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Dissociative electron attachment to the H2O molecule II: nuclear dynamics on coupled

electronic surfaces within the local complex potential model

Daniel J. Haxton,1, 2, ∗ T. N. Rescigno,2 and C. W. McCurdy2, 3

1Department of Chemistry, University of California, Berkeley, California 94720
2Lawrence Berkeley National Laboratory, Chemical Sciences, Berkeley, California 94720

3Departments of Applied Science and Chemistry,
University of California, Davis, California 95616

We report the results of a first-principles study of dissociative electron attachment (DEA) to
H2O. The cross sections were obtained from nuclear dynamics calculations carried out in full dimen-
sionality within the local complex potential model by using the multi-configuration time-dependent
Hartree method. The calculations employ our previously obtained global, complex-valued, potential
energy surfaces for the three (2B1,

2A1, and 2B2) electronic Feshbach resonances involved in this
process. These three metastable states of H2O

− undergo several degeneracies, and we incorporate
both the Renner-Teller coupling between the 2B1 and 2A1 states, as well as the conical intersection
between the 2A1 and 2B2 states, into our treatment. The nuclear dynamics are inherently multi-
dimensional and involve branching between different final product arrangments as well as extensive
excitation of the diatomic fragment. Our results successfully mirror the qualitative features of the
major fragment channels observed, but are less successful in reproducing the available results for
some of the minor channels. We comment on the applicability of the local complex potential model
to such a complicated resonant system.

I. INTRODUCTION

In the preceeding paper [1], referred to hereafter as (I),
we presented global representations of the three (2B1,
2A1, and 2B2) complex-valued potential energy surfaces
of the metastable states of H2O

− which underlie disso-
ciative electron attachment to water. This paper is con-
cerned with the calculation of the cross sections for that
physical process. Prior experimental and theoretical re-
sults [2–20] have characterized the various breakup chan-
nels and determined the spatial symmetries of the three
metastable electronic states of H2O

−, the 2B1,
2A1, and

2B2 electronic Feshbach resonances, which are respon-
sible for production of H− and O−. As explained in
ref. [18] and (I), the energetically lowest H + OH− chan-
nel does not directly correlate with any of the three Fesh-
bach states. We therefore conclude that OH− production
must be due to nonadiabatic effects.

We pursue this problem theoretically using a coupled
Born-Oppenheimer treatment of the nuclear motion. The
first task, which was described in (I), is the construc-
tion of three-dimensional, complex-valued potential en-
ergy surfaces for these three states, which have a negative
imaginary component due to the finite probability of elec-
tron autodetachment back to H2O + e−. These complex-
valued potential energy surfaces, which are functions of
the nuclear geometry ~q, are defined as

V (~q) = ER(~q) − i
Γ(~q)

2
, (1)

where ER is the resonance position and Γ is the width

∗Present address: Department of Physics and JILA, University of
Colorado, Boulder Colorado 80309

of the resonance, which is related to the lifetime by τ =
1/Γ. (We use atomic units throughout this paper.) The
present article, which we label (II), is concerned with the
use of these potential curves within the local complex
potential (LCP) model [21–25] to calculate the nuclear
dynamics leading to dissociation. The analysis of the
dynamics yields the DEA cross section as a function of
incident electron energy.

We must account for two major nonadiabatic physical
effects in calculating the quantum dynamics of the nuclei.
As described in (I), the three potential energy surfaces
have several degeneracies which lead to coupling among
them. First, the 2B1 and 2A1 states become members of
a degenerate 2Π pair in linear geometry, and for this rea-
son there will be Renner-Teller coupling between them.
We expect this coupling to be relevant for DEA via the
2A1 state, because the gradient of its potential energy
surface will cause the system to move towards linear ge-
ometry after the electron attaches. Second, there is a
conical intersection [18] between the 2B2 and 2A1 states
which leads to coupling between them. For this reason,
as described in (I) we constructed a set of diabatic 2B2

and 2A1 surfaces, along with a coupling term, which we
use in the calculations presented in this paper.

In Fig. 1, we show the real parts ER of the constructed
potential energy surfaces along a two-dimensional cut
which includes the equilibrium geometry of the neutral
(r1 = r2 = 1.81a0; θHOH = 104.5◦). The degenera-
cies which lead to the nonadiabatic effects listed above
can be seen in this figure. The two-dimensional cut
depicted is that for which the two OH bond lengths
are equal (r1 = r2), corresponding to C2v symmetry.
(In C2v symmetry, the adiabatic and diabatic 2A1 and
2B2 surfaces coincide.) The backside of this cut lies
at r1 = r2 = 1.81a0, which is the equilibrium value of
the bond lengths in neutral H2O, and is marked with
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FIG. 1: (Color online) Real parts of resonance energies ER

as constructed in (I) within C2v geometry (r1 = r2), plotted
with respect to bending angle and symmetric stretch distance.

solid lines. The surfaces extend forward in Fig. 1 along
the symmetric stretch direction to geometries at which
r1 = r2 = 2.7a0. The conical intersection comprises the
set of points along which the 2A1 and 2B2 surfaces in-
tersect. The Renner-Teller degeneracy between the 2B1

and 2A1 states occurs at θ = 180◦.

Although Fig. 1 shows only one cut of the potential
energy surfaces, and only their real part, it is useful for
introducing certain features of these surfaces and the dy-
namics that will result. Dissociative attachment via the
lower 2B1 and 2A1 states leads primarily to the product
H− + OH (X 2Π). The two OH bond lengths for such
an arrangement are unequal, and therefore this product
arrangement cannot be seen in Figure 1. However, we
can see that at the equilibrium geometry of the neutral,
the 2B1 surface is relatively flat with bend, while the 2A1

surface slopes steeply downward towards linear geometry
(θ = 180◦). As a result, the dynamics beginning on the
2A1 surface will lead towards linear geometry, and we ex-
pect that the Renner-Teller coupling between these two
states will be more important for DEA via the 2A1 than
via the 2B1 state.

The channel H2 + O− is the minor channel for DEA
via the 2B1 and 2A1 states, but the major channel for the
2B2 state. We can see why this is the case from Fig. 1;
the gradient of the 2B2 (2 2A′) surface leads downward
from the ground state equilibrium geometry towards the
conical intersection, where the system may make a nona-
diabatic transition to the lower surface and access the
clearly visible H2 + O− well on the 1 2A′ (lower cone)
surface. The 2 2A′ surface does not have a low energy
asymptote in this geometry, instead correlating to O− +
H2 (σ1

gσ
1
u).

The outline of this paper is as follows. In Section
II we summarize previous experimental and theoretical
work on this problem. In Section III we present the local
complex potential model, which forms the foundation of

our theoretical implementation. The Hamiltonian for the
rovibrational nuclear motion of a triatomic molecule, and
the additional terms which arise when the Renner-Teller
effect is included, are described in Section IV. In Section
V we describe the Multi-Configuration Time-Dependent
Hartree (MCTDH) method, which we use to calculate the
nuclear dynamics, and the formalism for calculating the
DEA cross sections. In Section VI we present the final
results of this study: cross sections, as a function of inci-
dent electron energy, resolved into the final rovibrational
product states.

II. PREVIOUS EXPERIMENTAL AND
THEORETICAL RESULTS

Dissociative electron attachment to water molecules
has been the subject of previous experimental investi-
gation, starting as early as 1930 [2], and as recently as
the present year (2006) [20]. Early experiments on dis-
sociative electron attachment to H2O focused mainly on
the identification of the negative ion species formed, the
measurement of the total cross sections, and the energy
locations of the structures in the resonance process [6].
Buchel’nikova [3] and Schultz [4] established that the
main products of dissociative electron attachment to wa-
ter are H− and O− , with the production of O− being
almost ten times smaller than that of H− at lower ener-
gies, but with O− dominating at higher electron-impact
energies.

Both Compton and Christophorou [5] and Melton [6]
carried out comprehensive studies of negative ion forma-
tion in water and measured absolute cross sections for
DEA. Three resonance peaks were observed. H− produc-
tion was observed at approximately 6.5 eV and 8.6 eV,
with the second peak much less intense than the first.
The species O− was observed in increasing intensities in
three peaks at 7.0 eV, 9.0 eV, and 11.8 eV [5].

The species OH− is also observed in the dissociative
electron attachment experiments, though at an intensity
one order of magnitude below the minor O− + H2 chan-
nel, which is itself observed at an intensity approximately
one order of magnitude lower than the dominant H− +
OH channel. Melton [6] argued that OH− + H was a
true channel of dissociative electron attachment to H2O
molecules, while in subseqent studies (e.g. Ref. [26]) it
was argued that OH− is produced by DEA to water clus-
ters [H2O]n. The question of OH− production has been
reexamined in the recent experimental study of Fedor et

al.[20]. These authors have concluded that, indeed, it is a
direct product of dissociative electron attachment to wa-
ter. This minor channel is not examined in the present
treatment, and no mechanism has, as yet, been advanced.

The effects of isotopic substitution have also been an
issue of some debate. The replacement of H2O by D2O as
the molecular target has the effect of nearly doubling the
reduced masses corresponding to OH (OD) bond motion.
One would expect, at least in a simple one-dimensional
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picture, that the nuclear dynamics may be substantially
altered by such replacement, and in particular, the time
to dissociation is increased. A longer dissociation time
allows a greater amount of electron autodetachment to
take place; therefore, performing the same experiment
with different isotopic variants provides information on
the lifetime of the electronic state involved. The cross
sections for DEA via both H2O and D2O were mea-
sured, compared, and discussed in detail by Compton
and Christophoreau [5]. A smaller peak cross section for
D− production than for H− production via the lowest-
energy 2B1 state was observed. On the basis of these
results, these authors derived an approximate lifetime of
2.1 × 10−14 seconds for the lowest-energy 2B1 Feshbach
resonance. We published an initial study of DEA via this
state [16], which arrived at results and conclusions much
different from those of ref. [5]. The calculated results
yielded a higher peak cross section for D− production
via the 2B1 resonance than for H− production, and a
similar energy-integrated cross section, in stark contrast
to the results of Compton[5]. The calculations indicated
a larger lifetime of 10.9 × 10−14 seconds for the 2B1 state,
and the nuclear dynamics which we calculated indicated
that only a small portion of the dissociating anion flux is
lost to autodetachment.

The recent experimental results of Fedor et al.[20] have
substantially resolved this controversy. These authors
obtain results different from those of ref. [5], reversing
the trend in peak heights for H− versus D− production
via the 2B1 resonance. They observe a higher peak for
D− production than for H− production, which brings the
current experimental and theoretical results into qualita-
tive agreement.

Although the peak heights provide considerable infor-
mation about the physical process of dissociative elec-
tronic attachment to water, further information is gained
by resolving the angular dependence of the fragments
produced, and the final (ro)vibrational state of the di-
atomic fragment. A series of measurements by Trajmar
and Hall [8] and Belic, Laudau, and Hall [9] revealed
the energy and angular dependence of H− in dissocia-
tive electron attachment to H2O. The determination of
the angular dependence aided the assignment of the spa-
tial symmetries of the three resonant states, B1, A1, and
B2, which had previously been misassigned. By resolving
the kinetic energy of the H− fragment, this experiment
yielded information about the vibrational and rotational
state distribution of the OH fragments.

Curtis and Walker [10] measured cross sections for dis-
sociative electron attachment to D2O and obtained two
important results. By measuring the kinetic energy of
recoil of the D− fragments produced, these researchers
established that both ground state OD (2Π) and excited
OD (2Σ) accompany the D− anions produced within the
third resonance peak, and that the three-body breakup
channel D− + D + O is observed towards the high-energy
tail of the second peak.

All the experimental studies determined that there

are three metastable electronic resonance states of the
H2O

− anion, the 2B1,
2A1, and 2B2, which are primarily

responsible for dissociative electron attachment to wa-
ter. These three electronic states correspond to the three
peaks seen in the experimental cross sections. Although
the third peak is not obvious in the H− cross sections, it
is present, though much smaller than the first and second
peaks.

Several salient features of the early experiments sug-
gest that the nuclear dynamics of this process may hold
some surprises. For dissociative attachment through the
2B1 resonance, the cross section for producing H− + OH
is roughly 40 times larger at its peak than the cross
section for producing the energetically favored products,
O− + H2 [5, 6]. The lowest-energy atom/diatom arrange-
ment, H + OH−, is produced in even smaller quantities.
In addition, the branching ratios for the different prod-
uct states vary greatly depending on which Feshbach res-
onance is formed by the attachment. These observations
indicate that the products of this reaction are deter-
mined by the dynamics of the process itself rather than
by the energetics of the possible product channels, and
that moreover those dynamics are different for each of
the resonance states of the water anion. The detailed ex-
periments of Belic̀, Landau and Hall [9] in 1981 indicated
that the dissociation dynamics involve correlated motion
among multiple degrees of freedom. For instance, the
channel producing H− + OH through the 2B1 resonance
state is accompanied by extensive vibrational excitation
of the OH fragment.

Therefore, given the competition between dissociation
channels and the observed product vibrational excitation,
one expects that the dynamics of dissociative attachment
to this molecule are intrinsically polyatomic, and can only
be described theoretically by a treatment using the full
dimensionality of nuclear motion.

Compared with the large number of experimental
measurements, detailed theoretical work on dissociative
electron-water collisions has been relatively scarce. The
paucity of theoretical work on DA stems from the fact
that, in water, DA proceeds, not through tunneling shape
resonances, but through Feshbach resonances that in-
volve changes in the electronic structure of the target.
Early theoretical work focused on the electronic struc-
ture [11] and configuration-interaction [12] calculations
on various states of H2O

− that are possible resonances.
These calculations, together with experimental observa-
tions, formed the basis of the assignment of the three Fes-
hbach resonances that are responsible for electron-impact
dissociation of water in the gas phase.

Contemporary theoretical work has included ab ini-

tio complex Kohn [13] and R-matrix [14] calculations,
at the equilibrium nuclear geometry, of the resonances
and excitation cross sections into low-lying dissociative
electronic states. More recently, Gorfinkiel, Morgan, and
Tennyson [15] carried out R-matrix calculations of disso-
ciative excitation of water through the four lowest excited
states (the 1,3B1 and 3,1A1 states). A limited study of the
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effects of nuclear motion were included in that work by
increasing one of the OH bonds while keeping the equi-
librium HOH bond angle and the other OH bond length
constant. The only theoretical work on the dynamical
aspects of dissociative electron attachment to water are
earlier classical trajectory analyses based on either repul-
sive [27] or attractive [28] model resonace surfaces.

We previously reported calculations of the cross sec-
tions for dissociative attachment through the lowest-
energy 2B1 resonance [16, 17] that incorporated a full
quantum treatment of the nuclear motion of the resonant
state. That study found good agreement with experi-
ment for dissociative attachment through the lowest res-
onance state (2B1) of the water anion to produce H−, and
it established that the associated dynamics are intrinsi-
cally polyatomic and thus cannot be described success-
fully by one-dimensional models. The present treatment
supercedes our earlier study and extends the treatment
to include the higher resonance states as well.

We have recently presented a qualitative study [18] of
the potential energy surfaces for the three Feshbach res-
onances, which demonstrated that for these metastable,
anion states, there exist numerous intersections and de-
generacies within the adiabatic manifold. This study
identified the conical intersection between the 2A1 and
2B2 states, as well as a novel degeneracy between the 2B2

Feshbach resonance and a 2B2 shape resonance. This
degeneracy defines a branch seam, and the two reso-
nance energies are seen to comprise two components of
a double-valued adiabatic potential energy surface. This
seam and the resulting dynamics may have an effect upon
the three-body, H + H + O− cross section, although
we do not include it in the present treatment. Finally,
in a separate publication [19], we derived a “constant-
eigenmode approximation” and used it to calculate the
angular dependence of the H− fragment production [19]
via the 2B1 resonance. We found excellent agreement
with the results of Belic, Landau and Hall [9], and demon-
strated that the observed angular dependence is a result
of partial-wave mixing in the resonance-background cou-
pling.

III. LOCAL COMPLEX POTENTIAL MODEL

We treat the nuclear dynamics of dissociative electron
attachment within the local complex potential model.
This model is concerned with the proper accounting for
the decay of the resonant state, and its effect upon the
nuclear dynamics. The LCP model includes the simplest
such accounting, in which the decay rate is a local func-
tion of the nuclear geometry.

A. Feshbach partitioning and the nuclear wave
equation

The local complex potential model [21–23] , also known
as the “Boomerang” model when applied to vibrational
excitation, describes resonance nuclear motion by an in-
homogeneous Schrödinger equation and a complex, but
purely local potential. It is perhaps easiest to derive
by applying Feshbach partitioning [29] within the Born-
Oppenheimer framework to derive a nuclear wave equa-
tion [24, 25]. The derivation begins by defining a discrete
(square-integrable) approximation to the resonant elec-
tronic state, ψQ(~re; ~q) which depends parametrically on
the nuclear coordinates ~q and which is unit-normalized
with respect to integration over the electronic coordinates
~re. One then defines the geometry-dependent Feshbach
projection operator Q, which operates on the electronic
degrees of freedom,

Q(~q) =
∣∣ψQ(~q)

][
ψQ(~q)

∣∣, (2)

and its complement P :

P (~q) = 1−Q(~q), (3)

with P 2 = P , Q2 = Q and PQ = QP = 0. (Brackets
denote integration over the electronic degrees of freedom
only.) Partitioning the full wave function for total energy
E as Ψ+ = PΨ+ + QΨ+, we can formally derive the
following inhomogenous equation for QΨ+:
(
E −QHQ−QHP

1

E − PHP + iǫ
PHQ

)
QΨ+

= QHPΨ+,

(4)

where H is the sum of the electronic Hamiltonian and
nuclear kinetic energy, H = Hel + T~q.

In view of Eq. (2), we can write

QΨ+(~re; ~q) = ψQ(~re; ~q) × ξ(~q). (5)

The function ξ(~q) describes the relative motion of the
nuclei in the negative-ion resonance state. To derive an
equation for ξ(~q), the first approximation that is made
is the Born-Oppenheimer approximation: we neglect all
non-adiabatic couplings arising from the operation of the
nuclear kinetic energy upon the adiabatic basis. Then
multiplying Eq. (4) from the left by ψQ(~re; ~q) and inte-
grating oven the electronic coordinates gives the nuclear
wave equation

(E − VQ(~q) − ∆(E) − T~q) ξ(~q) = QHelPΨ+, (6)

where

VQ(~q) ≡ [ψQ |Hel|ψQ] (7a)

and

∆(E) ≡ QHelP
1

E − PHelP − T~q + iǫ
PHelQ. (7b)
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The real-valued potential VQ(~q) is the expectation value
of the electronic Hamiltonian with respect to the discrete
state ψQ; the additional, energy-dependent term ∆(E) is
called the “level-shift operator” and is nonlocal in the
nuclear degrees of freedom ~q, owing to the presence of
the nuclear Green’s function. The residue of this Green’s
function gives the level-shift operator ∆(E) a negative-
definite imaginary component.

In order to bring Eq.(6) into the form of the local com-
plex potential model, it is necessary to make a local ap-
proximation to the level-shift operator ∆(E), and also to
approximate the driving term. The assumptions that un-
derlie these approximations are well understood. [30, 31].
A local approximation to the level-shift operator yields

VQ(~q) + ∆(E) ≈ ER(~q) − i
Γ(~q)

2
, (8)

where ER and Γ are the location and total width of the
resonance. A first-order perturbation treatment (Fermi’s
golden rule) of the driving term yields [19]

QHelPΨ+ ≈

√
Γ0(~q)

2π
χνi

(~q) ≡ φνi
(~q, 0), (9)

where Γ0 is the partial width for decay to the ground
electronic state of the target, and χνi

is the initial rovi-
brational state of the target.

The final working equation of the LCP model then
reads

(
E − ER(~q) +

iΓ(~q)

2
− T~q

)
ξνi

(~q) =

√
Γ0(~q)

2π
χνi

(~q).

(10)
The location and widths of the various resonance states
were obtained from configuration interaction and fixed-
nuclei variational electron scattering calculations, respec-
tively, as detailed in (I). In the case of the 2B1 resonance,
which generally lies below its 3B1 neutral parent, the res-
onance can only decay into the ground electronic chan-
nel. In that case, the total and partial widths, Γ and Γ0,
coincide and can be obtained by fitting the eigenphase
sum to a Breit-Wigner form. For the higher resonances,
a more elaborate fitting procedure is required to obtain
the partial widths, as outlined in ref. [19] and in (I).

B. Time-dependent formulation of the LCP model

A direct solution of the differential equations of the lo-
cal complex potential model can pose significant difficul-
ties for problems with multiple degrees of freedom and,
in such cases, a time-dependent formulation of the prob-
lem can offer distinct computational advantages. Such a
formulation can be made, as demonstrated by McCurdy
and Turner [32], by formally writing the solution of Eq.
(10) as

ξνi
(~q) = (E −H + iǫ)−1φνi

(~q, 0). (11)

and writing the nuclear Green’s function as the Fourier
transform of the propagator for the time-dependent
Schrödinger equation:

ξνi
(~q) = lim

ǫ→0
i

∫
∞

0

ei(E+iǫ)te−iHtφνi
(~q, 0)dt

= lim
ǫ→0

i

∫
∞

0

ei(E+iǫ)tφνi
(~q, t)dt,

(12)

where we define the time-dependent nuclear wave func-
tion as

φνi
(~q, t) = e−iHtφνi

(~q, 0). (13)

The driving term φνi
(~q, 0) of the LCP equation can

thus be viewed as the initial value of a wavepacket which
subsequently evolves on the complex potential surface
of the resonance anion. Since the potential surface is
complex, the packet decays as a function of time until
it effectively escapes the region of the surface where the
width is non-zero.

IV. TRIATOMIC JACOBI COORDINATE
SYSTEM AND HAMILTONIAN

The LCP model equations were solved in the coordi-
nate systems depicted in Figure 2. For the three internal
degrees of freedom of this triatomic molecule, we employ
Jacobi coordinate systems, which are depicted at the top
of this figure. The Jacobi coordinate system on the left,
marked “(a),” is used to analyse the OH + H arrange-
ment; the one on the right, marked “(b),” is used for the
H2 + O arrangement. The vector ~r connects the nuclei of

the diatomic. The vector ~R connects the center of mass
of the diatomic to the third atom. R is the length of
~R, r is the length of ~r, and γ is the angle between the
~R and ~r vectors. For (a), γ = 0 denotes a linear OHH
configuration.

In addition to the three internal degrees of freedom
there are also the three Euler angles which orient the
internal or body-fixed (BF) frame with respect to the
lab or space-fixed (SF) frame. The origin of both frames
is the center of mass. The space-fixed Z-axis is always
chosen to be parallel with the wavevector of the incident
electron. For calculations with total rotational angular
momentum J = 0, the Hamiltonian only operates on the
internal degrees of freedom. For J 6= 0 we must take the
Euler angles into account, and we denote them by α, β, ζ.

The total (electronic plus nuclear, ignoring spin) an-
gular momentum, J , and its projection upon the space-
fixed Z axis, M , are quantum numbers conserved by the
Hamiltonian. We also use the quantum number K to
specify the projection of the angular momentum on a BF
axis. K is not a conserved quantity and there is some
flexibility in its definition. We use the “R-embedding”

scheme [33] in which ~R is taken to be collinear with the
BF Z ′ axis and the angular momentum number K is
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FIG. 2: Jacobi coordinate systems used to analyze the
OH+H, (a) and H2+O (b) arrangement channels and the “R-
embedding” coordinate system with origin at the center of
mass. Primed and unprimed axes refer to BF and SF frames,
respectively. The BF X ′Z′ and X ′Y ′ planes are both marked
with a thin line circle and the SF XZ and XY planes are
marked with dashed circles. The line of nodes is also drawn.
The molecule resides in the BF X ′Z′ plane.

quantized around this axis. With this convention, the
Euler angles α and β are the polar angles which orient
the R vector with respect to the SF frame, and ζ is the
third Euler angle specifying orientation about the BF Z ′

axis. A schematic of the coordinate system is also shown
in Fig. 2.

We may write a general expression for the six-
dimensional rovibrational wave function for a triatomic
with specified J and M value as follows:

χνi
(R, r, γ, α, β, ζ) =

∑

K

D̃J
MK(α, β, ζ)

χK
νi

(R, r, γ)

Rr
(14)

where the basis of D̃J
MK(α, β, ζ) is the set of normalized

Wigner rotation matrices (and BF angular momentum
eigenstates)

D̃J
MK(α, β, ζ) =

√
2J + 1

8π2
DJ

MK(α, β, ζ) (15)

such that

∫ 2π

0

dα

∫ 1

−1

d(cos β)

∫ 2π

0

dζ

D̃J
MK(α, β, ζ)D̃J′

∗

M ′K′(α, β, ζ) = δJ,J′δM,M ′δK,K′ .

(16)

In Eqs.(15) and (16) we follow the conventions of
Zhang [34], which for the DJ

MK is the same as that of
Edmonds [35].

The standard [36, 37] BF Hamiltonian for the ra-
dial solutions χK

νi
of this expansion incorporates cou-

pling among the different K values for a given total
angular momentum J . The neglect of this coupling is
termed the “Coupled States” or “Centrifugal Sudden”
(CS) approximation[38, 39], and we employ this approx-
imation for our calculations, since the kinetic energies
of the recoiling fragments are large compared to their
centrifugal energies. The resulting Hamiltonian is thus
diagonal in K and can be written

HJ
K =

−1

2µR

∂2

∂R2
+

−1

2µr

∂2

∂r2
+

(
ĵ2

2µrr2
+

ĵ2

2µRR2

)

+
J(J + 1) − 2K2

2µRR2
+ V (R, r, γ)

ĵ2 = − (
1

sin γ

∂

∂γ
sin γ

∂

∂γ
−

K2

sin2 γ
)

(17)

where µr and µR are the reduced masses in either de-
gree of freedom and V is the (coupled set of) Born-
Oppenheimer potential energy surface(s) which we cal-
culate.

A. Inclusion of Renner-Teller coupling

For dynamics beginning on the 2A1 (1 2A′) reso-
nance surface, the gradient of that surface will force the
wavepacket towards linear geometry, at which point this
resonance state is degenerate with the 2B1 resonance (see
Figure 1). The Renner-Teller effect [36, 40–46] will there-
fore couple these two components of the 2Π state, and we
modify the Hamiltonian of Eq.(17) accordingly.

The quantum numbers J(J + 1) and K in Eq.(17) are
obtained as eigenvalues of the total angular momentum

operators Ĵ2 and Ĵ ′

z:

Ĵ ′

z

(
D̃J

MK(α, β, ζ)
χK

νi
(R, r, γ)

Rr

)
=

K

(
D̃J

MK(α, β, ζ)
χK

νi
(R, r, γ)

Rr

)
,

(18)

etc., where Ĵ ′

z has a simple form in terms of derivative op-
erators in (α, β, ζ) [47]. Properly, the operators that ap-
pear in the Born-Oppenheimer Hamiltonian for the rovi-

brational motion of the nuclei, Eq.(17), should be not Ĵ2
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and Ĵ ′

z but the nuclear angular momentum operators R̂2

and R̂z , where

R̂i = Ĵi − l̂i, (19)

in which expression l̂i is an electronic angular momentum
operator; the Hamiltonian [36] with this form is exact
except for the omission of the mass-polarization term.

The exact Hamiltonian [36] introduces numerous new
diagonal and off-diagonal (off-diagonal in K, electronic
state, and both) coupling terms to the triatomic Hamil-
tonian. The term which is most commonly labeled

the Renner-Teller coupling comes from the ĵ2 term in
Eq.(17):

(
1

2µrr2
+

1

2µRR2

)
K2

sin2 γ

−→

(
1

2µrr2
+

1

2µRR2

)
R̂2

z

sin2 γ

=

(
1

2µrr2
+

1

2µRR2

)
K2 − 2Kl̂z + l̂2z

sin2 γ
.

(20)

It is the 2Kl̂z term which couples the two components
(sine and cosine, 2B1 and 1 2A′ ) of the 2Π state at linear

geometry. At such geometries the operator l̂z is diago-
nalized by

l̂z (ψA′ ± iψB1) = ±1 × (ψA′ ± iψB1) (21)

The matrix elements of lz may either be computed [41,
45, 46], or approximated by their values at linear geom-
etry [42, 43]. We take the latter route, i.e., we assume
that Eq.(21) holds everywhere. This approximation has
little effect on the dynamics because only near linear ge-
ometry does the coupling become large. We perform our
Renner-Teller calculations in the (lz = ±1) diabatic basis
because it allows us to incorporate the boundary condi-
tion in γ using the “K-legendre” discrete variable repre-
sentation [37]. With this assumption, for a given value
of K, the (lz = ±1) diabatic states have Rz = K ± 1.
The kinetic energy operator in Eq. (20) is diagonal in this
diabatic basis. The coupling then arises from the elec-
tronic Hamiltonian, which is not diagonal in this basis.
The electronic Hamiltonian in this basis takes the form,

V =
1

2

(
VA′ + VB1

VA′ − VB1

VA′ − VB1
VA′ + VB1

)
, (22)

i.e., the diabatic states are degenerate. When K = 0,
there is no Renner-Teller effect, since the coupling term
in Eq. (20) vanishes.

V. THE MULTICONFIGURATION
TIME-DEPENDENT HARTREE METHOD

The Multiconfiguration Time-Dependent Hartree or
MCTDH [48–51] method is an efficient adaptive scheme

for propagating quantum-mechanical wavepackets for
systems with multiple degrees of freedom. We use this
method to perform the propagation in Eq. (13). We use
the implementation within the MCTDH package[52], a
freely available suite of codes built at the University of
Heidelberg, Germany.

In the MCTDH method, as in other methods developed
for solving the time-dependent Schrödinger equation, we
start with a time-independent orthonormal product basis
set,

{χ
(1)
j1

(q1)...χ
(f)
jf

(qf )}, jκ = 1 · · ·Nκ (23)

for a problem with f degrees of freedom and nuclear co-
ordinates labeled q1, ...qf . For computational efficiency,

the basis functions χ
(κ)
jκ

are chosen as the basis functions

of a discrete variable representation (DVR) [53].

The central idea of the MCTDH technique is the repre-
sentation of the nuclear wavepacket as a sum of separable
terms,

φνi
(~q, t) =

n1∑

j1=1

...

nf∑

jf =1

Aj1...jf
(t)

f∏

κ=1

ϕ
(κ)
jκ

(qκ, t), (24)

with nκ ≪ Nκ. Each “single particle function” (or SPF)

ϕ
(κ)
jκ

(qκ, t) is itself represented in terms of the primitive
basis:

ϕ
(κ)
jκ

(qκ, t) =

Nκ∑

iκ=1

c
(κ)
iκjκ

(t)χ
(κ)
iκ

(qκ). (25)

One can derive equations of motion for the parameters

c
(κ)
iκjκ

(t) and Aj1...jf
(t). Since both the coefficients Aj1...jf

and the single-particle functions ϕ
(κ)
jκ

are time-dependent,
the wave function representation is made unique by im-
posing additional constraints on the single-particle func-
tions which keep them orthonormal for all times [50].

The evaluation of the Hamiltonian matrix, which must
be carried out at every time step, is expedited [49, 50] if
the Hamiltonian can be written as a sum of products of
single–coordinate operators. The MCTDH package [52]
includes a utility which performs a fit of a given potential
to a separable representation of this form. Details can
be found in Beck et al.[50]. All potential energy surfaces
used in the current calculation were represented in this
manner, using this utility to fit them specifically for each
choice of the DVR grids.

For calculations on the electronically coupled 2A1 and
2B2 states, the underlying DVR is the same for each elec-
tronic state, but each electronic state has its own set of

single-particle functions ϕ
(κ)
jκ

. This is referred to as the
“multi-set” formalism, as opposed to “single-set.” The
Renner-Teller coupled 12A′/ 2B1 calculation is performed
under the single-set formalism.
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A. Complex absorbing potentials

The sine DVR bases in the r and R degrees of free-
dom incorporate standing wave boundary conditions at
their edges. Therefore, when the dissociating wavepacket
reaches the end of the DVR grid, it must be absorbed to
prevent unphysical reflections. To this end we include an
artificial negative imaginary component to the surface
called a “Complex Absorbing Potential” or CAP[54, 55]:

VCAP =

{
0 (R ≤ Rc)

iη(R−Rc)
2 (R ≥ Rc);

(26)

a similar expression for the CAP in the r degree of free-
dom also applies. Formally, the CAP’s provide the +iǫ
limit in Eq.(12).

We use a value for η equal to 0.007 hartree, and place
Rc three bohr before the end of our grid, except for the
1 2A′ calculations for H2 and D2, for which we use a
strength of 0.0018 hartree and a value of Rc five bohr
before the end of the grid.

B. Dissociative Attachment Cross Sections from
Outgoing Projected Flux

The cross sections for dissociative attachment can be
calculated directly from the time-propagated wavepacket
by computing the energy-resolved, outgoing projected
flux. The energy resolution is achieved by Fourier trans-
form and a final state resolution is achieved by the intro-
duction of appropriate projection operators. For DEA to
a specific final rovibrational state labeled by rotational
(j) and vibrational (ν) indices, we use the projection op-
erator

Pjν =
∣∣∣
χjν

r

〉〈χjν

r

∣∣∣ . (27)

The flux operator, which measures the flux passing
through a surface defined by R = Rc, is defined as

F̂ = i[H,h(R−Rc)] (28)

where h is a heaviside function. The energy-resolved pro-
jected flux is then given by

Fjν(E) =
1

2π

∫
∞

0

dt

∫
∞

0

dt′×

〈φνi
|ei(H−E)tPjν F̂Pjνe

−i(H−E)t′ |φνi
〉

(29)

The MCTDH package [52] includes a utility which com-
putes the outgoing projected flux. In the actual calcula-
tions, the flux operator appearing in the equation above is
replaced by an expression involving the Complex Absorb-
ing potential, Eq.(26). This formulation of the flux oper-
ator is very convenient numerically and entirely equiva-
lent to the traditional formal definition of the operator in
this context, in the limit that the CAP does not perturb

the propagating wavepacket beyond first order, which in
the present case, given the nuclear masses, holds as a
good approximation. For more details on this CAP flux
formalism see refs. [50, 51, 56].

The resulting energy-resolved projected flux is that as-
sociated with the time-independent solution of the driven
Schrödinger equation of the LCP model in Eq. (10),

Fjν(E) =
1

2π
〈ξνi

|Pjν F̂Pjν |ξνi
〉. (30)

In terms of Fjν , the DEA cross section is [17]

σjν
DEA =

4π3

k2
Fjν

(
Eνi

+
k2

2

)
. (31)

For the H− + OH channel, an additional factor of two
is included in Eq. (31) to account for the fact that in a
given calculation we perform the flux analysis for only
one of the two H− + OH arrangements, namely the one
for which the Jacobi coordinates are appropriate.

The definition of the rovibrational states χjν is com-
plicated by the ion-dipole interaction of the fragments.
In our earlier study DEA to water via the 2B1 Fesh-
bach resonance[17], we attempted a complete final state
analysis, and projected upon pendular (restricted rotor)
states [57], not free rotational states, and assumed that
these pendular states evolve adiabatically to their free
rotational state asymptotes. This analysis did not yield
any major insight, and so for the present calculations we
simply project upon free rotational states. As a conse-
quence, there is a small error in our final state resolution,
but the magnitude of this error will span a range of states
and range of energies approximately equal to the magni-
tude of the ion-dipole interaction at the edge of our grid,
which is small compared to the kinetic energy spread of
the fragments.

C. The DVR bases and other MCTDH parameters

In most of the calculations reported here we used
DVR primitive basis sets for all internal degrees of free-
dom, choosing the standard sine DVR[50] for the r and
R degrees of freedom and, for J = 0, the Legendre
DVR[50] for γ. For J > 0, as previously discussed, the
DVR for γ must be modified to account for singulari-
ties in the Hamiltonian (see Eq. 17) due to the term
K2/sin2(γ). This is done by using an extended Legendre
DVR [37, 58, 59], which is implemented in the Heidelberg
MCTDH package [52].

D. Initial states

The initial rovibrational states χνi
of Eq. (9) were ob-

tained via relaxation and improved relaxation [51] as im-
plemented within the MCTDH package [52]. In relax-
ation runs, an initial guess χg(~q, 0) for the ground state
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TABLE I: Peak cross sections (σ, in units of 10−19 cm2 ) and
peak locations (E, in eV) calculated for DEA via the three
resonances, . Experimental peak locations are taken from the
data of Fedor et al., except where noted.

Calculated Experiment
2B1

2A1
2B2

2B1
2A1

2B2

OH + H− σ 103.7 41.4 2.61a 65b 13b

(X 2Π) E 6.87 8.74 11.54 6.4 8.4
OH + H− σ 3.67a

(2Σ) E 12.68
H− σ 5.21a ?

(total, 2B2) E 12.61 11.8c

H2 + O− σ 0.121 0 1.87 1.3d 3.2d 5.7d

E 7.62 11.75 7.1 9.0 11.8

OD + D− σ 124.4 41.6 1.45a 52b 6b

(X 2Π) E 6.93 8.87 11.93 6.4 8.5
OD + D− σ 1.96a

(2Σ) E 12.86
D− σ 2.60a ?

(total, 2B2) E 12.57
D2 + O− σ 0.0242 0 1.97 ? ? ?

E 7.63 12.10 7.1 9.0 12.0
aCalculation not converged for H− + OH arrangement via 2

B2

resonance.
bCompton and Christophoreau, ref. [5]
cJungen, ref. [12]
dMelton, ref. [6]

is propagated in imaginary time, which yields the ground
state χ0(~q):

χg(~q, τ) = e−Hτχg(~q, 0) −→
τ→∞

χ0(~q) (32)

In improved relaxation runs, the propagation of the SPF

expansion coefficients c
(κ)
iκjκ

(τ) of Eq.(25) is performed via

Eq.(32), but the configuration coefficients Aj1...jf
(t) are

obtained anew at each time-step via a Davidson diago-
nalization.

For the two-state 2B2 / 2A1 calculations, the wave-
function is represented in the diabatic basis, each com-
ponent of which has an expansion of the form of Eq.(24),
and different sets of time-dependent single-particle func-

tions ϕ
(κ)
jκ

(qκ, t). Since the adiabatic-to-diabatic transfor-
mation angle is not constant with geometry, the single-
particle functions which represent the initial state will be
different in the diabatic basis than in the adiabatic basis
(in which they would be identical to the single-particle
functions of the relaxation run). For this reason, an it-
erative technique [50] is employed to minimize the er-
ror between the diabatic representation and its adiabatic
representation.

VI. CALCULATED CROSS SECTIONS FOR
DISSOCIATIVE ELECTRON ATTACHMENT TO

WATER

We will present cross sections for dissociative electron
attachment to water into the three different atom-diatom
arrangements which are present as asymptotes of the
2B1,

2A1, and 2B2 Feshbach resonances,

H2O + e− →






H2 +O− 3.56eV

H− +OH (X 2Π) 4.35eV

H− +OH∗ (2Σ) 8.38eV,

resolved into the final rovibrational states of the diatomic
fragment, as a function of incident electron energy. The
final state resolution allows us to determine the kinetic
energy of the diatomic fragment. Therefore, we are able
to calculate cross sections as a function of both the inci-
dent electron energy and the kinetic energy of the re-
coil, which data we may easily compare with experi-
ment. These two dimensional data provide a comprehen-
sive view of dissociative attachment via each of the reso-
nances. We calculate the degree of rotational and vibra-
tional excitation, and show how these quantities change
with the incident electron energies.

We have obtained converged cross sections for all chan-
nels considered, with two exceptions. For the Renner-
Teller coupled 2A1 (1 2A′) / 2B1 states, we have been
unable to obtain a non-zero result for the minor H2 +
O− channel, as well as its deuterated counterpart. For
the production of H− from the 2B2 state, coupled to the
2A1 state via the conical intersection, our calculations
are not fully converged, although we do obtain total cross
sections and, for the OH (2Σ) fragment, final state reso-
lution.

In general, our results are in qualitative, though not
quantitative, agreement with the experimentally mea-
sured cross sections for the major product arrangments
observed in DEA via each resonance state: H− + OH
from the 2B1 and 2A1 resonances, and H2 + O− from
the highest-energy 2B2 resonance. We have had diffi-
culty obtaining results for the minor channels, failing to
reproduce the experimental result for the magnitude of
the cross section for production of H2 + O− via the first
two resonances, and not being able to fully converge the
calculation for production of H− + OH (2Π / 2Σ) via the
2B2 resonance.

Total cross sections calculated for the two anion / di-
atom arrangements, and for both D2O and H2O, are pre-
sented in Fig. 3, along with recent experimental results
from Fedor et al.[20]. Calculated and experimental peak
heights and locations are collected in Table I. In Fig. 3,
the experimental data are internormalized but not abso-
lutely normalized; therefore, for the purposes of compari-
son, we normalize the experimental peak for the produc-
tion of H− + OH via the lowest-energy 2B1 resonance
to Compton and Christophoreau’s[5] result of 6.5×10−19

cm2. The calculated curves are obtained by summing
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FIG. 3: Cross sections for production of H− / D− (left) and O− (right) as a function of incident electron energy, summed from
different MCTDH calculations. Top, cross sections from H2O; bottom, cross sections from D2O. Experimental results of Fedor
et al.[20] included for comparison. The experimental data, which do not have absolute normalization, are normalized to agree
with Compton and Christophoreau’s [5] H− + OH peak height for DEA via the 2B1 resonance at 6.5× 10−18 cm2.

the cross sections into the individual rovibrational states
χjν of the ion + diatom arrangement. Therefore the
three-body cross sections are neglected. The recent ex-
perimental results of Ref. [20] do not resolve the kinetic
energy of the atom-diatom recoil and therefore do not
distinguish between the two- and three-body DEA cross
section. Thus, to the degree that three-body breakup
is important, our calculated results cannot be compared
directly with these experiments for incident electron en-
ergies that exceed the three-body dissociative thresholds
of either 8.04 eV (H+H +O−) or 8.75 eV (H + H− + O).

We can draw the following conclusions from Fig. 3 and
Table I. First, it is clear that the entrance amplitude for
the 2B1 resonance has been overestimated by our present
study, because the magnitude of the DEA cross section
via this resonance is entirely controlled by its entrance
amplitude, and we have overestimated the experimental
peak height by nearly 60%. Also, similar to the result
of our previous study[16, 17], we overestimate the energy
at which the H− cross section via the 2B1 state peaks
by about 0.4eV. The calculated peak location, 6.87eV,
is larger than the vertical transition energy for the 2B1

resonance as defined by our potential energy surface con-
structed in (I), which is 6.63eV. This value is obtained
through a configuration-interaction treatment of the res-
onance; using complex Kohn scattering calculations, we
obtained a value of 6.09eV. The comparison between the
calculated and experimental peak locations indicates that
the physical value of the vertical transition energy for the
2B1 Feshbach resonance is probably about 6.2eV, nearer
to the complex Kohn result.

Similar observations apply to the comparison between
the calculated and experimental results for DEA via the
2A1 resonance to produce H− + OH; the calculated peak
height is too large and located at a higher energy than
is experimentally observed. Therefore, it is possible that
we have overestimated the entrance amplitude and the
vertical transition energy for this resonance as well. The
transition energy as defined by our potential energy sur-
face is 9.01eV; from complex Kohn calculations we ob-
tained a lower result of 8.41eV, which is probably closer
to the physical value. However, as we explain further
below, the disagreement in magnitude and location be-
tween the calculated and observed results may indicate a
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TABLE II: Attachment widths and survival probabilities cal-
culated for the three resonances using Eqs.(33), (34), and (35).

Attachment width Survival
( ×10−4 a.u. ) probability

2B1
2A1

2B2
2B1

2A1
2B2

H2O 3.47 4.33 4.74 0.938 0.651 0.215
D2O 3.54 4.19 4.84 0.916 0.572 0.131

breakdown of the local complex model for DEA via the
2A1 resonance.

The data in Fig. 3 and Table I indicate that, while the
calculations overestimate the cross sections for H− + OH
production, they evidently underestimate those for H2 +
O− production. H2 + O− is the major channel for DEA
via the 2B2 resonance. As explained in Ref. [18], the pres-
ence of this channel is entirely due to nonadiabatic cou-
pling between the upper 2B2 (2 2A′) resonance and the
lower 2A1 (1 2A′) resonance via their conical intersection.
As we will show, the magnitude of this cross section is de-
termined by active competition between different prod-
uct arrangements, the dynamic effects of both the real
and imaginary components of the surface, as well as the
conical intersection dynamics. We regard the agreement
with experiment that we have obtained to be quite good,
considering the complexity of the system. We note that
the location of the calculated peak for O− production
which we have calculated (11.75eV) agrees well with the
experimental value (11.8eV). The peak location may be
contrasted with the vertical excitation energy, which was
calculated in (I) to be 12.83eV. The peak maximum is a
full 1eV below the vertical transition energy, which dif-
ference reflects the influence of autodetachment upon the
nuclear dynamics. The large autodetachment probability
weights those components of the propagating wavepacket
which are closer to the product arrangement, i.e., lower
on the potential energy surface, and results in a break-
down of the multidimensional reflection principle.

The product channel H2 + O− is the minor one for
DEA via the first two resonances, 2B1 and 2A1. We have
failed to reproduce the corresponding experimental re-
sults; our calculations produce a very small cross section
for DEA via the 2B1 resonance to produce this channel,
and zero cross section for 2A1. We regard nonlocal ef-
fects to be a prime candidate for the physical origin of
this channel for the 2B1 state; for the 2A1 state, we sus-
pect that three-body dissociation into H+H+O−, which
is not treated in the present study, may play a significant
role in this channel.

The probability of a dissociative attachment event is
neatly divided into distinct probabilities for attachment
and survival by the local complex potential model. The
norm of the driving term in the driven Schrodinger equa-
tion of the LCP model, Eq.(10) corresponds to the prob-
ability for electron attachment, weighted by the envelope
of the initial vibrational state. We define this quantity

TABLE III: Expectation values of final vibrational quantum
number, 〈ν〉, and angular momentum quantum number 〈j2〉,
of diatomic fragment, as well as the expectation value of the
kinetic energy of the anion recoil, 〈KE〉, for each resonance, as
calculated with Eq.(35). Average kinetic energy determined
by the experimental method of Ref. [20], final column.

Diatomic fragment 〈ν〉 〈j2〉 〈KE〉 〈KE〉, exp’ta

2B1 H− + OH 1.28 107 2.04eV 0.96eV
(1.5eV)b

H2 + O− 3.52 412 0.154 0.12
D− + OD 1.75 240 1.89 0.70
D2 + O− 3.34 821 0.125 0.14

2A1 H− + OH (K=0) 2.11 121 3.35 1.55
(2.5eV)b

D− + OD (K=0) 2.98 221 3.16 1.20
2B2 H− + OH (2Π) c c c

H− + OH (2Σ) 4.69c 439c 3.45c

H2 + O− 7.75 405 0.413 0.57
D− + OD (2Π) c c c

D− + OD (2Σ) 6.63c 819c 3.35c

D2 + O− 13.0 725 0.684 0.79
aData from ref. [20], except where noted.
bRef. [9]
cThe calculation for H− production via 2

B2 is not converged.

as the attachment width ΓA,

ΓA = 2π 〈φνi
|φνi

〉 , (33)

and list the values of ΓA for each of the resonances in
Table II.

Once the electron has attached, the loss of flux via
the imaginary component of the complex-valued surfaces
determines the survival probability of the anion state.
The survival probability may be calculated by integrating
the flux Fjν(E) over energy:

Psurv =

∑
jν

∫
dE Fjν(E)

〈φνi
|φνi

〉
. (34)

The calculated survival probabilities are also listed in Ta-
ble II. The survival probability for the lowest 2B1 reso-
nance state is near one, and therefore for this resonance
the magnitude of the cross section is controlled by the
attachment probability. For DEA via the 2A1 state, the
cross section is lowered by the effect of autodetachment,
though once attached the electron is more likely to sur-
vive to dissociation. For DEA via the upper 2B2 reso-
nance, the large majority of the attached wavepacket is
lost to autodetachment; therefore, the variation of the
lifetime of this state with nuclear geometry plays a large
role in the dynamics.

We calculate the average degree of rotational and vi-
brational excitation, as well as the average kinetic en-
ergy of the anion recoil, for each of the final channels
by weighting the survival probability by the quantity of
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interest,

〈ν〉 =

∑
jν ν

∫
dE Fjν(E)

〈φνi
|φνi

〉Psurv

〈
j2
〉

=

∑
jν j(j + 1)

∫
dE Fjν(E)

〈φνi
|φνi

〉Psurv

〈KE〉 =

∑
jν

Mdiatom

Mtotal
(Einc − Ejν)

∫
dE Fjν(E)

〈φνi
|φνi

〉Psurv

.

(35)

In the third line of Eq.(35), Einc is the incident electron
energy, Ejν is the energy of the final state relative to the
ground vibrational state of H2O, and Mtotal and Mdiatom

are the masses of the original triatom and the diatomic
fragment, respectively, so that the resulting quantity is
the kinetic energy of the anion recoil in the laboratory
frame. We present these results in Table III, along with
experimental data on the anion recoil kinetic energy from
Fedor et al. [20].

Our calculated average values of the anion recoil ki-
netic energy, 〈KE〉, agree to varying degrees with the
results of ref. [20]. Our calculated values for average ki-
netic energy release for the production of H− from the
2B1 and 2A1 resonances are much larger than observed
by these authors, but closer to the values measured by
Belic et al. [9]. As described in (I), the potential energy
surfaces which we have constructed for these resonance
states reproduce the energetics of the two-body asymp-
totes very well (to within 0.08eV for the ground vibra-
tional state). Errors in the present results may therefore
only come from errors in the vertical transition energies,
or a misrepresentation of the dynamics prior to breakup.
As discussed above, it is likely that our vertical transition
energies for the 2B1 and 2A1 resonances are too high, per-
haps by as much as 0.4eV relative to the proper physical
values. Most of this excess energy may be transmitted to
the kinetic energy of the H− recoil, due to the small mass
of hydrogen relative to the H2O molecule. While our cal-
culated results exceed the experimental result of ref. [20]
by more than 0.4eV, they are within 0.4eV of the Belic et

al. value for the 2B1 state and 0.85 eV for the 2A1 state.
Fedor et al. comment that the values obtained for the ki-
netic energy release of H− via the 2B1 and 2A1 resonances
by Belic et al. [9] “may be considered as more accurate.”
The discrepancy with Belic et al. for 2B1 result supports
our recommendation that the physical transition energy
for the 2B1 state be taken to be approximately 6.2eV.
The maximum kinetic energy release at our calculated
peak locations of 6.87 and 8.74eV for the 2B1 and 2A1

states, are, respectively, 2.38 and 4.15eV. Our results are
therefore very near the maximum values and reflect the
small average degree of vibrational excitation which we
calculate.

Our values for the average kinetic energy release of the
major O− fragment from the 2B2 resonance agree much
better with the results of Fedor et al.; we again underesti-
mate the experimental result, but only by 28% and 13%,
respectively, for the nondeuterated and deuterated tar-
get. For this channel, the degree of excitation of the H2

(D2) fragment is large, and therefore the kinetic energy
of the atom-diatom recoil is less than its maximum al-
lowed value. The maximum kinetic energy release at our
calculated peak (11.75eV) is 0.91eV, more than twice our
result for the average value. Therefore, more energy goes
into the rovibrational excitation of the H2 fragment than
into the kinetic energy of the recoil.

We do not calculate the three-body dissociative elec-
tron attachment cross section, i.e.

H2O + e− →

{
H +H +O− 8.04eV

H− +H +O 8.75eV.
(36)

The complex absorbing potential flux formalism [50, 51,
56] which is employed within the MCTDH implementa-
tion [52] is not appropriate for the three-body breakup
channel, at least when used in conjunction with the Ja-
cobi coordinate systems used here. We do, however, pro-
duce rigorous results for the two-body channels by pro-
jecting upon the bound rovibrational final states as in
Eq.(27) and summing.

Our surfaces, as described in (I), are not designed to
reproduce the dynamics leading to three-body dissocia-
tion either. Due to our neglect of the shape/Feshbach res-
onance intersection on the 2B2 manifold, which is a true
characteristic of the physical system and which leads to
the double-valuedness of the physical surface, we cannot
accurately represent the dynamics leading to the three-
body dissociation channels with our single 2B2 surface.
The 2B2 manifold is coupled to the 2A1 state in the three-
body region by the conical intersection, and therefore it
is possible that this omission affects the dynamics via the
2A1 state as well.

It is clear that we may only rigorously compare our
results with experiment for the two-body channels. The
comparison is complicated by the fact that the experi-
mental results are sometimes not final-channel resolved,
such as those presented in Figure 3, and in any case al-
ways incorporate a finite resolution in determining the
energy of the incident electron energy and the kinetic en-
ergy of the recoil. The energetics of the asymptotes of
the physical surfaces, which are mirrored very well by our
constructed potential energy curves, dictate that for the
lowest 2B1 state the three-body channels are closed, but
that for DEA via the other two resonances, at least one
three-body channel is open.

In the following subsections, we give the principal find-
ings of the nuclear dynamics calculations for each channel
that was studied. Further details are given in the EPAPS
archive [60]. Most calculations were carried out for the
ground vibrational state and for total rotational angular
momentum J=0 (or, in the case of the Renner-Teller cou-
pled 1 2A′ / 2B1 calculations, Rz = 0). Rovibrationally
excited initial states were also examined, and these are
listed in the descriptions of the individual calculations
which follow.
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FIG. 4: Cross sections for production of H− + OH (ν), left, or D− + OD (ν), right, from 2B1 state as a function of incident
electron energy. Total, thick line; vibrational states 0 (ground) through 5, thinner lines.
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FIG. 5: Left, cross section for production of H− + OH from 2B1 resonance as a function of incident electron energy and H−

fragment kinetic energy, unshifted, with the physical value of the maximum kinetic energy available plotted as bold line. The
contour lines indicate the magnitude of the cross section. Right, deuterated results. The physical value for the maximum
kinetic energy is slightly lower than the value corresponding to our calculated surfaces. Contours every 2 × 10−17 cm2 eV−1.

A. Dissociative electron attachment via the 2B1

state

We have previously [16, 17] performed a calculation on
the 2B1 state, which is superceded by the present treat-
ment. We perform the calculation using the one uncou-
pled 2B1 potential energy surface. We have confirmed
that Renner-Teller coupling to the 2A1 state at linear ge-
ometry has a negligible effect on the dynamics, at least
for DEA via the ground rovibrational state of the target.

The treatment in our previous study [16, 17] was not
able to resolve the cross section in the minor O− + H2

channel ( 1
40

th
of the major channel), due to deficiencies

in the potential energy surface. While the present study
does obtain converged O− + H2 cross sections, they are
two orders of magnitude below the observed cross sec-
tions, and peak at energies well above the experimental

peaks; it is therefore clear that we have not represented
the dynamics leading to this minor channel accurately.
The in this regard may be due to small deficiencies in
the potential energy surface, or to the presence of signif-
icant nonlocal effects in this minor channel.

In the previous study, we reproduced the magnitude
of the OH + H− cross section to within a few percent.
We continue to regard that close agreement to be essen-
tially fortuitous. Apart from an overall scale factor, the
present calculations for production of H− reproduce the
shape and energy dependence of the experimental results
very well. It appears that the current value calculated for
the width of the 2B1 resonance at the equilibrium geome-
try of the neutral, 10.31meV, is larger the physical value,
the latter being closer to our previously calculated value
of 6.0meV. It is likely that a more accurate description
of electron correlation than we could include in the com-
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plex Kohn calculations of (I) is required to reproduce
the resonance wavefunction of the 2B1 state.

1. Production of OH (X 2Π) + H− via 2B1 state

This is the dominant channel for DEA to H2O, hav-
ing a peak cross section of approximately 6×10−18 cm2.
Cross sections as a function of incident electron energy
are shown in Fig. 4. We calculate a peak cross section
of 10.35 × 10−18 cm2 at 6.87eV. The magnitude of this
cross section is larger than the experimental value (6.6
× 10−18 cm2), and the location of the peak is displaced
upward by 0.4eV. For this resonance, autodetachment is
nearly negligible. Therefore, the excess in the magnitude
which we calculated reflects the fact that the calculated
width values, and hence the entrance amplitudes, are too
large.

The cross sections in Fig. 4 are very similar in shape
to those produced previously [16, 17], though they are
larger in magnitude. At low incident electron energies,
the first vibrational state is produced exclusively, and
subsequent vibrational states have sharp onsets. As the
degree of vibrational excitation increases beyond the first
few quanta, the magnitude of the cross section decreases.
Despite the fact that the first five excited vibrational
states are clearly visible in Fig. 4, the average number of
quanta excited is only 1.28. The average kinetic energy
release, therefore, is near its maximum value of 2.38eV.
The degree of rotational excitation calculated for this
state is relatively low (

〈
j2
〉

= 107 for H2O).
A two-dimensional view of the data is provided in

Fig. 5, where the kinetic energy of the anion recoil, as de-
termined by a full final-state resolution of the products, is
plotted versus incident electron energy; the contour lines
indicate the magnitude of the cross section. The kinetic
energy of the anion recoil in the laboratory frame is

KEanion =
Mdiatom

Mtotal

(Einc − Ejν), (37)

as in Eq.(35). This figure shows that the degree of rota-
tional excitation for production of both H− + OH and
D− + OD is small compared to the vibrational spacing of
the OH fragment, because there are separate lobes cor-
responding to each vibrational state. For the deuterated
case, the lobes are thicker and closer together. The thick
line in this figure corresponds to the maximum kinetic
energy available, as determined by the physical energet-
ics of the system; the maximum kinetic energy as de-
termined by the energetics of the constructed surface is
slightly higher.

In Fig. 6, we plot the cross section as a function of H−

recoil kinetic energy for several values of incident elec-
tron energy. To compare with the experimental results
of Belic, Landau and Hall [9], which reflect the finite
resolution of the kinetic energy of the anion recoil, we in-
corporate the experimental resolution of 150meV in the
ion kinetic energy direction. Such resolution effectively

smears each vibrational peak into the next, and there are
no hard zeroes visible in the data of Fig. 6. A key result
of our calculation is that with better experimental res-
olution, the individual vibrational peaks should be able
to be resolved, not only for H2O, but also for D2O, and
that these peaks should be fully separated. The experi-
mental resolution of ref. [9] was insufficient to delineate
the separate vibrational peaks for D2O. We doubt that
these authors have resolved the rotational structure for
H− + OH production at 7.5eV incident electron energy,
as they claim.

The isotope effect observed for this channel has
been a matter of some interest. Compton and
Christophoreau [5] observed the ratio of peak heights
for the deuterated (D2O) to the nondeuterated (H2O)
species to be 0.75, and the ratio of the energy-integrated
cross sections, which approximate the ratio of survival
probabilities Psurv calculated with Eq.(35), to be 0.60.
In contrast, we observe a larger peak for the deuterated
species, and similar survival probabilities Psurv, both
near one.

The recent results of Fedor et al. [20] resolve this dis-
crepancy. The peak heights which they obtain for H− +
OH production versus D− + OD production via the 2B1

resonance indicate a larger peak for D− + OD, reversing
the prior experimental evidence, and putting experiment
and theory on qualitatively similar ground. It is clear
that the ratio of peak heights obtained by Fedor et al.,
while not explicitly calculated by these authors, is nearer
to one than the present theoretical results, but it is reas-
suring that the trend for both experiment and theory is
in the same direction. The combination of the results of
ref. [20] and the present results indicate that the survival
probability for the physical 2B1 state is indeed near one,
and that minimal flux is lost via the autodetachment for
DEA via this resonance.

The propagated wavepacket, a plot of which can be
found in the EPAPS archive [60], gives a qualitative ex-
planation of the peaks observed in the left panel of Fig. 4.
An analysis of this behavior was given in our earlier
study [17]. For the deuterated version, the peaks are not
discernable. This is due to the larger reduced mass in
the symmetric stretch direction, which causes the peaks
to lie on top of one another.

2. Production of H2 + O− via the 2B1 state

This channel is by far the minor channel for DEA via
the 2B1 resonance. The peak of the H2 + O− cross sec-
tion is approximately 1/40th the height of the peak for
the major H− + OH channel [6]. Being such a minor
channel, it presents a more difficult challenge for theo-
retical methods such as MCTDH, and a greater test for
the local complex potential model. We were able to ob-
tain converged cross sections with the present treatment,
although the magnitudes of our calculated values are far
below the experimental results. Therefore, it is clear that
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FIG. 6: Left, production of H− + OH via the 2B1 resonance at different incident electron energies, as a function of H−

fragment kinetic energy, unshifted, on arbitrary and different scales for each incident electron energy. Right, D− + OD.
Calculated results have been broadened using a 150meV linewidth, consistent with the plotted experimental results from Belic,
Landau and Hall [9].
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FIG. 7: Cross sections calculated for production of H2 + O− via the 2B1 state as a function of incident electron energy. Left,
calculated isotope effect: comparison of H2O and D2O. Right, effect of target excitation: ground initial state result is compared
to result from (010) target state with one quantum of bend and to result from J = 5, K = 0.

we have not represented the dynamics into this channel
accurately. It is possible that minor errors in our cal-
culated surface are to blame, or that the LCP model is
inadequate.

We present the cross sections calculated for H2 + O−

production as a function of incident electron energy in
Figure 7. We compare the total cross section for H2 pro-
duction from H2O with that for D2 production from D2O
in the left panel of this figure. The cross sections peak
at 7.6eV, 0.5eV above the experimental peak at 7.1eV,
and are far smaller than the experimental result. Al-
though our representation of the nuclear dynamics lead-
ing to this channel is clearly lacking, we performed addi-
tional calculations in which the target state of H2O was
rovibrationally excited. We performed two calculations
for total angular momentum J = 5, employing the cen-
trifugal sudden (CS) approximation with K = 0, in the

R-embedding coordinate system, as well as a calculation
with J = 0 but one quantum of bend, the (010) state.
The total cross sections for production of H2 from these
excited states are compared to the ground initial state
result in the right panel of Figure 7.

As is clear from these results, initial excitation of the
target may play a large role in determining the magnitude
of the DEA cross section for H2 + O− production via the
2B1 state, but is insufficient to explain the discrepancy
between the theoretical and experimental results. The ef-
fect of bending excitation increases the cross section dra-
matically; rotational excitation to J = 5 also enhances
the cross section by approximately a factor of two. The
excitation energy of the bending mode is approximately
0.2eV; that of the J = 5, K = 0 state is approximately
0.056eV. These quantities may be compared to the value
of kT at 373.15◦ K, which is 0.032eV. This comparison
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indicates that the bending state is not significantly pop-
ulated in typical experimental setups and should not be
responsible for the magnitude of the observed cross sec-
tions. Comparison of the rotational energy to kT indi-
cates that the degree of rotational excitation of the target
may determine the precise value of the peak cross section
observed in experiment. However, rotational excitation
of the sample is insufficient to explain the discrepancy
between our results and the experimental ones. For the
R-embedding coordinate system, the K = 0 projection
of angular momentum is the most likely to enhance the
DEA cross section for production of H2, because that
projection minimizes the centrifugal potential in the rHH

coordinate (see Eq.(17)). The calculated enhancement is
due to the effect of the centrifugal potential in R, which
“pushes” the wavepacket towards large R, where the O−

+ H2 potential well lies.
Because the width Γ of the 2B1 resonance is small for

all nuclear geometries, one might expect any nonlocal
effects in the resonant nuclear dynamics to be small as
well. However, we are here considering a minor chan-
nel, which is only barely accessible with LCP dynamics
on the constructed potential energy surface. If nonlocal
effects were to open a new dynamical pathway, or other-
wise effectively lower the dynamical barrier to the H2 +
O− well, the magnitude of such effects would not have to
be great in order to produce a noticeable enhancement of
such a small cross section. Therefore, we regard nonlocal
effects to be a strong candidate for the source of the ex-
perimentally observed cross section for production of H2

+ O− via the 2B1 resonance.

B. Dissociative electron attachment via the 2A1 (1
2A′) state, Renner-Teller coupled to the 2B1 state

These calculations are performed in the diabatic (lz =
±1) basis which diagonalizes the nuclear kinetic energy
operator with the Renner-Teller effect, as per the dis-
cussion in Section IV, employing the Centrifugal Sudden
Hamiltonian of Eq.(17). The initial state is the adiabatic
2A1 (1 2A′) state, comprised of equal parts lz = ±1. Like
the other calculations which we present that incorporate
rotational motion, they are parametrized by the body-
fixed angular momentum quantum number K, which is
the projection of the total angular momentum onto the
embedding axis. However, for these Renner-Teller cal-
culations K is interpreted as the eigenvalue of the pro-
jection of the nuclear rotational angular momentum Rz,
not the total angular momentum Jz, upon the embedding
axis, and therefore the diabatic basis lz = ±1 corresponds
to Jz = K ± 1. [61]

We have obtained cross sections for the major H− +
OH (X 2Π) channel of DEA via the 2A1 resonance. How-
ever, for the minor H2 + O− channel, we have not been
able to obtain converged, nonzero cross sections. The
mechanism for DEA via the 2A1 resonance to produce
H2 + O− remains unknown. It is possible that three-

body breakup, which we have not treated, is important
here.

The considerations of ref. [18] indicate that the nuclear
dynamics of DEA via the 2A1 resonance may hold some
surprises, and that the LCP model may be insufficient for
a full description thereof. In particular, as demonstrated
in (I), the width of the 2A1 resonance becomes large as
the nuclear geometry moves toward the H− + OH prod-
uct arrangment. We have calculated width values as high
as 0.15eV for this resonance state for such stretched ge-
ometries, despite the fact that the resonance state lies
only slightly above the neutral at these geometries and
ultimately becomes bound as the atom-diatom distance
is further increased. The explanation for this behavior
is that the electronic structures of the neutral and anion
become highly correlated and different from each other at
such stretched geometries, and as a result, there is con-
siderable shape resonance character mixed into the 2A1

Feshbach resonance. The radically peaked behavior of
the width of the 2A1 state may portend a breakdown of
the LCP model which relies on the implicit assumption
that the background-resonance coupling is a relatively
smooth function of nuclear geometry. Also, the fact that
the 2A1 resonance is coupled to the neutral target by an
s-wave matrix element indicates that virtual state effects
may play a large role as the resonance becomes bound.
Such virtual state effects cannot be properly described
by the LCP model, but have been taken into account in
other systems using effective range theory as, for exam-
ple, in refs. [62, 63]. The fact that we have overestimated
the magnitude of the experimental cross section for H−

+ OH production via the 2A1 resonance indicates that a
breakdown of the LCP model may be responsible for the
loss of flux via autodetachment.

1. Production of H− + OH via the Renner-Teller coupled
2A′′ (2B1) and 1 2A′ (2A1) states

The cross sections for total H− + OH production were
easy to converge, as the channel involved is the main
channel, the dissociation direct, and the dynamics ap-
parently reasonably separable in the rOH Jacobi internal
coordinate system. The relatively small size of the single
particle function (SPF) expansions required to converge
the calculation (see EPAPS archive), support this con-
clusion. We found the Renner-Teller coupling to have a
negligible effect on both the magnitude of the total cross
section and its breakdown into rotational and vibrational
states, so we only report results for K = 0. The cross sec-
tions (for K=0) into final vibrational and rotational lev-
els of the diatomic fragment, for both the deuterated and
nondeuterated cases, are given in the EPAPS archive.

Our theoretical treatment overestimates the cross sec-
tion for DEA into this channel via the 2A1 resonance.
Our peak heights (see Table I), 4.14 and 4.16 ×10−18

cm2 for the nondeuterated and deuterated target, re-
spectively, are approximately three times larger than
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FIG. 8: Left, production of H− + OH from the 2A1 state, as a function of incident electron energy and H− fragment kinetic
energy, as in previous plots; right, deuterated. The maximum kinetic energy available, as determined from the physical
energetics, is plotted with a bold line. Contours every 6 × 10−18 cm2 eV−1.
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FIG. 9: Production of H− + OH (2Π) and D− + OD (2Π) via
the 2A1 state at 8.5eV incident electron energy, as a function
of fragment kinetic energy, as in previous plots. Calculated
results have been broadened using a 150meV linewidth. to
compare with the experimental results from Belic, Landau
and Hall [9], also plotted.

Melton’s observed peak height of 1.3 ×10−18 cm2. Al-
though the recent results of Fedor et al. [20] do resolve
this peak better than previous experiments, and indicate
that Melton’s peak height value may be too low, there is
a clear discrepancy between theory and experiment here.
We attribute the discrepancy to virtual state effects, as
discussed in ref. [18], which may lead to significant au-
todetachment as the 2A1 (1 2A′) state becomes bound.
There is also the possibility that we have overestimated
the entrance amplitude for this state, as we have done
for the 2B1 state.

The degree of vibrational excitation is higher for this
resonance than for the 2B1 resonance: the values of 〈ν〉
calculated from Eq.(35) are 2.03 and 1.28 for the 2A1
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FIG. 10: Production of D− + OD (2Π) at 9.3eV (2A1) and
6.8eV (2B1), as a function of D− fragment kinetic energy, as
in previous figures, with experimental results from Curtis and
Walker [10].

and 2B1 resonances, respectively. This difference is most
likely due to the gradient of the potential energy sur-
face in the symmetric stretch direction, which is larger
at the equilibrium geometry of the neutral for the 2A1

surface than for the 2B1 surface. The behavior of the
propagated wavepacket, which is plotted in the EPAPS
archive, is similar to that found for the 2B1 resonance:
the wavepacket experiences an initial impulse in the sym-
metric stretch direction, but then is bifurcated by the
developing potential wall in this direction, and reflected
into either H− + OH channel. The vibrational excita-
tion is the result of the wavepacket oscillating in the r
direction as it passes down the OH potential well.

The degree of rotational excitation within the OH frag-
ment is also higher for the 2A1 state than for the 2B1

state. Using Eq.(35), we calculate an average degree of
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rotational excitation 〈j2〉 = 119 for this resonance, com-
pared to 107 for the 2B1 resonance. This results from
the larger gradient of the potential energy surface in the
bend direction for the 2A1 surface compared to the 2B1

surface. The 2A1 wavepacket is given an impulse in the
bend direction, which corresponds to excitation of rota-
tional quanta j. This excitation persists in the final state,
as demonstrated by these calculations.

Figure 8 present two-dimensional plots of the cross sec-
tion as a function of both incident electron energy and
final anion recoil kinetic energy. Figure 8 displays a clear
difference from Figure 5. This figure shows that for DEA
via the 2A1 state, the degree of rotational excitation of
the diatomic fragment is high enough that the different
vibrational states are distinguishable, but not completely
separated.

We compare our results for the laboratory-frame, anion
recoil kinetic energy distribution at an incident electron
energy of 8.5eV with the corresponding results of Belic,
Landau and Hall[9] in Figure 9. (Two-dimensional plots
of the cross section as a function of both incident elec-
tron energy and final anion recoil kinetic energy can be
found in the EPAPS archive.) In contrast to the case
of H− production from the 2B1 state, here the degree
of rotational excitation of the diatomic fragment is high
enough that the different vibrational states are distin-
guishable, but not completely separated. The experi-
mental resolution of Ref. [9] was insufficient to delineate
the different peaks for various OH (ν), although our cal-
culations demonstrate that with sufficient resolution, the
vibrational structure should be apparent. In Figure 10
we compare to the experimental results of Curtis and
Walker[10].

2. Failure to calculate production of H2 + O− via
dissociative attachment to the 2A1 state

We have been unable to obtain a nonzero cross sec-
tion for DEA via the 2A1 (1 2A′) state, Renner-Teller
coupled to the 2B1 state, leading to H2 + O−. We have
attempted calculations for K=0 (uncoupled), 1, 2, 3, and
4. Within the MCTDH calculations, we employed single-
particle function (SPF) expansions of up to 24×36×30,
with no success. With this large SPF expansion, and
propagation times of up to 100fs, we regard the rep-
resentation of the LCP dynamics within the MCTDH
ansatz to be accurate. We suspect that O− production
from 2A1 may be dominated by three-body breakup into
H+H+O−, which we have not treated.

C. Dissociative electron attachment via the 2B2

state, involving the conical intersection with the 2A1

state

As described in Ref.[18] and (I), dissociative electron
attachment to H2O via the highest-energy 2B2 state must

involve the conical intersection which this state exhibits
with the 2A1 state. The gradient of the potential en-
ergy surface leads directly towards this conical intersec-
tion from the equilibrium geometry of the neutral. The
conical intersection forms a line in the three-dimensional
space of nuclear geometries, and occurs within C2v sym-
metry, where the OH bond lengths are equal.

We performed a diabatization on the results of
configuration-interaction calculations on 2A1 and 2B2 (1
and 2 2A′) resonances, as described in (I), to produce a
set of diabatic 2A1 and 2B2 surfaces along with a cou-
pling surface. These diabatic surfaces are employed in all
of the following calculations.

Before describing the individual calculations, a few
preliminary remarks about the experimental observations
are in order. Although absolute cross sections for H−

production via the 2B2 resonance are not available, the
experimental evidence [6, 20] indicates that for both D2O
and H2O target states, the branching ratio between H−

production and O− production highly favors O−. There-
fore, the dynamics of DEA beginning in the 2B2 state are
much different from those for the lower-energy 2A1 and
2B1 resonances, which yield far more H− than O−.

This observation is not surprising, in light of the poten-
tial energy surfaces which we have calculated and shown
in (I); the upper 2 2A′ surface was demonstrated to be
quite different from those of the lower resonances. In
particular, the dynamics beginning on the 2B2 (2 2A′)
surface will begin with a decrease of the H-O-H bond an-
gle θHOH , which motion will favor the H2 + O− product
arrangement. However, as we will show, there appears to
be active competition between the two product arrange-
ments, and the branching ratio observed in experiment
is likely the product of both the shape of the real-valued
component to the 2 2A′ surface, and the behavior of its
imaginary component.

As is clear from Table I, the cross sections we calcu-
late for this channel are smaller than the observed cross
sections. However, the comparision is complicated by
the fact that the three-body dissociation channels are
open for incident electron energies sufficient to reach the
2B2 resonance, and we produce cross sections only for
the two-body dissociation channel; the disagreement may
therefore be due to a large contribution of the three-
body breakup channel to the dominant production of
O−. However, the locations of the calculated and ex-
perimental peak maxima for production of O− from the
2B2 resonance agree very well: both cross sections peak
at about 11.8eV. Although the presence of the three-
body dissociation channel may shift the peak, this com-
parison indicates that we have probably accurately rep-
resented the vertical transition energy for the 2B2 res-
onance. The vertical transition energy as represented
by our configuration-interaction surface is 12.83eV, and
therefore we recommend a value of approximately 12.8eV
for the appropriate physical transition energy. This value
is above the value of 11.97eV given by the complex Kohn
calculations of (I).
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FIG. 11: Left, total cross section calculated for production of H− + OH (2Π) versus H− + OH (2Σ) from 2B2 state as a
function of incident electron energy. Right, deuterated version.

The calculated branching ratio between H2 + O− (D2

+ O−) and OH + H− (OD + D−) production is near
unity but the experimental ratio (for the undeuterated
product) exceeds one by a large factor. As we will show,
the dynamics within the first few femtoseconds after at-
tachment are controlled by both real and imaginary com-
ponents of the potential energy surface, the latter con-
suming most of the propagated wavepacket within the
first six femtoseconds.

We have examined the effect of rotational excitation
upon the cross section for production of H2 + O− from
DEA via the 2B2 state, and find it to be negligible.

1. Production of H− + OH (2Π / 2Σ) via the upper 2B2

state

The calculation for the production of OH (2Π / 2Σ) +
H− via the 2B2 Feshbach resonance, which is coupled to
the 2A1 resonance via their conical intersection, proved
difficult to converge. This is evidenced by raggedness in
the OH (2Π) channel cross sections. A final state resolu-
tion in this channel was not possible , although we were
able to resolve the final states of OH (2Σ).

With reference to the discussion in Ref. [18] and (I),
the constructed diabatic 2B2 surface correlates to the
species H− + OH (2Σ), as does the adiabatic 2B2 (2
2A′) surface. The diabatic 2A1 surface correlates to H−

plus ground state OH (2Π), as does the adiabatic 1 2A′

state. Therefore, dynamics beginning on the 2B2 surface
which leads to production of the ground-state H− + OH
(2Π) species must proceed via the off-diagonal coupling
to the 2A1 surface. From the viewpoint of the diabatic
basis, the off-diagonal coupling must in this case lead to
a transition between the diabatic 2B2 and 2A1 surfaces;
from the viewpoint of the adiabatic basis, the dynam-
ics must proceed through the conical intersection via the
singular derivative couplings inherent in that basis.

We present the calculated total cross sections for pro-
duction of either H− + OH or D− + OD in Figure 11.
The results are similar in shape, but the magnitude of
the cross sections for the deuterated case are approxi-
mately half those of the nondeuterated case. Differences
in the reduced masses in the dissociative direction re-
sult in a relatively longer time during which the deuter-
ated species may undergo autodetachment and, conse-
quently, a smaller survival probability for the deuterated
anion, As shown in Table II, the survival probability for
the nondeuterated 2B2 state is 0.215, whereas for the
deuterated species it is only 0.131. Unfortunately, there
is no experimental data for comparison which measures
the relative magnitude of the H− and D− peaks for the
highest-energy 2B2 resonance.

An obvious feature of the results presented in Figure
11 is that the branching ratio of OH (2Π) to OH (2Σ) pro-
duction depends on the incident energy of the electron.
This ratio varies from 1 (only 2Π is produced) at onset
to zero (only 2Σ produced) at higher energy. At low en-
ergy the observed cross section is the result of dynamics
in which the wavepacket makes a nonadiabatic transition
from the upper 2B2 (2 2A′) surface to the lower 2A1 (1
2A′) surface, whereas at high energy, the observed cross
section is due to dynamics in which there is no transition.
Thus, the nuclear dynamics via the 2B2 state involve the
conical intersection to produce a branching ratio that
varies with incident electron energy in an interesting way.

We have only been able to achieve final-state resolu-
tion for the OH (2Σ) fragment. Two-dimensional views
of the cross sections for H− + OH (2Σ) production, as a
function of both the incident electron energy and the ki-
netic energy of the H− fragment, are given in the EPAPS
archive, along with comparisons of our calculated results
with previous experiment. Our calculations reproduce
the approximate level of excitation within the diatomic
fragment, as the theoretical and experimental results are
both centered near the same kinetic energy, ∼2.75eV for
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FIG. 12: Propagation of wavepacket on coupled 2B2 and 2A1 surfaces for H− + OH (2Π / 2Σ) channels, adiabatic 1 2A′ (→
2Π) component, with real part of 1 2A′ potential energy surface at γ = 90◦. Bond lengths, units of bohr. Density is integrated
over γ. Propagation times, left to right and top to bottom, are 0.0, 2.0, 6.0, 10.0, 14.0, and 18.0 femtoseconds, respectively.
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FIG. 13: Propagation of wavepacket on coupled 2B2 and 2A1 surfaces for H− + OH (2Π / 2Σ) channels, adiabatic 2 2A′ (→
2Σ) component, with real part of 2 2A′ potential energy surface at γ = 90◦. Bond lengths, units of bohr. Density is integrated
over γ. Propagation times as in Fig. 12.

H− from H2O, and ∼1.5eV for D− from D2O. We can-
not make a more quantitative comparison, because there
are no experimental values for the average kinetic energy
release in this channel.

The wavepacket dynamics for DEA leading to H− pro-

duction via the coupled 2B2/
2A1 states are shown in

Figs. 12 and 13. The former shows the reduced density
on the adiabatic 1 2A′ surface, the latter on the adiabatic
2 2A′ surface. These plots were obtained by transform-
ing the propagated wavepackets from the diabatic basis
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2B2 state, with rotational excitation of the target, as a func-
tion of incident electron energy. Bold line, total cross sections
for ground rotational state (J = 0); thin line, calculations for
J = 5, K = 0.

to the adiabatic basis. The wavepacket initially has no
magnitude on the lower 1 2A′ surface. Nonadiabatic cou-
pling changes this situation as the wavepacket is propa-
gated. The norm of the propagated wavepacket on the
1 2A′ surface reaches a maximum of 0.112 at t = 9.1fs
by which time a portion of the wavepacket has reached
the dissociative H− + OH (2Π) well of the 1 2A′ surface.
The portion of the wavepacket within this well (see the
bottom-left panel of Figure 12) lies beyond the value (R
= 4.5a0) where the resonance becomes bound, and so it
continues toward dissociation with negligible loss of flux.
The subsequent decrease of the norm of the wavepacket
on the 1 2A′ surface is therefore due to the consump-
tion of other parts of the wavepacket by the imaginary
component of this surface, and to its absorption by the
complex absorbing potentials.

As described in (I), the magnitude of the width for
the upper 2 2A′ surface is generally large, though it de-
creases slowly as the H− + OH (2Σ) well is approached,
and abruptly as the H2 + O− well is approached. As a
result, the wavepacket which begins upon the upper 2 2A′

surface is rapidly consumed, and its norm decreases from
exactly one to 0.321 within six femptoseconds. At this
time, the combined norm on both surfaces is 0.402. The
calculated total survival probability for this resonance,
Psurv, calculated with Eq.(34), is 21.5% (see Table II).
From this comparison we can see that the majority of
the autodetachment for this resonance occurs within the
first six femtoseconds; its survival probability is 40.2%
within this initial time period, and 21.5/40.2 = 53.5%
thereafter.

The high degree of vibrational excitation (〈ν〉) in both
the OH (Π) and OH (Σ) channels is apparent in the os-
cillations of the dissociating wavepacket within each po-
tential well, visible in the lower panels of Figs. 12 and
13. Figure 12 shows that in this case there is additional

structure to the dissociating wavepacket on the lower 1
2A′ surface; however, this structure is most likely due to
the calculation not being fully converged.

2. Production of H2 + O− via the upper 2B2 state

The channel H2 + O− is the dominant channel ob-
served in experiment for dissociative attachment to wa-
ter via the highest-energy 2B2 resonance. As discussed
at length in ref. [18] and (I), this channel is not present
as an asymptote on the 2B2 (2 2A′) surface, and there-
fore, the system must undergo a nonadiabatic transition
via the conical intersection to the lower 1 2A′ surface in
order to reach this product channel. In the context of
the representation which we constructed in (I), the sys-
tem must follow the diabatic 2B2 surface past its crossing
with the 2A1 diabatic surface. The H2 + O− channel is
present as an asymptote of the diabatic 2B2 surface. As
described in ref. [18] and (I), the adiabatic 2A1 surface
does not have a bound asymptote in this arrangement; it
correlates to O− + H2 (σ1

gσ
1
u) instead.

The calculated peak cross section for this channel,
1.87× 10−19cm2, is smaller than the experimental value,
5.7 × 10−19cm2, reported by Melton [6] . The comparison
with experiment is again complicated by the fact that we
calculate only the two-body DEA cross section, while the
available experimental data do not discriminate between
production of O− + H + H and O− + H2. A possible ex-
planation for the discrepancy between our calculated re-
sults and experiment is the presence of a large three-body
component to O− production via the 2B2 resonance. Ro-
tational excitation of the target H2O molecule, on the
other hand, cannot account for this discrepancy. We have
performed several calculations in which rotational excita-
tion of the target is included. These include calculations
for total angular momentum J = 5, projection K = 0.
We find that the effect of such rotational excitation is
minimal, as Fig. 14 shows.

We calculate a very high degree of rotational and vi-
brational excitation in the H2 or D2 fragment. The aver-
age degree of vibrational excitation 〈ν〉 calculated from
Eq.(35) is 7.75 for the H2 fragment and 13.0 for the D2

fragment. The corresponding values for
〈
j2
〉

are 405 and
725, respectively. Figure 15 shows the total cross sec-
tions, as well as the cross sections into either rotational
or vibrational states, summed over the opposite quantum
number. The degree of vibrational excitation evidently
increases with incident electron energy, while the degree
of rotational excitation shows little correlation with inci-
dent electron energy.

The high degree of rotational and vibrational excita-
tion of the diatomic fragment reduces the kinetic energy
of the atom-diatom recoil. This is reflected in the cross
sections for production of both H2 and D2 via the 2B2

resonance which have the greatest magnitude nearer the
lower range of recoil kinetic energy. Two-dimensional
plots of these cross sections as functions of both inci-
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FIG. 16: Propagation on coupled 2B2 and 2A1 surfaces for H2 + O− channel, adiabatic 2 2A′ component. The reduced density
(integrated over γ) of the adiabatic 2 2A′ component of the propagated wavepacket is plotted with the real part of the 2 2A′

potential energy surface at γ = 90◦ (C2v geometry). The location of the conical intersection is marked with a bold line. Bond
lengths, units of bohr. Propagation times, left to right and top to bottom, are 0.0, 2.0, 4.0, 8.0, 12.0, and 16.0 femtoseconds,
respectively.

dent electron energy and the kinetic energy of the recoil
are shown in the EPAPS archive. The maximum and
minimum values of available kinetic energy (assuming
breakup into an atom and a H2 molecule) are plotted
as bold lines. The cross sections for H2 and D2 have a
similar shape, and

Plots of the propagated wavepacket for DEA via the
2B2 resonance are shown in Figs. 16 and 17. The first
of these shows the magnitude-squared of the 1 2A′ com-

ponent to the propagated wavepacket, integrated over γ,
and the latter shows the 2 2A′ component. The corre-
sponding potential energy surfaces, evaluated at γ = 90◦,
are also plotted, along with the location of the conical in-
tersection seam which appears as a bold line.

The wavepacket begins on the upper surface and pro-
ceeds to the lower surface only via nonadiabatic coupling
near the conical intersection. As described in (I), the gra-
dient of the upper 2 2A′ resonance surface leads downhill
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FIG. 17: Propagation on coupled 2B2 and 2A1 surfaces for H2 + O− channel, adiabatic 1 2A′ component. The reduced density
(integrated over γ) of the adiabatic 1 2A′ component of the propagated wavepacket is plotted with the real part of the 1
2A′ potential energy surface at γ = 90◦ (C2v geometry). The location of the conical intersection is marked with a bold line.
Propagation times as in Fig. 16.

towards its conical intersection with the 1 2A′ resonance,
leading the propagated wavepacket towards the seam.
This behavior is clearly visible in Fig. 16 and 17. The
2 2A′ wavepacket follows the conical intersection seam in
Fig. 16, until it is consumed by the large imaginary com-
ponent to that potential energy surface and by nonadia-
batic coupling to the 1 2A′ state along the intersection.
The wavepacket appears on the 1 2A′ surface in Fig.17
along the conical intersection, and a small portion of it
is able to reach the H2 + O− well of that state.

The magnitude of the cross section for production of
H2 + O− from the 2B2 resonance is therefore controlled
by several competing effects. The shape of the real part of
the potential energy surface determines the dynamically
accessible pathways and favors localization of the 2 2A′

wavepacket near the conical intersection. At the same
time, the large imaginary component to this surface con-
sumes the wavepacket and decreases the amount of flux
available to enter the conical intersection. On the lower
1 2A′ surface, the amount of flux that enters the H2 po-
tential well is determined by the shape of that potential
energy surface, since the conical intersection is outside
the potential well and only a fraction of the wavepacket
is propagated into the well.

VII. CONCLUSION

We have presented the results of a fully ab initio study
of dissociative electron attachment to H2O that include

the full dimensionality of nuclear motion. We have at-
tempted to calculate the cross sections for all the ma-
jor and minor two-body channels which are present as
asymptotes of the Born-Oppenheimer, 2B1,

2A1, and
2B2 adiabatic electronic Feshbach resonances. While we
have qualitatively described the principal features that
have been experimentally observed, it is clear that a
fully quantitative description of this process has yet to
be achieved.

The nuclear dynamics calculations were carried out us-
ing the MCTDH method within the framework of the
local complex potential model. For the major channel
DEA, H− + OH (X 2Π) production through the lowest
2B1 resonance, the underlying assumptions of the model
are well satisfied and we have obtained reasonably good
agreement with the experimental observations. Another
notable feature of the present study is the quantification
of the mechanism in the major channel that leads to pro-
duction of O− through the 2B2 resonance. Our earlier
speculation [18] that a conical intersection between the
2A1 and 2B2 states would play the key role in this process
has been confirmed by the present study.

The present treatment has been limited to a consid-
eration of DEA only into the final-state two-body chan-
nels. This limitation undoubtedly explains our inability
to produce a non-zero cross section for O− production
via the 2A1 resonance, which is likely to be dominated
by three-body breakup. Three-body breakup may also
play a role in O− production via the 2B2 resonance, and
its neglect here could explain why our calculated cross
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sections are smaller than the experimental results, which
did not differentiate two- and three-body channels.

Physics beyond the local complex potential model may
be at work in some of the minor channels. Dissocia-
tive electron attachment via the 2A1 Feshbach resonance
may involve an even greater variety of complicated reso-
nant as well as non-resonant phenomena not described by
the LCP model. A variety of effects that go beyond the
LCP model could be at play in the production of H− via
2A1 Feshbach resonance, including coupling to a broader
shape resonance and even non-resonant virtual state ef-
fects. The neglect of such effects could well explain our
overestimation of the cross section for production of H−

+ OH via the 2A1 state. Even for DEA via the lowest-
energy 2B1 state, nonlocal physics may be important in
the minor channel, which leads to H2 + O−.

We have acheived considerable success in describing
the mean features of DEA to water, clarified the mech-
anisms for the two-body breakup channels, and found

evidence to suggest that three-body breakup to produce
O− might be important. Nonetheless, many challenges
remain before a complete and quantitative understand-
ing of this fundamental, but complicated system will be
realized.
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