UC Irvine
ICS Technical Reports

Title

Programming environment questionnaire / Irvine Programming Environment Research
Center

Permalink
https://escholarship.org/uc/item/25n9x6f7
Author

Standish, Thomas A.

Publication Date
1979

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/25n9x6fz
https://escholarship.org
http://www.cdlib.org/

Notlce: This Material
may be protected
by Copyright Law

(Title 17 U.S.C.)

PROGRAMMING ENVIRONMENT QUESTIONNAIRE

—

Technical Report No. 139

Irvine
Programming Environment
Research Center

Department of Information and Computer Science
University of California at Irvine
Irvine, California 92717

(714)-833-6357

Thomas A. Standish, Editor

Authors: T.A. Standish, 1Ira Baxter, Sherry Cameron,

Dave Davis, Hung Do, Gene Fisher, Jerry Hamilton,
Steve Hampson, Robert Hartmann, Daphne Hassner,
Matt Heffron, Ken Hertzler, Hank Kleppinger, Stephen
McHenry, J.R. Meehan, Terry Mellon, Mike Mole, Eric
Olson, Paul Palmguist, Bill Rockwell, Roger Smeaton,
Frank Tadman, and Greg Taylor.

Page 1ii

PREFACE
This guestionnaire was produced as a class project for a
graduate seminar on programming environments. The class,
Information and Computer Science 280B, began on 24 October 1979
and will conclude on 2 December. It has been taught by

Professor Thomas A. Standish.

The purpose of the class is to initiate what will hopefully be a

continuing study of programning envrionments. A specific goal
for such a study 1is the development of a critical new
understanding of what makes environments good, what

distinguishes effective ones from ineffective ones, how we can
tell when an environment is essentially complete or when 1t is
critically deficient in some aspect, how we can guarantee that
the tools in an environment cooperate smoothly together and have
consistent interfaces, what sorts of -environments support
effective life cycle management disciplines, etc.

This a preliminary draft of the questionnaire which we expect
will wundergo some potentially major revisions. We chose the
questionnaire format as an initial vehicle through which to
develop a taxonomy of programming environment characteristics.
When the first draft of the questionnaire was completed,
students began work on the analysis of several well-established
existing environments, using the questionnaire as a guideline
and basis for the analyses. The results of these analyses will
be the subject of a future technical report.

In addition to providing an understanding of the features of the

analyzed environments, the analyses will also point out
strengths and weaknesses of the questionnaire itself. This
information will then Dbe wused to produce corrections and
revisions to the taxonomy embodied by the questionnaire. The

ultimate form of the taxonomy of environment characteristics may
be yet another revised questionnaire and/or some other form of
taxonmic outline.

Page

CONTENTS

INTRODUCTION AND INSTRUCTIONS

GENERAL INFORMATION

1. General Environment Description
Respondent Background
Characteristics of Environment Usage
Environment Hardware Configuration

— 3
e e ®
=D =

NVIRONMENT MONITOR

Monitor Command language

Process Execution, Control, and Scheduling
Process Interaction and Sharing

Process Protection and Security

Tool Coordination and Control

Programming Language/MCL Interface

Session Monitoring

Resource Management

Error Reporting and Handling

E
2
2
2
2
2.
2
2
2
2
2 Miscellaneous Utilities and Facilities

2WOoO~TOU WD —

(@)

=

ooVl E=EEN -
(e

SYSTEM

File Structure

Operations on Files

File System Structure

Security Mechanisms

Media

File Utilities

Performance and Hardware Support

—] wWwwwwwww

EXT PROCESSING TOOLS
1 Defining the Environment

2 User Interface

3 Commands

4 Location Specification

5 Extensibility

6 Interface with the External Environment
.7 Output Processing
8

9

0

1

2

r—

EFEEEEEEE

Safety Features
Error Checking

GRAM EXECUTION TOOLS
Debugging Tools for Specific Programming Lanugages
Execution in the Monitor Environment

PR

5.
5.

ROGRAM ANALYSIS TOOLS
Language Considerations
Static Analysis Tools
Dynamic Analysis Tools

P
6
6
6
6 Existing Systems for Program Analysis

=W -

iii

10.

11.

Page iv

PROGRAM TRANSFORMATION TOOLS

7.1 Metalanguage Translators

7.2 Problem Language Translators

7.3 Conceptual Machine Language Translators

MAINTENANCE, TESTING, AND DOCUMENTATION
8.1 Maintenance

8.2 Testing

.3 Documentation

8
MANAGEMENT SUPPORT TOOLS

9.1 Organization and Planning

9.2 Schedule Tools

9.3 Accounting Tools

9.4 Monitoring and Control

9.5 Evaluation and Analysis

ENVRIONMENT CONTROL AND STANDARDIZATION

10.1 Change and Evolution

10.2 Documentation and Education

10.3 Performance Measurement and Monitoring
10.4 Environment Transportation

RATING THE TOTAL ENVIRONMENT
11.1 The .Technical Issues Goals Matrix
11.2 The Technical Issues Goals

Page 1

PROGRAM DEVELOPMENT ENVIRONMENT QUESTIONNAIRE

0.0 INTRODUCTION AND INSTRUCTIONS

We are interested in determining the characteristics of a
maximally wuseful and complete program development environment.
Your assistance in filling out this questionnaire will be of
great value to us.

For the purposes of this questionnaire, we will consider a
program development environment to be all those tools and
facilities which you wuse to create, execute, test, modify,
maintain, document, and report on the programs which you write.
In general, we are interested in those tools and facilities
which are available in machine executable form.

The questionnaire 1is divided into eleven major sections.
Section 1 asks some general information questions about your
environment. Sections 2 through 10 then ask questions about

specific major environment components. Section 11 concludes the
gquestionnaire with some overall qualitative measurement
questions. Related categories of questions within the major

sections are grouped into subsections.

We have endeavored to supply useful explanatory information in
cach section to assist the question answering process. We have
also included a glossary to define our wusage of important
technical terms. You may however find that you are totally
unfamiliar with the terminology or nature of a question, or you
simply do not know the answer. In such cases, please provide
one of the following responses as appropriate: "DU" for "Do not
understand the qguestion'", "DK" for "Understand the question, but
do not know the answer®™, and "HA" for "The question 1s not
applicable to wmy particular environment'".

For the most part, the questions are yes/no or multiple choice

format. For some questions, only one choice will be applicable
to your environment. For other questions, it may be appropriate
to check more than one or all of the choices. When it is not

immediately obvious, the question will indicate if one or more
than one choice should be checked.

A few of the questions ask for a brief written answer. We have
attempted to provide sufficient space for such answers on the
questionnaire itself. However, if you require more space for a
written answer, please use the back of the page on which the
question appears or attach a separate sheet of paper. The
questionnaire numbering scheme allows ecach question to be
uniquely identified by section, subsection(s), question number.
For example, question 3 of subsection 2 of section 5 can be
identified as question 5.2.3. Please use this scheme to
identify written answers to questions given on separate sheets.

S

Page 2

In some cases, questions or sections of the questionnaire may be

answerable in more than one way for your environment. For
example, 1f your environment provides both batch and interactive
services, several sections of the questionnaire may require

separate answers, one for the interactive facilities and another
for the batch facilities. Also, you may regularly use more than
one tool for a single program development activity, such as text
editing or source program translation. 1In such cases, you may
duplicate the sections of the questionnaire that apply toc more

"than one tool or facility, and answer each duplicate section

seperately. We leave to your discression the determination of
when to fill out duplicate questions or sections.

Thank you for your help.

Page 3

1.0 GENERAL INFORMATION

1.1 General Environment Description

There are several general terms that can help to categorized
your environment. Some environments may in fact fit into more
than one general category. We are interested in particular in
how you as a user view your environment overall.

1. What is the name of your environment? (E.g., 0S 360, UNIX,
APL, LISP.)

2. Would you describe your environment as

[] 1interactive
[1 batch
[1 remote job entry

3. Is your environiment
Operating system-based (e.g., 0S 360, UNIX, MULTICS)

[]
[] Programming language-based (e.g., APL, LISP, BASIC)
[1 Networked (e.g., NSW, RSEXEC) '

4. If your environment is not programming language-based, what
programming language(s) do you use regularly?

language % use

1.2 Respondent Background

This subsection asks about your personal background as it
relates to the use of your environment.

1. What 1s your position or title in connection with the work
you do using your environment?

Programmer
Programmer/Analyst
Analyst
Maintainer/Tester
Manager

[W e W W, W

Page 4

Executive
Educator
Student
Other

Lo B e B e B |

2. Approximately how much experience do you have with vyour
environment?

[] weeks [] months [Jyears

3. What is the name of the institution or firm where you use
your environment?

1.3 Characteristics of Environment Usage

This subsection asks about how your environment is principally
used by you as well as other users, if any.

1. What type(s) of software is produced 1in your environment?
(Check all that apply.)

[] scientific [] large [1 small
[1] business [] large [] small
[1] systems tools of a particular hardware vendor (e.g.

compilers, operating systems)

retail packages (e.g. OEM packages, contract work)
"one-shot" software (e.g., student programs)

real time

[W W W W e W W}

embedded
communications
personal (e.g., home or hobby)
other
2. For what phases of software development is your environment
used? (Please number multiple choices, with 1 indicating

the most frequently performed.)

Requirements Analysis

System Design

Prograin Design

Coding

Testing

Maintenance

Documentation

Management (of one or more of the above activities)

—_—

Page 5

3. What percentage of the workload in this environment is
"production" work?

4. Approximately how many users are currently working in this
environment?

5. Approximately how long has this environment existed in its
current configuration?

[Jweeks [Jmonths [Jyears

1.4 Environment Hardware Configuration

A completely detailed description of your environment's hardware
configuration might take many pages. The outline below covers
some of the important characteristics of the hardware which
supports your environment.

Size or capacity of memory devices should be given 1in 8-bit
bytes. "Number" refers to the number of units of the specified
device. For "other" choices please specify: 1) generic or
specific name of device, 2) size and performance in appropriate
measure, and 3) number of such devices.

[] Central Processor

Name(s)

Micro
Mini
Midi
Maxi

[I e I e B e |

[1 Main Memory

[1 Core Size
[] Solid State (e.g., MOS) Size B
[] Other

[1 Disk/Drum Memory

[1] Fixed-Head Number Capacity

[] Moving-Head (multi-disc) Number capacity
[] Cartridge Number Capacity

[1 Floppy Number Capacity

[] Other

[] Magnetic Tape Memory

[

[

[

L

[

]

]

— e

]

]

]

[] Full-Size (e.g., 7 or 9 track) Number
[1] Smaller (e.g., DECTAPE) Number
[1 Other

Other Memory

[1 Bubble Size -
[1] Laser Size
[]

Other

Keyboard Terminal Devices

[] Teletype Number Baud

[1 CRT Number Baud -

[] Highspeed printing Number s Line/min
[1 Other T

Line Printers Number Line/min

Graphics Devices

Printer/Plotter Number
Refresh CRT Number
Storage Tube Number

Color Number
Light pen
Mice

Other Goodies

[nnen W mn I s I s I e I e W |
| SN S Ty WU [y W L WS [y WS)

Paper Products

[1 Card Reader Number Card/min

[] Card Punch Number Card/min

[] Paper Tape Reader Number Char/sec
{] Paper Tape Punch Number Char/sec
[] Other -

Communication Hardware

[1 Network Interfaces

[1] Remote Access (including RJE) Number
[] Custom

Other

Page 6

\\oﬁ\/

AN

~
-

Page 7

2.0 ENVIRONMENT MONITOR

This section of the questionnaire deals with what we call the
Environment Monitor. We view the Monitor as that component or
subsystem of the environment which handles ne wuser's initial
contact with the environment, and through which all other
interactions are started. 1In general, the Monitor is the user's
link with the other tools and facilities of the environment. An
integral part of the Monitor is its user-communication language.
This we call the Monitor Command Language (MCL).

You as a user may view your Environment Monitor and MCL in one
or more different ways. For example, if your environment is
controlled by a general-purpose operating system, your Monitor
environment can be regarded as the user-level or
job-control-level, and the MCL is the 0.S.'s Job Control
Language. If your environment 1is that of a particular
programming language, your Monitor is the "top-level" or
command-level of the language, and the MCL 1is the set of
commands used to control program editing, execution, etc.

We have attempted to include many general questions which can be

answered 1independently of your particular user viewpoint. As
elsewhere in the questionnaire, certain of the questions may Dbe
inapplicable to your environment. If so, answer accordingly as

explained in the general instructions given in the introduction.
The subsections below will contain further explanatory
information as appropriate. This will help you determine
whether a particular subsection of questions is applicable to
your environment's Monitor. :

2.1 Monitor Command Language (MCL)

ki

In many environments, the MCL is simply a set of commands that
can be given to the Monitor one at a time for execution. Some
environments allow commands to be grouped together to form
command "procedures'" or "macros" to be executed as a unit by the
Monitor. Still other environments provide great flexibility by -
allowing command procedures to be written wusing high-level
programming features such as conditional or iterative execution.
This subsection of questions asks about which of these
facilities your MCL has.

1. What is the name of your environment MCL? (E.g. 0S/360
JCL, Commodore VI.)

2. Would you describe the MCL as

[] an integral part of the environment operating system
[1] a separate, independent component

Ut

Page 8§

Is the MCL syntax

[] Uniform for all commands
[1] Similar to some programming language; if so, which

Which of the following '"high-level" language features does
the MCL have

Variable declarations
Type declarations
Assignment statements
Logical expressions
Arithmetic expresions
Control structures

f o T e Y s Y e B it I |

Branching
Conditional
Looping

BEGIN~END brackets
Iteration
Recursion

Other
[1 Scoping Rules (i.e. How are MCL identifiers associated
with other MCL identifiers or with environment

elements?)

[1 Static (i.e. determined by position of
declarations)

[1] Dynamic (i.e. determined by order of execution)

[1 Other

Does the MCL have a facility for assignment of mnemonic
names to environment resources (e.g. files, devices,
processors)?

Do MCL commands allow parameters? If so, are they

[1 Positional

[] Keyword

[1 Mixed

[] Other

Are user-defined commands allowed? (E.g. macros,

procedures, shells.) If so, are they

[] The same syntax as system-defined commands
[1 Parametizable
[1] Usable everywhere system-defined commands are

Page 9

8. Which of the following "convenience" facilities are
available in the MCL

Command completion (e.g. verbose/quick mode)
Spelling korection

Moniltor-level editing

Command undo/redo

[o I et I e I pe |

9. Are MCL parameter defaults

[1 System-definable
[1] User-definable
[] Both
[1 Overridable
[1 Other
10. Can a mode attribute (e.g. Dbatch, interactive) be attached

to MCL commands?

11. Can you in anyway "customize" your MCL environment?
If so, can you

[1] Create subset MCL environments
[1] Create superset MCL environments
[1] Other

2.2 Process Execution, Control, and Scheduling

The term process 1is wused to mean the execution activity

assocliated with a program. In general, the questions in
sections 2 through 4 are aimed at processes which come from user
programs. The Monitor provides various facilities to control
and specify the execution of user programs. The questions in

these next three subsections ask about the extent and nature of
such facilities.

(See also, section 5 on Program Execution Tools.)

1. Which of the following process scheduling facilities are
provided by the MCL

Schedule after some elapsed amount of time
Schedule at some (real time) clock time
Schedule another process

/o

[1 Concurrently (as an independent process)
[1 As a subprocess
[1 In some other scheduling discipline (specify)

I,

2.

Page 10

[1] Schedule as a batch process

[1] Schedule based on some (future) environment condition
(See also questions on "environment inquiry")

[1] Other

Can priorities be assigned to processes? ~ If so, are

they

[1] Strictly system-assigned

[] User assignable

[7 Numeric in nature (e.g. 1 - 256)

[] Level-oriented (e.g. system level, user level)

[] Algorithmically determined (e.g. shortest job first)

[1] Changable by the user

[] Other

Can a batch job be divided into "job steps"? If so,

can there be

[1 communication between contiguous steps

(] communication between non-contiguous steps

When are resources allocated for a batch job

[] at the beginning of the job

[] when requested

Process Interaction and Sharing

Does the MCL provide an interprocess communication facility?

If so, is it

Between user processes

Between user and system processes
Via shared data area -

Via message passing

Via some other means

Is there an environment inquiry facility? If so,
which of the following environment information is available

| N o B s N e B st B e |

L S SR Sy N I SN

System load

Current users

Resource availability (e.g. device, file, processor)
Resource usage (e.g. CPU time, number of I/0's)
Time/date

Other

(9]

A4

Page 11

Is the environment designed as a distributed system (e.g.,
communications coupled processors)? If not, can it
support sharing with other environments (e.g. 1is it 1in a
network)?

Process Protection and Security

Does the monitor provide process protection? 1If so, is it

[1 Between user processes

[1] Between user and system processes

[1] Hierarchial (omnipotent level, high level, dud level)

[1 Other

Does the monitor provide a "faillsafe" or "fallsoftg"
facility? (E.g. ‘"graceful” system crashes.)

Is there an automatic restart facility after failure? (E.g.
are user and/or system processes resumed where they were
interrupted by the failure?) L

How often does the system falil on the average? (E.g.
hourly, daily, weekly.)

How long does it stay down on the average? (E.g. hour,
day, week.)

Are user processes password protected? 1If so, are passwords

[1 user changable
[1] available to certain "privileged-class" processes

(See also Section 3 on the File System for further questions
concerning passwords.)

Is there a privilege hierarchy over MCL commands? (E.g.
are certain commands available only to certain privileged
processes?) If so, which of the following classification
schemes are available

Individual users
Groups of users
Arbitrary processes
Other

[
[
[
L

Page 12

2.5 Tool Coordination and Control

One of the principle jobs of the Monitor is to control the use

of the various environment tools. Some Monitors allow generally
sequential tool invocation (i.e., one tool executes after the
other). Others allow more flexible tool use, as illustrated by

the questions in this subsection.

7. Can all or most tools be invoked by using only their names?
(Or, for example, are tools invoked by some command such as
"RUN toolname"?)

[1 all
[] most

2. Can tools be invoked in a nested fashion? (E.g. can the
text editor be invoked from a compiler which was originally
invoked from the monitor level?) If so,

[] 1is such nesting generalizable for all tools
[1] are some tools not nestable; if so, 1list them

3. Which of the following disiplines does tool nesting follow

[1 Stack-oriented (i.e. can only return to most recently
previously used tool)
[1] Movable~stack-oriented (i.e., can return to any

previously wused tool with intermediate invocations
terminated)

Free (i.e., can return to any previously invoked tool)
Other :

/e
—_

2.6 Programming Language/MCL Interface

One often views the Monitor as strictly the "top level"™ of the
environment with which the wuser communicates. In addition
however, user programs need to communicate directly with the
Monitor. Such communication is necessary, for example, when a

program needs to use MCL process scheduling or file handling
commands.

1. Are all MCL facilities available at the programming-level?
(I.e. can you in effect invoke all MCL commands from within
a program?) If not, which important MCL facilities
are not available at the program level?

Page 13

2. For those MCL commands which are available at the program
level, is the syntax the same as at the monitor level?
If not, briefly describe how it differs.

3. Can values be passed from the MCL to programs? If
so, which types

Numbers

Strings
Keyword/value pairs
Typeless parameters
Other

4, Can values be passed from programs to the MCL? If
so, which types

Numbers

Strings
Keyword/value pairs
Typeless parameters
Other

Eom B e B s B s B o |

2.7 Session Monitoring

A session is that period of time during which activities are
performed by a computer in response to requests by a user. 1In a
batch environment, a session is often referred to as a job.

1. Is there a facility which 1logs session activity (i.e.
produces a complete or partial record of all I/0 tc and from
the listing device of the session)?

2. Is there a "help" facility? If so , 1s it
[1] Available for all MCL commands
[1 User updatable (i.e. can users add new help text)
3. Are there any other '"programmer assisstance" facilities

available? If so, please briefly describe.

Page 14

2.8 Resource Management

"Resource" is used here as a general term which includes the
following entities: files, devices, programs, processors,
memory (possibly divided into pages and/or segments). Some
environments treat some or all of these resources in a uniform
manner. (E.g., the distinction between file and device 1is
transparent to the user.) Other environments may treat each as a
distinect entity.

(See sections 5 and 3 on Program Execution Tools and the File
System.)

2.9 Error Reporting and Handling

1. Is the format wuniform for all types of MCL messages?

If not, briefly describe how formats differ for
different types of messages.

2. Are user-defined error routines allowable?
3. Is error message text user-modifiable?
4. Can error conditions be trapped at the program level? (E.g,

are "on conditions" definable?)

2.10 Misc. Utilities and Facilities

1. Which of the following facilities are available
[1 Mail
[] User-to-user messages
[1 User-to-operator messages
[] Operator-to-user messages
[1 Others
2. Are operator commands embedded in the MCL?
3. Can the right to use any (or all) of the operator commands

be given to non-operator class users?

4. Is there an easily discernable basic/introductory set of
commands? If so,

[1] how long does it take to learn this set
[1 can the set be added to in an easy manner

Page 15

How long does it take to become an ‘"expert" in this MCL?
(Provided one would want to!)

Does the generality/power of the MCL conflict with its
simplicity and ease of learning?

Page 16

3.0 FILE SYSTEM

This section of the questionnaire is concerned with the File

System. The File System 1s that mechanism which is responsible
for the long-term storage of programs, data, documents, or any
other information that a user might store. Note that we are

concerned with how the File System is seen from the environment
in which the user works, not from the environments which are

potentially accessible. (E.g., if the user environment cannot
normally trigger a particular file operation "x", then "x" is
not a facility available in the environment). Note also the

heavy emphasis on disk technology as the basis for File Systems.

Each possible response to a question has parenthesized hints as
to environments which might qualify for that response; these
hints will presumably aid users who are unsure of what the
proper response should be but can recognize similarites.

3.1 File Structure

User data is stored within some skeletal framework call "the
File Structure’. This section asks about the framework itself.

1. On what fundamental philosophy is the file system based?

[] All files are randomly addressable streams of bytes
" (UNIX) or words (MULTICS)

[1] All files are randomly addressable blocks of data whose
size is dependent on some physical hardware
characteristic like a disk sector (PDP-10, TOPS310/20)

[1 All files are randomly addressable 1logical records
(independent of any physical hardware characteristic)

[1 Each file is accessed by use of a system- deflned access
method (IBM 0S360/370)

[1 Each file is accessed by use of user or system defined
access methods (Cambridge CAPP, Carnegie-Mellon HYDRA)

[1 Other

2. What high-level access methods are provided by the file
system? :

[] Sequential

[] Random access by record number

[] Keyed (B-tree) or Indexed Sequential (record located by
content of key field)

[] Hashed (record located by content of key field)

[1] Others

3. What kinds of data can be stored in files?

Pa

Text (Program sources, documentation, etc.)
Numeric values stored in a packed form (non-
manipulable by the programming system? (floating
numbers, integers, etc)

Program objects (relocatable objects, "core" image
Data records containing mixed data objects (e.g.,
and numeric data)

i
[.

M

What is the standard character set used 1in stored
strings?

USASCII (most non~IBM systems)
EBCDIC (IBM systems)

Hollerith

Other

[M o N a W |

What attributes of a file can be obtained by the user?

File type (access method)

File size (anumber of records, disk storage units,
Creation date

Creation time (to within units smaller than the
Lime it takes a wuser to create a new file, e
minute)

Last access time and date

Last access type (read, write, etc.)

File version (as in TENEX)

Owner

Protection information (protect Dbits, access
etc.)

[1] user who performed last access

[1 Physical location

[1 Other

— g

[O e B e W s Y e |

What limits the size of the file?

[1 Nothing (files can cross hardware and s
boundaries, as in fully distributed file system)

[] Local system hardware limits (files can span mul
disk drives and/or other units)

[1 Capacity of single hardware unit (files are limite
a single disk drive)

[] Software limitation on space allocated to
retrieval data (e.g., logical sector numbers
limited to 16 bits)

[1 Other

What is an "order of magnitude" estimate of maximum

size? (** denotes exponentiation.)

[] 1infinite
[1 10%%¥20 (2%*54) bytes

ge 17

text)
point

s)
text

text

etc.)

mean
g

g, 1

ystem
fiple
d to

file
are

file

Page 18

10%¥%117 (2%%36) bytes
10¥%10 (2¥%32) bytes
10%%¥5 (2%¥%16) bytes
Other

/Ao

8. What is the physical unit of space allocation for a file?

[1] Block (partial sector) : size =

[] Sector: size =

[] Cluster (fixed number of sectors): size =

[1 Extent: A contiguous set of sectors; max size =

[1 Disk track
[1 Other

3.2 Operations on Files

Files can be manipulated in many ways Dby users. Two major
categories of operations are common: operations for the
retrieval and modification of data within a file, and operations
concerned with file as an entity, such as renaming, deleting and
SO on.

1. What operations can be performed on the content of files?

Read data; units =

Write new data; wunits =
Modify old data
Append

Delete record
Other operations

[s B e N e B e Y e 1 B |

2. What operations can be performed on files as entities?

Create a new file

Delete a file

Open a file for access

Name (or Rename) a file
Allocate space

Reclaim unused space/reorganize
Set protection information
Other

o rar—
e e ey L

3. How are files made available to programs?

[] Via explicit OPEN operation
[] Via implicit connect (CAPP, MULTICS)
[]

Other

Page 19

4, Can files dynamically grow? If not, why not?

5. At what 1level <can files be shared among multiple
users/processes? _

No user/process interlock available at all
Exclusive access to file

Record locks are available

Other

[
l
[
L

6. What control does the programmer have over optimization of
files transfers?

[] Can specify that system should use N buffers with a
file

[1 Can specify where buffers are in user space
[] Can specify size of buffers
[1 Other
7. Are there any differences between foreground (or

interactive) and background (or batch) use of files?

Entirely incompatible

no: entirely compatible

Foreground can get to subset of background
Other

| I e I e |
| NS By W Iy iy B

3.3 File System Structure

File System Structure refers to the organization of information
which keeps track of the files themselves, and typically covers
such items as directories, naming conventions, etc.

1. How are files named?
[] Alphanumeric identification; Legal character
set
[1 Other; please describe

2. How are files that are related designated as such?

[1 Extension (DEC-Tops 10, .txt, .rel, etc.)

[1] By type code (all related files have same name,
different type)

{ 1 By grouping into a common directory (MULTICS)

10.

11.

12.

13.

4.,

Page 21

What limits the number of files in a directory?

Total system storage

Size of directory

System implementation limit
Other

[e B e B e |

Directories...

look just like files, and can be read by user programs.
are special, and only the system can read them.
are protected from ordinary users. '

| W gy WSy S |

Does the file system provide ordinary device independence?
That 1s, may the user treat files and devices in the same
manner?

[1 Yes, total device independence

[] No, different access methods (e.g., Telecommunications
Access)

[] HNo, User must write special code.

If the system has device independence, how are
device-specific operations performed?

[] Special system calls for each specific operation

[1 Device driver watches for special data sequences in
Write Data requests (UNIX)

[1] System supports general Control and Status calls;

device drivers have special entry points for these

calls

Not possible

Other

i
| S S W

How 1s access to files on other systems obtained?

Transparent networking (ARPA RSEXEC)

Limited access (transaction processing, etc.)
File is copied to local site before used
Generally not done

Other

[Wone W o W e T S
Lo L I T N

How difficult is it to install special 1I/0 devices or
facilities (like a new access method) which the designers of
the system had never considered? 1 means "Don't try it,
there are already three people in the Rubber room", 5 means
"Toyota™.) '

3.4

Page 22

Security Mechanisms

This section deals with facilities for the protection of data in
files.

1.

What is the granularity of protection? (Check all that
apply)

Protection of user account

Protection of individual directories

Protection of individual files

Protection of individual records or parts of files
Other

Access is generally limited to individuals or groups of
individuals that all share some common property. Group
properties that are "interesting" to the protection system
include (check all that apply):

[] System-defined user groups (e.g., group accounts)

[1 Members of user-defined access list (a la MULTICS)

[] Privileged groups

[] Single individuals

[] Users that own keys that have been distributed (i.e.
capability systems such as CMU HYDRA)

[] Other

How can access rights of one user be propagated to another?

Military style security mechanism
Capabilities (CMU HYDRA)

User modification of access list
User modification of file protection
Other

/e
—_) SNy -

What file operations may be protected?

[1 Read data

[] Write new data

[1] Modify data

[1 Copy data (does not prevent processing, simply limits

data propagation)

File deletion

File copying

File attribute reads

File attribute modification

Protection controls on file/file contents
Other

Lo B e I e Y mn B S WY e §

Page 23

5. What mechanisms are used to protect data?
[] Protection bits (Read, Modify, Append bits as on Tops
10) Specify protection:

Access 1ist (MULTICS)

Matching account numbers or account prefixes
Capabilities (CAPP or CMU HYDRA)

Passwords

M

[1 on individual files
[] on accounts
[1 on directories

How are passwords stored?

[1 1In encrypted form in standard file

[] In special files accessible only to system

[] In clear text form in a protected file

[] In one-way encrypted form (a non-reversible
encryption)

[1] Operator verification
How?

[} Encryption (e.g., National Bureau of 3dtandards Data
Encryption Standard algorithm)

Encryption type:

[1] NBS DES
[] Public key cryptosystem
[1] Other

Who performs the encryption/decryption?

[] User program

[1 System utility program

[1 System read and write primitives

[1 Electronic hardware in peripheral read/write
circuits

[] Other

Does unencrypted data appear in any place other than
the user's address space?

[] no (what a nice system!)

[] Yes -- in buffers internal to system read them
[1 Yes -- other

[] Other

6. How are the protection mechanisms protected?

3.5

/o

| Ny]

Page 24

Via one way encryption

Protection information accessible only to system
primitives

Via the protection mechanisms themselves (capabilities)
Other

How well are users encapsulated?

l

[

]

]

Completely (hardware prevents privileged operations and
references outside wusers space; system places no
protection control information in user space; user
must use system primitives to handle data)

Other

What facilities exist which can sidestep the protection
mechanisms

[
[

[

]
]

Privileged user/account
Privileged programs

Can these programs be used to inspect protected data?

[1 No (well thought out utilities)
[1 Yes (after clever programmer subverts utility)
[] Yes (via Dump or Display facilities built into
privileged programs

[] Other

1 Privileged source of programs (e.g., a privileged
directory, for which programs fetched and executed via
that directory obtain privilege)

] System operator

1 Other

Media

This subsection is concerned with the kind of media on which
data may be transcibed.

1.

Check off the media types supported directly by the file

system,

[] Disk/drum (rotating magnetic medium with one or more
heads)

[1 Magnetic tape

[1] ANSI standard labels

[1] Nonstandard labels

[1] Multiple files per tape (DECtape)
[1 Single file per tape

2 O e ¥ e B s I s |

[z nan N I o B s |

I_ILJL_J‘u J

| WDy NSy NN oy IO iy VO A

Page 25

Very large storage devices (Terabit memories, storage
cells, etc.) Please describe and give capacity and
performance

Other magnetic media (bubble memories, etc.) Please
describe and give capacity and performance

Alphanumeric displays with keyboard (CRTs)

Number of character rows

Number of characters wide

Cursor addressability

Cursor control keys on keyboard (up down left
right)

/A rrmmmrm
[Sy Ty W Ry |

Graphics displays: resolution

[] Raster scan

[] Electrostatic (or any graphics system capable of
30Hz or better frame generation rate)

Storage tube (Tektronix series)

Color: Number of colors

Light pen graphics input

‘Mouse graphics input

Cross hair graphics input

Digitizing table graphics input

Other graphics input

Alphanumeric keyboard associated with display
device

f o 2 e T s T oy Y e B e 1 e B |

Paper tape reader

Paper tape punch

Card reader

Card punch

Line printers

Data acquisition devices: (Digital to Analog
converters, etc.) Describe

Communications devices networking Describe network in
two words or less

Communications devices for local networks
Communications for Remote Job Entry
Communications for general purpose Remote Access
Computer output microfilm

Other mass output device (laser printers, ete.)
_ Describe :

Page 26

3.6 File Utilities

This subsection 1s concerned with the standard utilities
available for copying, archiving, wvalidating, printing, and
performing other operations on files.

1. Check file utilities available

[1 Copy file to file

[1 Copy file or device to file or device (A special
program or programs under systems which do not have
device independence)

List file on printer

List file on console

List directory

[t I e B |
| SO By WSOy W

[] With wildcard?
[1 By date?
[1] By other attributes?

[1 List/change file attributes
[1 DBackup/restore
[] Compare

[1] binary
text
language specific options

[]
.

Inspect file (file dump)
Change protection on files, directories, etc.

—
—

[File comparison for verification/location of
differences
[] Other

2. Utility programs

1 exist as seperately invocable user programs
] are typically coalesced into a 1large, multi-purpose
utility How are the functions partitioned?

{
[

[] exist as privileged programs

3. Archiving

[] 1is available via regular, complete file system backups

[1] 1is available via automatic backup <(e.g., by demon
processes)

[1 1is available via explicit request by user to archive a
file

[] uses multiple levels of storage hierarchy (files are
first moved- to slower secondary store, then to tape,
and so on over time)

Page 27

[1] a file 1is invisible to user, because it is
automatically retrieved when requested

[1 requires user intervention to restore the file
[] requires operator intervention to restore the file
[1 Other interesting features:
4. Some systems have utility programs that can verify that the

file system has not been damaged (e.g., by power failure,
runaway program, system bugs, etc.).

[] A utility exists to detect damage in the file system

[1 File system damage is detected by manual methods (e.g.,
when the system acts funny, damage is verified via a
file system inspect utility or guesswork.)

[] System warns users of damaged files when encountered

[1 File system damage is repaired by manual methods (e.g.,
in "superprogrammer" mode)

[] File system damage is repaired automatically by system
(and user is simply told that it happened)

[] File system damage is repaired via special utility

[] File system damage is not ever repaired. (E.g., new
file system 1is prepared and all recoverable files are
copied or are restored from archive.)

3.7 Human Engineering in the File System

Many file systems have features whose only real utility 1is
making 1life more convenient for the user (although some might
argue that the mere existence of computers is what makes 1life
hard for the user). This section is intended to determine what
human engineering features have been installed in your system.

1. How much does a user have to know in order to use the file
system in his environment?

[] User knowledge level, 1=low, 5=high

R

Automatic features include:

completion of unique filenames
spelling correction on filenames
version numbering

Other

s
| IS Iy SNy W W |

3. How robust is the file system? (Give a scale number 1-5
indicating how much wuser data 1is lost on the average, 1
means "file data is lost if you sneeze in the same room".)

Page 28

with respect to hardware failures?
with respect to software failures?
over time with no apparent failures

[IS aaun N aum |
| NN iy Ny N

4. Rate the performance of the file system. (1 means "slower
than a snail" and 5 means "violates physical law concerning
speed of propagation of light".)

5. What does the file system do well?

6. What does the file system do poorly?

7. If you could make everything lightning fast, what feature
would you use more heavily?

(See also Section 11 for further qualitative measures of the
File System.)

3.8 Performance and Hardware Support

This section collects data concerning the resources needed to
implement the file system wused in your environment, and the
performance obtained.

Under $1,000
$1,000-%$5,000
$5,000-3%310,000
$10,000-$30,000
$30,000-$100,000
$100,000~-$500,000
$500,000-%2,000,000
The sky's the 1limit

1. How much does the required hardware cost?
|
|
|

[t Y s I et N e B e Y e I e B |
ClL e

2. What are the limitations of the number and/or amount of
secondary storage that can be handled by the file system?
(E.g., max number of peripherals = , can only handle
floppies, etc.)

Page 29

What special or unusual hardware is required by the file
system?

Concerning main store requirements for file system
operation:

[1 Amount of buffer space per user required (units of K

bytes)

[7 Amount of main storage required by file system
itself

[1 Cutoff point below which file system is impractical to
use

What is the mean time to...

access a directory (i.e., open a file)

read the next record/block

position to a new place in a file and read a record
write a new record

[I o I o B e |
e (]

Please describe any other performance measure you consider
especially appropriate for file systems.

Page 30.

4.0 TEXT PROCESSING TOOLS

4.1 Defining the Environment

This first subsection asks for vyour definition of the term
"text'. For example, text may be characters, strings, program
source, documentation, data, or some other type of file used 1in
your environment.

1. What 1is the name of your text processing tool?

2. What is meant by the term "text" for this tool?

Characters

Strings

Data in memory

Data on bulk storage devices

Data structures or program contexts (e.g. LISP)
Other

[z e B e Y e I o B s |

3. What type of files can you edit?

Program source

Documentation

Documentation extracted from program source files
Object files

Core image files

Data files (e.g., containing floating point values)

[t B o 3 s Y p T s B e O o |

Other
4, Are tool commands included with the text? (E.g.,
RUNOFF.)

Questions 5 through 9 concern the media used by the text
management tool. For your answers, use the abbreviations
given in the following 1list:

D = Disk

F = Floppy Disk

MT = Magnetic Tape
CT = Cassette Tape
CR = Card Reader
PT = Paper tape

ALL = All devices supported by the file system.
For others give device name and short abbreviation:

5. From what types of external media can this tool read text?

Page 31

6. From what types of external media can this tool read text?
7. From what media can the tool accept user input?
8. Onto what media can the tool write text? (Also indicate the

speed of the device, as for example CR (80 card/min).)

9. Onto what types of media can the tool write wuser output?
(Again, indicate the speed of the device.)

10." Is the user allowed to "tab" (either using a TAB key or a
predefined character which represents a tab)?

11. Are there non-printing characters which may affect the input
or display of text (e.g. begin/end underline)?

12. Can the tool access other tools or environment facilities?
If so, which?

13. Does this tool have special features that relate to a
specific language (e.g., syntax checking or structure
editing)? If so,

[] Which language?
[1 Can the tool be useful outside of that language?

4. If the tool is designed to be interactive, can it also be

used 1in batch mode (e.g., by specifying some command file)?

If so, is the command structure the same as ‘for
interactive?

4,2 User Interface

The questions in this subsection deal with the your perception
of the text management tool. This perspective includes, but is
not limited to: the device, the form and frequency of the
dialogue between the user and the tool, and the representation
of the text to the user during the processing session.

Page 32

4.,2.1 Batch Processing Tools -

1. Is the command file for the tool generated on some offline
media such as cards or paper tape?: If not, briefly
explain how 1t is generated.

2. Is there a log produced which shows the commands or
operations performed?

3. Is there a log which reflects the result of the changes
made?
4. At the end of ne run, are statistics generated which
'~ indicate the number of changes made, the current file size,
ete?

4.2.2 Interactive Tools (using Typewriter Or CRT) -

For this subsection, check all choices that apply; you may
check more than one choice for a single question.

1. Is this tool driven by

] Keystroke (one or a few)
] Command (longer mnemonic)

[
I

2. Is the tool

[] Passive (does not prompt for input)
[1 Prompting

3. Is the mode (i.e. passive or active) switchable under user
control?

Is there some line edit mode where either text or commands
can be edited by control keys or cursor functions which copy
or preserve the old information while making the changes
indicated (e.g., TYMSHARE)?

Can the previous command be re-executed by a single

[] Keystroke
(]

Command

Page 33

6. Is the user allowed to set "tabs" and sequentially reference
them (either using a TAB key or some predefined character)?

7. 1If it is a predefined character, can the user choose that
character? _

8. Is there a data entry mode where there 1is a keystroke
validation of data within fields (such as alpha vs.
numeric)? _

9. Can the tool be set up to automatically echo the changed
area after every change? -

10. Can statistics regarding the current editing session be
displayed (i.e. number of 1lines or characters in file,
number of buffers, etc.)?

4,2.3 Interactive CRT Tools -

1. Is the CRT

restricted sequential line output
two-dimensionally addressable
Storage type

Incrementally writeable

[I s B e N s |
L

2. Is the updated text dynamically displayed?

3. Can the granularity (e.g. page size) of the displayed text
be altered by the user? B

4, 1Is the representation of the displayed text the same as the
printed output (i.e., does the display have the same line
endings)?

5. Can portions of two or more files be displayed at the same
time?

4.3 Commands

We are interested 1in finding out what commands your text

processor has. For each of the following functions, you should

indicate:

1. The parameters and their granularity (e.g. character, line,
word, expression, number, location expression (see

subsection 4); indicate all that apply).

Ul

(@)

Page 34

The granularity cf the range in which the function may be
applied (line, page, entire source text, etc.).

The effort required to give this command (e.g. 1 keystrokey
a few keystrokes, a whole mini-program).

The usefulness of this command for your processor (not
needed, nice but rarely used, indispensable).

Wwhether the cursor (the tool's focus of attention) 1is
altered by this command.

Not all these functions may be meaningful for your text
processor. (E.g., display makes no sense for RUNOFF, delete
makes no sense for DDT).

For your answers, use the abbreviations given 1in the
following menu:
Granularity of parameters

C = Character

L = Line

W = Word

E = Expression

N = Number

LS = Location Specification

Granularity of application
= Character
Line
Page
Entire source file
use
1 Keystroke
A Few Keystrokes
A Whole mini-program
ess
Not HNeeded
Nice but rarely used
Handy
Frequently used
Indispensable
Tool's Attention
C Is changed
N Remains the in the same place

Mmoo

Ease o

Useful

VT WwN =g 0 m—
[T T S T R SN e SO T U IO |

1t

Can you insert text?
Granularity of parameters
Granularity of application
Ease of use
Usefulness
Tool's attention

Can you replace text?
Granularity of parameters
Granularity of application
Ease of use

10,

1.

12.

13.

4.

Page 35

Usefulness
Tool's attention
Can you delete text?
Granularity of parameters
Granularity of application =~
Ease of use
Usefulness
Tool's attention

Can you copy text from one place to another?
Granularity of parameters
Granularity of application
Ease of use
Usefulness
Tool's attention

Can you move (copy then delete) text from one place to
another?
Granularity of parameters
Granularity oft application
Ease of use
Usefulness
Tool's attention

Can you display text?
Granularity of parameters
Granularity of application
Ease of use
Usefulness
Tool's attention

Can you search for text forwards?
Granularity of parameters
Granularity of application
Ease of use
Usefulness
Tool's attention

Can you search for text backwards?
Granularity of parameters
Granularity of application
Ease of use
Usefulness
Tool's attention

If you can search for text, how complex <can the search
pattern be?

Fixed character string only

Wild cards

Matching with binding of variables

Full access to the power of the surrounding environment
(e.g., can write a search algorithm in some available
programming language)

[3 s B oy B ey |
— e

Page 36

15. Can you retrieve or create auxiliary text while ©processing
the main text?
Granularity of parameters
Granularity of application
Ease of use
Usefulness
Tool's attention

16. Can you access more than one text at once (e.g. multiple
windows, file-merges, etc.)?
Granularity of parameters
Granularity of application
Ease of use
Usefulness
Tool's attention

17. Can you edit two or more texts in parallel?
Granularity of parameters
Granularity of application
Ease of use
Usefulness
Tool's attention

18. Can you change more than one text within a single "session"?
If so, what information 1is carried over (parameters,
buffers)?

Granularity of parameters
Granularity of application
Ease of use

Usefulness

Tool's attention

19. What information (if any) 1s remembered between whole
editing sessions?

4.4 Location Specification

In order to specify that part of the text on which you wish to
perform some function (e.g. display, delete) there must be a
way to specify locations.

1. Are numbers in any way associated with locations? If
So: :

1. Are the numbers attached to the text?

2. What is the numbering convention (e.g. increments)?

Page 37

L 1 1

[1 10

[1 100

[1 1000
[1 Other

Can the convention be changed?

What happens to the numbers between sessions?

They remain the same
They are resequenced
They are not saved between sessions

o
| SRS SNy N

Is there a cursor or focus of attention of the tool (visual
or virtual)? ~_If so:

1.

1

Is it visual or virtual?

L 1 Visual
L] Virtual
[] Visual is the same as virtual

Can you move it directly?
If so, in what units?

Characters
Words
Lines
Tab zones
Pages
Other

QS [y SRS Ry N SN iy WO [y S §

Is the cursor "at" or "between" locations?

[1 At
[1 Between

Can you use the cursor to specify "segments" of text as
a parameter to some function (e.g. as a means of
specifying location for cutting and pasting)?

If so, in what units? T
] Characters

1 Words

] Lines

1 Pages

] Other (specify)

L B et B e I et By |

Page 38

4.5 Extensibility

In some text processors, the command language can be extended;
new commands can be added. If your system permits this, please
answer the following questions.

1. Can you create a new command by chaining other commands
together?
2. Can the new commands be named (i.e. recalled 1later 1in a

simple manner)? B
3. Let's call this new command a program. How complex is this
new programming language? (Check all that apply.)

It can loop _
Test and branch
Bind variables
Recur

Other

Lo e B e B e B s |
J WS WD oy W oy U [S

4. Are there functions you can access from within a program
that you cannot access by the standard set of commands?

5. Can the program itself be considered editable text?

6. Can you edit the program 1locally (without leaving the
current text)?

7. Can the program modify other editing programs?

8. Can it modify itself?

9. Can you alter existing commands? If so, briefly
describe how any restrictions apply.

4.6 Interface with the External Environment

This section considers how well the text processor interacts
with the environment within which it resides. Specifically,
what interactions with the file system are possible, what
interactions with other wutilities are possible, and in some
cases, how are these interactions accomplished.

1. Does the tool interface with the file system?

Page 39

If not, briefly describe how the results of an editing
session are saved from one session to the next

If so, which of the following capabilities are used?

[] Saving and restoring files
[1 Other

Are the commands to access the file system consistent with
the other commands available from the within the tool?

What other environment tools or facilities (if any) <can be
accessed from within the text processing tool?

Can a file be updated in place or 1is a modified version
produced?

[1 1in place

[1 new version

If copies of the file are made, does the tool
generate copies as it goes

L]
[1 make the entire copy before proceecding

Does the file system permit the tool to move forward and
backward arbitrary distances through the file or are some
limits imposed?

[1 Can't move at all
[] Limits imposed
[1 Arbitrary

Is there any time penalty for backing up?

Does the tool automatically update document control
parameters such as version number, revision number, etc?

Page 140

4,7 Output Processing

Some text processors have a form of output procesing. In some
systems, these capabilities may be part of the same tool which
is used for editing program text. In other cases, it may be a

seperate program which 1is fed a file prepared by another tool
which has embedded commands to direct the processing of the text
(e.g., RUNOFF).

1. Which of the following features doces your text processor
have?
[1 Automatic table of contents preparation
[1 Pagination (i.e. heading, footing, page-numbering,
ete.)
[1] Forms data processing (i.e. it puts a form on the

screen and you fill in the blanks)
[] Merging of text and sequential files
[1 Others

2. Does the tool have "pretty-printing" capabilities? .

3. Can the display be directed to devices other than the normal
display? (E.g., if the display normally goes to the screen
of a CRT, can it be directed to a printer?)

4. What effect do embedded TAB <characters have on output
processing on the various devices to which output 1is
normally sent?

[1 No effect
[] They tab to the desired column
[1] They mess everything up

5. Are there any other "funny" non-printing characters which
have an effect on your environment? If so, enumerate
them and briefly describe their effect.

4.8 Safety Features

This subsection deals with the capabilities provided for saving
thie wuser from his/her own error, from the unwitting error of
others, from system crashes, etc.

4.

Page 41

What type of "help" facility exists?

None

Manuals

Single Key

File accessible by the tool

M
QUSS 3y Ny Wy ']

Is there any way to back out the last n changes made?

Is there a "key verify" mode? (I.e., a second user rekeys
the same text, but instead of being entered, it is simply
compared to the text which was entered the first time?)

Can the user specify that a file be automatically saved
after

[] some specified time period
[1 some specified number of text changes
[] other

If the system crashes, how much do you lose?

[] Nothing

[1] Everything since you last saved the file
[] Everything

[1 Other’

Error Checking

Does the tool do

syntax checking or parsing
spelling checks on documents
other error checking

Lo N e B s |
e

Page 42

5.0 PROGRAM EXECUTION TOOLS

This section of the questionnaire addresses the topic of tools
availlable to determine the characteristics of a program during
execution. These tools inceclude debuggers, error checking
facilities, and resource monitoring and allocation. We do not
include in these execution tools program libraries and other
databases that add functionality to programs. The main goal of
execution tools is to give the user knowledge and control of
what his program is doing and the capability to alter it quickly
and easily. In this way the wuser can interact with the
execution of his program usually in the debugging stage.

This section is divided into two subsections, one dealing with
debugging facilities associated with 1languages and a second
dealing with facilities associated with the environment monitor.
Included with the section on programming languages are object

code debugging tools that may be machine dependent. We
encourage you to complete this questionnaire for each seperate
environment with which you are familiar. For example, if you

use several programming languages fill out the section on
language dependent features for each.

5.1 Debugging Tools For Specific Programming Languages

This subsection deals with the tools used in debugging programs

written in a specific language. These tools often have special
features allowing the user to debug in the source code 1instead
of a different 1language (i.e., wusually 1lower level machine
code). Question 5 refers to machine dependent features (i.e.,
object code) while question 4 refers to source dependent
features. Answer the appropriate question and then continue
this subsection at question 5. If no such debugging tool exists
for a particular environment then answer question one
appropriately and answer only the wvalue judgement parts

(explained below) of the following questions.

1. What is the name of the programming language with which this
debugging tool is used?

h]

Is the debugging facility specifically tailored to this
language?

Each of the following questions is Dbroken up into two

responses. The first bracketed box should be answered 'Y
or 'N' as to whether or not that particular feature exists
in your environment. In the second box put a value

Judgement as to the usefulness of this particular feature.
Use the scale of 5 being very useful to 1 being not useful
at all.

Page 43

3. How are the debugging features implemented (if there is more
than one method, please identify each)

[Y or N1 [1-5]

Loaded with the object program

Part of "a language system (e.g., APL or LISP)

A parent process fork of the program

Embedded in the operating system

ROM resident

Implemented by a separate processor using DMA,
interrupts, etec.

L'} [1 Other

(o B e B e Y e B s W o |

4. Below is a list of source dependent features (i.e., for data
objects which must be referenced by their source name rather
than by machine address). Mark each as above, with Y or N
answer followed by 1-5 answer.

[Y or NIl [1-5]

[] [1 Dump of all data objects

[1] [1 Snapshot of selected data objects

[] [] Trace of execution

[] [] Set break points

[] [1 Break whenever a particular data object is read

[] [1 Break whenever a particular data object is
modified

(1] [] Resume execution at the point of a break

[] [1 Examine source code

[] [] Modify source temporarily

L] [] Modify source permanently

[] [] Modify data objects

[1] [1 Produce a traceback of the current execution
state

[] [1 Produce a traceback of nested dynamic

environments

[] [] Change the context of the debugger to a different
environment (static or dynamic)

[1] [] Return to a previous environment and continue
execution

[] [1] Single step execution

[] [] Monitor concurrent processes

[1] [1] Set conditional breakpoints

[] [] Insert debugging routines at break or trace

. points

[] [] Automatically get control after an execution time
error

[1] [] Search for a particular data object by value

[] [] Define error control pathways

[] [] Evaluate expressions of the source language while

retaining control (e.g BASIC immediate mode or
LISP break EVAL command)
L] [1 Other

Page 44

Each of the features below 1s machine dependent. Although
these features are generally 1less wuseful than those in
gquestion 4, it 1is nevertheless common to debug systems
written in higher level languages with the use of core dumps
and object code modification.

Indicate which of the following are present on your system.
Answer this question with the same format as question 3.

[] [1 Dump of main memory

[] [] Snapshot of selected portions of main memory

L1 [1] Set break points in object code

[1 [1 Trap all read references to a portion of main
memory

[] [] Trap all write references to a portion of main
memory

[] [1 Modify object code

[] [1] Single instruction execution

[] [1 Get control after an execution time error

[1] [] Search main memory for a particular value

[] [] Other

Would a debugger with all of the features marked 1 in the
previous guestion form a minimal, but still useful debugger?
Why or why not?

How is the source referenced for purposes of setting breaks
and evaluating expressions?

[1 Line number

I 1 Search string
[1 Block

[1 Label

[] Other

How are data items displayed?

In the notation of the language, automatically
In one or more formats specified by the user
In octal or hexidecimal

Other

/e
| N [S) SN Iy S |

Page 145

9. Can the debugger be called by other tcols? If so,
briefly describe the extent of information (i.e., the
location and context of an error) that 1is passed to the
debugger.

10. Can the debugger call other tools? . If so, what kind
of information does it pass to the other tools?

5. Execution in the Monitor Environment

This subsection deals with features of the monitor, operating

system, or command processor that enable the user to obtain

information concerning a process's (job's) resources, execution
time, etc.

1.

How is program execution controled? (If there is more than
one way (for example Dbatch and interaction), repeat this
section for each.)

[1 Batch control deck in a JCL-like language

[1 Batch control deck with a syntax similar to a
programming language

[] Commands on an interactive terminal

[] Commands on an interactive terminal plus packaged
commands which may be defined by the user (MIC, UNIX

shell)
[] Controlled by a parent process
[1 Other

In what environment do programs normally execute?

Linked in core load including user and library routines
As in above but with a runtime system

Within a language system such as LISP or APL

Part of the operating system

Other

Are the following available to the user

Initiate execution

Stop execution

Continue execution

Initiate execution of a concurrent process
Control a family of processes directly

Page U6

[1 Control a tree of processes indirectly through a root
process

Submit a batch job for execution

Run a job in the background

Other

Questions 4 though 10 refer to the control of resources other

than
user'

4.

those provided by the file system. In a batch system, 'the

would refer to the control deck.

Does the user have control over core allocation? If

50, how?

[1] Selection of a fixed sized partition »

[1] Selection of an initial core size which may be
increased by the program

[] On virtual memory systems, specification of the working
set size and maximum address space size

[] Other

How does the user allocate magnetic tapes to the job?

[] By requesting all drives before program execution
[1 The program requests them automatically
[1] Other

What other devices may be allocated to a Jjob at execution
time and how is each requested?

Device Method of request

Which devices are not available to jobs but are spooled
automatically?
Device

How does the user connect the language device identifier to
a physical input/output device?

Does the wuser have the ability to specify device
characteristics at execution time? If so, how and
what characteristics?

10.

11.

12.

13.

Page 47

What limits on execution can the user set?

[1 CPU

[1] Memory

([] Usage of devices (e.g., page limits, etc.)
[] Other

Which of the following features are available at execution
time? Are they user selectable? (Y or N)

vailable Selectable

Ava
L]
[] []
[] []
[] []

List below where each of

previous question resides.

Debugger

Array bounds

Invalid data detection
Exec. count of stmts ete.
Other

the features mentioned in the

0.5.

Translator

Which of the following
eXxecution time?

Time of day

CPU Usage

Kilo-core seconds
Average memory usage
Disk reads/writes
State (queue) of job

M
| WSy WS Ry SNy Wy GRSy SNy NS Oy NN [y S—

Other

Display process status

are available to the user at

Other device usage statistics

.

Page 48

6.0 PROGRAM ANALYSIS TOOLS

Software reliability has become increasingly difficult to
achieve as software systems become more complex. Ad hoc
debugging techniques fall to detect potential errors while brute
force testing practices require inordinate amounts of computer
time. These traditional approaches have become ineffective,
infeasible, and intolerable. Hence, the need for program
analysis tools has arisen.

6.1 Language Considerations

A given set of program analysis tools must be associated with a
particular programming language.

1. What is the name of the most predominantly used programming
language in your environment?

[] Pascal

[1] COBOL

[1 FORTRAN

[1] BASIC

[1 ALGOL

[1 LIsp

[1 APL

[] RPG

[] PL/1

[1 C

[] Other
2. Does your environment provide for static and/or dynamic

analysis of programs written in this language?

6.2 Static Analysis Tools

Static analysis tools examine some representation of a program
and derive information about the program without performing the
action the program specifies.

1. Some powerful metatools which can considerably ease the
burden of constructing static analysis tools include parser
generators, program-directed graph generators, and data flow
graph generators., Does your environment support any of
these metatools? If so, indicate +their names and
briefly elaborate on their use.

2. Indicate the =static analysis techniques used in your
environment (use "C" if the tool 1is integrated in the
compiler; wuse "3" if the tool can be separately executed).

Page 49

Then proceed to answer further corresponding questions.

o 3 s B e I s W e B e A e 1 e O v I it Y o Y |

»

Syntax checking (2.1)

Semantics checking (2.2)

Cross referencing (2.3)

Completion analysis checking (2.4)
Dangerous construct checking (2.5)
Inter-routine parameter checking (2.6)
Coding standard enforcement (2.7)
Symbolic assembly language inclusion (2.8)
Variable map inclusion (2.9)

Software Science measures (2.10)
Cyclomatic complexity measures (2.11)
Reachability complexity measures (2.12)

Does your syntax checker

[1 provide meaningful error messages
[1 attempt correction of errors

] automatically
] interactively with the user

[
[
[1 halt after detecting "too many" errors

[] how many 1s "too many"?

[1 optionally transfer control to the editor

Does your semantics checker

provide meaningful error messages
attempt correction of errors

e
| NIy S |

[1] automatically
[] interactively with the user
[1 halt after detecting "too many" errors

[1 how many is "too many"?

[1 optionally transfer control to the editor

Does your cross referencing tool flag occurrences of

variable declaration, read and write references
routine declaration and references

list of routines called by a given routine

list of routines which call a given routine
summary of routine block numbers

summary of routine nesting levels

summary of structured statement nesting levels

o I e T e U v Y s U e B |
[NS Oy Wy G [y S oy UM SNy W)

Page 50

Which of the following completion analysis checks are
made?

improper loop nestings
unreferenced labels
unreferenced data
unreferenced routines
unreachable statements
statements with no successors

M e
| S B Wy WSy S -

Which of the following dangerous construct checks are
made?

[] loops incremented by zero

[1 wundefined branch target labels

[] transfers to inside a loop

[1] 1loops with untested parameters

[] hazardous case statements (e.g., no OTHERS clause)
[] missing tag fields in variant records

[1 excessive GOTOs

Does your parameter checking tool check, in the

declaration and invocation of a routine, for

[] equal number of parameters

[1 correspondence of pass-by-value and
pass-by-reference parameters

[] compatibility of types of parameters

Do your coding standards

[1 disallow the dangerous constructs previously listed
(Question 2.5)

[1 wvary according to the 1level of expertise of
individual programmers ‘

require that module size remain small

limit the nesting level of routines and structured

statements

—_

Do your merged symbolic assembly language statements
include

relative program counter values

sizes of the corresponding statements

source line number of the associated higher 1level
language construct

[3 gumn B o |
— e

Does your variable map include

6.

Page 51

[1 the address (fixed or stack relative) of each
variable

the size of each variable

indication of whether each variable is directly
addressed (local or passed by value parameter) or
indirectly addressed (passed by reference
parameter)

10. Which of the following Software Science measures are

recorded?

[] number of different operators

[] number of different operands

[] total of different operators and operands

[1] number of operator usages

[] number of operand usages

[] total occurrences of operators and operands

[] program volume (number of addressable units to

contain it)

[1 1level of language used, in terms of operators and
operands required

[] internal quality, in terms of volume and level

17. Do you restrict the lower Dbound of the cyclomatic
complexity interval (the number of independent tests
necessary to exercise the outcome of each path at 1least
once) to a managable number?

12. Do you wuse the reachability complexity measure to
determine how many places the correct "program state"
must be set up before coming through a given 1line of
code?

Dynamic Analysis Tools

Dynamic analysis techniques are those which derive information
about a program by examining it during its execution.

1.

In order to perform dynamic analysis of a program, compile
time options must be wused which trigger the insertion of
runtime checking code. Indicate which options are
recognized by your compiler. Then proceed to answer further
corresponding questions.

Range checking (3.1)

Variant checking (3.2)
Pointer value checking (3.3)
I/0 checking (3.4)

Assertion tests (3.5)

[N nn N e B e By |
§ WS [y NG N N [WY oy S)

L]
[]
L]

(9

Page 52

Traceback ability (3.6)
Performance probes (3.7)
Completeness probes (3.8)

Is range checking performed for

arrays
subranges

set element expressions

over/underflow on expression evaluation

Does the variant checking ensure that references to
variant parts of records are consistent with the values
of their tag fields?

Does the pointer value checking compare the pointer
value to NIL when the pointer is used to access data?

In case of an unsuccessful I/0 operation, does the I/0
checking

[] cause the program to be terminated
[] retry the operation in an attempt to get valid data

Do you have the capability to insert assertions in
programs?

Which of the following are included in the object code
when the traceback option is enabled?

routine name
absolute block number
static nesting level

| s T e B e |

What does your performance probe handler keep track of?

number of access to variables

number of executions of each routine
number of executions of main program
number of iterations of each loop

[onan B s B e W e |

Does your completeness probe handler keep track of a
usage of paths in the following control structures?

IF/THEN/ELSE

multi-way branches (CASE)
REPEAT loops

WHILE loops

Other

[e B s I o I oo Y e |
| SR Ry R N S By W
v

Page 53

6.4 Existing Systems for Program Analysis

In an effort to avoid the horrendous costs associated with

traditional methods of debugging and testing, several software
evaluation systems have surfaced in the past few years.

1. Does your environment have access to any of the following
software evaluation systems?

PET Program Evaluator and Tester

FACES Fortran Automatic Code Evaluation System
STS Software Testing System

ACES Automatic Code Evaluation System

CPA Complexity Path Analyzer

PACE Product Assurance Confidence Evaluator
Other

s W e T e B e I e T e N |

Page 514

7.0 PROGRAM TRANSFORMATION TOOLS

This section of the questionnaire deals with Program
Transformation tools. These are tools that take as primary
input and produce as primary output representations of computer
programs. These tools can be characterized by the form of their
input and output representations, i.e., their source and object
languages. We have categorized languages as belonging to one of
three groups:

1. Metalanguages -- these languages define-other languages or
actions on languages. Examples of such translators are
macro-processors, compiler-compilers and tools for syntax
directed translation.

2. Problem Level Languages -- these languages are used to
express the problem to be solved at the 1level of the
problem. Included in this category are assembly language,
FORTRAN, Ada, data flow languages, decision tables, and so

forth.

3. Conceptual Machine Languages -- these languageS express the
problem to be solved at the level of the execution agent
(concrete machine, simulator, interpreter). Included 1in

this category are machine languages, reverse polish notation
and the intermediate forms of a program in a multi-pass
compiler.

Some translation tools, especially most modern compilers, are
composite translators, that is, they are implemented as a series
of transformations. A single compiler may contain, for example,
translators:

1. from a metalanguage to the problem language (macro
processing),

2. from the problem language to an internal problem language
(syntax and semantic checking),

3. from the internal problem language to another (or the same)
internal problem language (target independent optimization),

. from the internal problem language to an internal machine
language (object generation and target dependent
optimization), and

5. from the internal machine language to the language of a
concrete machine.

7.

Page 55

Metalanguage Translators

Please answer the following questions about the tools in vyour
system that process metalanguage descriptions.

1.

7.2

List the tools in your system that perform macro-processing
as all or a part of their function. If the processor is
geared to a specific object language, indicate that language
(i.e., many assemblers).

Tool Name Object Language

List the tools in your system that are used to aid in
synthesizing translators. Briefly characterize the services
provided by the tool (e.g., scanner generator, ' parser
generator, compiler compiler, etc.)

Tool Name Service

List any other metalanguage processors in your system.
Briefly characterize the main function of each tool.

Tool Name Function

Problem Language Translators

Please answer the following questions about the tools in your
system that process problem level language descriptions (i.e.,
"source code'").

1.

List the problem-level-to-conceptual-machine-level
translation tools (e.g., most compilers and assemblers)
provided by your system. For each, list the source language
and object agent (machine, simulator, etc.) used.

Tool Name Source Object

Page 56

List the tools that translate from one problem level
language to another problem level language (e.g. FORTRAN to
Pascal, FORTRAN to assembly language). For each, 1list the
source and object 1languages. Indicate if object language
statements can be intermixed with source statements in the
input to the tool (e.g., intermixed FORTRAN and assembly
statements).

Tool Name Source Object Mix?

List any tools that translate problem level modules to
modified modules in the same language.

1. Source level optimizers

2. Error seeding tools (translators that introduce source
level errors into a module in order to evaluate the
effectiveness of developed test cases)

3. Instrumentation tools (translators that add new
statements to permit tracing, collect execution
information, etc.)

List any other tools of this sort in your system and briefly
characterize their functions.

Tool Name Function

List any other problem level translation tools bprovided by
your system. Briefly describe the main function of each
tool.

Tool Name Function

7.3

Page 57

Conceptual Machine Language Translators

Please answer the following questions about the tools in your
system that process conceptual machine language descriptions
(e.g., machine code, interpreter code, etc.)

1.

(S}

List the integration tools available in your system (e.g.,
linker). For each, list the execution agent for the output
of the tool (actual machine and operating system, etc.) and
any special features of the tool (e.g., Can a linker build
overlays? Can a wuser specify the organization of the
overlay structure?).

Tool Name Execution Agent/Feature

List the any machine 1language modification tools (e.g.
patching tools) 1in your system. List also the machine
language involved.

Tool Name Machine Language

List any optimizers in your system. If the optimization
process 1is a part of an encompassing tool, please indicate
that tool. List optimizing criteria wused (e.g., time,
space, etc.).

Tool Name Enc. Tool Criteria

List any tools that attempt to convert a conceptual machine

language input to a problem level 1language (e.g.
disassemblers or decompilers). List the source and object
languages.

Tool Name Source Object

A\

List and briefly describe the function of any other
conceptual machine language transformation tools.

Tool Name Function

8.0
8.1

The

Page 58

MAINTENANCE, TESTING, AND DOCUMENTATION

Maintenance

area of maintenance can be viewed as having three distinct

subcatagories:

REPAIR - The correction of faulty code or procedures.
ADAPTATION - Modification to accomodate a changing system

environment.

ENHANCEMENT - The addition of new capabilities.

8.1

Approximately what percentage of your maintenance resources
is spent on each of these subcatagories ?

REPAIR %
ADAPTATION %

ENHANCEMENT %

.7 Repair -

Number the tools wused 1in maintenance according to the
frequency with which they are used in repair:

Page-oriented text editor
Line~oriented text editor
Character-oriented text editor
Debbuger

The File System

Other(s)

Mo rarraroeT
— L L

Does your environment provide formatted output 1listings
(pretty print) of source code?

Is a program debugger available in your environment?

Does your environment provide programming language syntax
checking? _ If so, is it

part of a compiler
part of an interpreter
independently available

other

Does your environment provide performance statistics to
facilitate the 1isolation of errors? Which of the
following kinds of information do they provide?

-

.

Page 59

Time used
Number of executions
Others

M

What level of documentation is applied, following repair?

[1] New release

[1 Updating of current documentation
[1] HNotes on current documentation

[] DNone

[1 Other

.2 Adaptation -

Do you feel your environment is open-ended (adapted to new
and changing resources and procedures)? If so,
please describe which of the following adaptation <changes
you have encountered

[1] New or additional computer

[1 Additional hardware resources

[1 Change from single user to time-sharing
[1 Other

Does your environment facilitate transportation of programs
to other machines?

.3 Enhancement -

Does your environment provide software version controls to
facilitate recovery to an earlier version? If so, at
wnich level:

System level
Program level
Module level
Other

[B e B s W e |

How do you handle requests for program changes 1in your
environment?

1 Telephone

1 Personal contact

1 Notes

] Formal request forms

Page 60

[] Other

What levels of documentation are modified due to software
enhancement? .

[] Regirements documentation
[1 Design documentation

[1 User documentation

[7 Other

Does your environment provide general purpose software
libraries?

Mathematical/Statistical
Data management
Utility

[
[
[
L Other(s)

Are new or enhanced 1libraries easy to incorporate into
existing programs?

Do all tools which are normally used for program maintenance
support version control?

Testing
Is testing accomplished after each

[1 Repair
[1] Adaptation
[1] Enhancement

Does your environment provide test data generation?
If so, 1is the data for

System testing
Critical program path
Module testing

[
[
[
L Other form of testing

—_ i

3. Does your design process generate required test cases?

If so, can this test data be accessed at progran
execution time?

4, Does your environment contain test input/output
libraries?

R R R R RS

Page 61

Can test runs with output comparisons be made easily?

Ul

6. Is there a testing group at your environment?

7. Does your environment provide operational diagnostics?
Hardware Software

8. Does your environment include an execution failure
analyzer?

8.3 Documentation

1. Which of the following types of documentation are produced
in your environment?

[1] Requirements Specification

[1] Data Flow Diagrams

[] Program Structure Charts

L] Data Structure Diagrams

[] Data Dictionary |

[1] System Flow Charts

[1] Program Flow Charts

[1] Source Code Listings

[] Other
2. Is the required documentation sufficient?
3. What parts of the documentation are most useful for

maintenance?

4. Does your environment provide easy access to needed
documentation (e.g., source listings, design, requirements
specifications, ete.)? Are there version controls on

this information?

Ul

Does your environment support graphical documentation (e.g.,
program structure charts, data flow diagrams, data structure
diagrams, etc.)? Can this type of documentation be
easily edited? T

6. Can portions of documentation from one life-cycle phase be
easily associated with corresponding portions from another
life cycle phase (e.g., module source code and corresponding
functional design specifications)?

Page 62

9.0 MANAGEMENT SUPPORT TOOLS

This section of the questionnaire collects information about
those tools 1in your programming environment that support the

management of programming projects: their organization and-~
planning, tneir monitoring and control, and their evaluation and
analysis. Since many of these areas are just beginning to be
supported by automated tools, this section also asks about
manual methods and techniques in use and, in each phase of
management, asks about your need for tools, whether they
currently exist or not. Identification of tools should include

the name of the tool where possible and a brief desecription.

9.1 Organization and Planning

This subsection collects information concerning tools in your
programming environment which support the organization and

planning activities of management. These activities are
generally distinguished by coming before the start of the
implementation phase of program development. Many of the

possible tools which support more detailed planning derive their
inputs from the design phase of program development. The first
four parts of the subsection will inventory which tools, both
manual and automated, are now in use in your environment and the
last part will assess your needs for these and other
organization and planning tools.

9.2 3Schedule Tools

1. Schedule development -~ Identify any tools in your
environment which support the creation of overall project
schedules. 1In general, overall schedules must be derived
from the composite of the development schedules for the
design, coding, unit testing, integration testing, and
acceptance testing of each major configuration item (i.e.,
deliverable software 1tem) =such as operational computer
program, system exercise software, utility software, etc.
In addition, project schedules reflect tradeoffs between
schedule 1length and risk (there are limits to how rapidly
activities like coding the utility software configuration
item can acquire new people effectively) and between
schedule length and manpower utilization (manpower peaks and
valleys may result 1if tasks are not scheduled so that
personnel coming off one activity are wused %to staff up
another.) Which of the tools you have identified to help in
composing schedules are automated?

2. Critical path analysis - Identify any tools 1in your
environment which support schedule creation and monitoring
by analyzing networks of task dependencies. Examples of

automated tools include packages 1like PERT and CPM.

2.

Page 63

Identify which tools are automated.

Implementation plans - These indicate who does what and when
in detail. Identify any tools 1in your programming
environment which support the production of implementation
plans. Which, if any, are automated?

Test plans - These indicate the order in which modules will
be unit tested and outline the specific tests which will
constitute integration and acceptance testing. Unit test
plans wuse information from the system design to identify
modules which constitute primitives used by other modules

and which must be tested first. The order of testing
remaining modules 1s derived from knowledge of their
functional dependencies. Identify any tools 1in your

programming environment which support the production of test
plans. Which, if ny, any, are automated?

Modeling and simulation - High risk areas in the design
(from a performance standpoint) <can be revealed by
simulation of the target system. Additional resources can
then be scheduled for the testing and development of those

areas. Identify any modeling or simulation tools which are
used for schedule development purposes. Which are
automated?

1 Staffing Tools -

Organization planning - Identify tools which aid in planning
and reporting the structure of the organization which will
develop the software. For example, are there any tools

which help to produce organization charts (i.e., charts
which show the reporting hierarchy of individuals within the
organization.) Which of these tools are automated?

Manpower forecasting - This involves forecasting the number
of people needed at each stage in the software development
project life. The forecast may, for example, show the
changes 1in required staffing levels from month to month or
from week to week. Identify any tools or methods in your
environment which support this forecasting. Which are
automated?

Staffing plans - These plans indicate where the forecasted
number of people on the project will come from. How many
will be hired, trained, transferred. What level of
experience 1s required? Employee experience files are one
example of a tool which could support making these plans.
Identify any tools in your environment which support
staffing plans. Which, if any, are automated?)

Page 64

4. Resource acquisition - Management must plan the acquisition
of programming resources to support the number of
programmers indicated by the staffing plan. For example,
enough offices must be acquired and terminals must be
ordered 1in advance to allow the programmers to be
productive. Identify any tools in your environment which
aid this process. Which are automated?

9.3 Accounting Tools

1. Work breakdown structure development - Management must
devise a structure for recording costs during the project
which will support historical <cost data collection and
satisfy government reporting requirements. Identify any
tools in your environment which support the establishment
and description of such a structure. Which are automated?

2. Budget development -~ Detailed budgets are created to
indicate how the money will be spent which has been
allocated for the project's operation. What tools in your
environment support such budget development. Which are
automated?

9.3.1 Tools to Support Methodologies and Project Disciplines -

1. Standards development - Each project develops standards
regarding design representation and coding practices, among
other things. Identify any tools which help develop these
standards and disseminate them. Which tools are automated?

9.3.2 Need Assessment for Organization and Planning Tools -

Each of the organization and planning areas mentioned above are

listed below. Please assign priority numbers to each area
according to the importance you attach to having an automated
tool to support the area in your environment. Assign a 1 to the

most important area, a 2 to the next most important, and so on.
Use the blank 1lines to write in and assign priorities to any
areas not covered.

Schedule Development
Critical Path Analysis
Implementation Plans
Test Plans

Modeling and Simulation
Organization Planning

| B s I s B e B Y e |
| W Ry N By Wy SN Wy S|

Page 65

Manpower Forecasting

Staffing Plans

Resource Acquisition

Work Breakdown Structure Development
Budget Development

Standards Development

[T N P Fan N e N N |

9.4 Monitoring and Control

This subsection collects information concerning tools in your
programming environment which support the monitoring and control
activities of management. Typically, these activities take
place during the implementation phase of program development.
The first five parts of the subsection inventory the tools,
manual and automatic, now 1in use in your environment and the
last part assesses your needs for these and other monitoring and
control tools.

9.4.1 Status Reporting Tools -

1. Milestone status -~ Tools +to support this area aid 1in
displaying what milestones (for example, design, code, test,
etc.) have been completed for each component. Typically,
graphic means are employed. Identify the tools used for

this purpose 1in your environment and whether they are
automated.

2. Action item reporting - Any project has action items or
problems to be resolved. These are assigned to a
responsible individual for resolution by an assigned date.
Reporting tools might show which items deal with a specific
subject or which items are overdue for resolution. Identify
any tools present in your environment for handling action
items and whether the tools are automated.

9.4.2 Tools for Comparisons with Plans -

1. Performance to schedule status - Typically, graphic devices
such as Gantt charts are used to display the status of a
project's tasks versus their planned completion dates.
Identify what tools or devices are used to compare progress
against schedules in your environment. Are there automated
tools for their production?

9

9

I

R

I

Page 66

Rate charting - In rate charts, two lines are graphed. One
shows the work units (e.g. modules) planned for completion
versus time since enception of the project. The other 1line

graphed shows the actual number of work units completed.
Identify any tools used in your environment to collect and
display rate information. Are they automated?

3 ‘Accounting Tools -

Labor cost collection - Identify any tools which aid in the
capture and accumulation of labor costs expended on the
project's various tasks. Are they automated?

Machine cost collection - Identify any tools which aid in
the capture and accumulation of computer resource costs
billed to the project's various tasks. Are they automated?

Work breakdown structure reporting - Identify tools or
techniques in your environment which report or display the
costs expended to date in each element of the work breakdown
structure which has been established for the project.
Summaries may be available for various levels. Which such
tools are automated?

Cost to budget reporting - These tools compare expenditures
to date against budgeted expenditures for various tasks.
The comparison may be reported in terms of actual figures or
in other terms such as earned value versus percent expended.
Identify tools used in your environment and whether they are
automated.

4 Design Monitoring -

Resource monitoring - In embedded computer systems, budgets
for program size and timing are often established and
allocated to each module in a core load or to each step in a
transaction's processing. Identify any tools used in your
environment to compare planned versus actual portions of
these budgets wused wup by the portion of the system
implemented to date.

5 Project Resource Monitoring -

Page 67

1. Hardware usage reporting - Examples of this include
reporting terminal utilization to see if enough terminals
are available or whether terminal or computer usage should
be staggered to allow Dbetter wutilization. Measures of
response time or turnaround time may also be reported.
Identify tools 1in your environment that report hardware
usage. To what extent are they automated?

9.4.6 ‘Need Assessment for Monitoring and Control Tools -

1. FEach of the monitoring and contrdl areas mentioned above are
listed below. Please assign priority numbers to each
according to the importance you attach to having an

automated tool to support the area in your environment.
Assign a 1 to the most important area, a 2 to the next most
important, and so on. Use the blank lines to write in and
assign priorities to any areas not covered.

Milestone Status

Action Item Reporting

Performance to Schedule Status
Rate Charting

Labor Cost Collection

Machine Cost Collection

Work Breakdown Structure Reporting
Cost to Budget Reporting

Resource Monitoring

Hardware Usage Reporting

[e 1 e 1 e I s Y s Y s I ey A ey Y e Y ey O e I |
[U [Uy SN Oy NN [TN Ny SNy W VU [NSNS [y I [y W By W)

9.5 Evaluation and Analysis

This subsection collects information concerning tocols in your

programming environment which support <the evaluation and
analysis activities of management. Typically, these activities
take place after the completion of the implementation phase of
program development. They use the results of coding and testing

as their input.

1. Historical data collection - This data includes module
costs, sizes, and timing. The data is collected to aid
future planning and estimating for systems with similar
functions. Identify what tools in your environment support
this collection. Are they automated?

Page 68

Software reliability analysis - This analysis is based on
records of program bugs discovered and their nature and
cause. The goal is to reduce the number of bugs and improve
software reliability in released systems. Identify the
tools in your environment, 1f any, which support this
collection and analysis. Are they automated?

Test effectiveness - This kind of evaluation uses records of
numbers of bugs discovered after testing was successfully
completed to evaluate the effectiveness of +the tests to

which the software was subjected. Identify any tools which
support this data collection and evaluation. Are they
automated?

Standards updating - Identify tools which collect

information on the performance of various design, coding,
and testing standards employed and which aid in updating the
standards on the Dbasis of this evaluation for future
projects' use. Are any of these tools automated?

Personnel performance evaluation - Identify tools which use
the performance and quality of the software produced to
derive statistics which aid in the performance evaluation of
the people who produced it. Are these tools or techniques
automated?

Configuration management - This takes place after initial
testing during the revision and maintenance phases. It
consists of two kinds of activities: configuration control
and configuration reporting. Control means restricting
changes to the current version or to module status to those
persons authorized to make such changes. Reporting includes
listing what the versions of the various modules are which
make up the current system release and also includes the
selection of the correct versions of each module to make up
a system release. What mechanisms support these activities
and to what extent are they automated?

Need assessment for evaluation and analysis tools Each of
the evaluation and analysis areas mentioned above are listed
below. Please assign priority numbers to each according to
the 1importance you attach to having an automated tool to
suport the area in your environment. Assign a 1 to the most
important area, a 2 to the next most important, and so on.
Use the blank lines to write in and assign priorities to any
areas not covered.

Historical Data Collection
Software Reliability Analysis
Test Effectiveness

Standards Updating

Personnel Performance Evaluation
Configuration Management

[B e B o I s B e I e W am B e |
| NS o NS [VR [y NIV oy U By NSy SN N |

10.

10.

1.

Page 69

ENVIRONMENT CONTROL AND STANDARDIZATION

Environment Change and Evolution

Would you characterize your environment as

[1 stable

[] unstable

[1 frozen

[1 evolving

How are repairs made to the environment? (I.e., changes

made to correct errors in existing components of the
environment. Check all that apply.)

[1 Object patch
[] Source code correction
[1] By systems programming staff

[] By non-systems users (e.g., yourself or other
users)
[1] Controlled by some form of configuration control
group
[1 Suggested by users or users' groups
[] Other means or controls
How are enhancements made to the environment? . (I.e.,
changes made to add new features to the environment. Check

all that apply.)

Not made

Object patch

Source code change

By systems programming staff

By non-systems users (e.g., yourself or other users)
Controlled by some form of configuration control group
Suggested by users or users' groups

Other means or controls

et e e N N N Ny |
[I T R G N I G (G N

10

(2]

10

1.

Page 70

.2 Environment Documentation and Education

Is the documentation on your environment and its facilities

[1 complete
[1 wunderstandable
[1] accessible

Which tools or facilities, if any, lack adequate
documentation and how could it be improved?

What percentage of environment documentation 1s available
directly from the environment (e.g., in the form of system
help files)? % ,

Did you receive any formal <training in the wuse of your
environment?

If so, was 1t useful and/or how could it be improved?

Does the environment itself provide formal training
facilities (e.g., in the form of user-accessible training
files and/or' user-executable training procedures)?

If you did not receive any formal training, would formal
training have Dbeen useful to you? Briefly describe
how you learned to wuse your environment if it was not
through formal training.

.3 Environment Performance Measurement and Monitoring

Which of the following forms of performance monitoring
facilities are available in your environment?

[1] Online displays
[] 1Internal measurement facilities

] Event counting
] Trace

1 Snapshots

1 Other

[1 Periodic status reports

[] Hourly

[] Daily

[1 Weekly

[] Monthly

[1 Specifiable

Page 71

[1 Other
2. Does your environment have a diagnostic testing facility to
aid error location and repair? If so, 1is it
[1] Online (i.e., environment can continue to serve

users while diagnostics are being performed)

[1 Offline (i.e., no users can be serviced while
diagnostics are being performed) ‘

10.4 Environment Transportation

1. 1Is your environment specifically designed to be
transportable to more than one machine? »

11.0 RATING THE TOTAL ENVIRONMENT

In this section you are asked to rate the major divisions of
your environment (i.e., those included as Sections in this
questionnaire) plus your overall environment. Each 1is to be
rated on all the goals listed in Subsection 9.2. The numbers
assigned to those goals have been used to label the rows of the
matrix in Subsection 9.71; the columns are labelled with the
questionnaire section numbers plus one for the "overall"
environment.

For eacn position (i,j) in the matrix you should enter a value
between 1 and 5 indicating your assessment of how fully goal "iM
is met by that part of your environment described in Section

myn. Exceptions: the last column refers to the total
environment, and the first row 1is explained in the next
paragrapnh. The values have this range of meanings:

1 = completely misses the goal

3 = adequately meets the goal

5 = completely meets the goal

The first row requires some explanation. In each column you
should assign a value between 1 and 5 which reflects a
combination of your familiarity with the area, your expertise in

the area, and the extent to which you represent the majority's
view of that area. (Good luck!) The values have this range of
meanings:

1 marginally qualified

adequately qualified

5 fully qualified
We fully recognize that we have not presented a formula, or even
a procedure, for calculating these values; at this point we are
willing to accept subjective input. Furthermore, we do not

expect you to use any (universally recognized) type of algebra
to combine the individual ratings on a given row into the
overall rating on that row; just "assign" an "appropriate”
value.

By filling in this matrix you will be helping us to construct a
relation between the tools in an environment and a most general
set of high-level goals. Once such a relation 1is established,
it 1is our hope that the inverse of this relation will provide a
means of specifiying/designing environments given a tailored set
of high-level goals.

Page 73

The Technical Issues Goals Matrix (TIGMAT)

o

11

SECTIONS —memmmmmmmmmeme g

e — e, —— ——

lover-

all

10

i s Ak e sl et SEE PP SO R S)

your

qual.

11
|
I
It

|
1]
it
i

i
I
1
it

"
11
|
1]

1

R e e il et il LT I Sy R S

2

i s St e il LT T TR e SR

!

3
4

il e i it Sttt st TR SEEy Y SR SRS

ekl e e e el ek o LT T SIS

T M S T

I $ [| 1 1

1 I I ! ! 1

| | i 1] I

I 1 1 | 1 |
- e e e e e o

1 I 1 1 I]

I I I 1 i I

! 1 ! 1 I I

| 1 I | 1 1
T e L

! ! I ! I 1

1 | ! I I I

1 | | | I |

| 1 i | !]
e S T S T S SCR F U S R

1 1 | ! | 1

I I 1 1 ! |

| 1 | I 1 I

1 1 ! | I 1
e T S R

| ! | ! I I

I I I 1] !

| ! | 1 1 !

I 1 | ! { I
B T T AT e

I I | I I !

I ! |] | !

I ! 1 I I I

I I I | | !
T St T A

I I 1 | I |

i I 1 | I]

I } ! !] I

| | { I I |
— et e e o e e

! | I I I |

| | 1 I ! |

1 | 1 1 1 !

I ! I | | 1
S S N
I 1 I] | 1
| | I I | |
| 1 I I ! |
1 | | ! I |
— F e e e F o e oo
! | 1 | |]

I | | 1 I 1
1] I I] |
1] 1 I J I
B R S et T U R
N O M~ © o O

- Lt
FHFRHO I =ZHO < U2

e T T TS
1 1 1 I ! [
I 1 ! I I I
I I I i I I
1]] I I 1
For b e e e
] 1 1] I I
1 i I I I I
I I 1 I i I
] I] 1 I]
Iy T T
]] 1 I I I
1 I I I I 1
I I I I 1 I
1 | I I I]
T i ST SPCME
| I I I 1]
I i 1 _ i 1
I 1 I I 1 I
I I I [] I
e T e S STIN Syp B
1 I I [1 1
' 1 1 [] 1
I ! 1 [I I
I ' 1 [I 1
Rl JE I P AP
1 I I | I I
_ [I [I !
I ! i _ I |
I i I I I '
I i T S
I i] [] 1
I I 1 [1 i
I I f [1 I
I i I I] I
T A TR T SRSt P
I ! I [] I
! I I [] I
I I I _ I 1
I I i _ 1 I
i Sl ST SESRR
! I 1 [I [
! 1 ! | ! |
I l 1 [1 I
i i I | I I
I T S TI PO
I I I [_ I
I [I I I I
| ! I [I I
I ! I [I I
R Tl T TN S
NN =T 0 o
— — — — —
N omn Vo< W

17
18

R e Rt e e e atar T T S SRS

R s ettt A A Bttt Rtk LT B

! ! ! ! ! ! ! ! !
et et i ST g St S RS

19
20

! ! ! i ! ! ! ! ! !

R it s et TP S T SIS

11.2

Page TU

The Technical Issues Goals

These are the high-level desiderata for a programming
environment. Each goal 1is represented by a correspondingly
numbered row of the TIGMAT in Subsection 9.1.

10.

11.
12.

13.

14.

SCOPE: provides a program development and maintenance
environment which aids and supports projects of all
sizes.

SIMPLICITY: the structure is based on simple overall
concepts.

LOW RISK: does not go beyond the current state of the
art in any avoidable respect.

SUPPORTIVE: provides a helpful interface to the user,
and is easy to learn and use.

INTEGRATED: provides a well-coordinated set of (useful)
tools with well-defined nesting rules/conventions.

OPEN-ENDED: adaptable to improvements, wupdates, and
changes, and facilitates the development and integration
of new tools.

PORTABILITY OF TOOLS: the tools are written in a
single, high-level language and distributed in a
"standard library".

PORTABILITY OF PROJECTS: the tools facilitate the
moving of a project from one host machine to another.

EFFICIENCY: there 1is ample evidence of efforts to
locally and globally minimize the use of resources by
the tools.

UNIFORMITY OF PROTOCOL: communications between the
users, the tools, and the data base conform to uniform
protocol conventions.

BATCH SUPPORT.

INTERACTIVE SUPPORT.

DESCRIPTIVE EQUALITY: the environment itself does not
forbid users from writing and using tools drawing on any

capability used by other tools in the environment.

IMPLEMENTABILITY: the environment is easily
implemented.

Page 75

15. RELIABILITY.

16. MAINTAINABILITY: easlily maintained by "localt

personnel.
17. TRANSPARENCY: able to observe/monitor ‘ internal
activity.

18. TUNEABILITY: able to predictably change the behavior of
the tool(s).

19. APPEAL TO THE CURRENT USER.

20. APPEAL TO THE POTENTIAL USER.

