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ABSTRACT: Single-crystal X-ray structures were obtained for the copper and μ-
oxodiiron complexes of 2,3,7,8,12,13,17,18-octafluoro-5,10,15-triphenylcorrole, hereafter
denoted as Cu[F8TPC] and {Fe[F8TPC]}2O. A comparison with the crystal structures of
other undecasubstituted Cu corroles, including those with H, Ar, Br, I, and CF3 as β-
substituents, showed that the degree of saddling increases in the order: H ≲ F < Ar ≲ Br ≲
I < CF3. In other words, Cu[F8TPC] is marginally more saddled than β-unsubstituted Cu
triarylcorroles, but substantially less saddled than Cu undecaarylcorroles, β-octabromo-
meso-triarylcorroles, and β-octaiodo-meso-triarylcorroles, and far less saddled than Cu β-
octakis(trifluoromethyl)-meso-triarylcorroles. As for {Fe[F8TPC]}2O, the moderate quality
of the structure did not allow us to draw firm conclusions in regard to bond length
alternations in the corrole skeleton and hence also the question of ligand noninnocence.
The Fe−O bond distances, 1.712(8) and 1.724(8), however, are essentially identical to
those observed for {Fe[TPFPC]}2O, where TPFPC3− is the trianion of 5,10,15-tris(pentafluorophenyl)corrole, suggesting that a
partially noninnocent electronic structural description may be applicable for both compounds.

■ INTRODUCTION
Well over a half-century ago, the Danish chemist C. K.
Jørgensen distinguished ligands as “innocent” and “suspect,” a
suspector “noninnocent,” to use the modern termligand
being one that leaves the oxidation state of the central metal
uncertain or debatable.1 In a typical situation, an electron or a
hole cannot be approximated as belonging to either the metal
or the ligand, but must be regarded as delocalized over the
two.2,3 Noninnocent ligands thus pose major challenges for
inorganic spectroscopists and theoreticians.4 Such ligands are
also of considerable practical importance: by acting as
reservoirs of electrons or holes, noninnocent ligands facilitate
a variety of reactions that innocent ligands do not.5 First-row
transition metal corroles, as it happens, afford some of the best-
characterized examples of noninnocent ligands.6−9

A variety of tools, spectroscopic and otherwise, have been
used to characterize ligand noninnocence. Of these, NMR and
EPR10 spectroscopy are arguably the most direct because
under favorable circumstances they provide a direct probe of
the unpaired electron density. Paramagnetic FeCl and Fe−aryl
corroles provide some of the most elegant examples of the use
of 1H NMR spectroscopy to elucidate the spin density
distributions of noninnocent systems.11−17 These methods,
however, are useless for a considerable number of systems in
which intramolecular spin couplings result in a diamagnetic
ground state. Key examples of such cryptically noninnocent
systems include copper,18−21 μ-oxodiiron,11,22 and iron−
nitrosyl23−25 corroles. For such systems, more indirect
means, such as X-ray structure determination and electro-
chemistry, can be used to glean electronic structure

information. It is against this backdrop that we report single-
crystal X-ray structures of the copper and μ-oxodiiron
complexes of 2,3,7,8,12,13,17,18-octafluoro-5,10,15-triphenyl-
corrole, hereafter denoted Cu[F8TPC] and {Fe[F8TPC]}2O,
respectively.
β-Octafluorinated porphyrins and corroles are uncommon

ligands, primarily because of the relative inaccessibility of 3,4-
difluoropyrrole.14,26,27 However, they are of great interest
because their metal complexes are expected to exhibit
significantly perturbed reactivity as well as unusual solubility,
conductivity, and optical properties. Thus, β-octafluorinated
cobalt(III) corroles have been found to be highly active
catalysts for water splitting, for both the oxygen28 and
hydrogen evolution reactions.29 As strongly perturbed
analogues of simple corroles, β-octafluorocorroles also afford
fascinating subjects for studies of ligand noninnocence.30 Such
studies, however, have been hobbled by an almost31 complete
lack of X-ray crystal structures for β-octafluorocorrole
derivatives, a gap in our knowledge that we have finally been
able to close via this study.
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■ RESULTS AND DISCUSSION

Ligand noninnocence manifests itself in copper corroles via a
curious phenomenon that we have called intrinsic saddling.32

Thus, copper corroles are saddled even in the absence of
sterically hindering, peripheral substituents.32,33 In the
currently accepted picture, which is supported by an extensive
array of structural, spectroscopic, electrochemical, and
quantum chemical studies, saddling is engendered primarily
by a Cu(dx2−y2)−corrole(π) orbital interaction, which endows
the molecules with substantial CuII−corrole•2− charac-
ter.18−21,32−40 Sterically hindering substituents can accentuate
the saddling,34−40 but substituents alone, in the absence of the
specific orbital interaction, do not bring about saddling in
metallocorroles (the case of gold corroles being particularly
instructive41−46). Interestingly, the corrolazine macrocycle,
which has an even more contracted N4 core than corroles and
does not adopt noninnocent electronic structures as readily,
yields planar, innocent Cu(III) complexes.47 Likewise,
carbacorroles such as azulicorrole also yield planar Cu(III)
complexes.48

The X-ray structure of Cu[F8TPC] (Figure 1, Tables 1 and
2) revealed distinctly saddled Cu−corrole macrocycles.
Interestingly, a total of seven unique metallocorrole molecules
were found in the asymmetric unit, providing significant insight
into the plasticity of the macrocycle vis-a-̀vis saddling. Indeed,
the saddling dihedrals defined and listed in Table 2 were found
to vary over several degrees, as expected for a soft coordinate,
and as for other Cu corrole derivatives, the following trend was
observed: χ1 < χ2 ≈ χ3. A comparison with crystal structures of
other undecasubstituted Cu corroles, including those with
H,32,33 Ar,35,36 Br,20,34,37 I,40 and CF3

39 as β-substituents,
proved instructive and showed that the degree of saddling
increases in the order H ≲ F < Ar ≲ Br ≲ I < CF3, which is
essentially the order of their Charton49 or Sterimol B150 steric
parameters (Table 3).51 In other words, Cu[F8TPC] is
marginally more saddled than β-unsubstituted Cu triarylcor-
roles, but substantially less saddled than Cu undecaarylcor-
roles, β-octabromo-meso-triarylcorroles, and β-octaiodo-meso-
triarylcorroles, and far less saddled than Cu β-octakis-

(trifluoromethyl)-meso-triarylcorroles. It may be worth recall-
ing that even for the exceptionally sterically hindered
octakis(trifluoromethyl)-meso-triarylcorrole ligands, the Au

Figure 1. Thermal ellipsoid plots (at 30% probability) of Cu[F8TPC]. Left: the seven Cu corroles in the asymmetric unit, along with solvent
molecules (CHCl3). Right: Close-up views of one of the Cu[F8TPC] molecules.

Table 1. Crystal and Refinement Data

Cu[F8TPC] {Fe[F8TPC]}2O

empirical
formula

C37.86H16.14Cl2.14CuF8N4O0.14 C74H30F16Fe2N8O

formula mass 820.77 1462.76
temperature
[K]

100(2) 100(2)

crystal system monoclinic monoclinic
space group P21/c Cc
λ [Å] 0.7288(1) 0.7288(1)
a [Å] 23.636(2) 20.065(3)
b [Å] 34.020(3) 21.913(3)
c [Å] 30.888(3) 16.255(3)
α [°] 90 90
β [°] 102.819(3) 98.773(5)
γ [°] 90 90
Z 28 4
V [Å] 24,218(3) 7063.4(19)
density
[Mg m−3]

1.576 1.376

crystal size
(mm3)

0.300 × 0.080 × 0.030 0.120 × 0.020 × 0.020

θ range [°] 1.183−21.498 2.106−22.654
meas.
Reflections

384,508 51,140

unique
reflections

25,642 8592

parameters 3358 911
restraints 36 38
Rint 0.0881 0.0647
R1, wR2 (I > 2σ) 0.0779, 0.2073 0.0669, 0.1728
R1, wR2 (all
data)

0.0861, 0.2136 0.0696, 0.1774

S (GooF) all
data

1.034 1.082

max/min res.
dens. [e Å−3]

1.406/−1.059 0.854/−0.396
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complex is rigorously planar because of the energetically
mismatched nature of the Au(5dx2−y2)−corrole(π) orbital
interaction.46

The X-ray structure of {Fe[F8TPC]}2O clearly revealed a
linear Fe−O−Fe unit (Figures 2 and 3), as also observed for

{Fe[OEC]}2O
52 and {Fe[TPFPC]}2O,

53 where TPFPC3− is
the trianion of 5,10,15-tris(pentafluorophenyl)corrole. Our
earlier work has suggested that μ-oxodiiron corroles are
noninnocent with a significant contribution with the following
intramolecularly spin-coupled description11,22

↓ − ↑ ↑ ↑ − ↓ ↓ ↓

− ↑

• −

• −

corrole ( ) Fe ( ) Fe ( )

corrole ( )

2 III III

2

One line of evidence in support of this conclusion is that the X-
ray structure of {Fe[TPFPC]}2O exhibits subtle but character-
istic bond length alternations within and adjacent to the

bipyrrole units of macrocycles, which are now recognized as a
hallmark of noninnocent metallotriarylcorroles. Unfortunately,
the moderate quality of the present structure (i.e., the e.s.d.’s in
the corrole skeletal distances) does not allow us to draw a firm
conclusion on this point. The Fe−O bond distances, 1.712(8)
and 1.724(8), however, are essentially identical to those
observed for {Fe[TPFPC]}2O, which leads us to suggest that a
partially noninnocent electronic structure description may also
be apt for the present compound.

■ CONCLUSION
The X-ray structures of two β-octafluoro-meso-triphenylcorrole
derivatives have afforded new insight into our growing
understanding of the structural manifestations of ligand
noninnocence in metallocorrole systems. Thus, Cu[F8TPC]
was found to be only slightly more saddled than β-
unsubstituted Cu triarylcorroles and substantially less so than
Cu β-octabromo-meso-triarylcorroles, consistent with the van
der Waals radii of H, F, and Br. Accordingly, a noninnocent
electronic structure, with substantial CuII−corrole•2− character,
appears plausible for Cu[F8TPC]. Unfortunately, the moderate
quality of the X-ray structure of {Fe[F8TPC]}2O did not allow
a definitive evaluation of ligand noninnocence based on an
examination of the corrole skeletal bond distances. The fact
that {Fe[F8TPC]}2O exhibits a nearly identical geometry for
the Fe−O−Fe moiety as {Fe[TPFPC]}2O, however, suggests
that the two compounds probably share a similar, partially
noninnocent electronic structure.

■ MATERIALS AND INSTRUMENTATION
All reagents and solvents were generally used as purchased.
Ultraviolet−visible (UV−vis) spectra were recorded on an HP

Table 2. Copper−Nitrogen Distances (Å) and Saddling Dihedrals (°) for the Seven Unique Molecules in the Asymmetric Unit
of Cu[F8TPC]

Cu[F8TPC] χ1 χ2a χ2b χ3 Cu−N1a Cu−N1b Cu−N2a Cu−N2b

molecule 1 24.0(8) 44.7(1.5) 52.1(1.5) 52.9(1.3) 1.914(7) 1.902(7) 1.907(7) 1.909(7)
molecule 2 23.1(7) 49.0(1.2) 47.9(1.3) 56.1(1.2) 1.908(6) 1.915(7) 1.906(7) 1.904(6)
molecule 3 25.1(8) 49.8(1.5) 54.2(1.3) 62.1(1.4) 1.909(7) 1.907(7) 1.920(7) 1.908(8)
molecule 4 22.6(8) 50.8(1.5) 49.2(1.5) 52.5(1.3) 1.914(7) 1.905(8) 1.931(8) 1.904(7)
molecule 5 20.9(8) 47.7(1.5) 53.0(1.5) 54.9(1.3) 1.903(7) 1.899(7) 1.911(7) 1.903(8)
molecule 6 24.3(8) 49.4(1.6) 47.4(1.5) 48.8(1.4) 1.897(7) 1.910(8) 1.908(8) 1.920(7)
molecule 7 19.6(8) 44.3(1.4) 47.1(1.6) 49.3(1.3) 1.909(7) 1.896(7) 1.903(7) 1.904(7)

Table 3. Copper−Nitrogen Distances (Å) and Saddling Dihedrals (°) for Selected Cu Corroles

complex Cu−N1
a Cu−N2

a χ1 χ2
a χ3 refs

Cu[TPC] 1.891 1.891 27.5 53.4 48.7 33
Cu[F8TPC] 1.897−1.914 1.896−1.915 19.6−24.3 44.3−54.2 48.8−62.1 this work
Cu[(pCF3Ph)8TPC] 1.902 1.897 40.9 60.1 66.0 35
Cu[Br8TpMePC] 1.916 1.916 44.7 65.9 57.3 20
Cu[I8TpCNPC] 1.921 1.922 45.3 67.0 57.3 40
Cu[(CF3)8TpFPC] 1.921 1.925 57.2 86.4 84.5 39

aAverage of two values for each experimental structure.

Figure 2. Thermal ellipsoid plots (at 30% probability) of {Fe-
[F8TPC]}2O.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c01035
ACS Omega 2020, 5, 10176−10182

10178

https://pubs.acs.org/doi/10.1021/acsomega.0c01035?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c01035?fig=tbl2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c01035?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c01035?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c01035?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c01035?fig=fig2&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c01035?ref=pdf


8454 spectrophotometer. 1H (400 MHz) and 19F (376 MHz)
NMR spectra were acquired on a 400 MHz Bruker AVANCE
III HD spectrometer, equipped with a 5 mm BB/1H (BB = 19F,
31P, and 15N) SmartProbe in CD2Cl2 referenced to δ = 5.32
ppm and to 2,2,2-trifluoroethanol-d3 (δ = −77.8 ppm),
respectively. Mass spectra were recorded on an LTQ Orbitrap
XL spectrometer. Free-base 2,3,7,8,12,13,17,18-octafluoro-
5,10,15-triphenylcorrole, H3[F8TPC], and Cu[F8TPC] were
prepared as described previously.14

μ-Oxo-bis[2,3,7,8,12,13,17,18-octafluoro-5,10,15-tri-
phenylcorrolatoiron], {Fe[F8TPC]}2O. To a refluxing
solution of H3[F8TPC] (16 mg, 0.0239 mmol) in MeOH (8

mL) was added FeCl2·4H2O (24 mg, 0.121 mmol). After 0.5 h,
when the Soret band of the free-base corrole was replaced by
another at 378 nm, the reddish-brown mixture was allowed to
cool and then evaporated to dryness. The residue was
dissolved in CH2Cl2 (5 mL), to which was added 2 M
aqueous NaOH (20 mL), and the resulting mixture was
vigorously stirred for 45 min. The organic phase was then
separated, gently washed with an equal volume of water, dried
with anhydrous Na2SO4, and filtered. The filtrate was
evaporated to dryness and dissolved in a minimum volume
of CHCl3. The resulting solution was chromatographed on a
column of neutral alumina (activity I) with 1:1 n-hexane/

Figure 3. Selected crystallographic bond distances for {Fe[F8TPC]}2O.
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CH2Cl2 as an eluent. The product was obtained as the first
reddish-brown band. Yield: 7.0 mg (0.0048 mmol, 40%).
Brown needles of X-ray quality were obtained by diffusion of n-
hexane vapor into a concentrated solution of the compound in
CH2Cl2 within 13 d.
UV−vis (CH2Cl2) λmax [nm, ε × 10−4 (M−1 cm−1)]: 353

(Soret, 14.23). 1H NMR: δ 7.62−7.54 (m, 4H), 7.54−7.44 (m,
10H), 7.44−7.37 (m, 8H), 7.25 (d, 4H, J = 7.40 Hz), 7.20 (t,
2H, J = 7.56 Hz), 6.71 (d, 2H, J = 7.32 Hz). 19F NMR: δ
−145.49 (s, 4F), −146.21 (d, 4F, J = 7.22 Hz), −147.80 (d,
4F, J = 7.41 Hz), −157.84 (s, 4F). MS (negative ion mode,
major isotopomer) [M]−: 1462.0936 (expt), 1462.0996
(calcd).
X-ray structure determination. X-ray data for Cu-

[F8TPC] and {Fe[F8TPC]}2O were collected on the beamline
12.2.1 at the Advanced Light Source, Lawrence Berkeley
National Laboratory. The crystals were mounted on a
MiTeGen kapton loop and placed in a 100(2) K nitrogen
cold stream provided by the Oxford Cryostream 800 Plus low-
temperature apparatus on the goniometer head of a Bruker D8
diffractometer equipped with a PHOTON II CPAD detector
operating in shutterless mode. Diffraction data were collected
using synchrotron radiation monochromated using silicon
(111) to a wavelength of 0.7288(1) Å. A full-sphere of data
were collected for each crystal using a combination of phi and
omega scans with scan speeds of 1.0 s per 4° for the phi scans
and 1 s per degree for the omega scans at 2θ = 0 and −20, with
different levels of beam attenuation, respectively. Absorption
corrections were applied using SADABS.54 The structures were
solved by intrinsic phasing (SHELXT)55 and refined by full-
matrix least squares on F2 (SHELXL-2014).56 All nonhydrogen
atoms were refined anisotropically. Hydrogen atoms were
geometrically calculated and refined as riding atoms. For
Cu[F8TPC], definable solvent molecules were found in the
electron density map as Q peaks and modeled appropriately;
the peaks that could not be definitively assigned to either
methanol or chloroform were treated with the solvent mask
routine included in OLEX2.57 Additionally, the crystal
structure resolution was truncated at 0.99 Å because of
resolution shells beyond 0.99 Å having Rint values greater than
25%. These additional higher resolution reflections have signal-
to-noise ratios that are too low to contribute constructively to
the structure solution and would have probably required
additional restraints. For {Fe[F8TPC]}2O, the crystal structure
resolution was truncated at 0.95 Å for the same reasons as
indicated above for Cu[F8TPC].
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