word length 

have been observed for English, such that longer words are learned later (Braginsky et al., 

2016; Harmsen, 2017; Lewis & Frank, 2016). Finally, I compute a measure of phonological 

neighborhood density known as PLD20. Phonological neighborhood density refers to the 

number of words that overlap with the target word in their phonological form. PLD20 

operationalizes neighborhood density as the average Levenshtein distance (LD; the smallest 

number of single-character edits – insertion, deletion, addition, or substitution – to change 
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the target into another word) between the target word and its twenty closest neighbors 

(words with smallest LD). I compute PLD20 for all words in the sample using the 

phonological representations from CELEX and the Levenshtein algorithm as implemented in 

the vwr library for R (Keuleers, 2013). Children as young as nine months preferentially 

attend to words with dense as opposed to sparse phonological neighborhoods (Jusczyk, 

Luce, & Charles-Luce, 1994). Therefore, phonological density supports early word learning. 

Moreover, research from picture naming suggests that children aged three to five are faster 

and more accurate when producing names from dense neighborhoods as opposed to words 

from sparse neighborhoods (Arnold, Conture, & Ohde, 2005). Therefore, words with lower 

PLD20 (words from dense neighborhoods) should be produced earlier.   

Pairwise scatterplots show strong intercorrelation between the variables. In particular, 

frequency and concreteness were correlated with several other variables each. This situation, 

known as multicollinearity, creates problems for regression models (Baayen, 2008). A test 

for multicollinearity revealed that the degree of intercorrelation between the variables is 

unacceptably high (condition number κ > 47). To address this issue, I perform two 

generalized additive regression models (GAMs). First, I predict frequency on the basis of the 

other variables (allowing for non-linear relationships via spline-based smooth terms, as well 

as random intercept adjustments per child) and replace the raw frequency variable with the 

residuals of that model. The residuals reflect the part of frequency that cannot be explained 

by the other variables, which means that the new residualized frequency measure and the 

other predictors are fully decorrelated. I then do the same for concreteness, this time leaving 

out frequency. This process reduced multicollinearity to an acceptable level (κ < 25; see 
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Baayen, 2008).    

C. Results 

I performed a Cox Proportional Hazard Regression (CPHR) predicting the time of first 

occurrence of nouns in the Manchester corpus. CPHR is useful for modeling the time until 

some event is realized – for example, the time to death in some population (e.g., patients 

afflicted with some disease). CPHR predicts changes in the hazard rate, that is, the change in 

probability of an event occurring at a particular point in time when the predictor increases by 

one unit. In CPHR, the hazard rate is assumed to be constant across the period of time in 

which observations are made, which allows one to summarize the effect of a variable of 

interest with a single value. This assumption is known as the proportional hazard assumption 

(PHA). Usually, the rate is log-transformed, which centers the variable on 0, such that 

positive values indicate a higher “morbidity” (earlier observation of the event) and negative 

values indicate a “protective” quality (later observation). This approach has been fruitfully 

applied to lexical acquisition in several studies (e.g., Smolík, 2014; Smolík & Kříž, 2015), 

though the technique is perhaps underused in the field of child language acquisition 

generally. 

Cox regression is sensitive to a form of sampling bias known as truncation. The data 

show both left and right (random) truncation. Left truncation refers to the fact that words are 

only included in this analysis if they have “survived” (i.e., not been produced) until the 

window of time captured in the Manchester corpus. Right truncation means that words that 

survive beyond the window of time in Manchester are excluded (right censoring), as well as 

words that never happen to surface in the present sample (truncation). These truncations are 
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random in the sense that we cannot identify which words we are missing – some children, 

even as they grow into adults, will never utter certain words that exist in the English 

language, and the children in the Manchester corpus would certainly have been saying words 

before the experimenters began collecting data, even if they do not repeat those words in any 

of the recordings. This point illustrates why these truncations are an unavoidable aspect of 

applying survival analysis to lexical acquisition data: we cannot define, much less track the 

entirety of the English lexicon relative to each child. Handling left truncation is simple, and 

only requires that we relativize the survival function against the earliest age at which the 

children entered the Manchester study. In the present case, right truncation may be 

impossible to address. I therefore make the simplifying assumption that words produced 

after the window captured by the Manchester recordings will follow a similar pattern to 

those produced within the window (others have implicitly made similar assumptions; e.g., 

Smolík, 2014 ). In other words, I assume that words tend to surface earlier in any given 

sample if the child has actually produced the word before (even if it has not yet been 

observed in the samples). Many studies that examine variables similar to those studied here 

rely on age of acquisition norms that have been averaged across children (e.g., the norms that 

some have derived from the MacArthur-Bates Child Development Inventory; e.g., Goodman, 

et al., 2008). However, such approaches overlook the crucial individual differences in 

acquisition. These differences play out in a number of ways, including earlier or later 

acquisition, but also with respect to precisely which words are successfully acquired within a 

given time frame. I account for these differences in the present study by including random 

adjustments to the baseline hazard rate per child. In this way, I directly model the random 
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variability between children instead of computing some measure of central tendency of the 

enitre group. 

I fit the CPHR with the time to first appearance (given the earliest age observed in the 

sample) as dependent variable. I restrict the analysis to word forms which occur at least 100 

times in the BNC sample (~7 per million words) and which are predominantly used as nouns 

(based on the annotation in Brysbaert et al., 2013; n = 4206). Residualized frequency and 

concreteness ratings, as well as raw number of syllables, average phonological neighborhood 

density (PLD20), and adult-based valence and arousal ratings were included as control 

predictors. I further included the two critical variables, syntactic atypicality and diversity. 

Finally, I allowed for random intercepts per child
9
.  An initial inspection of the model 

revealed that the several predictors violated the PHA. PHA states that the hazard ratio 

between words with different values for the various predictors should remain constant over 

time. If this assumption is violated, the overall hazard coefficient is a mean assessment of a 

time-evolving variable (Allison, 1995), which can be misleading. For example, given a 

simple positive linear relationship between time-to-event and the estimates of the hazard 

coefficient, the overall coefficient will be an underestimate for words that are first produced 

in the earlier age range and an underestimate in the later age range. Crucially, these under- 

(or over-)estimates may cross over the null-effect threshold, meaning that observations at 

either end of the age spectrum would generate opposed estimates of the overall hazard ratio. 

Violations of PHA can be handled in several ways. Following Smolík (2014), I stratify 

                                                 
9
 We model random effects using the frailty function from the R package survival 

(Therneau, 2015). 
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the age variable into sub-groups and compute separate estimates of the hazard for each range 

so that no range (or the model as a whole) violates PHA. Smolík did not specify how he 

selected the age strata, so I follow a simple empirical heuristic. I first plot scaled Schoenfeld 

residuals against age (Grambusch & Therneau, 1994). Schoenfeld residuals represent the 

covariate values for each individual that “fails” (words produced for the first time) at time t 

minus the expected covariate value given all individuals at that time. The expected covariate 

value is the sum of covariate values for all individuals (words) in the hazard set weighted by 

their likelihood of failure β. These residuals can then be scaled by multiplying by the inverse 

covariance matrix of β. These scaled residuals can be summed across individuals at each 

time t and plot a smooth curve through the resulting points over time. If the slopes of these 

lines deviate from zero, then the PHA is violated. I fit nonlinear smooth terms through the 

scaled Schoenfeld residuals over time for each of the covariates and examined the trends. 

These smooth terms are plotted in Figure 16.   
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Figure 16: Schoenfeld residuals per predictor variable over time. The y-axis plots 

the estimated coefficient. The x-axis plots the age of first appearance of words (days).  
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The curves in Figure 16 reveal unacceptable nonlinear trends for frequency, valence, 

PLD20, concreteness, and syntactic diversity. These trends were confirmed via two-tailed 

tests of the correlation between the Schoenfeld residuals and age (all p < 0.05). For each 

variable, I noted the approximate ages at which the unacceptable curvatures appeared. I then 

carved the time scale based on a compromise between how many variables showed a 

deflection in a comparable range and how serious the deflection of any single variable was 

regardless of the behavior of other variables. Using this approach, we can identify the time 

chunks that align across variables while avoiding chunks that collapse too wide a range of 

coefficients estimates for any single variable. The four age groups (across all children) are as 

follows (in days): 626-700, 701-800, 801-950, and 951-1105. Smolík arrives at a very 

similar set of time chunks: 627-690, 691-800, 801-1000, and 1001-1105. These cutoffs 

correspond fairly well to the overall density of the first-mention observations, plotted in 

Figure 17. 

 

 

 

 

  

 

 

Figure 17: Density of observations for the first appearance of words 
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Figure 17 shows that the density of observations rises quickly from 626 days to reach a 

maximum at approximately 750 days, followed by a slight step function to a local minimum 

at around 950 days, followed by a precipitous drop to 1105 days. We can further see that the 

second time slice encompasses a period of rapid growth in the vocabulary of the children 

consistent with the much discussed “lexical burst.” The timing (around 24 months) suggests 

that this growth corresponds to the “second burst” that accompanies the emergence of 

morphosyntax (e.g., Bates & Goodman, 1999; Brown, 1973). Chunking time in this way 

removes all violations of PHA, as confirmed with another set of correlation tests (all p > 

0.19). 

Results of the stratified model are presented in Table 6. The coefficients of the Cox 

regression (log-transformed hazard ratios) for each time stratum are given in the columns. 

The standard errors are given in parentheses. 

No variable showed a significant effect in the final time window. This could be due to a 

lack of power, as very few nouns in this window that had not appeared already (roughly 25 

observations per child, respectively). Furthermore, length in syllables showed no effect in 

any window. This is not surprising given that several studies have repeated only weak or no 

effect of this variable (e.g., Braginsky et al., 2016). 

1. Significant controls 

Residualized frequency shows a significant positive coefficient in the first two time 

chunks, meaning that increases in frequency correlate with increased chances of being 

produced early but not later in development. For every one unit increase in frequency, the 

word is approximately 1.57 (e
0.45

) times more likely to be produced at any given time within 
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the first chunk. Within the second time chunk, this effect weakens to 1.30 times more likely, 

disappearing completely by the third and fourth chunks. 

 

Table 6: Results of stratified Cox proportional hazard regression 

Fixed effects 626-700 (n=1009) 701-800 (n=1935) 801-950 (n=958) 951-1105 (n=304) 

frequency 0.45 (0.05) *** 0.26 (0.03) *** 0.01 (0.04) -0.01 (0.05) 

length (syl.) -0.17 (0.19) 0.07 (0.10) 0.05 (0.12) 0.10 (0.18) 

PLD -0.67 (0.15) *** -0.40 (0.07) *** -0.19 (0.08) * 0.04 (0.11) 

valence 0.28 (0.06) *** 0.29 (0.04) *** 0.05 (0.05) 0.04 (0.05) 

arousal -0.09 (0.07) -0.13 (0.04) *** 0.02 (0.04) 0.06 (0.06) 

concreteness 0.67 (0.16) *** 0.64 (0.09) *** 0.17 (0.08) * 0.08 (0.10) 

atypicality -2.67 (2.09) -3.48 (1.16) ** -2.69 (1.35) * -0.53 (1.86) 

diversity 2.69 (0.65) *** 1.77 (0.35) *** 0.55 (0.38) 0.90 (0.54) 

     

Random effect Variance    

child .32***    

 

*p < .05. **p < .01. ***p < .001 

 

Phonological neighborhood density was a significant predictor of initial use in the first 

three time chunks. In all chunks, the effect was negative: words from sparse neighborhoods 

tend to surface later than words from dense neighborhoods. In the first chunk, every one unit 

increase in PLD20 led to a 49% (1-e
-0.67

) reduction in the chances of being produced for the 

first time. This effect weakens to approximately a 33% reduction in likelihood for the second 

time chunk and a 17% reduction in the third time chunk. 

Valence was associated with earlier productions. Higher valence scores translate into 

more positive emotional content. In the first and second time chunks, words were 1.32 and 
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1.33 times more likely to be mentioned per unit increase, respectively. No effect was 

observed at later time chunks. 

Arousal also surfaced as significant, but only in the second time chunk. Increasing 

arousal ratings reflect more exciting words, meaning that more exciting words were 

produced later. Each unit increase results in a 12% reduction in the odds of a word appearing 

in this window. 

As expected, concreteness supports early production. More concrete words tend to 

appear earlier in each of the first three time slices. The effect is roughly equivalent in the 

first two time slices: words were 1.95 and 1.90 times more likely to appear per unit increase, 

respectively. This effect weakened in the third slice to a per-unit increase in likelihood of 

appearance of 1.19 times.     

2. Critical predictors 

Both of the critical predictors surfaced as significant: diversity promotes early 

production, while atypicality promotes later production. We therefore find support for both 

H1 and H2. Notably, they exert their effects at a slight offset, such that the diversity effect 

precedes but overlaps with that of atypicality. Furthermore, both variables have effect sizes 

more than double (in the log scale) those of the other predictors. The diversity effect begins 

early. In the first time slice, more diverse words were 14.73 times more likely per unit of 

diversity to be produced. By the second time slice, we see a large drop in the effect size to a 

factor of 5.87. Atypicality surfaces for the first time in the second period, greatly reducing 

chances of first production (97% per unit increase). The effect continues into the third time 

slice, diminishing slightly to decrease chances by 93%. While the effects are somewhat 
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stronger, they also come with much larger confidence intervals (time slice two: {.71, .99}; 

time slice three: {.05, .99}).   

D. Discussion 

Statistical learning during early lexical acquisition depends on a host of factors across 

several layers of linguistic organization. Phonological and prosodic factors drive early word 

segmentation (e.g., Saffran et al., 1996). One layer up, morphological variability supports 

children's productive use of word classes (e.g.,Stoll et al., 2012). The present study shows 

that children likewise attend to variability at the level of syntactic distributions. Moreover, 

this distributional information is tracked at multiple levels: both individually (diversity per 

word) and paradigmatically (distribution measured against other words). Importantly, we 

observe these novel effects while simultaneously replicating previously reported effects for 

word frequency, emotional valence, arousal, concreteness, and phonological neighborhood 

density. The fact that the results on all these variables match the previously reported 

literature adds credence to the reliability of the novel analysis methods. 

First, consider syntactic diversity. From the approximate ages of 1;8 to 2;2, words that 

occur more frequently in a wider array of syntactic relations are produced earlier than more 

syntactically constrained words. Crucially, this effect is independent of the specific words 

that manifest the abstract syntactic relations. Prior evidence suggests that children can learn 

syntactic constructions by generalizing over fully lexically specified exemplars (Goldberg, 

2006; Tomasello, 1992). The results presented here extend this research: even at the earliest 

stages of syntactic acquisition, children appear to exploit abstract syntactic knowledge for 

purposes of word learning. This finding is consistent with the experimental evidence from 
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infants (Gertner, et al., 2006; Lidz, et al., 2003; Lidz et al., 2017) and young children 

(Shimpi, Gámez, Huttenlocher, & Vasilyeva, 2007; Thothathiri & Snedeker, 2008; cf. 

Savage, Lieven, Theakston, & Tomasello, 2003). Going beyond these studies, I find that 

more variable syntactic contexts solidify children's lexical representations, irrespective of the 

individual syntactic functions in which they are observed. Importantly, I do not mean to 

imply that the contextualized functions of nouns within particular syntactic relationships do 

not play a role. Rather, I wish to convey that the syntactically constrained word learning 

outlined by, for example, Lidz et al. (2017) , could be strengthened when it applies across 

many different constructions simultaneously. 

Second, children's early syntactic knowledge is paradigmatically organized relative to 

word class. Children aged 1;10 to 2;7  learn nouns earlier when the syntactic cues to their 

use overlap with those of over nouns. The measure of typicality can be interpreted as 

reflecting the syntactic density of nouns within the noun category. Density effects in the 

same direction have been uncovered for other linguistic domains in child language 

acquisition. For example, infants prefer to attend to words from dense phonological 

neighborhoods (Jusczyk et al., 1994), and older children process such words faster and with 

fewer errors (Arnold et al., 2004). Moreover, adults are faster at recognizing nouns from 

typical orthographic/phonological distributions (Ferrand, et al., 2011; Yarkoni, Balota, & 

Yap, 2008), as well as morphological and collocational distributions (Baayen, et al., 2011). 

One possible explanation for this effect is that the typical distribution serves as the baseline 

for processing (e.g., Linzen et al., 2013). Adjusting one's expectations to handle unusual 

nouns comes at a cognitive cost (e.g., Plaut & Booth, 2000). For children, this cost could be 
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prohibitive, delaying acquisition for production. Another explanation is that dense 

neighborhoods produce “gang effects,” whereby a cluster of closely related words support 

recognition of the target through sympathetic activation or mutual inhibition of non-targets 

(e.g., McClelland & Rummelhart, 1981). 

The typicality effect held over and above that of syntactic diversity, lending further 

support to the notion that diversity and typicality correspond to independent dimensions of 

language representation (e.g., Linzen et al., 2013). An unexpected finding concerned the fact 

that the diversity effect precedes the typicality effect. While this finding should be treated 

with caution, it suggests that children are sensitive to the syntactic distributions of single 

words before they are influenced by the distributions of nouns as a class. If found to be 

reliable, this effect would fit well with both exemplar-based models of language (e.g., 

Bybee, 2010; Diessel, 2015) and distributed-activation models (e.g., Plaut & Booth, 2000). 

First, the child becomes aware of the syntactic information carried by individual words. Over 

time, this experience builds up both within and across words, producing a form of prototype 

(whether built explicitly from exemplars or “burned” into an interactive-activation network). 

This explains the offset, and could be first evidence of how syntactic paradigms are 

established. These results are more difficult to account for in the context of a naïve 

discrimination model. Certainly, discrimination learning can account for distributional 

effects. However, it is not clear how it could explain the independent effects of diversity and 

atypicality, nor the temporal offset in the effects. Milin et al. (2009) find that typicality 

trumps diversity in adult processing for morphological paradigms. Perhaps the offset 

uncovered here has captured an in-process shift in the representation of nouns – one that 
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moves from diversity to prototypes, and which endures into adulthood. Future research 

should further investigate the time course of the development of the two effects in early 

childhood, as well as the relationship between the developmental trajectory and adult 

performance. 

Finally, two points regarding methodology. First, this study joins a handful of others 

which apply multifactorial methods to naturalistic child production data (e.g., Braginsky et 

al, 2016; Harmsen, 2017). By studying naturalistic production, I sacrifice the level of control 

achieved in laboratory experiments, but drastically increase the ecological validity of the 

study. By including many predictors, I accomplish two things: I maintain a high degree of 

statistical control of the analysis, and I compare the relative importance of different variables 

from many domains of linguistic representation. More importantly, the latter point allows us 

to test to what extent the variables of interest – syntactic diversity and atypicality – are 

independent of other types of information (for an example of this, see Moscoso del Prado 

Martín, 2007, who finds that erstwhile distributional effects of “morphology” might  in fact 

reduce to semantics). Second, I employ an underused regression technique – Cox 

Proportional Hazard regression – that is well suited to studying the emergence of vocabulary 

in child speech. A particular advantage of this approach is that no the most critical variable, 

age, need not be transformed prior to modeling. Moreover, one can avoid the issues that 

come with substituting other measures for age, such as mean length of utterance. Such 

substitutions have often been deemed necessary to capture individual variation in the 

developmental trajectories of children; however, they create several problems for the 

analysis of longitudinal corpus data (e.g., Gries & Stoll, 2009). CPHR can naturally 
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accommodate such variability through random effects. It therefore maximizes interpretability 

while minimizing common issues in the corpus-based analysis of lexical acquisition. 

This study shows that syntactic distributions play a strong role in supporting early 

acquisition. The results further suggest a temporal relationship between syntactic diversity 

and typicality. The child starts out by discriminating words via diverse distributions. Soon 

after, they accumulate standard expectations for the syntactic behavior of word classes, 

which further support productive use of new vocabulary. These findings provide grist to the 

mill for research on early lexical acquisition, statistical learning, and the syntax-lexis 

interface. 
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V. General Discussion 

A large body of research has established that the distributional properties of language use 

shape lexical production, comprehension, and acquisition at multiple levels of linguistic 

analysis (to name but a few: Baayen, 2010; Baayen et al., 2006; Baayen et al., 2011; 

Hendrix, et al., 2016; Jusczyk, et al., 1994; Kostić et al., 2003; Lester & Moscoso del Prado 

Martín, 2015, 2016; Lester et al., 2017; Lidz et al., 2017; Linzen et al., 2013; McDonald & 

Shillcock, 2001a,b; Milin et al., 2009; Mintz et al., 2017; Moscoso del Prado Martín et al., 

2004; Newport, 2016; Saffran et al., 1996; Storkel, 2004). Over the last fifteen years, a 

promising new approach to the measurement of these distributions has been developed (e.g., 

Kostić et al., 2003; Moscoso del Prado Martín et al., 2004; Milin, et al., 2009) based on 

information theory (Shannon, 1948; for a technical reference, see Cover & Thomas, 1991; 

for a more accessible introduction, see Stone, 2015). Originally applied to morphology, these 

information-theoretic measures have recently been extended to analyze syntactic 

distributions (Baayen et al., 2011; Hendrix et al, 2016; Linzen et al., 2013). However, no 

standard measure has yet emerged. One approach measures the typicality (relative entropy) 

of the distribution of prepositions that co-occur with nouns within the prepositional phrase 

construction (e.g., Baayen et al., 2011). Linzen and colleagues take a different approach. 

They estimate the frequency distributions of different argument-structure (or sub-

categorization) frames for verbs. Using these distributions, they compute measures of both 

diversity (entropy) and prototypicality (relative entropy). Importantly, the two approaches 

yield different results in adult behavior: the prepositional measure correlates significantly 

with response times in several tasks, but the constructional measures do not. In short, we 

have no standard measure of syntactic diversity, and no consensus on the relationship 
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between syntactic diversity and behavioral response. 

Beyond the lack of consensus, the approaches outlined above each come with their own 

set of issues. The prepositional relative entropy has limited application, in that it can only be 

applied to nouns. Second, it also only measures typicality of the nouns in a syntactically 

subordinate role (as objects of prepositions), and only for left-facing syntactic relationships. 

Third, this measure is not contrasted with a comparable measure of the diversity of the noun 

distributions; thus, we cannot be sure whether or to what extent typicality impacts processing 

independently of diversity. Fourth, the entropies are based on maximum-likelihood estimates 

of the probabilities (i.e., based on the raw frequencies as observed in a corpus). Entropies 

based on maximum-likelihood estimates are negatively biased  (Miller, 1955), which reduces 

their reliability, hence interpretability. Finally, and more importantly, the prepositional 

relative entropy measures purely lexical co-occurrence in a small-scale co-occurrence 

window (prep + determiner + noun trigrams). Such co-occurrence windows are known to 

capture semantics (Bullinaria & Levy, 2012; McDonald & Shillcock, 2001a,b; Moscoso del 

Prado Martín, 2007), which draws the syntactic interpretation of the effect into question. 

The constructional measures successfully avoid the semantic confound. They also allow 

for typicality and diversity to be compared directly. Indeed, this comparison turned out to be 

necessary, as the two measures impacted the electrophysiological signature differently. 

However, these measures only account for the frames projected by the verb, that is, syntactic 

relationships for which the verb is the head. Secondly, they take a holistic approach to 

argument structure, such that each syntactic type represents a complete subcategorization 

frame (e.g., for a simple transitive verb: VERB <subject, object>). Therefore, they do not 

directly capture the ordering of component syntactic relationships relative to the verb. 
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Finally, as with the prepositional measure, the constructional measures are based on 

maximum-likelihood probability estimates, and so suffer from the same problem of 

reliability.   

A principle goal of this dissertation has been to introduce a set of measures capable of 

addressing all of these issues (see Appendix for a thorough discussion of the database). The 

measures I proposed are based on binary, asymmetric syntactic dependencies. Such 

dependencies directly distinguish syntactic relations on the two critical dimensions that are 

obscured in the previously proposed measures: hierarchical status (heads vs. modifiers) and 

word order (leftward vs. rightward facing dependencies). Second, the measures, like those 

proposed by Linzen and colleagues, are based on fully abstract syntactic relations. For the 

measures of diversity, I go one step further, explicitly removing information carried by the 

lexical content that fills out the abstract syntactic relations. Third, I carefully control for 

underestimation bias by smoothing the probability estimates on which the entropies are 

based. Taking this step improves the reliability of the estimates. Finally, although I only 

compute the measures for nouns, I have designed them such that, in principle, they may be 

extended to any lexical category. Moreover, although the present measures are rather low-

level, they may be scaled up to approximate the types of constructional measures applied in 

Linzen et al. (2013). For example, one could count the arrays of dependencies projected by 

the target word as single units (e.g., the noun phrase the stealthy owl could be counted as an 

instance of OWL <det, amod>). 

This list of improvements proved to be necessary. The effects of prior syntactic 

distributions were differentiated by hierarchical status and word order in both 

comprehension and production. Moreover, the improved measures uncovered purely 
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syntactic effects where they had not been detected before. In what follows, I review these 

findings across the different tasks. I compare the structure of the syntactic effects to see what 

they reveal about the nature of the syntax-lexis interface in word processing. I then comment 

on the possible genesis of these effects in distributional statistical learning based on the 

findings from child language acquisition. 

A. Comprehension 

Chapter 2 reported re-analyses of two previously published databases of visual lexical 

decision, one simple (single lexical items) and one primed via overt lexical priming. 

Previous work linking prior constructional distributions to lexical decision latencies found 

no effect of either diversity or prototypicality on response times. However, it did uncover 

reliable and independent effects of the two measures in the electrophysiological signature. 

The dependency-based measures revealed significant effects on response times taken from 

the English Lexicon Project lexical decision mega-study (Balota et al., 2007) for diversity 

and typicality. This study therefore replicates the independence of the two effects, while 

extending it into the domain of behavior. Speed of recognition indeed depends on 

information drawn from fully abstract syntactic distributions. These effects held over and 

above a number controls from several linguistic domains (orthography, semantics, and 

frequency) known to influence response times, providing further support for their veracity. 

The diversity and typicality effects showed different sensitivity to hierarchy and word 

order. Typicality played out uniformly across heads and modifiers, whether facing to the 

right or to the left. The role of diversity varied across the types of distributions: rightward 

diversity (particularly as-modifier diversity) was inhibitory, while leftward diversity, 
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regardless of hierarchical status, was facilitatory. 

In a follow-up study, I sought to cement the reality of the dependency relations 

underlying the distributional effects. To this end, I measured the overall syntactic similarity 

between nouns in the dependency space for all noun-noun prime-target pairs in the Semantic 

Priming Project mega-study database (Hutchison, et al., 2013). I made sure to clean any 

shared semantics between the nouns from this measure. I then correlated the syntactic 

similarities with response latencies for the target nouns. Results showed that syntactic 

similarity between prime and target facilitated recognition. Therefore, following the typical 

interpretation of priming effects (e.g., Branigan & Pickering, 2017), the dependencies which 

underly the distributional effects observed in the simple lexical decision task should have 

some form of representation (discrete or distributional; for the latter, see Plaut and Booth, 

2000) and shared across nouns. I interpret these findings as evidence that the information 

carried by syntactic relationships is not simply an  directly surface-driven side-effect of 

distributional learning (e.g., Baayen et al., 2011); instead, it suggests that adults have formed 

stochastic syntactic generalizations (which might indeed originate in distributional learning), 

and that these syntactic generalizations are intimately bound to lexical representations. 

B. Production 

The prepositional relative entropy has been tested in previous research using a hybrid 

comprehension/production task. In this task, a phrasal context was presented visually prior to 

an image of an object, whose name would complete the phrase (e.g., in the followed by a 

picture of a bucket). The participants then named the image aloud. Response times were 

faster for names with lower prepositional relative entropy (i.e., names that were more 
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typically distributed across prepositional contexts). Crucially, this task involves a semi-

predictable syntactic context, so that finding an effect of syntactic distributions might be 

expected a priori. No study to my knowledge has yet examined the role of these 

distributional measures in isolated word production. Moreover, no study has examined such 

effects on the basis of purely syntactic distributions (recall the lexical, hence semantic, 

confound of the prepositional relative entropy).   

I address this gap in the literature with two picture-naming studies reported in Chapter 3. 

First, I asked participants to name images of concrete objects using isolated nouns (e.g., 

banjo!). Controlling for a number of conceptual and lexical factors, I find no effect of 

syntactic diversity. The reduced influence of diversity fits with prior work. Other 

distributional measures have also shown weak or null effects in production (e.g., Tabak et 

al., 2010, for inflectional entropy), and studies of syntactic gender (the “gender congruence 

effect”) have found no effects in bare-noun naming using picture-word interference (La Heij 

et al., 1998). I did find a weak but significant effect of syntactic typicality. Therefore, 

isolated word production shows generally weaker effects of syntax than comprehension. 

Moreover, this effect was conditioned on the ordering of the dependency relation: only 

rightward dependencies played a role, irrespective of hierarchy. This rightward specialization 

could be explained in several ways. For example, it could be a result of the task. Participants 

were required to answer as quickly as possible, and produced many names one after the 

other. Nouns that align in their ability to open syntactic doors for upcoming words may 

facilitate rapid progress through the task – a sort of syntactically mediated, future-oriented 

priming from trial to trial. This could also be part of a general processing response to time 

pressure. Research on sentence production reports increased incrementality under time 



 

 

 

 162 

pressure (e.g., Ferreira & Swets, 2002), which could surface as increased sensitivity to the 

rightward-facing syntactic dependency space. Speculation aside, the finding demonstrates 

that purely syntactic distributions can affect isolated noun production, and that these effects 

should at least take account of word order. 

I hypothesized that stronger effects might emerge if participants were required to name 

the pictures using a syntactic frame. I ran a second experiment, identical to the first, except 

that the participants named the pictures with a noun phrase of the form the + NAME (e.g., 

the banjo!). Indeed, both syntactic diversity and typicality surfaced as significant predictors 

at the onset of the determiner (only diversity predicted onsets of the noun within the noun 

phrase). 

The determiner was produced earlier for nouns with generally more typical distributions. 

This effect deserves further exploration. I suggested that it could arise from a task-specific 

strategy whereby the participant waits to produce the determiner until a critical mass of 

activation builds up within the lexical network. The faster this activation builds up (e.g., via 

widespread sympathetic activation within a densely populated corner of the syntactic space), 

the more certain the participant that a lexical item will be available to produce.   

For nouns with more diverse modifier and leftward distributions, the and the noun were 

produced earlier. For nouns that served as more diverse rightward heads, the and the noun 

were produced later. This effect could have several sources. On one analysis of the 

determiner relation, the noun is the head. Such is the case in the CLEAR labels on which we 

based the syntactic distributions. Taking this perspective, diverse leftward heads are 

produced faster in contexts in which they are indeed leftward head – a sort of symmetry 

effect. But total leftward diversity also played a role. Nouns are commonly elaborated by 
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leftward content. For example, both determiners and adjectives typically precede nouns. 

These relationships could play a more critical role in carving out the links between form and 

meaning (see Baayen, 2010). Modifiership was also important. Nouns are frequently 

modifiers of a number of critical structures, including verbs (as subjects or objects) and 

prepositions. Further, some theories argue that the syntactic frames into which nouns are fit 

dictate their interpretation (e.g., Borer, 2005). Again, the critical finding at this stage is that 

syntactic distributions do not exert monolithic effects on processing; instead, they are 

sensitive to multiple dimensions of syntactic structure, including hierarchy and word order. 

C. Comparing the effects of diversity in production and comprehension  

The overall shapes of the significant diversity components from the lexical decision and 

naming studies are similar. For example, leftward diversity plays the same facilitative role in 

both tasks (with a possibly reduced contribution of leftward as-modifier diversity for 

naming. This could mean that the lexical representations of nouns are in general better 

discriminated from preceding context: one learns better when one can compare a token to the 

incremental expectations generated immediately prior. Such a pattern of effects could be 

supported by standard error-based learning (e.g., Fine & Jaeger, 2013), and fits well with 

prior work. For example, Baayen (2010) finds that more diverse lexical contexts to the left 

of a target word correlate with faster reaction times. Similar interpretations apply to the 

prepositional measures of Baayen et al. (2011) and (largely) prepositional measures of Lester 

and Moscoso del Prado Martín (2015; prepositions by definition stand to the left of the 

noun). 

Despite the similarity of the comprehension and production effects, they do show three 
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main differences: the loadings of general modifiers, rightward as-head and rightward as-

modifier distributions are reversed, leading to opposite effects on response times. The 

difference in relationships means the following: (a) general modifier diversity inhibits lexical 

decision but facilitates naming; (b) rightward as-modifier diversity inhibits lexical decision 

but facilitates naming; (c) rightward as-head diversity facilitates lexical decision but inhibits 

naming. Points (a) and (b) suggest inhibition in lexical decision for nouns whose total as-

modifier diversity mainly comes from the rightward direction. Inspection of the rightward 

as-modifier distributions shows that the categories with the greatest frequencies in the 

rightward as-modifier direction are active and passive sentential subjects.  Perhaps the 

general indeterminacy of the subject role in English, which can assume many thematic 

functions relative to the verb, leads to a processing response that slows access until more 

information (i.e., from the main verb) becomes available. Increased indeterminacy at the 

syntactic level could exacerbate the conservativism of this approach. This “slowing of the 

clock” could burn into the system to produce slower responses to nouns in isolation. 

The facilitation of rightward as-head diversity in comprehension may reflect the inverse 

of the rightward as-modifier diversity. I have proposed that the latter arises from a 

conservative processing strategy, based on the naturalistic standard of processing in context, 

which states, “when nouns project a more uncertain array of possible integrations with 

upcoming heads. suppress access until more information becomes available.” Apparently, the 

strategy reverses for nouns that show greater uncertainty for how upcoming material may be 

bound to them. Under these circumstances, the noun is accessed more quickly, possibly to 

support the rapid integration of upcoming modifiers given expectations that the noun will be 

further elaborated. This situation mirrors that of the as-modifier distributions in that both 
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prioritize the head as a means of settling the parse. Again, through repeated experience with 

contextualized processing, these strategies may tune the links between nouns and syntactic 

nodes to produce the observed effects in isolated and minimally syntactic contexts. The 

effect reverses in picture naming, which could be due to challenges specific to production, 

namely, the fact that speakers must commit to only one out of several possible continuations 

at each “choice point” in the utterance (e.g., Jaeger, 2010; Kuperman & Bresnan, 2012). One 

such choice point would be the decision of whether to elaborate a noun phrase with 

additional rightward structures (e.g., relative clauses or prepositional phrases). Some 

evidence suggests that when speakers face more choices for how to encode an utterance, they 

take longer to initiate the utterance (Hwang & Kaiser, 2014; Myachykov, Scheepers, Garrod, 

Thompson, & Fedorova, 2013; but cf. Ferreira, 1996). This effect has been attributed to 

planning: more choices require more careful, hence longer planning latencies.  Perhaps this 

effect also plays out at the lexical level, such that words that introduce more possibilities for 

structural elaboration require more careful planning. Importantly, this effect would have to 

hold even when no such continuation is pursued. Interestingly, the effect was only observed 

for the syntactic naming task, suggesting that planning-oriented syntactic effects requires that 

the speaker intends to produce an overtly syntactic structure. 

The above discussion demonstrates a deeper level of complexity in the nature of 

syntactic-distributional effects than has previously been proposed. The specific details 

regarding how each layer of syntactic organization impacts processing, and how these layers 

relate to one another remains unclear. I have proposed several possible explanations for the 

effects observed in the studies presented here, but ultimately future research is needed to 

unravel this complex tapestry of relationships. Nevertheless, several general conclusions are 
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warranted. First, adults are highly sensitive to the purely syntactic distributions of words, 

even after information attributable to other distributional sources has been carefully stripped 

away (cf. Baayen et al., 2011). Moreover, this sensitivity surfaces in behavior, that is, in 

response latencies (cf. Linzen et al., 2013). Second, the behavioral response to syntactic 

distributions is differentiated according to hierarchy and word order. Finally, the shape of the 

response depends on the task, specifically whether one is reading or speaking, and whether 

the word is processed in isolation or within a syntactic context. Properly controlled (e.g., 

within carefully orthogonalized experimental designs), these measures have great potential 

for illuminating how experience shapes lexical representation and processing. 

D. Word Learning in Children 

In Chapter 4, I explored the genesis of the syntactic effects that were observed in adult 

lexical processing. Most research on distributional effects in adults assume that they arise 

during language learning, either through the accumulation of exemplars in memory (e.g., 

Bybee, 2010; Goldberg, 2006), “burnt-in” patterns of activation (e.g., Plaut & Booth, 2000) 

or through discrimination learning (e.g., Baayen et al., 2011; see Rescorla and Wagner, 

1972). I therefore expected that the first appearance of words in child speech would be 

supported by the diversity and typicality of the syntactic relationships in which they appear. 

Some evidence from the inflectional morphology suggests that more diverse inflectional 

distributions lead to earlier acquisition. For example, Baayen, Feldman, and Schreuder 

(2006) find a negative correlation between inflectional entropy and subjective age-of-

acquisition ratings. When children begin to master these inflectional distributions, they also 

begin to produce more tokens of words that belong to those paradigms (Stoll et al., 2012). I 
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hypothesized that similar learning mechanisms would apply at the syntactic level, such that 

more diverse distributions would support earlier acquisition. I further predicted that more 

typical syntactic distributions would support earlier acquisition. Nouns that meet the 

expectations for the syntactic behavior the class as a whole should (a) be experienced more 

often in the environments that best fit the communicative needs of speakers and (b) allow for 

analogical extension into novel environments based on the behavior of other nouns. Point (b) 

receives additional empirical support from the results on priming in adult lexical decision. 

As a first step, I tested these predictions using the overall syntactic distributions, ignoring 

hierarchy and word order. Results confirmed the hypotheses, but revealed an unexpected 

temporal offset. The diversity and typicality effects overlapped in time, but diversity 

preceded typicality, and typicality extended beyond diversity. Thus, nouns are first learned 

through repeated exposure in diverse contexts. Given a certain threshold of experience, 

class-wide expectations begin to emerge, something like the accumulation of a Bayesian 

prior.  Further research is needed to see what role, if any, hierarchy and word order may play 

at these early stages. Another open question is whether older children (e.g., 4-6 year olds) 

respond to the same syntactic dimensions as adults during online lexical processing (e.g., in 

an auditory lexical decision task). 

E. Conclusions 

Taken as a whole, the results reported here provide crucial evidence connecting the 

behavior of adults to its source in child language learning. They also mirror those observed 

for inflectional morphology in both adults and children, suggesting a general mechanism for 

all types of grammatical processing, whether morphological or syntactic. A possible 
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candidate is implicit learning, which has so far been invoked to account for isolated word 

processing (Baayen et al., 2011) and syntactic priming (e.g., Chang, Dell, & Bock, 2006). 

However, in the latter case, lexical priming has been argued to manifest via a separate 

mechanism, namely explicit memory. Evidence for this difference comes from the fact that 

lexical priming is short-lived, while syntactic priming lasts much longer. However, the 

results reported here suggest that lexical acquisition and priming both depend on 

stochastically weighted, implicit relationships between words and syntax. Thus, lexical 

priming may at least in part depend on the same learning mechanisms that produce structural 

priming effects. 

The primary take-away from this series of studies is that lexicon and syntax are 

intimately connected. These relationships are direct, probabilistic, and interactive, such that 

even when syntactic processing is precluded through carefully controlled experimental 

conditions, it nevertheless guides comprehension and production of words. These findings 

draw the well-established division between syntax and lexicon into question. It seems that 

words carry with them their entire history of use across syntactic environments. Moreover, 

they hint that syntactic structures behave more as timing mechanisms for the realization of 

words rather than abstract scaffolds into which arguments are slotted.  This conclusion 

comes from the fact that different types of syntactic associations may facilitate or inhibit 

lexical access. Thus, while structural generalizations have strong support in the theoretical 

(e.g., Goldberg, 1995) and experimental literature (e.g., Branigan & Pickering, 2017), the 

functional characterization of these generalizations may need to be revised to arrive at a 

proper understanding of how they arise and how they are implemented online. At this point, 

these ideas remain purely speculative. However, given that other aspects of language 
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production have recently been described in terms of mental clocks known as oscillators 

(Nam, Goldstein, & Saltzman, 2009). Furthermore, neurophysiological work has revealed 

timing-based entrainment affects that are sensitive to syntactic structure (Ding, Melloni, 

Zhang, Tian, & Poeppel, 2016). Perhaps the measures introduced here tap into distinct 

mechanisms for tracking/accessing words and integrating/building them into structures 

during comprehension and production respectively. At the very least, these measures 

constitute the most sophisticated and fine-grained analysis of prior syntactic distributions put 

forth so far.   

F. Limitations   

My measure of diversity explicitly discounted the role of lexical information. However, 

the measure of atypicality did not. Instead, the latter was based purely on the distribution of 

nouns across syntactic relations, irrespective of the attendant lexical context. Information 

theory does not provide straightforward means for decoupling the two sources of 

information when measuring distance between  two distributions. This means that the 

independence of the diversity and atypicality effects that were observe here could actually be 

driven by the lexical information bound up in the latter. One possibility would be to compute 

independent JSDs for the purely lexical distributions, or JSD(LTarget || LPrototype), and the joint 

lexico-syntactic distributions, or JSD(LDTarget || LDPrototype). One could then residualize the 

former out of the latter in a manner similar to the present treatment of frequency and 

concreteness. 

A more general point concerns the size of the corpora used to estimate these measures. I 

have relied on the largest and best balanced corpus of American English that is freely 
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available. However, this corpus is only 15 million words. While other distributional studies 

have achieved strong and replicable results based on even smaller samples (e.g., the spoken 

component of the British National Corpus, which comprises only 10 million words; 

McDonald & Shillcock, 2001a), the reliability of the estimates will necessarily improve 

given a larger sample (e.g., the 250-million-word British National Corpus). Crucially, these 

estimates should only be computed on dialects that are appropriate for the subjects under 

study.   

Another important next step will be to extend this analysis to other word classes, in 

particular, verbs and adjectives. Statistical learning accounts predict that the same general 

learning mechanisms should apply to all word classes. Finding similar effects across word 

classes would provide strong evidence for the generality of these mechanisms. Further, these 

mechanisms should apply to broader linguistic structures, as well, such as argument structure 

constructions (e.g., Goldberg, 2006). One could invert the measures deployed here to test 

how aggregate lexical variability within constructions impacts the ease of acquisition of 

these argument frames. However, the specific details about how to implement such measures 

have yet to be worked out. For example, should only the immediate children of the root node 

be counted, or should grandchildren, great grandchildren, and so on also be counted? The 

answers to such questions will provide a more fine-grained perspective than the typical verb-

oriented approach to constructional learning (e.g., Tomasello, 1992). Positive results will 

provide further empirical support for models of language that assume co-representation of 

lexical and syntactic information (e.g., Diessel, 2015). 

Finally, the shapes of the effects in comprehension and production are complex. 
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Therefore, future studies should orthogonalize the different distributional dimensions when 

selecting stimuli (e.g., words that have high leftward diversity but low rightward diversity, 

and so on). Careful selection of stimuli could provide deeper insights into which of the 

dimensions contribute most strongly to the effects observed here. The nature of these effects 

so distilled should illuminate the types of information that structure the language processing 

architecture.  Put simply, I expect the general approach followed here to provide a scalable 

and fruitful diagnostic for exploring several crucial debates in language acquisition, 

processing, and representation.   
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Appendix 

A. A database of the syntactic diversity of English Nouns: SynDi-EN 

I introduce a number of syntactic measures aimed at capturing a fine-grained perspective 

on the diversity and typicality of the distributions of English nouns. I then compute these 

measures for two varieties of English – American and British – and package them into a 

database of more than 5000 distinct nouns suitable for integration with several previously 

published norming datasets. Exemplars at the high and low ends of the measurement scales 

are presented. 

1. Selecting a syntactic formalism 

Linguistic theorists have produced many formalisms aimed at describing the relationship 

between words and syntactic structure. Prominent competing formalisms include phrase-

structure grammars (e.g., Chomsky, 1957), dependency grammars (e.g., Tesnière, 1959), and 

construction grammars (e.g., Boas & Sag, 2012). These formalisms each have strengths and 

weaknesses. I propose four desiderata based on the needs of the present study to identify the 

ideal formalism. First, the ideal formalism must provide a means for unambiguously 

determining the relative sequential position of a target word relative to syntactically related 

words. Second, it must capture which other words in a given syntactic domain depend on the 

target noun for their realization and/or interpretation. Third, it should provide ready labels 

for the syntactic functions served by a given noun. By function, I mean that the formalism 

should discriminate at some degree of granularity the various types of syntactic relationships 

that nouns may enter into with respect to other words. Fourth, it should allow for 
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straightforward computer-automated processing. 

The first criterion, related to encoding of word order, is satisfied by almost all 

contemporary formalisms. However, some systems designed to handle variable 

discontinuities in syntactic dependency ( scrambling) avoid explicitly specifying linear order 

outside of the linguistic token itself (Mel  uk, 1988). This approach therefore precludes any 

investigation of the representation of word-order asymmetries in the syntactic information 

carried by nouns. The second and third criteria, which concern which words link up 

syntactically and through what kind of relation, respectively, are more useful for 

discriminating between alternative formalisms. The three formalisms mentioned above vary 

with respect to how transparently they reflect both kinds of information. Consider perhaps 

the most widely used syntactic formalism: the phrase-structure (PS) tree. PS trees consist of 

typed nodes and (non-typed) arcs. Nodes represent lexical items (terminal nodes) and groups 

of words (non-terminal or phrasal nodes). These nodes are connected via vertical arcs that 

indicate which lower-level nodes are bound to which higher-order nodes (immediate 

constituency; Bloomfield, 1933; Chomsky, 1957). To determine which words are related to a 

target, one must traverse a potentially complex path via the set of intervening arcs and nodes. 

While not computationally intractable, the complexity of these paths makes the PS tree 

formalism a somewhat cumbersome choice, if only for purposes of exposition. 

Furthermore, because the connecting arcs are untyped, information about functional 

relationships between words must be distributed throughout the tree. Identifying a given 

relationship requires one to consider at least the types of nodes intervening between the 

words (if one were to trace a path along the arcs that connect them), as well as the relative 
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positioning of the words with respect to those nodes. For example, the word stealthy in the 

noun phrase the stealthy owl can only be identified as an adjectival modifier of owl in a 

typical PS tree by (1) its subordination to an AdjP (adjective phrase) node (2) that is left-

sister to the word-class non-terminal N node (3) that dominates owl and (4), where both 

AdjP and N are eventually dominated by a single higher-order NP (noun phrase) node. The 

distributed nature of PS grammars thus presents a somewhat of a challenge for my fourth 

criterion. 

An increasingly popular alternative to the PS notation is the dependency graph (DG; 

Tesnière, 1959; Mel  uk, 1988, 2011; Nivre, 2005). DGs are trees whose nodes represent 

lexical items and whose arcs represent typed syntactic relations. By convention, DG 

formalisms tend to include only binary relationships between words, with one privileged 

relationship linking a word (usually the verb in a finite clause) to the utterance-generating 

root node.
10

 These relationships are known as dependencies. Dependencies are 

asymmetrical, in that one word – the head – licenses the presence of the other word – the 

modifier (governor and subordinate in language of Tesnière, 1959). Heads, their modifiers, 

and the dependencies that bind them are together known as constructions. To avoid 

confusion between this and other, more widespread uses of the term construction (e.g., the 

“construction” of Construction Grammar; Goldberg, 1995), I will refer to the head-modifier-

                                                 
10

 Root nodes are common to dependency grammars and phrase-structure grammars. 
However, the notion of root differs across the two formalisms. In DGs, the root connects 
directly to a lexical item, in agreement with the lexicalist hypothesis (Levelt, 1989; Bresnan, 
2001). The lexicalist hypothesis states that words project their own syntactic structures to be 
unified with other co-active words. Syntactic projections are often referred to as 
subcategorization frames (Chomsky, 1965). 
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dependency trio as a bundle. Much more could be said about the nature of dependencies, 

including how headship is decided, what types of dependencies are allowed, whether 

dependencies can only hold between words, or whether supra-lexical (i.e., 'phrasal') nodes 

should be allowed, and so on. Such questions are addressed from theoretical (e.g., Mel  uk, 

1988; Hudson, 2007) and practical (e.g., Nivre, 2005) perspectives elsewhere. Here, I rely on 

the standards described by Choi and Palmer (2012) for English. 

The CLEAR DG formalism (CDG; Choi & Palmer, 2012) readily meets the four criteria 

laid out above. While other DG formalisms ignore word order (Mel  uk, 1988; Criterion 1), 

CDG supplies for each bundle the sequential position of the head and modifier within the 

overall string.  The question of which words are related (Criterion 2) is replaced by a simpler 

question – which words are directly functionally related. For any target, the set of related 

words consists of those that are bundled with the target as head or modifier. The nature of 

these relationships (Criterion 3) is plainly indicated by a functional tag (e.g., nsubj for the 

clausal subject relation). The direct representation of each of these pieces of information 

within CDG means that it allows for straightforward computer-automated processing 

(Criterion 4). 

 CDG has several limitations. Perhaps chief among them is that it cannot directly 

associate meaning to complex structures (i.e., constructions involving more than one 

dependency). Consider the so-called caused-motion construction, which in English takes the 

form X[agent] VERB[cause + move] Y[theme] PREP[path] Z[ground], as in Claude flicked 

the letter through the mail slot. Fully generalized frames of this sort can be associated 

directly with various types of meaning. These meanings are revealed through phenomena 
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such as semantic coercion (e.g., intransitive laugh takes a force-dynamic interpretation in 

The audience laughed the speaker out of the session), selectional restrictions (e.g., what 

types of words may surface in each syntactic “slot”), and so on. Importantly, the 

interpretations derived from instances of the caused-motion construction are not reducible to 

the content of the component phrases or words. Therefore, any realistic grammatical 

formalism must be able to account for the non-decompositional meanings that attach to 

syntactic templates at the phrasal, clausal, and supra-clausal levels (for a compelling 

discussion of such meanings, see Goldberg, 1995; see Linzen et al., 2013, for an 

operationalization of syntactic diversity using such structures). While I acknowledge the 

importance of such constructions for our understanding of the true syntactic space of any 

language, I set these concerns aside for later research. I do so for four reasons. 

First, many theories of grammar acknowledge the independent status of structural 

representations at multiple levels of specificity (e..g, Culicover & Jackendoff, 2005; 

Goldberg, 1995; Langacker, 1987). For example, the simple transitive construction <NPsubject 

VERB NPobject> involves two types of relationship between verb and NP, indicated here by 

subscripts on the NPs. Both of these syntactic relationships are also attested outside of 

simple transitive construction (subjects also appear in intransitive and ditransitive clauses, 

and objects also appear in ditransitive clauses). Therefore, the holistic schema (the 

construction) can be broken into subschemas (the syntactic dependencies). This subdivision 

can be pursued further, for example, to the individual words that fill out the NPs, along with 

the syntactic dependencies that bind them into their respective subunits. According to the 

theories introduced above, each of these subunits becomes activated as a function of their 



 

 

 

 193 

relation to the whole (e.g., as weighted by distributional biases; Stefanowitsch & Gries, 

2003). In particular, any given word should be co-distributed across multiple nested tiers of 

syntactic abstraction, including the low-level structures studied here. The question is whether 

these distributions are functionally relevant to word production.   

Second, no grammar of any language purports to account for every construction in that 

language. This is no more true of words than it is of higher-order constructions. In fact, the 

constructionist approach has spurred generations of construction-hunters to identify and 

catalog their quarry with greater and greater levels of precision. The more constructions are 

uncovered, the further removed seems the goal of an exhaustive taxonomy. Add to this the 

fact that languages do not sit still, but change constantly under internal and external 

pressures (Thomason & Kaufman, 1992), and the “true” syntactic space of a language 

becomes a moving target. Therefore, even if I wanted to derive syntactic measures from 

parses reflecting the true syntactic space, I should always face the possibility – in truth, the 

inevitability – of incompleteness. I tackle this necessary incompleteness by assuming only 

the reality of dependency bundles and the set of typed relations specified by CDG. This 

assumption comes with the caveat that I model only a 'toy' representation of the full 

grammar. Future improvements may replace or elaborate the relations considered here. 

Third, while the set of dependencies in CDG is rather small, even a conservative 

estimate of the total number of syntactic constructions in English is much larger. Moreover, 

the frequency distributions of these structures should follow a Zipf-Mandelbrot distribution 

(e.g., Zipf, 1935). This means that the expected frequencies for the vast majority of 

structures are extremely low. Therefore, we cannot expect finite samples of the size typical 
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for syntactically annotated English corpora to produce reliable frequency estimates for the 

bulk of these constructions. By paring the space of alternatives down, I increase the 

likelihood of observing a sufficient number of tokens for each type to support – at the 

defined granularity – reliable estimates of frequency, hence diversity. 

Fourth and finally, some work on associative learning has argued that low-level 

representations may play a more significant role in adult processing than higher-level 

collocational or constructional units (Baayen et al., 2011; Ramscar et al., 2010). According 

to this argument, the links between low-level (lexical and sub-lexical) and high-level 

(collocational and collostructional) units will tend to weaken over time as speakers 

experience an increasingly diverse set of ways in which the two may combine. Evidence that 

the higher-order relationships are not necessary comes from the fact that models that lack 

explicit representations for syntax learn associations between words and meanings that 

predict adult behavior in word production and comprehension tasks (Baayen et al., 2011; 

Baayen et al., 2013; Hendrix et al., 2017).  However, these models do include grammatical 

information in the input, such as labels for inflectional categories (e.g., case labels). 

Therefore, the associations depend on syntactic information even if the connectionist 

architecture does not include a dedicated tier of syntactic nodes. Assuming that syntax 

matters, and assuming that lower-level relationships should dominate adult linguistic 

processing, distributions within the CDG space provide the best chances of identifying 

synax-specific effects in word processing. 

For these reasons, I consider CDG a desirable formalism for beginning my investigation 

of syntactic diversity within the lexicon. The dependency types define a syntactic 
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distributional space across which all occurrences of nouns are distributed. Based on the prior 

findings, I expect the shapes of these distributions to impact processing. To measure the 

shape of a given word's distribution in this space, I turn to information theory.   

B. Syntactic diversity as entropy 

The syntactic diversity of a noun w has two key components: (1) the set of possible 

syntactic constructions C and (2) the probability that w occurs in each construction c in C. 

Nouns should be considered more diverse to the extent that C increases. This relationship 

captures the common sense intuition that nouns that occur in a greater variety of 

constructions are more syntactically diverse.  But this is only half the story. To see this more 

clearly, imagine that we extract 1000 instances of some noun from a corpus. We find tokens 

embedded in each of the possible syntactic structures defined in C. According to the metric 

just introduced, the noun exhibits maximal diversity. However, looking more closely, we 

notice that 900 tokens occurred in a single construction c1, while the remaining 100 tokens 

are distributed relatively evenly across the remaining constructions. Now consider a different 

noun that also occurs in every available construction, but which occurs equiprobably in each 

construction. According to our first metric, the two nouns are equally diverse. And yet, our 

intuition suggests that the second noun is much more diverse than the first. The optimal 

measure of diversity should take both sources of information into account: instance (did it 

occur?) and rate (how frequently?). The measure should also account for the full distribution 

simultaneously (i.e., by taking some central tendency of the noun's distribution across all 

constructions). One measure that satisfies all of these criteria is the entropy H (Shannon, 

1948). Entropy measures the average amount of uncertainty within a distribution. Applied to 
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syntactic distributions as defined above, it represents how uncertain we are about assigning a 

given noun to any of the available constructions. In processing terms, it measures the 

richness of the spreading activation between lemmas and syntactic structures, with high 

uncertainty translating into richer patterns of activation. More specifically, entropy increases 

as the number of possible constructions increases and as the frequency distribution across 

these constructions approaches maximum uncertainty (equiprobability, or equally strong sets 

of connections). Therefore, holding the dimensionality of the syntactic space constant, the 

most diverse noun is the one that is least biased towards a particular subset of the possible 

constructions. Entropy has proved useful for estimating the syntactic diversity of full 

grammars (probabilistic context-free grammars) induced from treebanks (Moscoso del Prado 

Martín, 2014), as well as for estimating the morphological diversity of words (Moscoso del 

Prado Martín et al., 2004). 

The entropy requires a probability distribution defined over a syntactic space (i.e., sets of 

possible constructions). I distinguish between nine such spaces. First, nouns may register 

distributional information about all dependencies to which they belong, irrespective of 

whether they serve as heads or modifiers. Therefore, I define a total syntactic distribution for 

which each cell contains the joint probability p(w, d) of target noun w in dependency d. I 

refer to the (joint) entropy of this distribution as Ht for total entropy. But this measure may 

be decomposed further. By taking hierarchical status into account, we can dissociate the 

diversity of relations for which the noun is a head or a modifier. This decomposition may be 

necessary given evidence that heads and modifiers are treated differently by the syntactic 

machinery (e.g., Bürki et al., 2016), which may have consequences for lexical access more 
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generally. Therefore, I define two new distributions consisting of the joint probabilities p(w, 

d, h=head) and p(w, d, h=modifier) for target noun w occurring in dependency d in 

hierarchical role h of head or modifier, respectively. I refer to the (joint) entropies of these 

distributions as Hh  and Hm, for as-head diversity and as-modifier diversity. Finally, these 

distributions can be conditioned for word order: does the target follow or precede the word 

with which it is bundled? The former I refer to as a rightward-facing dependency, the latter 

as a leftward-facing dependency. Adding this dimension produces six additional 

distributions: rigthtward (Hrt), rightward as-head (Hrh), rightward as-modifier (Hrm), 

leftward (Hlt), leftward as-head (Hlh), and leftward as-modifier (Hlm). See Figure 3, Chapter 

II,  for a schematization.  

C. Accounting for lexical confounds and estimation biases 

As already mentioned, syntactic dependencies are partially redundant given the lexical 

items that instantiate them. For example, if the word this is found bundled with café, then 

one knows immediately that the syntactic relation is determiner. In such cases, the 

information carried by the syntactic relation is partially or wholly reducible to that carried by 

the lexical context. We must therefore clean the syntactic information of the lexical 

confound if we are to produce a truly syntactic measure of distributional diversity. For this 

purpose, we can use another information-theoretic measure known as the conditional 

entropy. Conditional entropy of the dependencies D given the lexical items L, or H(D | L), is 

defined formally as in Eq. 14. 

 

      (14) 



 

 

 

 198 

 

The conditional entropy requires that we take the joint entropy of the dependencies and 

lexical items and subtract the entropy of the lexical items alone. What remains is the 

information carried by the dependencies without that of the words or the mutual information 

carried between the dependencies and words (a more thorough account of this relationship is 

given in Chapter 4). I compute the conditional entropy rather than the simple entropies for 

each of the nine distributions. Otherwise, I risk confounding syntax and semantics. This is a 

serious problem for interpreting correlations between these measures and human behavior. 

Semantics plays a powerful role in human processing, and without some means of 

distinguishing semantic from syntactic information, one risks gross misinterpretation of 

semantic effects as “syntactic” in nature. 

When based on raw probability estimates, the entropies in Eq. 14 constitute maximum-

likelihood estimates. Such estimates are biased downward (Miller, 1955). To correct for this 

bias, I apply the smoothing technique of Chao, Wang, and Jost (2013), which has been 

shown to perform well at handling linguistic distributions (Moscoso del Prado Martín, 

2016). Specifically, I correct each of the component entropies H(D , L) and H(L) prior to the 

subtraction.   

D. Prototypicality 

Unlike for entropy, distance measures such as the relative entropy do not provide 

straightforward means for cleaning lexical confounds. For that reason, I rely on the 

dependency-only distributions outlined above in Figure 3. One issue with prior 

operationalizations of prototypicality (Baayen et al., 2011; Hendrix, et al., 2017; Linzen et 
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al., 2013; Milin et al., 2009) is that the relative entropy is asymmetric: the value differs 

depending on whether one measures the divergence of the prototype from the target 

distribution or vice versa. I see no theoretical reason to prefer one direction over the other. 

Therefore, I use an alternative, symmetrical measure of the distance between distributions 

known as the Jensen-Shannon divergence (JSD; Lin, 1991). JSD gets around the asymmetry 

problem of relative entropy by first taking the midpoint between the two distributions to be 

compared. Then, the relative entropy is calculated separately from each distribution to the 

midpoint, and the resulting values are averaged together. The raw probabilities again 

underestimate the true probabilities, which negatively affects the accuracy of the JSD 

estimate. I therefore smooth the probability distributions prior to computing JSD. When 

comparing two distributions with JSD, the number of possible outcomes must be held 

constant between them. Under these conditions, the optimal smoothing strategy is known as 

the James-Stein shrinkage estimator (Hausser & Strimmer, 2009). 

E. Data 

Probability estimates for the diversity and prototypicality measures were drawn from two 

large corpora. The two corpora contain American and British English, respectively. The 

American data come from the Open American National Corpus (OANC; Reppen, Ide, & 

Suderman, 2005), which contains roughly 15 million words of writing and transcribed 

speech. The British data come from the British National Corpus (BNC; British National 

Corpus, 2007), which contains nearly 250 million words. However, to achieve a greater 

degree of comparability between the two corpora, I sample 15 million words by shuffling the 

corpus files and extracting the first 15 million words of running text (respecting sentence 
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boundaries)
11

. While this represents only a small proportion of the overall BNC, reliable and 

replicable results for lexical co-distributions have been achieved with much smaller samples 

(e.g., the 10-million-word spoken component of the BNC; McDonald & Shillcock, 2001a,b). 

I parse both corpora using the spaCy parser (Honnibal & Johnson, 2015) to derive CDG-

style dependency graphs. For each noun lemma, I track the frequency of tuples containing 

the co-bundled word, the dependency type, the hierarchical status of the target, and direction 

of the relation.
12

 For example, given the phrase the stealthy owl, I would isolate owl and 

extract two tuples: (the, determiner, head, leftward) and (stealthy, adjectival modifier, head, 

leftward). Using these tuples, along with their associated frequencies, I compute the 

conditional entropies and prototypicalities for the nine distributions laid out in Figure 3. I 

repeat this process for each corpus to create two sets of estimates. Naturally, the parses 

produce some degree of noise, such that many of the items returned are not nouns. 

Moreover, English nouns frequently undergo zero-conversion to function as other part-of-

speech classes, resulting in a high degree of homography. To guard against faulty parses and 

homography, I restrict the sample to only those forms that are annotated as functioning 

primarily as nouns in a previously published database of lexical norms (Brysbaert, Warriner, 

                                                 
11

 Practical considerations also guide this decision. Time estimates to process the entire 

250 million words of the BNC run into the range of several months (24-hour continuous 

processing) given my computational resources. Any researcher with greater resources 

interested in achieving more reliable estimates by processing the BNC or other massive 

corpora is welcome to the extraction code. 

 
12

 Not discussed here are two additional parameters that are available in the full 

database: number of the noun, singular or plural (for calculation of inflectional entropy, or 

conditioning on morphological form), and mode of the production, spoken or written. Code 

is provided with the database to condition frequency distributions and entropies on any of 

these dimensions. Lemma-based token frequencies are also available. 
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& Kuperman, 2014). The final tally was 5727 distinct noun lemmas for the American 

English sample, and 5699 lemmas for the British sample. Tables 7-8 show the five most and 

least diverse noun lemmas per distribution for the OANC data, respectively. Tables 9-10 

show the most and least prototypical noun lemmas. Tables 11-14 show the same for the BNC 

data. 

Table 7: Most diverse nouns: OANC 

Distribution 1 2 3 4 5 

Hh sequence serum index matrix glucose 

Hm sequence serum alpha glucose intake 

Ht fortress discharge spacing palace cleavage 

Hrh sequence serum index dose growth 

Hrm sequence serum intake passage index 

Hrt passage fortress plateau gas plasma 

Hlh sequence serum transport index matrix 

Hlm sequence alpha core growth access 

Hlt yeast uptake glucose alpha intake 

 

Table 8: Least diverse words: OANC 

Distribution 1 2 3 4 5 

Hh diva junk tantrum axe dock 

Hm wizard rapist cone pitfall craftsman 

Ht cracker hostess statehood tofu campground 

Hrh handful stair boom cord proof 

Hrm advent impulse bracelet goat pitfall 

Hrt meadow morale keeper cracker tic 

Hlh diva fable pulpit cement junk 

Hlm symptom clinic context council gourmet 

Hlt fable tick dawn pulpit lifer 
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Table 9: Most prototypical nouns: OANC 

Distribution 1 2 3 4 5 

Hh patch base option building brand 

Hm machine rain wave castle block 

Ht route band building model plot 

Hrh code trial movement building service 

Hrm rain palace style string project 

Hrt band product code network theme 

Hlh race song option party flight 

Hlm machine money head race belt 

Hlt race crime cow beer option 

 

Table 10: Least prototypical nouns: OANC 

Distribution 1 2 3 4 5 

Hh forte whatnot kneecap deathbed stead 

Hm totem whatnot screwball excise lymph 

Ht whatnot chevron wedlock plantain cleaver 

Hrh postman huntsman quintet whatnot turncoat 

Hrm whatnot bonkers lasso ditto quitter 

Hrt whatnot dreamworld bluebird puzzler smokescreen 

Hlh forte deathbed kneecap croquet wader 

Hlm totem rookie amber instant sham 

Hlt chevron codpiece wader stead phlegm 
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 Table 11: Most diverse nouns: BNC 

Distribution 1 2 3 4 5 

Hh blowout twig oxen gal opal 

Hm ferret rye mafia smuggler peeler 

Ht freelance amber rye ferret ripeness 

Hrh eyesore lamppost ripeness rave triplet 

Hrm loco hairpin polyp freelance flap 

Hrt shrink minnow picker freelance rescuer 

Hlh cologne bedtime bingo brie llama 

Hlm mallard warbler finder broiler softie 

Hlt puss rashness governess brushwood beaker 

 

Table 12: Least diverse words: BNC 

Distribution 1 2 3 4 5 

Hh exhaust syrup tribesman nutmeg drainage 

Hm hoard sweetheart fury pamphlet jaguar 

Ht barman herdsman scum marshal audience 

Hrh monk footpath eagle boxer shrub 

Hrm teen tablet men trustee bureau 

Hrt juror spark helper poacher whore 

Hlh diver roofing fusion mint rush 

Hlm lantern blacksmith monk trifle pepper 

Hlt diver bloodshed sage junk clone 
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Table 13: Most prototypical nouns: BNC 

Distribution 1 2 3 4 5 

Hh target trial record note branch 

Hm machine horse wheel shadow shell 

Ht race game house rule word 

Hrh theory camp force game movement 

Hrm life machine soul paper pleasure 

Hrt soul game door race ball 

Hlh note song size meal tune 

Hlm row shadow response traffic price 

Hlt size film design house track 

 

Table 14: Least prototypical nouns: BNC 

Distribution 1 2 3 4 5 

Hh backache highness godson airmail airway 

Hm backroom gab cretin scuba sinker 

Ht polka sinker linseed teargas blackjack 

Hrh boatman sniffer quail abscess ahoy 

Hrm backroom quotient ditto hoot grandpa 

Hrt backroom polka sinker vantage centaur 

Hlh hertz airway amber armband arson 

Hlm lifeblood gab throwback ahoy airmail 

Hlt gab rye butane piggy beep 

 

Tables 7 through 14 suggest many things. First, the OANC and BNC contain different 

types of texts. In particular, the diversity estimates from the OANC reveal a strong bias for 

scientific journal writing. Second, typicality for nouns is likely strongly related to 

concreteness for the OANC, but not necessarily the BNC. There is also very little overlap in 

the top/bottom words for diversity or typicality across the two varieties. These differences 
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reinforce the necessity of distinguishing the measures by dialect, a point which has been 

echoed repeatedly in the British tradition of corpus linguistic research on variation (e.g., 

Pace-Sigge, 2013).     

 




