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Cryo-EM targets in CASP13: overview and evaluation of results
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3Department of Bioengineering, Microbiology and Immunology and Photon Science, Stanford 
University, James H. Clark Center, MC5447, 318 Campus Drive, Stanford, CA 94305, USA

Abstract

Structures of seven CASP13 targets were determined using cryo-electron microscopy (cryo-EM) 

technique with resolution between 3.0 and 4.0 Å. We provide an overview of the experimentally 

derived structures and describe results of the numerical evaluation of the submitted models. The 

evaluation is carried out by comparing coordinates of models to those of reference structures 

(CASP-style evaluation), as well as checking goodness-of-fit of modeled structures to the cryo-

EM density maps. The performance of contributing research groups in the CASP-style evaluation 

is measured in terms of backbone accuracy, all-atom local geometry and similarity of inter-subunit 

interfaces. The results on the cryo-EM targets are compared with those on the whole set of eighty 

CASP13 targets. A-posteriori refinement of the best models in their corresponding cryo-EM 

density maps resulted in structures that are very close to the reference structure, including some 

regions with better fit to the density.
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1. Introduction

Cryogenic electron microscopy (cryo-EM) is becoming increasingly instrumental in solving 

protein structures. By the end of 2018, the number of cryo-EM structure depositions to the 

Protein Data Bank (PDB) exceeded 2700, with almost 900 structures (or roughly 1/3 of the 

entries) submitted that year alone (http://www.rcsb.org/stats/growth/em). The cryo-EM 

determined structures made up around 8% of all protein structures deposited to the PDB in 

2018. Incidentally, the share of cryo-EM structures in CASP13 was essentially the same 

with 7 out of 80 evaluated targets coming from the EM structural biology groups. Thus, 
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CASP13 target dataset represents a proportional slice of the 2018 annual structure deposition 

to the PDB in sense of structure determination methods (Supplementary Figure S1).

Since cryo-EM targets are typically quite different from other CASP targets (in terms of 

their size, complexity of quaternary structure composition and resolution), CASP organizers 

thought that it would be useful to conduct a separate evaluation of the participated methods 

on such targets. In this article, we analyze performance of the CASP13 tertiary and 

quaternary structure prediction methods on the cryo-EM targets only, and compare the 

results with those on all CASP13 targets (discussed in detail elsewhere in this issue). 

Additionally, we carry out analyses specific to cryo-EM derived targets by checking the fit 

of the submitted models to the cryo-EM density maps and comparing the best-fitting models 

refined in the density with their corresponding reference structures (provided by the 

experimentalists).

2. Materials and Methods

2.1. Cryo-EM targets in CASP13

Structures of seven CASP13 targets were determined by cryo-electron microscopy (cryo-

EM) and image processing with resolution between 3.0 and 4.0 Å. Six targets are multimeric 

(T0984, T0995, T0996, T1020, H1021, H1022) and one is monomeric (T0990). Names of 

homo-multimeric targets start with ‘T’, while names of hetero-multimers start with ‘H’. Four 

of the six multimeric targets (T0984, T0995, T1020 and H1021) are also part of the CASP/

CAPRI modeling experiment, where CASP participants are joined by members of CAPRI1 

community in modeling quaternary structure of proteins.

With regards to the target size, all cryo-EM targets are quite large. The monomeric target 

T0990 is 552-residue long. The multimeric targets vary in length from 1504 to 5088 residues 

for whole complexes, and from 149 to 848 residues for individual subunits. The average 

length of CASP13 cryo-EM targets is 2752 residues for assemblies and 462 residues for 

subunits. This is significantly different from CASP13 X-ray and NMR-derived targets, 

which are roughly five times shorter for whole targets (average length of 531 residues) and 

two times shorter for subunits (average length of 272 residues). Even though there is a 

substantial difference in the length at both whole-target and whole-subunit levels, the lengths 

of constitutive domains are comparable. The seven cryo-EM targets encompass 21 structural 

domains with an average length of 197 residues compared to 183 residues in 91 domains of 

the other 73 targets.

To ensure fair comparison of models, CASP13 targets and their domains are assigned to 

different prediction difficulty categories. Oligomeric targets are classified into three 

categories according to the principles outlined in the CASP13 assembly assessment paper 2:

• Easy: templates can be identified by sequence homology for whole oligomeric 

assemblies;

• Medium: only partial templates can be found by sequence-based homology 

searches. Partial means that templates can be identified for subunits, but not the 

whole assembly (i.e., no hints on how to model the interface), or that information 
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on only parts of the subunits or interfaces is known (e.g., a dimeric template is 

available for a tetrameric complex);

• Difficult: no templates are available for either the subunits or the assembly.

According to this classification, three out of six oligomeric cryo-EM targets are easy 

modeling, one – medium difficulty, and two more – hard modeling targets.

At the domain level, prediction targets are classified into difficulty categories following the 

same principles of the oligomeric categorization (i.e., based on the template availability) 

with an additional correction for the per-domain performance of the CASP participants (see 

paper 3 for details). All in all, 21 domains of CASP13 cryo-EM targets are split into two 

difficulty categories: 15 easier template-based modeling (TBM) targets, and 6 harder free 

modeling (FM) targets.

A summary on the CASP13 cryo-EM targets is provided in Table 1. All six oligomeric 

structures are symmetric; however, this information was not provided by the 

experimentalists in advance, and thus was not relayed to predictors or used in the analysis of 

the results.

2.2. Participants and predictions

In CASP13, 93 prediction groups submitted 4079 tertiary structure predictions of seven 

cryo-EM derived targets, and 20 groups submitted 343 quaternary structure predictions of 

six oligomeric cryo-EM targets. The models were generated without knowledge of the cryo-

EM density maps, i.e., based solely on the sequence of the target.

2.3. Evaluation measures

The accuracy of models submitted for each cryo-EM target is evaluated with two broad 

classes of measures – those assessing accuracy of models with respect to their corresponding 

‘reference’ structures, and those assessing quality of model fit in the experimental cryo-EM 

density map (model-to-map goodness-of-fit). Reference structures are the models generated 

by the experimentalists using the information in the cryo-EM map.

2.3.1. Accuracy of models with respect to reference structures—CASP has 

been using a wide suite of numerical measures to assess similarity of models to native 

structures4-6. Below we describe the measures that were chosen for the evaluation of cryo-

EM targets.

2.3.1.1. Tertiary structure evaluation: To assess the accuracy of the tertiary structure of 

models, we employ five conceptually different measures - a rigid-body structure 

superposition measure GDT_TS7,8, and four superposition-free measures – LDDT9, 

CADaa10, SphereGrinder (SG)6 and QCS11. The chosen set of measures provides 

complementary information on the accuracy of a model: GDT_TS reports on conformation 

of model’s backbone with respect to the target’s backbone, LDTT on similarity of inter-

residue distance patterns, CADaa on difference in all-atom contact areas, SG on similarity of 

corresponding local structural neighborhoods, and QCS on topological similarity and 
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relative packing of secondary structure elements. Using all these scores helps provide a well-

rounded opinion about the overall accuracy of the inspected models.

Importantly, for the ranking of the participating groups, absolute scores of models should not 

be considered in isolation from the target difficulty or the performance of other groups. For 

instance, a score of 0.6 can be considered ‘outstanding’ for a free modeling target if all other 

groups score 0.4 or worse, but ‘poor’ for an easier template-based modeling target, where 

majority of modelers score 0.8 or better. Thus, using raw scores for group ranking can be 

misleading. A better practice is to work with the normalized scores quantifying relative 

performance of groups. To this end, we transform per-target raw scores into standard scores 

using the formula:

z−score(model) = raw−score(model) − Mean−score
StandardDeviation−score . (1)

In CASP, each group can submit up to 5 models per target. Typically, groups are ranked 

either on the scores of their ‘first models’ (i.e., the models estimated to be the most accurate 

by the predictors), or their actual per-target best scores (based on the a-posteriori 
evaluation). In this study we use both ranking approaches, and formula (1) is applied to 

calculation of z_scores separately on each of the datasets. After the calculation of original 

z_scores, outliers that score two standard deviations or more below the mean (i.e. z_score ≤ 

−2) are excluded, and the standard scores are re-calculated based on the mean and standard 

deviation of the outlier-free model set (we call these new standard scores here Zscores, 

starting with capital ‘Z’). Next, all models that score below the mean (i.e. those with 

negative Zscores) and outliers from the first stage are assigned Zscores of 0, in order not to 

over-penalize the groups attempting novel strategies12. If a group does not submit any 

predictions on a target, its per-target Zscores are set to zero. Finally, the per-target Zscores of 

different measures are combined and summed over the selected sets of targets.

Here, we adopted the cumulative ranking formulas from the latest CASP assessments 13-16. 

For template-based modeling targets (15 in CASP13) the relative group performance is 

calculated as

TSranking(TBM) = ∑
targ ∈ TBMdomains

[ZGDT−TS + 1 ∕ 3 ∗ (ZLDDT + ZCADaa

+ ZSG)]targ,
(2)

while for free modeling targets (6 in CASP13) it is calculated as

TSranking(FM) = ∑
targ ∈ FMdomains

[ZGDT−TS + ZQCS]targ . (3)

The TBM formula takes equal contributions from a global superposition measure 

(GDT_TS), and local-based measures (LDDT, CADaa and SG), while the FM formula 

weighs equally GDT_TS and QCS, a topology-based measure.
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2.3.1.2. Quaternary structure evaluation: The accuracy of the quaternary structure of 

models is assessed relative to the subunit interfaces in the reference structures in terms of F1 
score (a.k.a. Interface Contact Score17), JaccardCoefficient (a.k.a. Interface Patch score17) 

and QSglob score18; overall similarity of Cα traces in the model and the target (GDT_TSo, 

suffix ‘o’ stands for ‘oligo’); and similarity of intra- and inter- chain distance patterns 

(LDDTo). Ranking of the participating groups is performed according to the procedure 

described above (i.e. removal of outliers and re-calculating of Z-scores) using the formula 

adopted from the CASP13 assembly assessment 2:

QSranking(QS−targ) = ∑
targ ∈ QStargets

[ZF1 + ZJacc + ZGDT−TSo

+ ZLDDTo]targ .
(4)

2.3.2. Fit of model coordinates to cryo-EM density maps—To speed-up the 

calculation of the model-to-map goodness-of-fit, we first superimpose the models (using the 

Biopython’s Bio.pdb module) onto the reference structures, which were produced by the 

target providers in the context of the cryo-EM density map. This procedure positions the 

models approximately in the correct region of their corresponding cryo-EM map. Next, we 

fine-tune the position of the models in the density map using the fit-in-map tool from the 

UCSF Chimera package19. To this end, we use a Python script (accessible at https://

gitlab.com/ccpem/ccpem/tree/master/src/ccpem_core/chimera_scripts) that utilizes 

Chimera’s fitmap global search option, where 100 random initial positions in the map are 

searched and locally optimized. The solutions are then ranked based on the cross-correlation 

score. Note that for difficult targets, models are usually far away from the reference structure 

and thus grossly incompatible with the cryo-EM maps. In such cases, fine-tuning the fit and 

subsequent evaluation make little sense and, hence, is not attempted here.

For assessing the goodness-of-fit, we used three software packages: PHENIX20, 

TEMPy21,22, and EMRinger23. The overall model-to-map goodness-of-fit is quantified using 

PHENIX’s real space correlation coefficients – CCvolume, CCmask and CCpeaks, – each 

probing different aspects of model-to-map fit24; TEMPY’s cross-correlation coefficients – 

CCC, CCCov, the Laplacian-filtered correlation coefficient – LAP and the average per-chain 

Segment-based Mander’s Overlap Coefficients – SMOCf and SMOCd;21,25; and 

EMRinger’s global score enumerating accuracy of side-chain placement within map 

density24.

The per-residue (local) model-to-map goodness-of-fit is evaluated with PHENIX’s local 

CCbox measure24; local EMRinger score23; and TEMPy’s local SMOCf and SMOCd 

scores25. SMOCf is calculated on overlapping residue windows (sequence fragments), 

whereas SMOCd on the voxels occupied by the atoms of a specific residue.

CASP infrastructure for running the evaluation, reporting scores and visualizing evaluation 

results for cryo-EM targets (http://predictioncenter.org/casp13/cryoem_results.cgi) is based 

on the prototype of the evaluation infrastructure26,27 developed for the cryo-EM model 

challenge28.
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3. Results

3.1. Evaluation of tertiary structure

3.1.1. Comparison of results on EM and non-EM targets—By evaluating models 

versus reference structures, we want to address the question of whether the results on the 

cryo-EM targets are substantially different from those on the other CASP13 targets. To 

answer this question, we compare the raw scores and rankings of groups on these two 

subsets of targets.

First, we calculate the averages of per-target maximum scores (MAX) and mean scores 

(MEAN) for TBM and FM domains of EM and non-EM targets. Results of the calculations 

are provided in Supplementary Table S1 (panels A and B). Since the tendencies in the data 

are similar for the different scores, we discuss here only the GDT_TS-based results.

Comparing averages of the MEAN scores shows that TBM domains from EM targets are 

overall harder to predict than non-EM targets (GDT_TS=47.8 on TBM/EM targets vs 55.8 

on TBM/non-EM), while FM domains are equally difficult, regardless of the experimental 

technique used for structure determination (GDT_TS=27.7 on FM/EM vs 28.3 on FM/non-

EM). For the MAX scores, this tendency holds only for the TBM domains (76.5 on 

TBM/EM vs 81.8 on TBM/non-EM), while for the FM domains the scores on EM targets 

are higher than those on non-EM (65.7 on FM/EM vs 59.8 on FM/non-EM). Thus, from the 

analysis of the highest-scoring models, FM domains from cryo-EM structures might seem 

easier for modeling. However, the data show that the difference in the ‘average of MEAN’ 

versus ‘average of MAX’ tendencies on the FM targets can be explained by the 

outstandingly good results for the cryo-EM targets (in particular T0990) by one group 

(A7D), which pulls the corresponding set of maximum scores up. To probe whether the 

difference in the predictive difficulty of EM and non-EM targets is statistically significant, 

we performed unpaired t-tests on the per-target MAX and MEAN scores. The results of the 

tests show that for the harder (FM) domains any difference in the predictive difficulty can be 

attributed to pure chance, while for the easier (TBM) domains the GDT_TS and LDDT 

measures are discriminative at the p=0.05 significance level, thus confirming the conclusion 

that TBM domains from CASP13 cryo-EM targets are in general harder to predict. The 

complete results of the statistical tests are provided in Supplementary Tables S1A and S1B.

3.1.2. Overall group performance—To compare group performance on cryo-EM 

targets, we apply the ranking procedure described in Materials and Methods, section 2.3.1.1. 

Figure 1 provides a summary of the relative performance of groups on the TBM and FM 

domains (panels A and B, respectively). On the TBM domains, several top groups 

demonstrated comparable results having cumulative Zscores within 2 units from each other, 

both on first models (M1) and best results. On the FM domains, the top group (A7D) is an 

undisputable leader. Paired t-tests on the cumulative Zscores and on the individual evaluation 

scores (Tables S2 and S3, Supplementary Material), show that on the TBM domains the 

performance of McGuffin, Zhang, Seok-refine, QUARK, Zhang-Server, A7D and 

MULTICOM groups is statistically indistinguishable. On the FM domains, the A7D group 

outscored all the other groups by a statistically significant margin. These results are in 
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agreement with the results on all CASP13 targets reported by CASP13 TBM and FM 

assessors15,16.

3.2. Evaluation of quaternary structure

3.2.1. Comparison of results on EM and non-EM targets—Similarly to the 

evaluation of tertiary structure, we start our analysis on quaternary structure by calculating 

averages of the per-target maximum (MAX) and average (MEAN) scores, for the multimeric 

EM and non-EM targets. Results of the calculations are provided in Table S1 (panel C). 

Representing each CASP13 multimeric target by the average GDT_TS score from all groups 

(MEAN), and comparing the averages of the representative scores on different target sets 

shows that the interfaces in EM targets were in general easier to predict than those in the 

non-EM ones, as the interface-based scores are higher on the former (F1=20.4, 

Jaccard=30.2) than the latter (14.2 and 26.2, respectively). This result can be explained by 

lower modeling difficulty of CASP13 multimeric EM targets, where the fraction of easy 

targets (TBM) is 50% (3 out of 6) compared to only 33% (12 out of 36) for the non-EM 

targets. The overall shape of multimeric targets is predicted rather poorly on average, for 

both types of targets (EM and non-EM) as quantified by low MEAN GDT_TSo and LDDTo 
scores. If we analyze differences among the best models (MAX scores), we will see that the 

contact-based interface score1 (F1) is higher for the EM targets (44.9 vs 36.2 on non-EM), 

while all other scores are very similar for both types of targets (difference within 1.0 score 

unit). All MAX scores are significantly higher (around 20 units) than the corresponding 

MEAN scores, thus signifying that the best assembly predictors performed much better than 

the rest of the participants.

3.2.2. Overall group performance—The relative performance of groups in predicting 

the quaternary structure of six CASP13 cryo-EM oligomeric targets is summarized in Figure 

2. The cumulative ranking score was calculated using Eq. (4) from section 2.3.1.2. Figure 

2A shows the ranking of CASP participants for these six targets, while Figure 2B shows the 

ranking of CASP and CAPRI groups for four out of the six targets, which were selected for 

the joined CASP/CAPRI experiment1. The Venclovas group leads the rankings among 

CASP-only participants and is also a member of a tight cluster of the top-performing groups 

on the CASP/CAPRI targets. Similarly to the outcome of the tertiary structure analysis, the 

results on the quaternary structure for cryo-EM targets are similar to the results for the 

complete set of all CASP13 targets2.

3.3. Evaluation of model-to-map fit

Evaluating the goodness-of-fit of CASP models to the experimental cryo-EM density maps 

makes sense only for targets with good homology, where high-accuracy models are 

expected. Three out of seven CASP13 cryo-EM targets – T0984o, T0995o and T1020o - 

were classified as easy for modeling (see Materials and Methods). Below we concentrate our 

attention on these three targets, all of which are oligomeric. Density maps for these targets 

are in the 3.2-3.4 Å resolution range (Table 1). Typically, maps in this resolution range 

contain enough information to reliably trace the backbone and some of the side chains. 

However, in practice even models built on such well-resolved maps are not void of structural 

inconsistencies or errors24,29.
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In this section we analyze whether CASP models, which are built without the knowledge of 

the cryo-EM density, agree with the density, and compare their goodness-of-fit with that of 

the experimentally-derived structures. We also check if consensus between the models can 

be an indicator of the reliability of the local goodness-of-fit of the reference structure. 

Finally, we probe the utility of the best CASP models as starting points for further real-space 

refinement in the cryo-EM density map.

3.3.1. Correlation between evaluation scores and selection of the 
assessment measures—Since the goodness-of-fit analysis is done for the first time in 

CASP, we want to check which scores provide complementary information for the 

assessment of CASP models. To this end, we calculate the pair-wise correlation between all 

goodness-of-fit scores (section 2.3.2) and the average correlation of each score with all other 

scores. Figure 3 shows that some pairs of scores (e.g., CCmask/CCvol, SMOCd/SMOCf, 
CCC/CCpeaks) are highly correlated on CASP models. Therefore, we leave only one score 

from each pair (CCmask, SMOCf and CCpeaks) for the assessment. We also exclude the LAP 

and CCCov scores on the grounds of their high similarity to the rest of the measures (see 

corresponding diagonal values in Figure 3). On the other side of the correlation spectrum is 

the EMRinger score. The score has the lowest average correlation to all other model-to-map 

goodness-of-fit scores (0.45, Figure 3) as well as to the ‘vs the reference structure’ scores 

(0.39, Supplementary Figure S2). The low correlation of this measure likely stems from the 

fact that EMRinger’s effective usage requires an approximately correct placement of the 

backbone and side chains within the density, which often lacks in CASP models. Thus, the 

EMRinger score can be misleading in the CASP context and is not used here. Following this 

analysis, the fit scores used for the assessment of CASP models are SMOCf (from TEMPy), 

and CCmask and CCpeaks (from PHENIX). The SMOCf score accounts for per-residue 

correlation of density values in sequential fragments surrounding each residue. PHENIX’s 

CCpeaks compares map regions with highest density values, while CCmask uses values inside 

the mask calculated around the molecule of interest.

3.3.2. Overall (global) goodness-of-fit—The model-to-map global fit score is 

calculated as

fit−score = 1 ∕ 3 [CCmask + CCpeaks + SMOCf], (5)

and ranges between −1 and 1.

Since the cryo-EM experimental models (reference structures) are built to fit the EM density, 

it is not surprising that their fit_score is substantially higher than that of models built without 

the knowledge of experimental data. The corresponding scores of the reference structure and 

the highest-scoring CASP model are: 0.69 and 0.30 for target T0984o; 0.52 and 0.26 for 

target T0995o; and 0.66 and 0.37 for target T1020o. The three main reasons behind such 

large differences are distortions and shifts of secondary structure elements, inaccurate 

modeling of interfaces (docking of subunits), and mistakes in modeling of loops and packing 

of side chains.

Kryshtafovych et al. Page 8

Proteins. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Next, we investigate how well the fit_score (Eq. 5) correlates with the overall quaternary 

structure accuracy score (assembly_score) calculated as an average of individual scores used 

in Eq. 4:

assembly−score = 1 ∕ 4 [F1 + Jacc + GDT−TSo + LLDTo] . (6)

The assembly score ranges between 0 and 1.

We find that the answer strongly depends on the target (Figure 4). For targets with easier 

assembly organization, e.g. T0984o (dimer) or T1020o (trimer), the correlation is high (0.85 

and 0.82, respectively) thus confirming intuitive assumption that models with better overall 

fold should have better fit to map. However, for the target with a more complex organization 

– T0995o (octamer), the correlation between the two scores is weak (0.25). The latter target 

contains 16 outlier models with noticeably higher fit_score (>0.1) than the other 57 models, 

all of which score below 0.1 (see Figure 4). Groups that contributed the betterscoring models 

are Baker, Baker-ROSETTAserver, Yasara and Kiharalab_CAPRI.

3.3.3. Per-residue (local) goodness-of-fit—Local model-to-map fit scores can help 

identifying regions of poor fit, distortions and shifts. To evaluate the local fit, we use the per-

residue SMOCf score.

Figure 5 demonstrates the consensus among CASP models in predicting the local structure 

of the targets (the IQR score), and shows local fit scores (SMOCf) for the highest scoring 

chain in the experimentally-derived reference structure and the highest-scoring CASP 

models. SMOCf scores for all individual chains of the three analyzed cryo-EM targets 

(T0984o, T0995o and T1020o) are provided in Supplementary Figure S3. It is evident from 

the figures that the best-scoring CASP models have worse local fit to the density than the 

reference structures (dashed blue line is consistently below the solid line). An interesting 

question to consider is whether regions of higher structural consensus correspond to regions 

of better local fit in the reference structure and the CASP models. If such a correspondence 

was present, then the blue and red lines in Figure 5 should be in ‘anti-phase’ (i.e. peaks of 

red lines should correspond to dips of the blue ones). With respect to the reference 

structures, we do not observe such a tendency and therefore cannot state that regions of 

higher agreement between models are more likely to correspond to regions where the target 

fits the map better. However, when we compare the best-fitting model lines (dashed blue) 

with the consensus lines (solid red), we notice that the lines are in anti-phase in most 

regions, thus indicating dependency between the inter-model consensus and models’ 

goodness-of-fit to the density, especially for targets T0995 and T1020.

For example, in the best oligomeric model for target T0995 (T0995TS368_5o, from the 

Baker-ROSETTAserver group) the four worst-fitting regions (dips where SMOCf <0.4) are 

regions of bad inter-model consensus (peaks where IQR> 1.5 Å), while the five best-fitting 

regions (peaks where SMOCf>0.7) are regions of good consensus (valleys where IQR<0.5 

Å).
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Similar situation can be observed for the highest-scoring model of target T1020 

(T1020TS004_2o from the Yasara group, shown in Figure 6A). Although this model is well 

fitted in the density overall, including the subunit interface (Figure 6B), it has several 

significant SMOCf dips, most of which correspond to distinct IQR peaks in Figure 5. The 

deepest and the widest dip of the SMOCf line is in the C-terminus region starting at residue 

475. Detailed analysis of the structure reveals that poor fit to density in this region is due to 

inaccurate modeling of loop 475-478 (Figure 6C, left) and associated shift in helix 479-511 

with respect to the reference structure (Figure 6D). Another example of the region that does 

not fit well to the T1020 density is loop 220-230 (Figure 6C, right). Figure 5 shows that 

SMOCf line has a local minimum in this region dipping to (low) SMOCf values around 0.4, 

while the IOR line attains one of its highest peaks, thus signaling substantial disagreement 

between the CASP models. Modeling problems in this region can be attributed to incorrect 

secondary structure prediction, where loop 220-230 was attempted to be modeled as a helix. 

It is worth mentioning that this loop is spatially close to the above discussed C-terminus 

region 475-511, potentially indicating a more global problem in modeling this area.

3.3.4. Refinement of models in the cryo-EM map—With hundreds of models 

submitted for cryo-EM targets in CASP, an interesting question to study is whether these 

models can be effectively used as starting points for the refinement into the EM map. To 

examine this, we apply automated refinement protocols to best-fitting models, and compare 

the resulting refined structures with the reference ones. For targets T1020o and T0995o, we 

use PHENIX real-space refinement with default parameters (five macro-cycles of global 

real-space refinement with rotamer, Ramachandran plot, secondary structure and Cβ 
deviation restraints enabled), while for target T0984o we use Flex-EM25 refinement 

followed by the PHENIX refinement. Flex-EM refinement was ran with rigid-bodies set as 

secondary structure elements. In all cases, the models were refined in their entirety, as 

oligomers.

Target T1020o:  Upon refinement, the highest-scoring model for target T1020o 

(T1020TS004_2o, already analyzed in the previous subsection) shows considerable 

improvement in both the global and local fit (Figure 7). Figure 7A shows the original 

unrefined model (left), the refined model (middle) and the reference structure (right), all 

fitted to the map. It can be easily seen that quality-of-fit improves from left to right, and this 

is confirmed by the goodness-of-fit scores. The global fit score (CCmask) increases from 0.38 

(for unrefined model) to 0.69 (for refined), stopping less than 0.1 short of the reference 

structure’s score of 0.78 (Figure 7B). The local fit score also increases substantially (Figure 

7C), with the average per-residue SMOCf scores rising from 0.47 (unrefined) to 0.64 

(refined) and approaching the reference structure’s score of 0.70. Inspection of the per-

residue SMOCf plot (Figure 7D) shows that the refinement improves the local fit of the 

original model in several regions. Interestingly, in two of the regions (residues 273-285 and 

410-425, marked as regions 2 and 5 in panel D) the local fit of the refined CASP model is 

better than that of the reference structure. Figure 7E demonstrates more accurate placement 

of the residues D422 and Y418, where the side chains move more into the density after 

refinement as compared to their positions in the reference structure. Furthermore, the 

refinement results in forming an intra-chain hydrogen bond between D422-OD2 and W414-
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NE1, which is not present in the reference structure. Figure 7D also identifies four other 

regions (residues 222-234, 287-303, 320-340 and 473-512 marked as 1, 3, 4 and 6, 

respectively), where the SMOCf scores improves by much, although the fit is still worse 

compared to that of the reference structure (see Figure 7F as an example). Additional cycles 

of refinement in PHENIX cannot improve the fits in these regions. Although not tested here, 

further improvement could potentially be achieved using other tools, such as Coot30. Similar 

results are observed in refining other chains (Supplementary Figure S4).

Target T0995o:  Upon refinement, the highest scoring model for target T0995o, TS368_5o 

(dimeric), improves considerably in both the global and local goodness-of-fit (Figure S5). 

The global fit score (CCmask) increases from 0.48 (for unrefined model) to 0.76 (for refined), 

reaching very close to the reference structure’s score of 0.81 (Figure S5A). The local fit 

score also increases substantially (Figure S5B), with the average per-residue SMOCf scores 

rising from 0.54 (unrefined, average over both chains) to 0.71 (refined, average over both 

chains) and approaching the reference structure’s score of 0.72 (average over all chains).

Target T0984o:  For this target, using real-space refinement in PHENIX also significantly 

improves the global fit of the best-fitting model (TS329_1). In particular, the CCmask score 

of the model with the highest fit_score (TS329_1) increases from 0.30 to 0.58 (Figure 8A). 

However, this is still significantly lower than the CCmask for the reference structure (0.79). 

Additionally, the SMOCf curve indicates that large regions of the structure are not improved 

upon refinement (Figure 8B), with an average SMOCf score of 0.51 and 0.58 before and 

after PHENIX-only refinement, respectively. Visual inspection reveals large rigid-body 

shifts relative to the reference structure (e.g. residues 419-559) (Figure 8C). Trying to 

remedy this, we perform real-space flexible fitting with Flex-EM25,31, starting from the best-

fitting model (TS329_1). The refined model obtained using Flex-EM is then subjected to 

further refinement with PHENIX as before. Although this protocol results in a similar global 

fit in the density as compared to the PHENIX-only refinement, the local fit improves 

significantly (see for example the region corresponding to residues 419-559, Figure 8B), 

with less shifts and distortions of rigid bodies (Figure 8D). The latter is also reflected in the 

average SMOCf, which improves from 0.51 to 0.62 (for both chains).

Overall, we show here that the refinement of CASP models in their density maps clearly 

helps bringing the models closer to the experimentally-derived reference structures, as 

judged by the overall (multimeric) and per-chain accuracy of the backbone, packing of the 

side chains and similarity of inter-residue distances (Figure 9). Compared to the original 

CASP13 models, the backbone conformation of the refined models improves significantly as 

the overall (multimeric) GDT_TSo score increases by 13-25% (depending on target), and the 

per-chain (monomeric) GDT_TS score increases by 8-22%. The side-chain packing is also 

improved noticeably as quantified by the side-chain only version of the CAD-score 

(CADss)10. Interestingly, side-chain packing is enhanced most (25%) for the target with the 

smallest correction of the backbone (8%, T0995), and least (3%) for the target with the 

largest correction (22%, T0984). Similarity of models’ distance patterns with respect to the 

targets’ ones is improved for all targets as the after-the-refinement LDDT scores are higher 

than the before-the-refinement LDDT scores by 4-12%. Finally, we want to mention that the 
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improvement in ‘versus the reference structure’ scores does not necessarily translate into 

improvement of MolProbity scores32, which are better for one target (T0984), but worse for 

the other two. The MolProbity scores for the target structures and the refined best CASP 

models are provided in Table S4; the corresponding Ramachandran maps are provided in 

Figure S6.

4. Discussion

For the first time in CASP, a sizeable portion of targets (8%) was determined with cryo-EM. 

Since cryo-EM structures are typically different from the structures derived by X-ray or 

NMR (for example, in their average size or complexity of quaternary structure), it is 

interesting to evaluate if the target determination technique affects accuracy of models, or 

performance of the predictors. Also interesting is to look at the quaternary structure 

prediction (although not unique to cryo-EM targets), and in particular at the accuracy of 

interfaces, as at present most cryo-EM structures represent large protein assemblies (here 6 

out of 7 targets). This paper studies these issues and also explores additional assessment 

approaches specific to cryo-EM models /targets. These approaches examine fit of CASP 

models to the experimental density and check utility of the models for the refinement in 

cryo-EM maps.

In terms of tertiary structure, the paper demonstrates that in comparison with the structures 

derived by X-ray or NMR, the CASP13 cryo-EM structures are in general harder to model 

on template-based domains and of approximately the same difficulty on free modeling 

domains. For the free modeling targets, results differ significantly, depending on whether the 

analysis is based on the average scores or maximum scores. Based on the maximum scores 

the results seem to be favorable to cryo-EM targets (i.e. models are of better accuracy), but 

this conclusion is heavily influenced by the outstanding models of one group on one difficult 

3-domain target. It is worth noting that all results reported here should be taken with caution 

as there were significantly fewer cryo-EM targets in all categories of the analysis.

The rankings of the participating groups on cryo-EM targets are consistent with those on all 

CASP13 targets. The same groups that are leading cryo-EM rankings are the top performers 

on all-target datasets. On the template-based modeling targets, seven groups topped the 

ranking - McGuffin, Zhang, Seok-refine, QUARK, Zhang-Server, A7D and MULTICOM. 

These groups showed statistically similar results. On the free modeling targets, the A7D 

group is an apparent leader, outperforming other groups in a statistically significant manner. 

Among the assembly predictors, the Venclovas group is the best.

The comparison of different types of scores for top-ranked models shows that models that 

demonstrate the best fit to the cryo-EM density quite often have subpar ‘versus the 

reference’ scores, and vice versa. However, in general the accuracy of the best models and 

their fit to density are correlated well based on both global and local measures. Comparing 

local consensus of different models with fit to the density maps also reveals that structurally 

conserved regions are overall better fitted to experimental data. It should be noted though 

that all fit-to-map analyses are performed here on targets where models are of relatively 

good quality, and therefore the conclusions can be related only to this type of targets.
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Refinement of the submitted CASP models in the experimental density shows that the 

models could be improved to the point of approaching the quality of the reference structures 

(and beyond in some local structural regions), thus indicating that high-quality models from 

CASP predictors can be a good starting point for structure refinement. This could potentially 

save computer time and reduce the overall effort in reaching a good model.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Relative performance of CASP13 groups in predicting tertiary structure of cryo-EM targets. 

Data are shown for top 12 groups on (A) 15 TBM domains and (B) 6 FM EUs. Cumulative 

Zscores are calculated according to formulas (2) and (3) (see Materials and Methods) for 

TBM and FM targets, correspondingly. Blue and orange bars show the ranking scores 

calculated on first models (M1) and best results (best), correspondingly. Groups are sorted 

according to the first model scores (blue bars).

Kryshtafovych et al. Page 15

Proteins. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Relative performance of CASP13 and CAPRI groups in predicting quaternary structure of 

cryo-EM targets. Data are shown for (A) top 12 CASP13 groups for all six oligomeric cryo-

EM targets and (B) CASP13 and CAPRI groups on four CASP/CAPRI oligomeric targets. 

Cumulative Zscores are calculated according to formula (4) (see Materials and Methods). 

Blue and orange bars show the ranking scores calculated on first models (M1) and best 

results (best), respectively. Groups are sorted according to the best scores (orange bars). 

CAPRI groups in panel B are marked with an asterisk.
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Figure 3. 
Correlation between model-to-map goodness-of-fit scores based on models submitted for all 

seven CASP13 cryo-EM targets. The under-the-diagonal part of the table shows Spearman 

correlation coefficients between each pair of scores. The correlation scores are visualized in 

the upper portion of the table with color and shape (deeper colors and thinner ovals relate to 

higher correlations). Diagonal cells (shaded) show average correlation versus all other 

scores.
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Figure 4. 
The global model-to-map fit_score (Eq. 5) versus assembly_score (Eq. 6) for CASP13 

models submitted for three cryo-EM targets. Each point corresponds to a model. Linear 

trend lines are threaded through the data. The value of the coefficient of determination R2 is 

provided on the graphs.
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Figure 5. 
Local model-to-map goodness-of-fit scores of the highest-scoring chain in the reference 

structure (solid blue line) and the highest-scoring CASP model (dashed blue line) versus the 

local consensus score of all CASP models (red line) for three of the cryo-EM targets. Score 

values for red lines are provided on the left of the plot, and for blue lines – on the right. The 

goodness-of-fit score is represented by the local SMOCf score (the higher the better). The 

inter-model consensus score (the lower the better) is represented by the interquartile range of 

Cα-Cα distances (in Ångstroms) between corresponding residues in top 100 models 

according to the GDT_TS score, after their optimal superposition. The best-fitting models 
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for the shown targets are:T0984TS329_1o, T0995TS368_5o and T1020TS004_2o (see 

http://predictioncenter.org/casp13/cryoem_results.cgi).
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Figure 6. 
The best CASP13 model (TS004_2o) for target T1020o fitted in the corresponding density 

map. (A) The best model colored according to the local SMOCf score (scale bar at the left). 

The region marked by a circle is zoomed-in in panel (B); the region marked by a rectangle is 

enlarged in panels (C) and (D), from slightly different spatial perspectives. (B) The 

hydrophobic residues at the trimer interface within the cryo-EM map. (C) Loops 475-478 

and 220-230 within the density. (C) Helix 479-511 within the density. In panels (B), (C) and 

(D), the best model is colored according to the SMOCf score (red representing bad fit and 

blue representing good fit), and the reference structure is shown in green.
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Figure 7. 
Assessment of the best-fitting model (TS004_2o) for target T1020o before and after 

PHENIX refinement in the cryo-EM map. Blue color in all panels correspond to the 

unrefined model, orange to the refined one, and green to the reference structure. (A) The 

original model (left), the refined model (middle) and the reference structure (right) fitted into 

the cryo-EM map. Regions that are encircled and numbered in the refined model (middle) 

correspond to the numbered regions in panel D. (B) Global CCmask score for the unrefined 

model, refined model, and experimentally-derived structure. (C) Boxplots of per-residue 

SMOCf scores for chain A in the unrefined model, refined model, and target. (D) Per-residue 

SMOCf scores for chain A in the unrefined model, refined model, and target. Shaded strips 

show most notable areas of fit improvement. The pink-shaded strips (#2 and 5) mark areas 

that improved beyond the target structure fit, while the grey-shaded strips (#1, 3, 4 and 6) 

mark those that improved significantly, but remain still worse than the corresponding areas 

in the target structure. Plots for other chains are very similar and shown in Figure S4. (E) A 

region of the refined model that has improved over the reference structure. An intra-chain 
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hydrogen bond between the side- chains of D422 and W414 in the refined best-fitting model 

is indicated for chain C. (F) Regions in the refined model that are poorly fit to density even 

after the real-space refinement.

Kryshtafovych et al. Page 23

Proteins. Author manuscript; available in PMC 2020 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Assessment of the best-fitting model (TS329_1o) for target T0984o before and after 

refinement in the cryo-EM map using Flex-EM and PHENIX. (A) Global CCmask score for 

the unrefined model (blue), refined model with PHENIX only (pink), refined model with 

Flex-EM and PHENIX (orange), and the experimentally-derived reference structure (green). 

(B) Average SMOCf scores for chain A of the best-fitting model before refinement (blue), 

after PHENIX-only refinement (pink), after Flex-EM and PHENIX refinement (orange), and 

for the reference structure (green). The region corresponding to residues 419-559 is shown 

in gray shade. (C) The fit of the model after PHENIX-only refinement (orange) and the 

reference structure (green) in the cryo-EM map. The zoomed panel shows residues 419-559, 

which are outside of the density after refinement. (D) The fit of the model after Flex-EM 

refinement followed by PHENIX refinement (orange) and the reference structure (green) in 

the cryo-EM map. Region 419-559 is better fit to the density if Flex-EM refinement is 

applied first.
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Figure 9. 
Improvement in model accuracy as quantified by the multimeric GDT_TSo score and 

monomeric GDT_TS, CADss, LDDT scores for the best-fitting CASP13 models before 

(grey) and after (black) refinement in the cryo-EM map. For uniformity of the graph scale, 

the GDT_TS scores are presented as fractions rather than percentages (i.e., are divided by 

100).
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Table 1.

Overview of CASP13 cryo-EM targets

CASP
ID Protein description Map

resol, Å
Stoi-

chiom

Length
mono

(cmplx)

Pred
diffclty

#
Dom Author

T0984
A two-pore calcium channel protein playing 
an important role in regulating lysosomal 
membrane potential

3.4 A2 752 res
(1504) Easy 2

Xiaochen Bai, U. Texas 
Southwestern Medical Center, 
Dallas, TX, USA

T0990
A virulence factor modulating the innate 
immune response and influenza A virus 
pathogenicity

4.0 A1 552 Hard 3 Hong Zhou, U. California, Los 
Angeles, CA, USA

T0995
A cyanide dehydratase providing insight 
into substrate specificity and 
thermostability

3.15 A8 330
(2640) Easy 1 Bryan T. Sewell, U. Cape 

Town, South Africa

T0996 A protein likely playing role in bacterial 
outer membrane lipid transport 3.0-3.5 A6 848

(5088) Medium 7 Damian Ekiert, Skirball 
Institute, NY, USA

T1020 An anion channel with an important role in 
plant physiology 3.3 A3 577

(1731) Easy 1 Oliver Clarke, Columbia U., 
NY, USA

H1021
A part of the anti-feeding prophage (AFP) 
complex, which is a contractile ejection 
system

varying
A6
B6
C6

A:149
B:354
C:295
(4788)

Hard 4
Ambroise Desfosses, Institut 
de Biologie Structurale, 
Grenoble, France

H1022
A part of the anti-feeding prophage (AFP) 
complex, which is a contractile ejection 
system

3.3-3.5 A6
B3

A:229
B:529
(2961)

Hard 3
Ambroise Desfosses, Institut 
de Biologie Structurale, 
Grenoble, France
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