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Generalized beta equilibrium involving nucleons hyperons and isobars is examined for 

neutron star matter. The hyperons produce a considerable softening of the equation of state. It 

is shown that the observed masses of neutron stars can be used to settle a recent controversy 

concerning the nuclear compressibility. Compressibilities less than 200 MeV are incompatible 

with observed masses. 
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The large scale features of neutron stars, mass, radius and gravitational red-shift, for 

example, depend upon the equation of state of lhe matter of which they are composed, and that 

is why they are of interest to this conference. However I want to be precise at the outset in 

how the equation of state controls the structure of the star. The matter of a star will be 

arranged in accord with the condition of hydrostatic equilibrium, that is to say the pressure of 

\.) 
the matter at every point balances the force of gravity. In a neutron star the concentration of 

energy is high enough that the metric of space time is curved, and the condition of equilibrium 

has to be framed in terms of the general theory of relativity, which was done long ago for static 

spherically symmetric stars by Oppenheimer and Volkoff. The coupled equations are, 

dM(r) = 41rr2e(r)dr [21 

These equations express the balance of net pressure, dp, acting on a spherical shell of thickness 

dr, with the force of gravity acting on the mass dM in the shell. With a knowledge of the equa-

tion of state p = p(e), they can be integrated outward for an arbitrary choice of e at r = 0, to the 

point r = R where the pressure becomes zero. Then M(R) is the star's gravitational mass and R 

its radius for the assumed central energy density. You see therefor that the structure of the star 

is an integral property of the equation of state. The connection of the large scale features and 

the equation of state, while being quite precise, cannot be inverted with the kind of data that 

are accessible to us. Nonetheless we can get a handle on the problem in the sense of distin-

guishing widely different equations of state through their predicted star structure. 

The known masses of neutron stars provides a constraint on the theory, since for any par-

ticular equation of state, there corresponds a limiting star mass above which the star is unstable 

and collapses into a black hole. An acceptable theory must yield a limiting mass as large or 

larger than the largest observed mass (about I.S solar masses). 
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Now I turn to some of the demands that seem reasonable to make of the extrapolation of 

theory from the known properties of matter at sub-nuclear densities to the domain of super­

nuclear densities. Although one requires the equation of state from super-nuclear densities 

down to zero pressure to solve the structure equations, almost all of the matter of neutron stars 

is in the unknown domain of high density, as shown in Fig 1 . Except for the very lightest of 

neutron stars, this figure shows that 95% or more of the mass of the star is in the nuclear or 

super-nuclear regime. Since a neutron star is a relativistic object, it is of course highly desirable 

that the theory of matter should be relativistically covariant. The non-relativistic Breuckner­

Bethe theory for example when extrapolated to the high density domain will in general violate 

causality. The equation of state will become manifestly incorrect. It is usually argued in such 

cases that if this occurs above the density of the cores of neutron stars, it doesn't matter. This 

is false. The best non-relativistic calculation of nuclear matter to date, that of Day and Wiringa 

[lj, saturates at twice the empirical density! Baron, Brown, Cooperstein and Prakash [2] calculate 

relativistic corrections amounting to 100 % to bring the calculation into agreement with the 

empirical value. Relativity is therefor already important at nuclear density and non-relativistic 

theories will therefor become increasingly worse with increasing density. Since they ultimately 

violate causality, their equation of state is stifTer than the underlying relativistic theory (were it 

known) and therefor the masses of neutron stars is overpredicted. Since observed neutron star 

masses provide a lower limit on the theory, it becomes clear that finding a non-covariant theory 

to be compatible with neutron star masses is empty of meaning. Moreover since the relativistic 

corrections to the non-relativistic Breuckner-Bethe theory are so large, it raises serious ques­

tions as to whether the traditional approach is valid in any density regime of interest in nuclear 

physics. 

Aside from the general requirement of covariance, the theory should be able to account 

for the bulk properties of matter where known, namely at saturation density. Of particular 

importance is the symmetry energy, since neutron stars are highly isospin asymmetric. This 

last constraint seems not to have been imposed in earlier work. We require therefor, 

,_/ 
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1. relativistic covariance 

2. bulk nuclear properties (binding, saturation density, compressibility, isospin (charge) 

symmetry energy) 

A theory that satisfies these requirements is the relativistic nuclear field theory based on 

nucleons interacting with the scalar, vector and isovector mesons and having ¢4 interactions. 

The latter can be exploited to bring the compressibility into line. The rho meson couples to the 

isospin density, and so tends to drive matter to isospin symmetry. This theory is also known 

to reproduce a large number of single-particle properties of finite nuclei [3]. 

What about other baryons and mesons? From the vast zoology in the particle data tables 

what others can be involved in the structure of neutron stars? 

GENERALIZED BETA EQUILIBRIUM [4] 

Stars are essentially charge neutral because the repulsive Coulomb force is so much 

stronger than the gravitational one. A star composed solely of neutrons satisfies this condition 

but is unstable against beta decay. The neutron at the top of the fermi sea has enough energy 

to decay into a proton and electron. So pure neutron stars cannot exist. As the density 

increases other baryon thresholds will be reached and hyperons also will be present, and 

perhaps the delta. Therefor we should allow for a generalized beta equilibrium in dense neu-

tron star matter, allowing whatever baryons to participate as dictated by their masses and the 

interactions. There is no essential difficulty introduced into the theory connected with the 

increase in the number of baryon species. 

MESONS AND PHASE TRANSITIONS 

. 
Unlike the baryons, mesons can introduce new levels in complexity in the theory accord-

ing to the quantum numbers that they carry. To see why this is so recall that the lagrangian 

must be a scalar. Therefor the interaction terms between baryons and mesons must involve the 

meson field and a bilinear baryon current of such a form that it can be contracted with the 
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meson to form a scalar. Table I lists a few of the mesons in ascending order of their quantum 

number, and the form of an interaction term with any baryon B. The operator appearing in the 

bilinear form, will appear in the Dirac equation for the baryons and as the source in the Klein 

Gordan equation for the meson, and so the complexity of the theory is increased with each new 

type meson. The omega and (neutral) rho meson couple to familiar baryon currents, the expec­

tation value of the time-like components are· the baryon density and isospin density respec­

tively. The scalar meson couples to the scalar density. All three densities are finite in neutron 

star matter and so drive to finite amplitude the meson to which they couple. 

The other currents vanish in normal matter. For example the charged rho mesons change 

the charge of the baryon that absorbs or emits them, and so there can be no diagonal matrix 

element, and the expectation value of the baryon currents to which they are coupled vanish in 

the ground state. Analogously, the pion changes the isospin and moreover, because of its parity 

requires that spatial isotropy be broken. The Kaon changes the strangeness quantum number 

and so also its source current vanishes. 

When the source in the Klein-Gordan equation for a meson vanishes, its amplitude can 

vanish, and since that is a lower energy state, all such mesons as have vanishing baryon source 

currents will decay. 

The characteristics of normal matter are that it is isotropic and that the fermion eigen­

states of the system have the same quantum numbers as they do in vacuum. In the normal 

state of neutron star matter the sigma, omega and neutral rho mesons are therefor the only ones 

that have finite mean amplitudes. However it is conceivable that a phase transition could 

occur as the density of matter is increased, a transition to a new state in which one or both of 

the characteristics of normal matter are violated. In the new state one of the previously absent 

mesons will now be driven to finite amplitude by a new non-vanishing source. It is clear that 

for such a transition to occur there must be lowering of the energy. The interaction energy 

must be attractive, and more than enough to compensate the mass and momentum of the 

\..! 
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meson. 

We must now discuss specific phase transitions which would introduce additional mesons 

into the theory (and the star). In principle, a succession of phase transitions corresponding to 

each of the mesons' whose sources vanish in the normal ground state can occur as the density of 

neutron star matter is increased. The transition to a state in which the pion acquires a finite 

amplitude is the first that might be encountered. It is a state that was much discussed for sym­

metric matter, and as precursor phenomena in finite nuclei. It seems that it is too distant from 

normal density to produce such phenomena. We have also investigated it in neutron star 

matter [5]. There the charge asymmetry of the system encourages the pion condensate. In addi­

tion of course the attractive p-wave interaction, as for symmetric matter, is a driving force. I 

will not discuss this rather complicated topic in detail here, but wish only to introduce some 

general notions that will be useful in discussing the plausibility of phase transitions after this 

one, say a kaon condensate. 

First of all it is the negative pion that can be a candidate for a phase transition, since 

when the fermi energy of the electron exceeds the effective mass of the pion in the medium, it 

is energetically favorable for any additional negative charge to be carried by pions rather than 

electrons, because they are bosons, and can all condenSe in the lowest energy state. What this 

means more precisely, is that the electron chemical potential, which is an increasing function of 

density for low density neutron star matter, saturates at the effective mass of the pion. Let us 

rewrite the momentum transform of the Klein-Gordan equation of the pion, 

[3] 

where J is the baryon source current for the pions, in the form, 

[4] 

in the vicinity of the hypothesized phase transition. Remember that J vanishes in the normal 
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phase. In this equation I have replaced the energy of the pion by the electron chemical poten-

tial, since as I remarked, this is the energy that the pions would have. II is the polarization 

operator, 

I. <J> 0.= - 1m -­
< ... >_0 <11"> 

Now it is apparent that for the pion to have a finite amplitude, the equation 

[5] 

[6] 

.(for k a real number) must be satisfied. It is clear that as the electron chemical potential 

increases it becomes more likely that eq. 6 can· be satisfied. If the pion interactions were van-

ishingly small it would be satisfied at the pion mass. In a related work, the attractive p-wave 

interaction was taken into account in the presence only of the nucleons, and the equation was 

satisfied for ILe = ko = 170 MeV, somewhat higher than the mass, because the p-wave attraction 

can be gained only at some cost of momentum [5]. Even if the pion-baryon interaction were 

strongly repulsive, forbidding the condensation, of pions, the chemical potential would eventu-

ally saturate because of the appearance of negatively charged hyperons. This gets a little ahead 

of the story, but needs to be mentioned here. It would saturate then at about 200 MeV [4]. The 

behavior of the electron chemical potential under these three scenarios is depicted in Fig. 2. 

Now an analogous discussion can be carried out for the kaon and all more massive 

mesons that require a phase transition to acquire a finite amplitude in the star. But since the 

electron chemical potential will saturate with increasing density at a value of 200 MeV or less, 

according to the above remarks, such massive mesons cannot condense, for it would require an 

attractive interaction on the order of 10 times that experienced by pions, and this is implausi-

ble. 

The above, rather long line of reasoning leads to an important conclusion, namely that in 

addition to the three mesons that condense in normal matter, the only additional one that can 

\., 
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do so through a change in phase is the pion~ This conclusion allows us to limit the zoology of 

mesons in the theory, and we can now write down the effective lagrangian as the sum of sigma, 

omega, rho, and pion, as well as the sum of baryon terms and their interactions with the 

mesons named [4] . 

.2'= 2; B(i-y" a" - mB + gaB a - g",B "rIA wI') B - gp PlA3 J r 
B 

+ .2'~ + .2'2 + .2'~ + .2'2 - tbmn(g.,.a)3 - ±C(g.,.a)3 + 2; WA (i"rlA alA - mA)wA [7] 
. A 

Here B denotes a baryon spinor and is summed over all baryons p, n, A, ~, :a: ... , the rho 

meson is coupled to the isospin current, J, the Sf'J denotes field free lagrangians, the cubic and 

quartic terms are scalar self-interactions and 'II A in a lepton spinor summed over electrons and 

muons. 

We shall simplify the treatment of pions by considering two limiting cases,' as concerns 

their effect on the equation of state. In the one case, we shall assume that the effective pion 

mass is so large compared to the electron chemical potential (see eq. 6) that they do not con-

dense. The other limiting case will produce a maximum softening of the equation of state due 

to pions. We neglect the pion-nucleon interaction, but include pions in the conditions of chemi-

cal equilibrium. In this case, negative pions will condense when the electron chemical potential 

attains the value of the pion mass. This will produce a maximum softening, because according 

to our calculation of pion condensation with pseudo-vector coupling to neutrons and protons in 

neutron star matter, condensation will occur when the chemical potential reaches a somewhat 

higher value than the pion mass [5]. (This is because the pion must have momentum to exploit 

the attractive p-wave interaction.) 

The field equations that follow from eq. 7 must be supplemented by the conditions for 

chemical equilibrium and charge neutrality. This yields a set of N+8 non-linear equations that 

determine the meson...amplitudes, chemical potentials and the fermi momenta of the leptons 
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and baryons, of which there are, say N. When the solution is obtained, the energy density and 

pressure can be computed as a function of density, in other words the equation of state. If 

instead, the field equations are solved subject to the suplemental condition of isospin sym-

metry, we get the solution for uniform nuclear matter. This solution is used to fit the constants 

of the theory to the bulk properties of nuclear matter. 

EQUATION OF STATE 

The energy density and pressure are given in this theory by the expressions, 

k. 

+ ~ :2! (p2 + mf )1/2p2dp [81 

k. , 4 
+l~lr :p d 

3f'1I'2{ (p2+mf)I/2 p 
[91 

The equation of state showing pressure as a function of energy density is shown in fig. 3 

for the full theory and in the absence of hyperons and pion condensate, and these are compared 

with the causality limit, the ultrarelativistic gas,:and an ideal neutron gas. One can see here the 

softening due to the additional degrees of freedom, that are usually omitted. 
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It is interesting to see the composition of dense neutron star matter, and this is shown in 

fig. 4 for four cases, (a) the full theory, (b) absent the pions, (c) absent the rho coupling, which 

shpws the important role of the isospin symmetry in dictating populations within the constraint 

of charge neutrality, and (d) absent hyperons, isobars, and pion condensate. The last case 

corresponds to the more usual scenario of a neutron star where beta equilibrium between neu­

trons, protons and leptons only is assumed. What we see in the full theory is a sequence of 

thresholds being reached after which the populations rise rapidly. At high density, the neutron 

population has fallen significantly and there is an abundance of other baryons. In fact charge 

neutrality for high density is achieved mainly among baryons, and the lepton and pion popula­

tions are quenched. 

Most of a neutron stars mass is composed of matter at nuclear or super-nuclear densities, 

but the surface itself depends on the equation of state of matter at lower density and still exotic 

conditions. Table II shows three broad density regions, the nature of matter in each and the 

source of the equation of state. It is shown over the wide density range in fig. 5. 

Integrating the Oppenheimer-Volkoff equations for star structure we can find the mass of 

a star as a function of its central density. In fig. 6, this is shown for cases a,b,d of fig. 3. I men­

tion that for pure neutron matter, such as Walecka and Chin calculated, the limiting mass is 2.5 

solar masses. However such matter is unstable and far too stiff. Here we see a limiting mass 

for the full theory of 1.8 solar masses. Since this exceeds the maximum known neutron star 

mass, the theory is compatible with the data. 

Let us now look at the contents of the star. This is shown in fig. 7 for two cases (a) the 

full theory and (b) the conventional theory having as baryons only the neutron and proton. 

The distance between lines represents the populations. What we see here is that the central 

core has a higher density of hyperons than nucleons. It should also be noted that the isobars 

are completely absent. This is because of the most favored charge state is the negative one, but 

it is unfavored by its isospin. 
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CONSTRAINT ON COMPRESSIBILITY 

All of the foregoing calculations were for parameters of the theory that yield a compressi-

bility for symmetric nuclear matter of K=285 MeV. There is some debate about what the 

compressibility really is. For a long time a careful analysis of the giant monopole resonance by 

two French groups has been generally accepted. They place K above 200 MeV [61. More 

recently Brown and Osnes has claimed that it may be as small as 100 MeV [71. Keeping the 

other properties of nuclear matter fixed, I have investigated the effects of varying the parame-

ters of the theory so as to vary the compressibility from 100 MeV upward. I have two sets of 

calculations, with and without a pion condensate. The equations of state are shown in fig. 8. 

The weak structure that appears in the equation of state and the mass curve of the star reflects 

the various thresholds that occur as the density changes. While the differences produced by 

varying the compressibility at saturation density of nuclear matter do not appear to be great in 

the equation of state of neutron star matter, the scale is logarithmic, and the neutron star 

masses show considerable variation, as depicted in fig. 9. Moreover since neutron stars of 1.5 

solar mass are known, it appears that compressibilities less than 200 MeV can be ruled out. 

SUMMARY 

We have solved a relativistically covariant field theory of nuclear matter in the mean field 

approximation, for both symmetric nuclear matter and neutron star matter, involving a general-

ized beta equilibrium between nucleons, hyperons, isobars and leptons and in two limiting 

cases in which pions condense at an effective mass equal to the vacuum value and in which 

they do not condense because of an assumed effective mass which is too large compared to the 

electron chemical potential. The cores of stars near the limiting mass have large hyperon popu-

lations, and these populations integrated over the star amount to 15-20% of the baryon popula-

tion. The paramters of the theory were fitted to the bulk properties of nuclear matter except 

that the compressibility was treated as unknown. The mass curves of neutron stars were calcu-
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lated for various assumed values of the compressibility, and it was found that values less than 

about 200 MeV are incompatible with observed neutron star masses. 

This work was supported by the Director, Office of Energy Research, Division of Nuclear 

Physics of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy 

under Contract No. DE-AC03-76SF00098. 
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Table I. 
Partial list of mesons ordered as to quantum numbers and the corresponding 
part of the interaction Lagrangian. The parentheses enclose the various baryon 
currents to which the mesons are coupled. 

Meson 

a 

w 

'll' 

p 

K 

K'" 

J'" 

0+ 

I-

0-

1-

O-

1-

I 

o 

o 

1/2 

1/2 

!SI ~nt 

0 glla(BB) 

0 g w (B "t B) 
., I/> 

0 g ... 'II' e (B1's T B) - -
0 gp p e(B"t T B) 

-I/> -
1 gKK(A 1's N) . .. 

gK K"'I/> (~.~ "t N) .. 

Table II. 
Density regions needed to describe the neutron star surface (I and II) and 
the star interior (III). 

Density 
(g cm-3) Character of Matter Reference 

2 X 103 < p < 1 X 1011 crystalline: light metals, Harrison and Wheeler 1965 
electron gas 

1 X 1011 < p < 2 X 1013 crystalline: heavy metals, Negele and Vautherin 1973 
relativistic electron gas 

2 X 1013 < p < 5 X lOIS relativistic hyperons: pions, This work 
leptons 
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Fig. 1. Mass profiles of stars of several 

masses. The dot on each curve 

marks the point interior to which 

95 % of the stars mass is con-

tained. The Roman numerals refer M/M0 = 1.81 

to three density rgions of the 
0.491 

equation of state charcacterized in 

table II. Radius (km) 
X8t 8311-3433 

Fig. 2. Behavior of the electron chemical 
220 

potentianil-rieutron star matter in 
200 

four cases, (a) pion condensation 180 

160 

through the p-wave interaction 
> 140 

with nucleons, no hyperons or iso-
CD e 

bars present [5], (b) free pions con- l 

dense with their vacuum mass, (c) 60 

40 
generalized beta equilibrium 

20 

among all baryons, but no pion 00 0.5 1.0 1.5 

condensate, (d) no hyperons iso- n (fm-3) 
X.L"l1~ 

bars or pion condensate. 
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Fig. 3. Equation of state for full theory including nucleons, hyperons, isobars and pion con-

densate (solid line), absent the hyperons, isobars and pion condensate (dotted line), 

and for the special cases marked, the causality limit, the ultrarelativistic gas, and the 

ideal gas of neutrons. 
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Composition of neutron star matter as a function of baryon density for (a) the full 

theory including all baryons and pion condensate, (b) absent the pions, (c) absent the 

rho coupling, (d) absent the hyperons, isobars and pions. 

·if-



17 

Fig. 5. Equation of state over wide deri-

sity range. 

Fig. 6. Masses and moments of inertia of 

neutron stars in the cases of Fig 4, 

(a) the full theory including all 

baryons and pion condensate 

(solid line), (b) absent the pions 

(dashed line), (d) absent the ... 
J 

hyperons, isobars and pions (dot-

ted line). 
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Fig. 7. Proper number densities in neutron stars at the limiting mass in an onion skin dep-

iction (distance between curves denotes population), for two cases, (a) full theory, 

and (b) absent the hyperons and pions. 
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Fig. 9. The Masses of neutron stars as a function of their central density for various nuclear 

compressibilities, in the two cases (a) free pions condense and (b) pions do not con-

dense. 
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