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Cournot Equilibrium in Factor Markets

by
Theodore C. Bergstrom
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Abstract. The classic model of oligopoly is Cournot’s case of two mineral water sellers
whose products are perfect substitutes for each other. Cournot shows that in this case
there is an equilibrium with positive profits in which each seller assumes the other’s choice
of quantity is invariant to his own. If, on the other hand, each producer assumes the
other’s price is invariant to his own price, the only equilibrium has zero profits. Cournot
also analyzed a case of two factor-monopolists, a zinc producer and a copper producer,
whose outputs are used in fixed proportions by a competitive brass industry. In this case
there is an equilibrium with postitive rents to both factor monopolists if each assumes
the other’s price 1s invariant but if each assumes the other’s quantity is invariant, then in
equilibrium both receive zero rents: This paper unifies Cournot’s two theories of duopoly
as special cases of a more general technology in which the elasticity of substitution between
the factors controlled by different oligopolists can take on values between zero and infinity.

A neat duality is shown between Cournot equilibrium in quantity and Cournot equilibrium
price and some applications are explored.

Address. Professor Theodore Bergstrom, Department of Economics, University of Michi-

gan, Ann Arbor, MI 48109, U.S.A




Cournot Equilibrium in Factor Markets

Theodore C. Bergstrom

In his classic work, Researches into the Mathematical Principles of the Theory of Wealth
(1838), A. A. Cournot introduced two distinct theories of duopoly. The better known of
these theories concerns the case of two sellers of the same product (mineral water). A less
familiar analysis concerns the case of two monopolists whose outputs, (zinc and copper)
are used in fixed proportions in the production of a final good (brass) which is produced
competitively. In the former case, Cournot supposes that each monopolist sets his quantity
and accepts the market determined price. In the latter case, each monopolist sets the price
of the factor he controis and sells the quantity determined by derived demand from the
competitively operated final goods industry.

Cournot’s theory of duopolists producing identical goods was criticized by Bertrand -
(1883) and Edgeworth (1897) on the grounds that equilibrium as described by Cournot
does not exist if firms assume constancy of their rivals’ p}ices rather than quantities.
Hotelling (1929) observed that the lack of a Cournot equilibrium in prices can be viewed
as a consequence of the fact that when two firms produce an identical product, the de-
mand for the output of either is discontinuous as a function of the other’s price. He then
demonstrates that where products are spatially differentiated, continuity is restored and
Cournot equilibrium in prices can be 4found for an interesting class of models.

In this paper we study Cournot equilibria .arnong monopolistic controllers of factor
supplies where the production function for final goods is neoclassical 'and the final goods
industry is competitive. This discussion unifies Cournot’s two theories of duopoly as spe-
cial cases of a more general theory and provides some perspective on the old question of
the difference between Cournot equilibrium in prices and Cournot equilibrium in quanti-

ties. It is hoped that the analysis will contribute some insight into the workings of factor
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Carl Simon, Frank Stafford and Hal Varian of Michigan, Arthur Robson of Western Ontario, and Claude
d’Aspremont and Jean Gabsewicz of CORE. Revisions of this paper were completed at Universitat Bonn.
I am grateful to the mathematical economics group there for stimulation and support.




markets in which several complementary or substitute factors are unionized or otherwise

non-competitively supplied.

1. Production functions, cost of functions and equilibrium

Consider an industry in which a single output is produced using n factors as inputs. There
are constant returns to scale and production possibilities are represented in the usual way
by a twice differentiable concave production function f(z), where z = (z1,...,z,) is the
vector of inputs. Where w = (wy,...,ws), let Z(w) be the cheapest vector of inputs,
at the vector of wage rates, w, which is capable of producing one unit of output. Then
c(w) = wZ(w) is the unit cost function for the industry.

Let f; and c; denote the ¢’th partial derivatives of f and ¢. Let D(p) be the demand
function for the industry where p is the price of the industry output. Let D™1(q) be the
inverse demand function, and let n(p) = 5{;—)% be the elasticity of demand. We assume
that the final goods industry operates competitively while the supply of each factor is
monopolized.

Competitive operation of the final goods industry requires that if the vector of quantities

employed is z >> 0 and the vector of wages is w > 0 then the following equations must

hold:

D(c(w)) = f(z) (1)

(2a)

(20)

The first result holds since the competitive final goods industry must price at c(w)
and the market must clear. Result (2b) states that factors are paid their marginal value
products and result (2a) (sometimes called Shepherd’s Lemma) is a well known consequence
of the envelope theorem as applied to the definition of a cost function (see e.g. Diewert,

(1974)).




We can now define:

bi(w) = 22 | (3a)
fo(z) = Z12) (3b)

fz)
Whenever (2a) and (2b) hold, it must be that 6*(w) and *6(x) are both equal to the

share of industry revenue that goes to factor i. That is:

6i(w) = 6(z) = c(—;"ﬁa (4)

We can also write total industry revenue as a function either of z or of w. Thus define

R'(w) = ¢(w)D(c(w)) ' (5a) -

‘R(z) = f(z)D 7 (f(2)). | (58)

Where (1) holds, it follows that

RY(w) =' R(z) = c(w)f(z). (6)

From (4) and (6) it is apparent that revenue of factor ¢ can be written either as a

function of w or as a function of z. Thus:

R'(w) = w;z; = §'(w)R*(w) (7a)

‘R(z) = wiz; = ‘9(z)' R(x). (70)

Examinations of Equations 1 through 7a and 7b reveals that Cournot equilibrium in

wages and Cournot equilibrium in quantities are formally dual to each other where we
identify w with z, ¢(:) with f(-), and D(-) with D'l(-). This generalizes an observation

made by Sonnenschein (1968) who pointed out the formal duality between Cournot’s two
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classical models of oligopoly. For each theorem that we prove zbout one type of Cournot
equilibrium, we will be able to use “duality theory™ to prove a dual, but not identical,
theorem about the other.

A Cournot equilibrium in wages is a vector w of wage rates such that for all 1,

R'(w) > R(w@,...,w;,...,0y) for all w; >0

A Cournot equilibrium in quantities is a vector Z of factor supplies such that for all 7,

Ri(z) > R'(z4,...,2iy...,%) for all z; > 0.

2. Cournot equilibrium in wages

A. Interior Cournot equilibrium in wages.
An interior Cournot equilibrium in wages is a Cournot equilibrium in wages, @, such
that R (@) > 0 for all 5. If R*(w) > 0, for all ¢, then clearly, @ > 0. Therefore a necessary

condition for an interior Cournot equilibrium in wages is:
BR‘ o 6Rt 7y 69 W

From Lemma 1 of the appendix we see that if there are Just two factors of production or

=0. S ®

if there are n factors and the production function for the final good has constant elasticity
of substitution, &, then (8) implies:
OR (W OR(w i _
00) _ R g1 45) +(1- )1~ 7 ©)
w; W;

where 8' = 6°(w), 7 = n(c(w)) and (in case there are two factors and ¢ is not constant) 7 is

the elasticity of substitution between the two factors when they are used in the proportions

Ty _ c1(w)
T Cg(lb) )
At an interior Cournot equilibrium we have R'(w)/w; > 0 for each i. Therefore (9)

will hold only if

#(+8)—(1-35)=0. (10)
From (10) we deduce the following rather striking result.
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Proposition la. If there are constant returns to scale and either just two factors or n

factors and a production function with constant elasticity of substitution (CES), &, where

0 < & < co then at an interior Cournot equilibrium in wages, either & =1 and 7 = -1 or
6! = 6% = ... =" = 1/n. In either case, it must be that
§=(n—-1)5 —n. (11)

An intuitive explanation of Proposition la is this. If the production function is Cobb-
Douglas, so that & = 1 everywhere, then the share ¢*(w) of industry revenue received by
any factor ¢ is independent of the vector w. Thus revenue of any factor is maximized when
industry revenue is maximized. Industry revenue is maximized at the wage vector w only
if the price, ¢(w) is such that n(c(&)) = —1. Thus, given the wage rates charged by the
other factors, a revenue maximizing union should set its own wage réte so as to make unit
production costs just equal to the revenue maximizing price for the final good. If, on the
other hand. there is a constant elasticity ¢ < 1, then the higher its wages. the larger will
be its share of industry revenue. Thus if o <> 1, factors will demand wages that force the
price of the final goal above the revenue maximizing price into the region where demand
for the final good is elastic. Similarly, if ¢ > 1, a factor can increase its share of industry
revenue by reducing its wage. In this case, equilibrium wages would be low enough so that

the final goods price is in the range where final demand is inelastic.

3. Existence and uniqueness

In order for the first order conditions (11) to be sufficient as well as necessary for an
interior Cournot equilibrium, it must be that the first order conditions are satisfied only
at a global maximum of R'(w) with respect to w; (rather than, say, at a local maximum

or minimum). Having shown that a solution to (11) is a Cournot equilibrium we would
still need to know whether these conditions have one or more solutions. These issues

can be very neatly settled where production functions are CES and where the elasticity

of demand for the final good declines (increases in absolute value) as its price increases

Alfred Marshall (1890) argues that this latter condition is the usual case. We also have
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occasion to assume that as price goes from zero to a price large enough to shut off demand
completely, the elasticity of demand declines strictly monotonically from zero to minus
infinity. This property holds for (downward sloping) linear demand curves and in fact
for any demand curve which “touches both axes” with finite slope while %ﬂl < 0 for
intermediate prices. Thus we have the following definitions. |
Let D(p) be the demand for a commodity as a function of its own price and let n(p) =
%15%3. The elasticity of demand is said to be Marshallian if 7(p) < 0 whenever
D(p) > 0 and if d—’y}-)p—) < 0 for all p. The elasticity of demand is said to be strongly

Marshallian if it is Marshallian and if in addition for any y < 0, there exists exactly one

value of p such that n(p) = —y.

Proposition 2a. If the elasticity of demand for the final goal is Marshallian, and the
production function is CES, then the conditions of Proposition la are sufficient for @ > 0

to be a Cournct equilibrium in wages.

We next examine the question of existence and uniqueness. If the elasticity of demand
is strongly Marshallian, then the elasticity of demand for the final good will assume any
specified negative value at precisely one price level. However the elasticity of ciemand
must always be negative. Examining the equilibrium condition (1‘1) in Proposition (1a)
we see that if (n — 1)o —n > 0, then there is exactly one price level  at which 7 =
n(p) = (n — 1)g —n. In the Appendix we demonstrate that if o # 1, there is then a
unique interior Cournot equilibrium in wages. If, on the other hand, (n — o —n 20,
then (11) has no solution and therefore there can be no interior Cournot equilibrium in
wages. These observations allow ué to completely resolve the questions of uniqueness and
existence of an interior Cournot equilibrium in wages when demand is strongly Marshallian

and production is CES

Proposition 3a. If the demand function for the final good is strongly Marshallian, if

there are n factors and the production function has constant returns to scale and a constant

elasticity of substitution, o, then

- n . .
(i) 0 <o < -2 and o # 1, there exists exactly one interior Cournot equilibrium in

wages.




(ii) If o = 1, there is a unique cost level € such that the set of intertor Cournot equilibrium
wage vectors is {w > 0 | ¢(w) = c}.

(iii) If 0 > %5 there does not exist an interior Cournot equilibrium in wages.

4. Boundary equilibria

To complete our study of Cournot equilibria in wages we must examine the possibilities
for boundary solutions. We will define our attention to cases where the elasticity of sub-
stitution is constant. If ¢ > 1 it is possible to produce arbitrarily large amounts of output
using positive amounts of only one input. If this is so, let @ be a wage vector where at
least two factors ﬁave a wage of zero. Then the cost of production 1s zero and the revenue
of all factors is zero. No factor can unilaterally achieve positive revenue by changing its
wage rate, since the demand for any factor that attempts to charge a positive price will
be zerc. A different type of non-interior solution océurs where o > 1. Then each factor is
essential for production. In this case there can be a Cournot equilibrium in wages where
all wages are so high that even if any factor unilaterally lowered its wage to zero, the unit
cost of production would exceed the price at which demand is zero. The next proposition

summarizes the situation.

Proposition 4a. If there exists ¢ > 0 such that D(p) > 0 for all p < € and if the
production function has constant elasticity of substitution, o, thex:

(i) If 1 < ¢ < oc, the set of non-interior Cournot equilibria in wages is the set
{w>0 | wj=w=0forat 1east‘ two distinct factors j and k}.
(ii) If 0 < ¢ < 1, the set of non-interior Cournot equilibria in wages is the set
{w >0 | D(c(w")) = 0if w} = w; for all but one of the factors j € {1,...,n}}.

This set will be nonempty if D(p) = 0 for p sufficiently large.

5. Cournot equilibrium in quantities

To each of the results of Section II corresponds a dual proposition dealing with Cournot
equilibrium in quantities. Let # denote a Cournot equilibrium in quantities, & the elasticity

of substitution of the production function at #. Let f = n(p) where p = D~1(f(%)) and
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The dual propositions are as follows:

Proposition 1b. If there are constant returns to scale and either just two factors or

n factors and a production function with constant elasticity of substitution, &, where

0 < & < oo then at an interior Cournot equilibrium in quantities, either & =1 and i = —1
or 1§ =20 = ... = "4. In either case, it must be that
1 1
- ={n- 1 - —n. 12
== (n- )3 (12)

Proposition 2b. If the elasticity of demand for the final good is Marshallian and the
production function is CES, then the conditions of Proposition 1b are sufficient for  to

be a Cournot equilibrium in quantities.

Proposition 3b. If the demand function for the final good is strongly Marshallian, if there
are n factors, and the production function has constant returns to scale and a constant

elasticity of substitution, o, then:
(i) If 221 < o # 1, there exists exactly one interior Cournot equilibrium in quantities.

(ii) ¢ =1, there is a unique output level § such that the set of interior Cournot equﬂibrium
factor supply vectors is {z | f(z) = ¢}.

(iii) If o < 2=1 then there does not exist an interior Cournot equilibrium in quantities.

Proposition 4b. If the production function has constant elasticity of substitution, o,

then

(i) If o <1, the set of non-interior Cournot equilibria in quantities is
{z>0 | z; =0,z = 0 for at least two distinct factors j and k}.
(ii) If o > 1 the set of non-interior Cournot equilibria is

{z 20 [ D7Y(f(z")) = 0if 2; = z; for all but one of the j € 1,...,n}.




One can derive Propositions 1b-4b directly, using essentially the same methods used
to demonstrate la-4a. A more elegant and interesting approach is to exploit the duality
which we earlier remarked between Cournot equilibrium in prices and Cournot equilibrium

in quantities. The way in which this is done is outlined in the appendix.

6. Comparing and classifying Cournot equilibrium in wages and quantities

Our results can readily be applied to Cournot’s polar cases. In the case of the mineral water
sellers, the two producers sell perfect substitute goods. This is the limiting case of our
analysis as ¢ approaches infinity. Here, according to propositions (1b) and (3b), there is a
unique interior Cournot equilibrium in quantities. In equilibrium the elasticity of demand
for output is 1/n. On the other hand, (3a) and (4a) inform us that there is no interior
Cournot equilibrium in wages although there are boundary Cournot equilibrium at which
at least two factors have zero wage. The first result agrees with Cournot’s analysis. The.
second repeats observations made by Bértrand and Edgeworth in their critical remarks on
Cournot’s theory. '

In his analysis of monopolized complementary factors, Cournot assumed that produc-
tion requires the factors in fixed proportions. This is a 1imi£ing case of a CES production
function with ¢ = 0. Propositions (1a) and (3a) inform us that in this case there will be a
unique interior Cournot equilibrium in wages. In equilibrium the factors share equally in
industry revenues and the‘ élasticity of demand for the final good is —n. This, to be sure,
is the same result obtained by Cournot. Courr_l.ot does not analyze Cournot equilibrium
in quantities for this case. Indeed, there is no interior Cournot equ.ilibrium in quantities,
although there are boundary equilibria where at least two factors offer zero quantities.
More generally, our results show that for constant elasticity of substitution o < '—‘-;—1 there

exists an interior Cournot equilibrium in wages but not in quantities. If 0 > 27 there

n

is an interior Cournot equilibrium in quantities but no in wages. If ﬁi—l- <o < 7

then interior Cournot equilibria of both types exist and it is interesting to compare them.

Rearranging terms in (11) and (12), we find:

T+1=(n-1)(c~1) (13)
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i+l=—(n-1)(e-1). (14)

From (13) and (14) it is clear that if 0 < 1, then at an interior Cournot equilibrium of

either type, demand for the final good is inelastic, while if ¢ > 1, then in equilibrium the

demand for the final good is elastic. Some further manipulation of (11) and (12) shows
that: |

_o)?

—1=—n(n—1)(1 = < 0. - (15)

35 1S

Since 77 and # are both negative, it follows that 77 > 7 (with strict inequality if o # 1).
Thus if the elasticity of demand is Marshallian, we are assured that a Cournot equilibrium
in quantities always has a higher price for the final good than a Cournot equilibrium in
wages. For borh kinds of equilibrium, demand for the final good is elastic if ¢ < 1 and
inelastic if ¢ > 1. Therefore, of the two types of interior Cournot eéuilibria, equﬂibrium in
wages, which results in the lower price, will yield the higher total revenue to the industry
if ¢ < 1. If ¢ > 1 then equilibrium in quantities which resuits in the higher price for the
final good will also lead to the higher total revenue for the industry and hence for each
firm.

The next proposition summarizes these results where “bars” and “hats” denote respec-

tively magnitudes associated with Cournot equilibrium in wages and quantities.

Proposition 5. Let the production function have constant returns to scale and constant

elasticity of substitution, o. Let the elasticity of demand be strongly Marshallian. Then:

(i) If 0 < o < 2=1, there exists a unique interior Cournot equilibrium in wages. There is
no interior Cournot equilibrium in quantities. There are boundary Cournot equilibria
in quantities where at least two factors offer zero quantities. There are also boundary
Cournot equilibria in wages where the unit cost of the final good is so great that if
any single factor unilaterally reduced its wages to zero, total demand for the final good
when priced at unit cost, would be zero.

(ii) If 222 < o < 1, there exists a unique interior Cournot equilibrium of each kind. These
compare as follows: —1 > > 1,5 < p and R* > iR for all i. The situation regarding

boundary Cournot equilibria is the same as in (i).
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(iii) If o = 1, there exist interior Cournot equilibria of both types. There is a single
equilibrium price for the final good, p = p and R' = 'R for alli. There are no boundary
Cournot equilibria in wages. There are boundary Cournot equilibria in quantities where
at least two factors offer zero quantity.

(iv) If 1 < 0 < ;%5 there exists a unique interior Cournot equilibrium of each kind. These
compare as follows: 477 > 17 > —1,p < p and ‘R > R for all i. There are boundary
Cournot equilibria in quantities where the factors offer sufficient quantities that the
market clearing demand price for the amount of final goods produced is zero and
would continue to be zero if any factor unilaterally reduced its supply to zero. There
are boundary Cournot equilibria in wages where at least two factors are offered at zero
wages.

(v) If 25 < 0 < co, there is a unique interior Cournot equilibrium in quantities. There
is no interior Cournot equilibrium in wages. The situation regarding boundary Cournot.

equilibria is the same as in (iv).

7. Asymmetric Cournot equilibrium

In case there are just two factors of production, it is of some interest to consider the case
where the factors are asymmetric in their assumptions about the behavior of their rivals.
Let us suppose, for example, that the monopolist for one factor, “labor” chooses its wage
demand so as to maximizé its total fevenue on the assumption that the gquantity of the
other factor, “capital” is invariant to wages. Sup‘>pose that “capital” is invariant to wages.
Suppose that “capital”. on the other hand, is supplied by a monopblist who wishes to
maximize his revenue and who believes that the wage rate set by “labor” is invariant to
his own supply of “capital”.

At this point it is worthwhile to observe a rather subtle point which often seems ignored
in discussion of Cournot equilibrium. Where the behavior of the other firm is known asa

function of ones own choice either of quantity or of price, it is immaterial whe

. ther we
that the decision-making o

firm chooses price or chooses quantity,

! . since its choice for one
will determine the other. W hat does matter is w

hat it assumes about the behavior of the

oih . v ey s
er factor suppher. Thus in Cournot equilibrium in wages, each firm assumes that th
e
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other makes a wage demand that is invariant to its own choice of action. Implicitly, it then
follows that a change in the decision maker’s wage demand, say, forces the other factor to
change its quantity in order to meet demand at an unaltered wage. A similar statement
applies if the firm expects its rival to hold his quantity supplied invariant.

An interior asymmetric Cournot equilibrium for two factors is a vector of quantities
(Z1,32) > 0 and a vector of wages (i, 2) > 0 such that equations (1), (2a) and (2b)

are satisfied and

IR(fl,jz) 21 R(.’El,fz) for all Ty Z 0.

R2(IZ’1,’U—)2) _>_ R2(u')1,'w2) for all Wwao 2 0.

Here factors 1 and 2 play the roles described above for labor and capital respectively.
Rather surprisingly, it turns out that there exists an interior asymmetric Cournot equilib-
rium for all non-negative values of o. The situation is explained in Proposition 6, which

is proved in the Appendix.

Proposition 6. If there are two factors of production and consta -ns to scale, then

necessary conditions for an asymmetric Cournot equilibrium- are:

1_a.nd 6 = U_
1+0 14+0o

élaz (16)

Q|

n=-

where 77 and & are the elasticity of demand and the elasticity of substitution in equilib-
rium. If production is CES and demand is strongly Marshallian, th >se conditions are
sufficient as- well as necessary. Furthermore, for all ¢ > 0, equilit exists. If ¢ # 1,
equilibrium is also unique. If ¢ = 1, the equilibrium price and quantity of the final good

1s unique.

8. The effect of numbers on price—an application

Since we were able to completely describe the Cournot equilibria for the cases treated

above, we are now supplied with an interesting class of examples to use for studying
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various conjectures about oligopolistic equilibrium. According to economic folklore, the
addition of more oligopolists to an industry with homogeneous output will reduce price and
increase total output. As the number of oligopolists becomes large, the Cournot equilibria
should approach competitive equilibrium. See Novshek (10) and Gabszewicz and Vial (5).
Gabszewicz and Thisse (6) pose the interesting question of whether in some sense this is
also true when new entrants are added to an industry with differentiated products. We
can use our results as a kind of testing ground for this conjecture. To do so we simply use
equations (11) and (12) to determine the direction of effect of the number of factors on

industry price and output. We find the following.

Proposition 7. Let the production function be CES with constant returns to scale and
let the elasticity of demand be strongly Marshallian.

(i) If o > 1 then as the number of factors is increased both the interior Cournot equilibrium
in wages and the interior Cournot equilibrium in quantities occur at lower prices and greater
output. In the limit as n becomes large, the interior Cournot equilibria in quantities
approach the competitive equilibrium in which the price of the final good is zero. For
large enough (but finite) n, there exists no interior Cournat equilibrium in wages, while
the boundary Cournot equilibria in wages occur at the competitive price, zero.

(ii) If ¢ < 1, then as the number of factors is increased, both types of interior Cournot
equilibrium occur at higher prices and lower quantities. In the limit as n approaches infin-
ity, the interior Cournot equilibrium in wages has the price of the final good approaching
the price at which demand is zero. For large enough but finite n, there exists no interior
Cournot equilibria in quantities while the boundary Cournot equilibria in quantitfes occuf

where industry output 1s zero.

For the case ¢ > 1, the result of Proposition 7 supports the view that larger numbers

tend to restore competition even if the substitute factors are not perfect substitutes. In

case 0 < 1, however, the addition of more factors results in prices that rise away from the
competitive price.

Reflection about the nature of CES functions where o > 1 and o < 1, provides us with
a clue to why this is the case. Where o > 1, it is possible to produce positive output at

13




constant returns to scale even if the supplies of some factors are zero. In fact the restriction
of a CES function to a subspace of its domain in which some of the factors must be zero, it
itself a CES production function with positive marginal products. It is reasonable to think
of additional factors as simply adding alternative ways to produce the output. Where
o < 1, this is not the case. Unless all factors supply a positive amount, output wili be
zero. Thus, 'amohg the CES production functions, the case where o > 1 seems to be the
relevant one for discussing what happens when more substitute factors appear.

Although we have thus far confined our discussion to production, it should be clear
that many of the results also can be interpreted as applying to a case where the z;’s are
consumer goods that are more or less good substitutes for each other. This is perhaps

most obviously apparent if we think of f(-) as a “household production function”.
9. Appendix — Proofs promised in text

Lemma 1 establishes results needed to deduce equation (9) of the text from equation (8)

Lemma.. Let the production function have constant returns to scale.
(i) If there are exactly two factors of production and o(w) is the elasticity of substitution

of the production function at (z1,z2) when

Ty c1(w)

9 co(w)’

then _
06* (w)
ow;

(i) If there are n factors of production and the production function is CES with elasticity

;iﬁ%mu—ﬂ%wxl—dw»

of substitution, o, where 0 < o < oo,

P0) - Lp(w)a - )1 - o)
(1ii) For all w > 0,
31;1():") - -li—iR‘(w)(l + 7(c(w)).
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Proof of Lemma 1
Result (i)

Since there are two factors and constant returns to scale, it must be that

0'(w)  wiz;
1—601(w)  wyzy

where
fi(zy,29) _ W

fa(z1,22) - E::
Taking logs of both sides and differentiating with respect to logw; yields:
wy 28 (w) dlog (f’;)

dw, _
T 1-6(w) T doguw;

Along the surface where
w1 _ fi(z1,z2)
wy  faz1,22)’
we have, by definition,
dlog (—x) dlog (—L)
dlog (&) dlogwr |

—o(w) =

Therefore
86y ( w)

w
. 9wy =1~ o(w).

6 (w)(1 - 61(w))

From this, Result (i) is immediate for factor 1. A symmetric argument takes care of

factor 2.
Result (11)
From Lemma 2, Result (ii) we see that for CES production function with constant

returns to scale, where 0 < o < 1,

Gi(w) _ a?'lw}f’”
T—ow) ~ Sy ar

where the o’s are positive real numbers. Taking logs of both sides of this equation and
differentiating with respect to logw; yields:

ae‘gwg

Wi dw; 1

6 (w)(1 - 6i(w))

— 0.
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Result (i) is immediate from rearranging this equation.

Result (iii)

By definition, RY(w) = ¢(w)D(c(w)). Taking logs of both sides and differentiating with

respect to w; yield

ci(w) +5D(C(w)) ci(w)
c(w) Oc D(c(w))

= R(w) 221+ ()

- wiiRt(w)Gi(w)[l + n(c(w))]

OR!(w)

— t
Gw,- =R (w)

- wLin(wm + n(c(w))).

Lemma 2 states a number of properties of CES production functions which we will find

useful. Since these results are obtained by straight-forward computation and are.also well

established in the literature (see e.g. McFadden (1978)) we state them without proof. Part

(i) of Lemma 2 may, if one wishes be taken as the definition of CES production functions.

Lemma 2

(i)

(ii)

The class of n factor production functions with constant returns to scale and constant
elasticity of substitution where 0 < 0 < 00,0 76.1 consists of all functions with domain

the non-negative orthant in R™ and which take the form

g

f(z) = (E( iTi °;l> )

i=1
o; > 0 for each ¢ whenever ¢ < 1 or z >> 0 and where if ¢ < 1 and z; = 0 for some
7, f(z) = 0. In addition the CES family includes limiting cases where ¢ = 0,0 = oo,
and ¢ = 1. In these cases, respectively, f(m) = min;(1,..,n}(@iT;), f(z) = Do Qi
and f(z) = Kz'z2?...2%~. In the last case we have the additional restrictions K > 0
and Y o, a; =1
If the production function is CES with elasticity of substitution o where 0 < 0 < o0,

then if #(w) minimizes > i, wiz; subject to flz)=1:

o (5) ()




Also

6(w) ~ (ﬁ)a—l <ﬂ) o1 (iv_i)l-—a

67 (w) o; a; wj ’

(iii) If the production fumtion is CES with elasticity of substitution & where 0 < o < oo;
and parameters a;, ..., @, then the corresponding cost function where it is well-defined
is CES with elasticityof substitution 1/¢ and parameters (1/ai,...,1/ayn). Thisis also
true for o = 0 and ¢ = oo where we adopt the conventions 1/0 = oo and 1/c0 = 0.
(The cost function iswell-defined for all w > 0 if ¢ < 1 the cost function is well-defined
only for w > 0. However, the function obtained by taking the infimum rather than
minimum cost of preducing a single unit is well defined everywhere and is CES as
described above.

Lemma 3 states facts that are needed to establish Propositions 1b - 4b as duals to Propo-
sitions la - 4a.
Lemma §

The cost function hss constant returns to scale in w. The production function is CES
with elasticity of substtution, o, if and only if the cost function is CES with elasticity
of substitution 1/o. E there are just two factors of production then the elast1c1ty of
substitution of the costfunction at w is the inverse of the ela.st1c1ty of substitution of the
production function at z(w). The elasticity of demand at p is the inverse of the elasticity
of inverse demand at D™'(p). The elasticity of inverse demand is (strongly) Marshallian
if and only if the elasticky of demand is (strongly) Marshallian.

" Proof of Lemma 3
The first sentence of the lemma is a simple consequence of the definition of cost function.

The second sentence is 2 restatement of part of Lemma 2. The third sentence is proved
in McFadden (1978). Lgt n(p) = 5= dlz;p ) be the elasticity of demand at p and a(q) =

— D(p)

o 7 dD dq(q) be the eksticity of inverse demand at g. If demand is Marshallian, then

4D(p) dn(p) aD ' '
hdp < 0 and 72 < & Therefore, Jdpﬂ < 0. Also, since a(q) = W, it must be
that

da(g) _ ( 1 )2 dn(p) dD7(q)
dg n(p)*) dp  d(q)
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where p = D7 !(q). Therefore demand is Marshallian if and only if %l < 0 and
4—1{;;& < 0 or equivalently if and only if inverse demand is Marshallian. If demand
is strong Marshallian, then in addition n(p) takes all any negative values for exactly one
p. Since a(D(p)) =

follows that the elasticity of demand is (strongly) Marshallian if and only if the elasticity

};'(IT)’ it is clear that n has this property if and only if a has it. It

of inverse demand is (strongly) Marshallian. §

Proof of Proposition 2a
We want to show for each i that Equation (11) of Proposition la implies fhat at
R (), ®; maximizes R'(®1,...,Wi,...,Uy). Equivalently we could show for each ¢ that
In R¥(@,...,e™ ¥, ..., 1y,) is maximized with respect to Inw; at Inw;.
From Equation (9) we see that
PRRA0) i) + e + (1 - P~ o)

= 6 (@)(n(c(@)) + ) + (1 = 7).

Therefore Equation (11) of Proposition (1la) implies that oln Ril®) _ One computes

8ln w;

that

0% In R,'(u')) 69 (w)

dn(c(w))
62 ln Wy t

((c(@)) + ) +6() T =2

_ 61— (@)1 - )1(e()) + o) + 8 (@wie () LLZ,

8 R (%) — 0, then

where the second equality is a consequence of Lemma 1. But when ~Z=-

' (w)(n(c(w)) + o) = o — 1, so that

0% In R} (w)

Ca- dn(w)
0% lnw;

—6'(@))(1 = 0)* + 8 (D)wici(w)——

The first term on the right hand side of this expression must be non-positive. The sec-

ond term must be negative since the elasticity of demand is assumed to be Marshallian.

Therefore, M < 0 whenever -M

L = 0. It is a simple fact of elementary calculus

that if f(-) is a d1fferent1able real valued function whose domain is a real interval, and if
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f'(z) = 0 implies that f"(z) < 0 then any point £ at which f'(Z) = 0 is a unique global
maximizer of f. Applying this principle to In R*(w, ..., e ¥,..., %, ) viewed as a function

of Inw; establishes Proposition 2a. 1

Proposition Ja

If o # 1, Proposition la and Lemma 2 imply that:

6i(w) o o1 w; 1-e
l=— -~ =\ p—— .
01(w)  \ej W;
Therefore %; = £i. Hence relative wages are determined by the parameters of the pro-
J

duction function. If demand is strongly Marshallian, and 0 < ¢ < 25 there is exactly
one price, & at which the necessary condition, (&) = (n — 1)o — n, is satisfied. There-
fore, c(#) = & Since ¢(-) is homogeneous of degree one in w and since relative wages
are uniquely determined, there is exactly one wage vector w >> 0 that satisfies the neces-
sary conditions of Proposition la. According to Proposition 2a, these conditions are also
sufficient when demand is Marshallian and production is CES Thus we have exactly one

Cournot equilibrium in wages. §

Result (1)

fo=1, Prbpositions‘ la and 2a imply that w > 0 1s a Cournot équilibrium inlwages
if and only if n(c(@)) = —1. Since elasticity of demand for the final good is assumed to be
strongly Marshallian, there is exactly one number, ¢, such that n(¢) = —1. Thus the set

of interior Cournot equilibria is the set {w >0, c(w) = c}.

Result (i)
A necessary condition for an interior Cournot equilibrium is n{e¢(w)) = (n — 1)o — n.
If demand is Marshallian, it must be that n(c(w)) < 0 for all w. But if ¢ < 25 then

(n —1)o —n > 0 so that the necessary condition can not be satisfied. I

Proof of {a
Result (1)

The a, 1 =
rgument made m the text suﬁices to show that if w € {w >0 I w w
fOI‘ at least two distinct factors 7 and k‘} then 0 1s ' J k
’

remains to be shown that there are no others
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If o; > 0 for all j # i and w; = 0, then R;(«&) = 0. But since o > 1, it follows that

c(Wyy. ..y Wiy .., Wy) > 0and hence Ry(e(dy,...,wi,...,Ws) > 0. From Lemma 2 we see
that for o < oo, ' (w) > 0 for all w > 0. Also, for o = oo, 6"(11')1,... s Wiy.e..,Wy) = 1for w;
small enough. Therefore for 1 < ¢ < oo, Ri(w;, eevsWiy...,Wy) > 0 for small positive w;.

Thus there cannot be a Cournot equilibrium in wages where just one factor has zero wage.
The only remaining possibility is @ 3> 0 and R'(w) = 0 for some z. But if this is the case,
we can agein show that for w; sufficiently small and positive R*(®,...,w;,. .. ,i)n) > 0.
Therefore there can be no Cournot equilibrium in wages of this type. This establishes
Result (2).
Result (i1)

If ¢ = 1 then the cost function is also a CES function with elasticity of substitution
1/o = 1. Therefore positive output requires a positive amount of each input but any
factor can unilaterally make the cost of production arbitrarily small by setting its wage
low enough. Thus for each ¢ and any @ > 0, R'(1D, ..., Wi,...,Wp) > 0 for w; sufficiently

small. Therefore there can be no Cournot equilibrium in wages with R*(%) = 0 for some i.

Result (111)

If w > 0 and D(c(w')) = 0 whenever w}; = wj for all but one of the factors j = 1,...,n,
then clearly R'(w) = 0 for all 7 and RY(®y,...,Wiy...,Wn) = 0. Therefore if w € {w >0 |
D(c(w'")) = 0 if w; = w; for all but one of the factors je{1,...,n}} then @ is a boundary
Cournot equilibrium.

Suppose D(p) = O forallp > p > 0. If 0 > ¢ < 1 then ¢(w) must be CES with
elasticity of substitution 1/0 > 1. Therefore for any i, wage rates w; can be found for all
j # 1 such that ¢(dy,...,w;,...,W,) > p for all w; > 0. Therefore the set of boundary
Cournot equilibria in wages 1s non-empty.

It remains to be shown that there are no other boundary Cournot equilibria in wages.
If w > 0 does not belong to the set of specified above, then for any ¢, and for w; suf-

ficiently small and positive c(iy,...,w;, ... y W) > 0 D(c(w,
) 1.

<y Wiy..., Wy
hence R*(c(wy,...,w;,.. +++2Wn)) > 0 and

+»Wn)) > 0. Also, we see from Lemma 2 that

i | if w; > 0 th
6*(w) > 0. Therefore R'(wy,...,w,,.. .

-yWn) > 0. It follows that @ cannot be a boundary
Cournot equilibrium in wages. 1l
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Proof of Theorems 1b - 4b by Duality
The formal isomorphism of Cournot equilibrium in prices and in quantities enables one
to obtain true propositions from la - 4a by simply interchanging the entities which are
identified in the two theories. This involves interchanging the following words and their
corresponding symbols in the state of each proposition.
(i) “wage and quantity”
(1) “cost function and production function”
(ili) “demand function and inverse demand function.”
The resulting propositions, (call them la’ - 4a’) make statements and assumptions about
such unconventional notions as the elasticity of substitution of the cost function and the
elasticity of inverse demand. Thus, for example, Proposition la becomes:
Proposition la’
If there are constant returns to scale and there are either just two factors or the cost -
function is CES with elasticity of substitution & where 0 < & < oo, then at an interior
Cournot equilibrium in quantities, either w = 1 and & = ll(Where @ is the elasticity of

inverse demand) or 13 =...=n;=1.1In either case it must be that

g=(n-1) —n.

From Lemma 3 we know that the elasticity of inverse demand is the inverse of the
elasticity of demand and the elasticity of substitution of the cost function is the inverse
of the elasticity of substitution of the production function. We also know that demand
is (strongly) Marshallian if and only if inverse demand is (strongly) Marshallian and that
the cost function is CES if and only if the production function is CES Using these facts,
Propositions 1b - 4b are direct translations of Propositions la’ - 4a’.

Proof of Proposition 6

At an interior asymmetric Cournot equilibrium, we must have:

611)2 6$1 0.

Equation 10 above informs us that the first equality is equivalent to:
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(1-6)+6%(7+5)=0.

The dual relation implied by the second equality is

Q| =

(1—§)+19(%+ ) =0,

Multiplying the second of these equations by 75, adding it to the previous one and ob-

serving that 16 + 42 = 1, we find ¢ = —1. Substituting to eliminate 77 in the previous

equations yields 8! = &; and 52 = =

The sufficiency, uniqueness, and existence arguments are obtained by arguments almost

identical to those used to establish Propositions 2a and 3a. There is no need to repeat

these arguments here. I

Proof of Propesition 7

From Equations (13) and (14) it is easily seen that the equilibrium values of both 7
and 7 are increasing functions of n if ¢ > 1 and decreasing functions of n if ¢ < 1. If
the elasticity of demand is Marshallian then it follows the equilibrium price is lower and
output is higher. the greater is n. From (14) we see that if ¢ > 1 then lim, .7 = 0,
so that lim, ., p = 0 where p is the price of the final good in a Cournot equilibrium in
quantities. We also see that for large enough n, (n —=1)(¢ — 1) > L. But if this is so, then ‘
(13) cannot have a solution with # < 0. This establishes result (i). From (13) we see that
if 0 <1, then lim,_,o = —oc. Therefore in the limit, the equilibrium price, p, for the final
good must approach the price at which demand for the final good is zero. It is also easily

seen that for n large enough and o < 1, (14) cannot have a solution for n<0.1
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