
UC Irvine
ICS Technical Reports

Title
A mathematical-statistics-based system-level time-constraint scheduling algorithm

Permalink
https://escholarship.org/uc/item/25r9s0hr

Authors
Chang, En-shou
Gajski, Daniel D.

Publication Date
1999-08-08

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/25r9s0hr
https://escholarship.org
http://www.cdlib.org/

"z
699
C3
no.99-36 ICS

AMathema&alSaiS^^feSiiP^stem-Level
Time-Constraint Scheduling Algorithm

En-Shou Chang and Daniel D. Gajski

Department of Information and Computer Science
University of California, Irvine, CA 92697

Technical Report 99-36

August 8, 1999 Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Abstract

HLS scheduling algorithms can not be applied on system-level synthesis due to the
following problems.

- The clock is no longer able to align the scheduled objects at system-level
- Combined concurrent and exclusive execution flows

- Synchronization precedences among the scheduled objects
- Execution time of the scheduled objects may not be determined until run-time.

In this paper, we present an extended task graph to capture the system-level scheduling
problems. We define the system-level time-constraint scheduling problems based on the
extended task gr^h, and a scheduling algorithm is presented. Static scheduling, whieh
can have less OS overhead and better system WCET, is used. The algorithm can obtain
good solutions within acceptable and predictable CPU time.

_y

Information and Computer Science
University of California, Irvine

Notice: This Material s>lbar
may be protected f qc,
by Copyright Law C3

1 Introduction (Title 17 U.S.G.) m-
Scheduling has been a primary research interest for decades, since it plays a major roll
of balancing cost and performance. Usually, allocating more resources for a design can
obtain higher performance; whereas allowing lower performance for the design can reduce
resource requirement. The task of scheduling trades off resources and performance and

delivers the best schedule. Basically, there are two categories of scheduling: (a) time-
constraint scheduling, the given time-constraint can be met with less resources needed;
(b) resource-constraint scheduling, the given resource-constraint can be met with higher
performance.

Time-constraint scheduling algorithms proposed by Paulin and Knight[12], Lee et.al.[2],
Devadas and Newton[13] are widely used in High-Level Synthesis (HLS)[9]. However, these
algorithms require the operations to be aligned by clock, where the clock is not available in

system-level synthesis or too small to be applied to system-level synthesis. For example, a
system may have processing elements (PEs) running on different clock rates, thus we can not
have a clock available for the above algorithms. In addition, the objects scheduled at system-
level are tasks, which can take hundreds or millions of clocks to execute. As a consequence,
the above algorithms will take unbearable time to compute a schedule.

In this paper, we propose a novel time-constraint scheduling algorithm which works inde
pendently from clock. In addition, the algorithm also takes several important characteristics

of system-level scheduling problems into account. These characteristics are list as following.

1. The task graph for system-level scheduling combines concurrent and exclusive execution

flows. Contrary to control/data-flow graph (CDFG) used in HLS, which has concurrent
execution flows only in DFG and exclusive execution flows only in CFG.

2. In addition to sequentialities, precedences in task graphs for system-level schedul

ing also include synchronizations. Figure 1 illustrates the idea of sequentiality and

synchronization. Two tasks are said to be concurrent if they can be executed in

dependently. Concurrent task are not required to be executed at the same time. On

the other hand, two tasks may be required to be executed at exactly the same time,
for example, two tasks which communicate by way of hand-shaking. We define the

synchronization as a new type of execution precedence between two tasks, in which the
tasks connected by the synchronization have to be executed at the same time.

3. Execution time of a task may not be determined until the task is executed. Owing

fork

sync.

(a) (b)

Figure 1: (a) Sequentiality and concurrent successors: task b and c can be executed concur
rently once task a is complete, but b and c are not required to start at the same time, (b)
Synchronization: task b and c can be executed after a is completed, and b and c have to
start together exactly the same time, b and c are not required to start immediately after a
is finished.

to cache effect and data-dependent execution, the execution time of a task may vary,

though average or worst case execution time can be calculated before execution.

Basically, there are two approaches to do system-level scheduling, namely, dynamic schedul

ing and static scheduling. Dynamic scheduling[8, 10, 3, 4, 11] leaves the actual execution
sequence of the tasks to be determined by the operating system (OS) at run-time, whereas

the OS overheads, including the computation time consumed by the OS and the hardware

cost of the OS, are paid to obtain higher utilization of the resources of the system. On

the other hand, static scheduling[l, 5, 6] determines the execution sequence of tasks be
fore run-time. The schedule is computed by design tools in advance, whereas no extra OS

overheads need to be paid during run-time.

In addition to saving the OS hardware cost, static scheduling is also more favorite when

any of the following conditions are present.

1. Worst Case Execution Time (WCET) and average execution time of each, task are

closed. The OS can impose 5% to 40% of additional execution time. In case the

difference between the WCET and the average execution time is smaller than the OS

overhead, static scheduling can obtain higher performance than dynamic scheduling in
both worse case and average case.

2. System WCET is more important than utilization. The execution sequences of the

tasks in worst case for both dynamic scheduling and static scheduling are the same.

Since dynamic scheduling has to pay the OS overhead, static scheduling can obtain a
shorter system WCET.

In this paper, we present a system-level scheduling model and a time-constraint schedul

ing algorithm. Static scheduling approach is used. The algorithm presented can obtain

good schedules within acceptable and predictable CPU time. Comparison of our work with
previous works on system-level static scheduling are made in Section 2. We define the

scheduling model and the time-constraint scheduling problem in Section 3. Several mathe
matical statistic properties based on the scheduling model are developed in Section 4. Our
scheduling algorithm, which make good use of the mathematical statistic properties, are
presented in Section 5. Several system design examples are used to illustrate effectiveness of

the algorithm in Section 6. Finally, a conclusion is drawn in Section 7.

2 Previous Works

Ha and Lee[5] propose a method to compute quasi-static scheduling of DFGs at compile-
time to reduce the OS overhead. Two types of DFG nodes, namely, select and switch, are
used to capture exclusive execution flow. These nodes are specially treated while computing
scheduling. Similar to our work, data-dependent executions are profiled for making schedul
ing decisions. In their work, the number of PEs is given and a quasi-static scheduling with
shorter DFG completion time is produced; whereas our work inputs a time-constraint and
produces a relative static scheduling with less PEs required.

Similar to our work, Eles et.al.[6] define an extended task graph to accommodate required
system-level scheduling information. Combined concurrent and exclusive execution flows are

taken into account in their work, but synchronization precedences are not considered. All
possible execution sequences of tasks are computed while the target system is synthesized.
Contrary to our work in which the time-constraint is given, they assume the number of PEs
(resource-constraint) is given.

Ziegenbein et.al.[l] attach additional information, which is called •process mode, to each
task. Theprocess mode indicates the exclusive existence between the task andothertasks, as
well as how the life-time of the task is related to process modes ofother tasks. Compared to
their approach, similar characteristics are explicitly expressed in the task graph we defined.
Their work assume the amount of resources is given and try to compute a less exaggerated
WCET while the target system is synthesized. Contrary to their work, we assume the time-
constraint is given and try to compute a schedule satisfied the time-constraint and using less
resources.

start

sync.

fork

2.5,148mS

join

end

Figure 2: An example of ETG with a time-constraint

3 System-Level Time-Constraint Scheduling Problem

The input for system-level time-constraint scheduling is an acyclic Extended Task Graph
(ETG) and a time-constraint. The ETG is a task graph representing precedences of the
sub-behaviors which comprise the system. We call each sub-behavior a task. The ETG is

defined as following.

Definition 1 An Extended Task Graph (ETG) is a graph G - (V, E) where

• The set of nodes(vertexes) V = Vt \JVj \J { Vstart , };

• Vx is a set of tasks ;

• Vf is a set of forks ;

• Vj is a set of joins ; •

• Vstart is the start node;

• Vend is the end node;

• The set of arcs E = {Eseq UEsync) C { (e,-, ej) | e,-, ej GV } ;

• (ei,ej)GV not((ej, ei) GV)

• Eseq H Esync — (t>

• Eseq is a set of sequentiaiities, which are directed arcs;

• Esync is a set of synchronizations, which are undirected arcs.

Each task t is associated with a PE type pt and execution time In case the execution
time can only be determined at run-time, estimatedWCET or average execution time can be
used as rrit. Each arc represents a precedence between two nodes and the precedence can
be either a sequentiality or a synchronization. At most one precedence is allowed between
any two nodes. When multiple sequentiaiities source a task, only one of them can be
true at run-time. When multiple sequentiaiities source a fork, all of them are true. The
sink ofa join can not be true until all sources of the join become true. Tasks connected by
synchronizations have to start at the same time.

Definition 2 An ETG G is said to be acyclic if there is no directed loop in G. Undirected
arcs can be traveled either way. A loop is not called directed if all the arcs in the loop are
undirected.

Definition 3 Eor a given ETG G = (V, E), a schedule a : Vr ^ TZ assigns to each tasks t a
start-time, where TZ is the set ofreal numbers. A schedule is called feasible if no precedence
is violated.

To take advantage of conditional branches to reduce the number of PEs required, we
defined task compatibility as follow.

Definition 4 For a given ETG G = (V, E), the associated compatible graph is an undi
rected graph C = {Vt,E) such that (^,^2) G E if and only if U and ^2 can always be
scheduled on the same PE. ti and ^2 are said to be compatible if (^1^2) GE.

The compatible graph is an abstraction of exclusive existence of the tasks, including but
not limited by conditional branches. Figure 2 shows an example of ETG. In the ETG, task
d is compatible with a. Since d can not be executed before a is completed, d can never be

executed at the same time when a is executed. Similarly, d is also compatible with e. Since

only one branch, x or j/, can be true, either e or d can be executed. As a consequence, e
or d can never be executed at the same time. On the other hand, d is not compatible with
c. Because once branch x is taken, both d and c will be executed. Since there are no paths
from c to d or vice versa, they have chances to be executed at the same time.

The system cost is the total cost of each type of PE multiplied by the maximum number

of the type of PE occupied simultaneously. For convenience, we define two notations P and

for graph as following.

P : power set of all the nodes —>• power set of all the arcs

r(C/) 3 (17, r([/')) is a complete undirected graph (1)

fl : the set of all graphs —)• power set of all graphs

Q,{H) = the minimal set of cliques which can cover the graph H (2)

We then define the system cost formally as following.

Definition 5 Given an ETG G = (V, E) and a PE cost function a : P ^ TZ, the system
cost

Cost : the set of schedules -3 IZ (3)

is defined as

where

Cost((7) = 1] {a(p) •maxo(fl(C'p(a;)))} (4)
VpGP

Cp(x) = (Ap(a;),r(Ap(x))nF)

Ap{x) = {t I (j(t) <x< a{t) + rtit, pt= p}

C = {Vt, F) is the graph associated with G

P is the set of PEs used in G

In Definition 5, Ap{x) are the set of tasks which are all associated with PE type p and are
executed at time x. r(Ap(a:)) Pi E is the subset of all the arcs F of the compatible graph

a

b

Cost

(a)

(b)

(c)
time

Cost

time

Figure 3: (a)A schedule of three tasks, (b) The total number of PEs required over time axis
without considering task compatibility, (c) The compatible graph, (d) The total number of
PEs required over time axis with considering compatibility.

C, where each arc in the subset has both vertexes in Ap{x) . Hence, Cp{x) is the correlated
sub-compatible-graph, and o(fi(Cp(a;))) is the total number of PE type p occupied at time x.
Figure 3 shows a simplified example of the system cost. In the example, only one type of PE
is used. Without considering task compatibility, the maximum number of PEs required is
three. However, by definition we can schedule compatible tasks to the same PE. Thus, only
two PEs are actually needed.

Based on the definition of the system cost, we can define the system-level time-constraint
scheduling problem as following.

Definition 6 System-Level Time-Constraint Scheduling Problem: Given an ETG
G = {V,E), a PE cost function a : P TZ , and a time-constraint q e 71, find a feasible
schedule a : Vr ^ TZ such that

0 < a{t) A rrit < q, Vt GVx .and. Cost((j) is minimum (5)

4 Mathematical Statistic Model for System Cost

In this section, we present a mathematical statistic model to compute the expected system
cost for partially scheduled ETGs. The model is then used in Section 5 for our system-level
time-constraint scheduling algorithm to evaluate the quality of the intermediate schedules.

To build a statistic model for computing the expected system cost the intermediate sched
ules, we first need to formulate partially scheduled ETGs. We define it as following.

Definition 7 Eor a given ETG G = {V, E) in which start-time of some tasks is already
determined, the associated partial schedule tt : Vt ^ 71 x Tl can be defined as 7r(t) =
{r]{t), A(t)) where

both rj and A are schedules ;

• rj(t) = X{t) = start-time of t , if t is scheduled ;

• rj(t) is earliest feasible start-time and A(t) is latest feasible start-time, if t is not sched
uled.

Eor an ETG G in which no task has been scheduled, rj is the ASAP schedule for G and A
is the ALA? schedule.

Under the condition that no hint is provided, we assume the probability of scheduling
an un-scheduled task t lies uniformly between T]{t) and A(t). Thus, we can define the PE
distribution of a partial schedule as following.

Definition 8 For a given partial schedule ir : Vt 7Z x 7Z which is associated with ETG

G = (U, El), the associated PE distribution 5 \ P xTZ ^7Z is defined as

S{p,x) = ^ max---- (6)
^[VH,EH)en(Cp[x)) ~ 7(0 +

where

Cp{x) = (Ap(a;), r(Ap(a;)) n F) (7)

Ap{x) = {t Irj{t) <x < X{t) +. mt,yt Btp=p} (8)
C = {Vt,F) is the compatible graph associated with G

P is the set of PEs used in G

8

a

b

c

d

e

0.5

0.4

0.7

(a) time

a
d e

(c)

Figure 4: (a)The probabilities of five tasks, (b) The expected number of the PE over time
axis, (c) The minimal set of cliques of the compatible graph.

In Definition 8, Ap{x) are the set of tasks which are all associated with PE type p and
can be executed at time x. r(Ap(3:)) fl F is the subset of all the arcs F of the compatible
graph C, where each arc in the subset has both vertexes in Ap{x). Hence, Cp{x) is the
correlated sub-compatible-graph. Moreover, maxtev^ A(f)-"p)+mt maximum value of
the probability at x of each task in one clique, so the summation of all of these maximum

values is the expected number of PE type p required at x. Figure 4 shows a simplified
example of the PE distribution. In the example, only one type of PE is used. There are
two cliques in the compatible graph. Since all the tasks connected in a clique can always
be scheduled to the same PE, the maximum probability of these tasks can be the expected
number of PE required by this group of tasks. The expect numbers of two task groups are
accumulated as the expected number of this type of PE.

From Definition 8, we can multiple each of the expect numbers with the unit cost of the PE
type, and accumulate them up to obtain the expected system cost Ex_Cost as following.

Ex_Cost : the set of partial schedules —)• TZ (9)

Ex_Cost(7r) = Evpep{a(p) •maxvrrG7Z<^(p,a:)} (10)

Although the expected system cost is a discontinuous function over the real number space,
yet we can compute it by just checking a set of points. We show how to easily compute the
expected system cost as following.

Definition 9 For a given PE distribution S: P x 71 TZ associated with ETG G = (V, E)
and partial schedule tt : Vr 7Z x 7Z, the distribution boundary is a sorted list B =
{xi, a;2, ••• 5̂ n} such that

r}{t),T]{t) + mt,\(t),X{t)+ mt e B , Vt € VT (11)
.and.

i <j Xi < xj (12)

In Definition 9, Equation(ll) defines the member of the distribution boundary, and
Equation(12) defines the orderofthe member ofthe distribution boundary. Now we prove all
points between two consequent elements of the distribution boundary are equal as following.

Theorem 1 Given a PE distribution 8 \ P xTZ 7Z associated with distribution boundary
B, ETG G —(V, E), and partial schedule rr : Vr ^ 7Z x 7Z,

ybi, bi+i e B , hi < x < bi+i , hi <y < bi+i

^ 5{p,x) = S{p,y) (13)

10

proof : Given t E Vt, bi < x < fti+i,6,- <y< 6i+i

^ x,y < y{t)

or ri{t) < X< X{t) + rrit , r]{t) <y< X{t) + rrit

or X{t) + mt<x,y

=> Ap[x) = Ap{y) where Aj, is defined as in Equation(8)

5(p,x) = 5{p,y)

q.e.d.

From Theorem 1, we can directly derive a more useful Theorem 2 as following.

Theorem 2 The expected system cost Ex_Cost can be found over the distribution boundary.

Considering a partial schedule tt and a task u which is going to be scheduled next, since
there is no clock which can be used to align all the tasks in the system, we have unlimited
start-time candidates for the task u. Thus, it is not possible to exhaustedly evaluate the
expected system cost of each of the candidates to find the best start-time. In the rest of

this section, we prove a theorem with which we can narrow them down to a finite number

of candidates.

Given a partial schedule tt : Vr ^ U x 11, let = {rju,y{^)^ Kvi'l')) denote one of Tr's
consequent partial schedules where an un-schedule task u in tt is scheduled to start-time

y. Thus, we have

{y \i t=u
•ni't) ^ {y - yiu)) if t is a successor of u (14)
r}{t) otherwise

Xu,y{t) —
y if t = u
X{t) —(A(u) —y) if t is a predecessor of u (15)

_A(t) otherwise

In case the task u is connected by synchronization arcs directly or indirectly with a set of
tasks S, all the tasks in S have to start together with u. As a result, once u is scheduled
to start at time y, all the tasks in S are also scheduled to start at time y at the same time.

11

Thus, Equation(14) and Equation(15) are extended as following.

y

Vit) + (y - r]{u)) if t is a successor of a task in Su (16)
^{t) otherwise

(y if t e Su
is a predecessor of a task in Su (17)

[A(t) otherwise

where the synchronized task set Su is defined as

Su = Su {u} (18)

From Equation(16), we can see

y 77. —y 77

g{y) = Vu,y{i)

is a continuous and fixed-gradient function for any given t and u. Similarly, from Equation(17)
we know

h : 77 —^ 77

^(y) ^u,y{'t)

is also a continuous and fixed-gradient function. With the above preparation, we now can
prove the following theorem.

Theorem 3 For a given partial schedule tt : ^ 77 x 77 and a given un-scheduled task u,

v{u)<z<\[u) '

can be found over a finite set of real numbers B , where

B is the distribution boundary

d = X(u) —r][u)

Su is the synchronized task set of u

Eu = {y(f) If is a successor of a task in 5"^ (20)

12

Lu = {^{t) I t is a predecessor of a task in 5.} (21)

By = {b\b eB,y<b<y + d}, Vy G (22)

By = {b\b eB,y-d<b<y}, My ^ Lu (23)

B = {q{u)-{-b-y\Mb^ By,My e Eu} (24)
B = {A(u) - {y -b) \Mbe By,My e (25)

B is the sorted list of 5 UJ5 (26)

proof:

Let 7ru,^ denote one of tt's consequent partial schedules where an un-scheduled task u in tt

is scheduled to start-time z. Let 5u,z{p,x) denote the PE distribution associated with
We define

/:7^ ^ n

f{z)=5^^,,{p,x) (27)

max -—— — (28)
V(Vjj,£H)ea(Cp(rr)) K,z{'̂) —Vu,z[t) + nit

where Cp{x) is defined as in Definition 8.

Now, we are going to prove that the function f{z) is continuous and monotonic between
any two consequent elements Ci and Ci+i of B.

We first consider the case x < z. If task t is not a predecessor of a task in 6'„, we have

rrit

K,z{t) - riu,z{t) Mmt
'nXi

(30)
\{t) - r}{t) -I- rrit

All the terms in Equation(30) are independent from 5;. Thus, Equation(30) is a constant for
varied z. On the other hand, if task t is a predecessor of a task in Su-, we have

-'n{'^)u,z + rrit
rrit

\{t) - {X{u) - z) - ri{t) + mt
rrit

where

c = X{t) - r]{t) + mt - X{u) (34)

13

is independent from When z is increasing, Equation(33) is decreasing. As a result, f{z)
is a continuous and decreasing function over the domain

{ Z I Ci < Z < Ci+i }

since each term inside the J2 in Equation(28) is either a constant or a continuous and
decreasing function, whereas Cp{x) is identical for all z located between c,- and c,+i.

Then we consider the case x > z. Similarly, we can derive that f{z) is a continuous and
increasing function over the domain

{ Z I Ci < Z < Ci+i }

Therefore, f{z) is continuous and monotonic between any two consequent elements of B.
As the consequence, we know all the local maximal and minimal values of f{z) are all

located on B.

q.e.d.

5 The WLMF Algorithm

Since the scheduling problem is NP-hard[7], approximation algorithms which canfind a good
solution within predictable and acceptable time is favorite. Based on the properties obtained
in Section 4, we develop a weighted least-mobility first (WLMF) algorithm that can
find a near-optimal solution for system-level scheduling.

The WLMF algorithm is shown in Figure 5. The task compatiblegraph which is associated
with the input ETG G is computed first. Once the compatible graph is obtained, the WLMF
algorithm constructs a sequence of partial schedules, step by step toward the final schedule.

In each iteration an un-scheduled task is scheduled. The WLMF algorithm select the most
critical task to schedule first. Intuitively, the mobility of the task and the cost of the PF

which is associated with the task are two major factors which can determine the degree of
urgency for scheduling. Other measures, for example, input/output degree of the task, can
also be taken into account to determine the scheduling urgency. However, we compute the
scheduling priority of the task only by its mobility and the PF cost associated with it in our

implementation.

Once the candidate task t with the highest priority is selected, the WLMF algorithm
assigns t to a start-time where the expected system cost Fx.Cost can be minimized. The

14

Algorithm WLMF

input

an acyclic ETG G = (Vr UVp UFj U{vstart, Vend} , Eseq UEsync)
a time-constraint

output

the scheduled ETG

begin

Compute the task compatible graph associated with G

TT = (ASAP(G) , ALAP(G'))
while 6 Vj , t is not scheduled do

/* choose the best task */
Find t G Vt such that minimum

a{tp)

/* compute the best start-time */
Compute distribution boundary B

Compute B as defined in Equation(26)
find z E B such that Ex_Cost() is minimum

endwhile

end

Figure 5: Costly-Least-Mobility-First Scheduling Algorithm (WLMF)

15

statistical expected system cost of a partial schedule can be computed by Equation(lO).
According to Theorem 2, the WLMF algorithm can find the Ex_Cost by examining only the
distribution boundaries B defined in Definition 9, instead of searching through the whole
real number space. Whereas, with the help of Theorem 3, the WLME algorithm can find the
best start-time for the selected task t by evaluating all the Ex_Cost of scheduling t to each
element in B. As soon as the best start-time for the task t is found, the WLME algorithm
schedule t to the start-time, then the WLMF continues the next iteration. Finally, all the
tasks are scheduled one by one until the schedule is completed.

In our system-level synthesis practice, tasks are assigned to EEs and synchronized by
signals; contrary to practices of HLS, in which operations are synchronized by way of clock.
In addition, a task can have variable execution time. The actual execution time may not be
determined until the task is executed.

Average execution time or WCET can be used during scheduling, depends on the opti
mization objective. Figure 6 shows an example of WCET scheduling. In the example, we are
trying to schedule an ETC as shown in Figure 6(b). The objective is to complete the ETC
within the given time-constraint. The ETC is then scheduled according to WCET of each
task. As the result, the ETC is scheduled as shown in Figure 6(c). Each box in Figure 6(c)
indicates the schedule of a task. The gray shade in each box is the actual execution time,
which is not known until the task is executed. Although the schedule is made according to
WCET of each task and the actual execution time of each task is different from WCET,
the time-constraint is still satisfied as well as the total order among all the tasks is still un
changed. Figure 6(d) shows the execution ofthe schedule. Each box in Figure 6(d) indicates
the execution of a task.

In case the scheduling objective isaverage performance, we compute the schedule according
to the average execution time ofeach task. As the result, the average case will be completed
within the given time-constraint. Other execution time estimation can also be applied to
the proposed technique, and result in the expected scheduling.

6 Experimental Results

The proposed system-level scheduling technique has been implemented as a part of the
System-Level Scheduler (SLS)[14] of SpecC System[15, 16]. The SpecC System is an
integrated synthesis environment, emphasized on IP-centric system design. It includes a
C-based HDL and its compiler, simulation engines, GUI, exploration and refinement tools.

16

(a)

I

WCET

--S-

actual
exec, time

(c)
PE1 PE2

time-
constraint

B

signal
D start

D

(d)
PE 1 PE 2

time-
constraint

B

signal
D start

D

actual
completion

time

Figure 6: (a) The actual execution time and WCET of a task, (b) The ETC which is
scheduled, (c) The schedule according to WCET. (d) Actual execution of the tasks.

17

(a) Input system description

Top C|p' I) (|cZ I) (i« I)

(b)ETG

nirn

Flatten hierarchy
Add Implicit precedence

Time-constraint scheduling
Resource-constraint scheduling
Performance-constraint scheduling

I B6 I I B9 I

•

«

•

(d) Output system description (c) Schedule
PE1 PE2

Top dm I) dn2 I)

Re-Structure description
Modify channels

B1 ^ B4

B6'.

B2

B9 .
B8 .

B10

B3

m

7Tt

Figure 7: The SpecC system-level scheduling flow: (a) The input system description in
SpecC; (b) The ETG; (c) The schedule obtained; (d) The refined SpecC description

19

(a) (b)
PE1 PE2 PE3 PE1 PE2

0 B1 B4 0 B1 B4

B6 B9 B6

100~ B2 B7 BIO 100~ B2 B7

200~
B8

200"~
B8 B9

B10

300~
B3

300~
B3

Figure 8: (a) Execution ofthe original description, (b) Execution ofWLMF refined descrip
tion. The time-constraint is set to 320, which is the same with the completion time of the
original description.

WCET

over all case a case b

find_azl 1240.51 n.a. n.a.

find_az2 1240.51 n.a. n.a.

azJspl 412.58 n.a. n.a.

azTsp2 412.58 n.a. n.a.

vadJp 571.32 81.50 571.32

intTpc2 76.18 n.a. n.a.

q_plsf_and
JntJpc

1313.91 1313.91 5.24

processor:

time unit:

.00 MHz Motorola DSP56600

Tiicro second

Table 1: Execution time of software implementation of tasks in the LPmnalysis module

20

LP_analysis

N

find_az1 find az2

az_ spl

az_lsp2

vadJP

N

intjpc2
q_plsf_and

JntJpc

Figure 9; The original behavior structure of LP_analysis in SpecC

21

LP_analysis

find azi find_az2

V

casi

az_ sp1

az_isp2

.case b

vad_lp (a) vadjp (b)

int_lpc2
q_plsf_and
JntJpc (a)

intjpc2
q_plsf_and
JntJpc (b)

Figure 10: The new behavior structure of LP_analysis in SpecC

22

find_az1 find_az2

azjspl

az_lsp2

vad_lp

int_lpc2

end

Figure 11: The DFG obtained from the original behavior structure of the LP_analysis

shows the behavior structure ofLP_analysis in SpecC. The LP_analysis iterates to process input
data frames. Each input data frame has to be processed within 5ms. The execution time of
each task is shown in Table 1.

Figure 11 shows the DFG obtained from the behavior structure shown in Figure 9. With
allocating 1PE, theWCET ofthe DFG is 5.26759ms as shown in Figure 13(c), which exceeds
the time-constraint given. In order to obtain WCET less than 5ms, two PEs are required
for scheduling the DEC. As the result, a schedule with worst case DFG completion time
3.95090ms can be obtained as shown in Figure 13(b).

However, when we look closely into the task vad_lp, the WCET of a set of situations (case a)
is 81.5//S; whereas the WCET of the rest situations (case b) is 571.32/.fs. On the other hand,
when (case a) applies on q_plsf_andJntJpc, the WCET is 1313.91/:is; whereas the WCET of
(case b) is 5.24;xs. As a result, we can rewrite the behavior structure of LP_analysis as shown
in Figure 10. The ETC can explicitly comprehend the concurrent and exclusive execution
flow of the new LP_analysis as shown in Figure 12. With the help of the ETC, the WLMF
can take advantage of concurrent and exclusive execution flow, and then obtains a better
schedule as shown in Figure 13(a). In the schedule, only one PE is required to obtained the
worst case ETC completion time 4.77777ms, which satisfied the time-constraint given.

23

intjpc2

find azi find 822

az_ spl

az_ sp2

vad_lp (a)

q_plsf_and
intjpc (a)

case b

vadjp (b)

intjpc2
q_plsf_and
intjpc (b)

Figure 12: The ETG obtained from the new behavior structure of the LP_analysis

24

(a)
PE1

(b)

0.0
find azi

0.0 T""""

1.0 1.0 -

find_az2

2.0 2.0

azjspl

3.0 az_lsp2 3.0

int_lpc2 -
vadjp

4.0 -

5.0

ms

q_p sf_and
Jt tjpc

- int_lpc2
4.0 -

4.77777ms

case b 5.0 ~

ms

PE1

find_az1

azjspl

azjsp2

vad_lp

q_plsf_and
JntJpc

PE2

find 322

intjpc2

(C)

0.0 •

1.0 -

2.0 -

3.0

3.95090ms 4.0

5.0

PE1

find azi

find_az2

azjspl

az_isp2

vad_ip

q_pisf_and
JntJpc

- int_ipc2

5.26759ms

Figure 13: (a) The schedule of the ETG obtained from the new behavior structure of the
LP_analysis. (b) The 2 PE schedule of the DEG obtained from the original behavior structure
of the LP_analysis. (c) The 1 PE schedule of the DEG obtained from the original behavior
structure of the LP_analysis.

25

7 Concluding Remarks

In the paper, we present an extended task graph ETG to capture the system-level scheduling
problems. Based on the ETG, we define thesystem-level time-constraint scheduling problem.
HLS scheduling algorithms can not be applied on system-level synthesis due to the following
problems.

• The clock is no longer able to align the tasks at system-level;

• Gombined concurrent and exclusive execution fiows;

• Synchronization precedences among the tasks;

• Data-dependent execution time of the tasks.

We present theWLMF algorithm which can compute system-level time-constraint scheduling
effectively and efficiently. The WLMF algorithm is based on mathematical statistics. Several
statistical properties are developed to support the WLMF algorithm.

Static scheduling approach, which determines the execution sequence of the tasks while
the target system is synthesized, is used in the paper. Static scheduling has following two
advantages.

• Less OS overhead;

• Better system WGFT.

The technique presented in the papercan obtain scheduling which meets one time-constraint.
Methodologies which can obtain scheduling with multiple local time-constraints are still
needed.

References

[1] D. Ziegenbein, K. Richter, R. Ernst, J. Teich, and L. Thiele, "Representation of process
mode correlation for scheduling," in Proceedings of the International Conference on
Computer-Aided Design, 1998.

[2] J. Lee, Y. Hsu, and Y. Lin, "A new integer linear programming formulation for the
scheduling problem in datapath synthesis," in Proceedings of the International Confer
ence on Computer-Aided Design, 1989.

26

[3] W. Chu and L.-T. Lan, "Task allocation and precedence relations for distributed real
time systems," IEEE Transactions on Computers, June 1987.

[4] T.-Y. Yen and W. Wolf, "Sensitivity-driven co-synthesis of distributed embedded sys
tems," in Proceedings of the International Symposium on System Synthesis, 1995.

[5] S. Ha and E. Lee, "Compile-time scheduling of dynamic constructs in dataflow program
graphs," IEEE Transactions on Computer-Aided Design, July 1997.

[6] P. Eles, K. Kuchcinski, Z. peng, A. Doboli, and P. Pop, "Scheduling of conditional
process graphs for the synthesis ofembedded systems," in Proceedings of Conference on
Design, Automation and Test in Europe, 1998.

[7] J. Ullman, "NP-complete scheduling problem," Journal ofComput. Syst. Sci., pp. 384-
393, 1975.

[8] A. Burchard, Y. Oh, J. Liebeherr, and S. Son, "A linear-time online task assignment
scheme for multiprocessor systems," in 11th IEEE Workshop Real-Time Operating Sys
tems and Software, 1994.

[9] D. Gajski, N. Dutt, C. Wu, and Y. Lin, High-Level Synthesis: Introduction to Chip and
System Design. Boston, Massachusetts; Kluwer Academic Publishers, 1991.

[10] L. Sha, R. Rajkumar, and S. Sathaye, "Generalized rate-monotonic scheduling theory:
A framework for developing real-time systems," in Proceedings of the IEEE, January
1994.

[11] Y. Li and W. Wolf, "Hierarchical scheduling and allocation of multirate systems
on heterogeneous multiprocessors," in Proceedings of the International Conference on
Computer-Aided Design, 1998.

[12] P. Paulin and J. Knight, "Force-directed scheduling for the behavioral synthesis of
ASICs," IEEE Transactions on Computer-Aided Design, June 1989.

[13] S. Devadas and A. Newton, "Algorithms for hardware allocation in data path synthesis,"
IEEE Transactions on Computer-Aided Design, vol. 8, no. 7, pp. 768-781, 1989.

[14] E.-S. Chang and D. Gajski, "SpecC system-level static scheduling." UC Irvine, Dept.
of ICS, Technical Report 99-23,May 1999.

27

[15] D. Gajski, R. Domer, and J. Zhu, "IP-centric methodology and design with the SpecC
language," in Contribution to NATO-ASI workshop on System Level Synthesis, II
Ciocco, Barga, Italy, August 1998.

[16] D. Gajski, "IP-based design methodology," in Proceedings of the Design Automation
Conference, 1999.

[17] D. Gajski, G. Aggarwal, E.-S. Chang, R. Domer, T. Ishii, J. Kleinsmith, and J. Zhu,
"Methodology for design of embedded systems." UC Irvine, Dept. of ICS, Technical
Report 98-07,March 1998.

[18] A. Gerstlauer, S. Zhao, and D. D. Gajski, "Design of a GSM vocoder using SpecC
methodology." UC Irvine, Dept. of ICS, Technical Report 99-11,February 1999.

28

