
UC San Diego
UC San Diego Previously Published Works

Title
UPC++ Specification v1.0, Draft 10

Permalink
https://escholarship.org/uc/item/25m555p9

Authors
Bachan, J
Baden, S
Bonachea, Dan
et al.

Publication Date
2019-03-15

DOI
10.25344/S4JS30

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/25m555p9
https://escholarship.org/uc/item/25m555p9#author
https://escholarship.org
http://www.cdlib.org/

UPC++ Specification
v1.0 Draft 10

UPC++ Specification Working Group
upcxx-spec@googlegroups.com

https://upcxx.lbl.gov

March 15, 2019

Lawrence Berkeley National Laboratory Technical Report (LBNL-2001192)

mailto:upcxx-spec@googlegroups.com
https://upcxx.lbl.gov

UPC++ Specification v1.0 Draft 10

Abstract

UPC++ is a C++11 library providing classes and functions that support Partitioned
Global Address Space (PGAS) programming. We are revising the library under the aus-
pices of the DOE’s Exascale Computing Project, to meet the needs of applications requiring
PGAS support. UPC++ is intended for implementing elaborate distributed data struc-
tures where communication is irregular or fine-grained. The UPC++ interfaces for moving
non-contiguous data and handling memories with different optimal access methods are
composable and similar to those used in conventional C++. The UPC++ programmer
can expect communication to run at close to hardware speeds.

The key facilities in UPC++ are global pointers, that enable the programmer to express
ownership information for improving locality, one-sided communication, both put/get and
RPC, futures and continuations. Futures capture data readiness state, which is useful
in making scheduling decisions, and continuations provide for completion handling via
callbacks. Together, these enable the programmer to chain together a DAG of operations
to execute asynchronously as high-latency dependencies become satisfied.

Acknowledgments

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collab-
orative effort of the U.S. Department of Energy Office of Science and the National Nuclear
Security Administration

Early development of UPC++ was supported by the Director, Office of Science, Office of Ad-
vanced Scientific Computing Research, of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231.

Copyright

This manuscript has been authored by an author at Lawrence Berkeley National Laboratory under Contract
No. DE-AC02-05CH11231 with the U.S. Department of Energy. The U.S. Government retains, and the
publisher, by accepting the article for publication, acknowledges, that the U.S. Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for U.S. Government purposes.

Legal Disclaimer

This document was prepared as an account of work sponsored by the United States Government. While this
document is believed to contain correct information, neither the United States Government nor any agency
thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty,
express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by its trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any agency thereof, or the Regents of
the University of California. The views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States Government or any agency thereof or the Regents of the University
of California.

ii Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

Contents

1 Overview and Scope 1
1.1 Preliminaries . 1
1.2 Execution Model . 3
1.3 Memory Model . 4
1.4 Common Requirements . 4
1.5 Organization of this Document . 4
1.6 Conventions . 5
1.7 Glossary . 5

2 Init and Finalize 9
2.1 Overview . 9
2.2 Hello World . 10
2.3 API Reference . 10

3 Global Pointers 12
3.1 Overview . 12
3.2 API Reference . 13

4 Storage Management 22
4.1 Overview . 22
4.2 API Reference . 22

5 Futures and Promises 26
5.1 Overview . 26
5.2 The Basics of Asynchronous Communication 27
5.3 Working with Promises . 28
5.4 Advanced Callbacks . 29
5.5 Execution Model . 32
5.6 Fulfilling Promises . 33
5.7 Lifetime and Thread Safety . 35

iii

UPC++ Specification v1.0 Draft 10

5.8 API Reference . 36
5.8.1 future . 36
5.8.2 promise . 40

6 Serialization 42
6.1 Class Serialization Interface . 42
6.2 Serialization Concepts . 44
6.3 Functions . 45
6.4 Special Handling in Remote Procedure Calls 46
6.5 View-Based Serialization . 46
6.6 API Reference . 48

7 Completion 53
7.1 Overview . 53
7.2 Completion Objects . 55

7.2.1 Restrictions . 57
7.2.2 Completion and Return Types . 58
7.2.3 Default Completions . 58

7.3 API Reference . 58

8 One-Sided Communication 61
8.1 Overview . 61
8.2 API Reference . 61

8.2.1 Remote Puts . 61
8.2.2 Remote Gets . 63

9 Remote Procedure Call 65
9.1 Overview . 65
9.2 Remote Hello World Example . 66
9.3 API Reference . 66

10 Progress 71
10.1 Overview . 71
10.2 Restricted Context . 72
10.3 Attentiveness . 73
10.4 Thread Personas/Notification Affinity . 74
10.5 API Reference . 76

10.5.1 persona . 77
10.5.2 persona_scope . 79
10.5.3 Outgoing Progress . 80

iv Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CONTENTS

11 Teams 82
11.1 Overview . 82
11.2 Local Teams . 82
11.3 API Reference . 83

11.3.1 team . 83
11.3.2 team_id . 86
11.3.3 Fundamental Teams . 87

12 Collectives 88
12.1 Common Requirements . 88
12.2 API Reference . 89

13 Atomics 95
13.1 Overview . 95
13.2 Deviations from IEEE 754 . 97
13.3 API Reference . 97

14 Distributed Objects 104
14.1 Overview . 104
14.2 Building Distributed Objects . 105
14.3 Ensuring Distributed Existence . 105
14.4 API Reference . 106

15 Non-Contiguous One-Sided Communication 110
15.1 Overview . 110
15.2 API Reference . 111

15.2.1 Requirements on Iterators . 111
15.2.2 Irregular Put . 111
15.2.3 Irregular Get . 113
15.2.4 Regular Put . 115
15.2.5 Regular Get . 116
15.2.6 Strided Put . 117
15.2.7 Strided Get . 119

16 Memory Kinds 121
16.1 API Reference . 123

16.1.1 cuda_device . 123
16.1.2 device_allocator . 125
16.1.3 Data Movement . 129

A Notes for Implementers 131

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. v

UPC++ Specification v1.0 Draft 10

A.1 future_element_t and future_element_moved_t 131
A.2 future<T...>::when_all . 132
A.3 to_future . 133
A.4 future_invoke_result_t . 134

Bibliography 135

Index 136

vi Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

Chapter 1

Overview and Scope

1.1 Preliminaries

1 UPC++ is a C++11 library providing classes and functions that support Partitioned Global
Address Space (PGAS) programming. The project began in 2012 with a prototype AKA
V0.1, described in the IPDPS14 paper by Zheng et al. [5]. This document describes a
production version, V1.0, with the addition of several features and a new asynchronous
API. For a peer-reviewed overview of the new version, see the IPDPS19 paper [4].

2 Under the PGAS model, a distributed memory parallel computer is viewed abstractly as a
collection of processing elements, an individual computing resource, each with local memory
(see Fig. 1.1). A processing element is called a process in UPC++. The execution model of
UPC++ is SPMD and the number of UPC++ processes is fixed during program execution.

3 As with conventional C++ threads programming, processes can access their respective
local memory via a pointer. However, the PGAS abstraction supports a global address
space, which is allocated in shared segments distributed over the processes. A global pointer
enables the programmer to move data in the shared segments between processes as shown
in Fig. 1.1. As with threads programming, references made via global pointers are subject
to race conditions, and appropriate synchronization must be employed.

4 UPC++ global pointers are fundamentally different from conventional C-style pointers. A
global pointer refers to a location in a shared segment. It cannot be dereferenced using the
* operator, and it does not support conversions between pointers to base and derived types.
It also cannot be constructed by the address-of operator. On the other hand, UPC++ global

1

UPC++ Specification v1.0 Draft 10

Figure 1.1: Abstract Machine Model of a PGAS program memory

pointers do support some properties of a regular C pointer, such as pointer arithmetic and
passing a pointer by value.

5 Notably, global pointers are used in one-sided communication: bulk copying operations
(RMA) similar to memcpy but across processes (Ch. 8), and in Remote Procedure Calls
(RPC, Ch. 9). RPC enables the programmer to ship functions to other processes, which is
useful in managing irregular distributed data structures. These processes can push or pull
data via global pointers. Futures and Promises (Ch. 5) are used to determine completion
of communication or to provide handlers that respond to completion. Wherever possible,
UPC++ will engage low-level hardware support for communication and this capability is
crucial to UPC++’s support of lightweight communication.

6 UPC++’s design philosophy is to provide “close to the metal performance.” To meet this
requirement, UPC++ imposes certain restrictions. In particular, non-blocking communica-
tion is the default for nearly all operations defined in the API, and all communication is
explicit. These two restrictions encourage the programmer to write code that is perfor-
mant and make it more difficult to write code that is not. Conversely, UPC++ relaxes some
restrictions found in models such as MPI; in particular, it does not impose an in-order
delivery requirement between separate communication operations. The added flexibility
increases the possibility of overlapping communication and scheduling it appropriately.

7 UPC++ also avoids non-scalable constructs found in models such as UPC. For example,
it does not support shared distributed arrays or shared scalars. Instead, it provides dis-
tributed objects, which can be used to similar ends (Ch. 14). Distributed objects are
useful in solving the bootstrapping problem, whereby processes need to distribute their lo-
cal copies of global pointers to other processes. Though UPC++ does not directly provide
multidimensional arrays, applications that use UPC++ may define them. To this end, UPC++
supports non-contiguous data transfers: vector, indexed, and strided data (Ch. 15).

8 Because UPC++ does not provide separate concurrent threads to manage progress, UPC++
must manage all progress inside active calls to the library. UPC++ has been designed with a

2 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 1. OVERVIEW AND SCOPE

policy against the use of internal operating system threads. The strengths of this approach
are improved user-visibility into the resource requirements of UPC++ and better interoper-
ability with software packages and their possibly restrictive threading requirements. The
consequence, however, is that the user must be conscientious to balance the need for mak-
ing progress against the application’s need for CPU cycles. Chapter 10 discusses subtleties
of managing progress and how an application can arrange for UPC++ to advance the state
of asynchronous communication.

9 Processes may be grouped into teams (Ch. 11). A team can participate in collective
operations. Teams are also the interface that UPC++ uses to propagate the shared memory
capabilities of the underlying hardware and operating system and can let a programmer
reason about hierarchical processor-memory organization, allowing an application to reduce
its memory footprint. UPC++ supports atomic operations, currently on remote 32-bit and
64-bit integers. Atomics are useful in managing distributed queues, hash tables, and so
on. However, as explained in the discussion below on UPC++’s memory model, atomics are
split phased and not handled the same way as they are in C++11 and other libraries.

10 UPC++ will support memory kinds (Ch. 16), whereby the programmer can identify regions
of memory requiring different access methods or having different performance properties,
such as device memory. Since memory kinds will be implemented in Year 2, we will defer
their detailed discussion until next year.

1.2 Execution Model

1 The UPC++ internal state contains, for each process, internal unordered queues that are
managed for the user. The UPC++ progress engine scans these queues for operations initiated
by this process, as well as externally generated operations that target this process. The
progress engine is active inside UPC++ calls only and is quiescent at other times, as there are
no threads or background processes executing inside UPC++. This passive stance permits
UPC++ to be driven by any other execution model a user might choose. This universality
does place a small burden on the user: calling into the progress function. UPC++ relies on
the user to make periodic calls into the progress function to ensure that UPC++ operations
are completed. progress is the mechanism by which the user loans UPC++ a thread of
execution to perform operations that target the given process. The user can determine
that a specific operation completes by checking the status of its associated future, or by
attaching a completion handler to the operation.

2 UPC++ presents a thread-aware programming model. It assumes that only one thread of
execution is interacting with any UPC++ object. The abstraction for thread-awareness in
UPC++ is the persona. A future produced by a thread of execution is associated with its

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 3

UPC++ Specification v1.0 Draft 10

persona, and transferring the future to another thread must be accompanied by transfer-
ring the underlying persona. Each process has a master persona, initially attached to the
thread that calls init. Some UPC++ operations, such as barrier, require a thread to have
exclusive access to the master persona to call them. Thus, the programmer is responsible
for ensuring synchronized access to both personas and memory, and that access to shared
data does not interfere with the internal operation of UPC++.

1.3 Memory Model

1 The UPC++ memory model differs from that of C++11 (and beyond) in that all updates
are split-phased: every communication operation has a distinct initiate and wait step.
Thus, atomic operations execute over a time interval, and the time intervals of successive
operations that target the same datum must not overlap, or a data race will result.

2 UPC++ differs from MPI in that it doesn’t guarantee in-order delivery. For example, if we
overlap two successive RPC operations involving the same source and destination process,
we cannot say which one completes first.

1.4 Common Requirements

1 Unless explicitly stated otherwise, the requirements in [res.on.arguments] in the C++ stan-
dard apply to UPC++ functions as well. In particular, if a local or global pointer passed to
a UPC++ function is invalid for its intended use, the behavior of the function is undefined.

2 For UPC++ functions with a Precondition(s) clause, violation of the preconditions results in
undefined behavior.

1.5 Organization of this Document

1 This specification is intended to be a normative reference - a Programmer’s Manual is
forthcoming. For the purposes of understanding the key ideas in UPC++, we recommend
that the novice reader skip Chapter 10 (Progress) and the advanced topics related to
futures, personas, and continuation-based communication.

2 The organization for the rest of the document is as follows. Chapter 2 discusses the
process of starting up and closing down UPC++. Global pointers (Ch. 3) are fundamental

4 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 1. OVERVIEW AND SCOPE

to the PGAS model, and Chapter 4 discusses storage allocation. Since UPC++ supports
asynchronous communication only, UPC++ provides futures and promises (Ch. 5) to manage
control flow and completion. Chapters 8 and 9 describe the two forms of asynchronous one-
sided communication, rput/rget and RPC, respectively. Chapter 10 discusses progress.
Chapter 13 discusses atomic operations. Chapter 11 discusses teams, which are a means of
organizing UPC++ processes. Chapter 14 discusses distributed objects. Chapter 15 discusses
non-contiguous data transfers. Chapter 16 discusses memory kinds.

1.6 Conventions

1. C++ language keywords are in the color mocha.

2. UPC++ terms are set in the color bright blue except when they appear in a synopsis
framebox.

3. All functions are declared noexcept unless specifically called out.

4. All entities are in the upcxx namespace unless otherwise qualified.

1.7 Glossary

1 Affinity. A binding of each location in a shared or device segment to a particular process
(generally the process which allocated that shared object). Every byte of shared
memory has affinity to exactly one process (at least logically).

2 C++ Concepts. E.g. TriviallyCopyable. This document references C++ Concepts as
defined in the C++14 standard [3] when specifying the semantics of types. However,
compliant implementations are still possible within a compiler adhering to the earlier
C++11 standard [2].

3 Collective. A constraint placed on some language operations which requires evaluation
of such operations to be matched across all participating processes. The behavior of
collective operations is undefined unless all processes execute the same sequence of
collective operations.

4 A collective operation need not provide any actual synchronization between pro-
cesses, unless otherwise noted. The collective requirement simply states a relative
ordering property of calls to collective operations that must be maintained in the par-
allel execution trace for all executions of any valid program. Some implementations

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 5

UPC++ Specification v1.0 Draft 10

may include unspecified synchronization between processes within collective opera-
tions, but programs must not rely upon the presence or absence of such unspecified
synchronization for correctness.

5 Collective object. (16) A semantic binding of objects constructed and destroyed collec-
tively by the processes in a team.

6 DefinitelySerializable. (6) A C++ type that is either DefinitelyTriviallySerializable, or
for which there is a user-supplied implementation of the visitor function serialize.

7 DefinitelyTriviallySerializable. (6) A C++ type that is either TriviallyCopyable and
has no user-supplied implementation of the visitor function, or for which the trait
is_definitely_trivially_serializable is specialized to have a member value
that is true.

8 Device. (16) A physical device with storage that is distinct from main memory.
9 Device segment. (16) A region of storage associated with a device that is used to allocate

objects that are accessible by any process.
10 Futures (and Promises). (5) The primary mechanisms by which a UPC++ application

interacts with non-blocking operations. The semantics of futures and promises in
UPC++ differ from the those of standard C++. While futures in C++ facilitate
communicating between threads, the intent of UPC++ futures is solely to provide an
interface for managing and composing non-blocking operations, and they cannot be
used directly to communicate between threads or processes. A future is the interface
through which the status of the operation can be queried and the results retrieved,
and multiple future objects may be associated with the same promise. A future thus
represents the consumer side of a non-blocking operation. A promise represents the
producer side of the operation, and it is through the promise that the results of the
operation are supplied and its dependencies fulfilled.

11 Global pointer. (3) The primary way to address memory in a shared memory segment
of a UPC++ program. Global pointers can themselves be stored in shared memory or
otherwise passed between processes and retain their semantic meaning to any process.

12 Local. (11.2) Refers to an object or reference with affinity to a process in the local team.
13 Operation completion. (7) The condition where a communication operation is com-

plete with respect to the initiating process, such that its effects are visible and that
resources, such as source and destination memory regions, are no longer in use by
UPC++.

14 Persona. (10.4) The abstraction for thread-awareness in UPC++. A UPC++ persona object
represents a collection of UPC++-internal state usually attributed to a single thread.

6 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 1. OVERVIEW AND SCOPE

By making it a proper construct, UPC++ allows a single OS thread to switch between
multiple application-defined roles for processing notifications. Personas act as the
receivers for notifications generated by the UPC++ runtime.

15 Private object. An object outside the shared space that can be accessed only by the
process that owns it (e.g. an object on the program stack).

16 Process. (1) An OS process with associated system resources that is a member of a
UPC++ parallel job execution. UPC++ uses a SPMD execution model, and the number
of processes is fixed during a given program execution. The placement of processes
across physical processors or NUMA domains is implementation-defined.

17 Progress. (10) The means by which the application allows the UPC++ runtime to advance
the state of outstanding operations initiated by this or other processes, to ensure
they eventually complete.

18 Rank. (11) An integer index that identifies a unique UPC++ process within a UPC++ team.

19 Referentially transparent. A routine that is is a pure function, where inputs alone
determine the value returned by the function. For the same inputs, repeated calls to
a referentially transparent function will always return the same result.

20 Remote. Refers to an object or reference whose affinity is not local to the current process.

21 Remote Procedure Call. A communication operation that injects a function call invo-
cation into the execution stream of another process. These injections are one-sided,
meaning the target process need not explicitly expect the incoming operation or
perform any specific action to receive it, aside from invoking UPC++ progress.

22 Source completion. The condition where a communication operation initiated by the
current process has advanced to a point where serialization of the local source memory
regions for the operation has occurred, and the contents of those regions can be safely
overwritten or reclaimed without affecting the behavior of the ongoing operation.
Source completion does not generally imply operation completion, and other effects
of the operation (e.g., updating destination memory regions, or delivery to a remote
process) may still be in-progress.

23 Shared segment. A region of storage associated with a particular process that is used
to allocate shared objects that are accessible by any process.

24 Team. (11) A UPC++ object representing an ordered set of processes. Each process in a
team has a unique 0-based rank index.

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 7

UPC++ Specification v1.0 Draft 10

25 Thread (or OS thread). An independent stream of executing instructions with private
state. A process may contain many threads (created by the application), and each is
associated with at least one persona.

26 Serializable. (6) A C++ type that is either DefinitelySerializable or TriviallySerializable.
27 TriviallySerializable. (6) A C++ type that is valid to serialize by making a byte copy

of an object.

8 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

Chapter 2

Init and Finalize

2.1 Overview

1 The init function must be called before any other UPC++ function can be invoked. This
can happen anywhere in the program, so long as it appears before any UPC++ calls that
require the library to be in an initialized state. The call is collective, meaning every process
in the parallel job must enter this function if any are to participate in UPC++ operations.
While init can be called more than once by each process in a program, only the first
invocation will initialize UPC++, and the rest will merely increment the internal count of
how many times init has been called. For each init call, a matching finalize call must
eventually be made. init and finalize are not re-entrant and must be called by only
a single thread of execution in each process. The thread that calls init has the master
persona attached to it (see section 10.5.1 for more details of threading behavior). After the
number of calls to finalize matches the number of calls to init, no UPC++ function that
requires the library to be in an initialized state can be invoked until UPC++ is reinitialized
by a subsequent call to init.

2 All UPC++ operations require the library to be in an initialized state unless otherwise
specified, and violating this requirement results in undefined behavior. Member functions,
constructors, and destructors are included in the set of operations that require UPC++ to
be initialized, unless explicitly stated otherwise.

9

UPC++ Specification v1.0 Draft 10

1 # include <upcxx/upcxx.hpp >
2 # include <iostream >
3 int main(int argc , char *argv [])
4 {
5 upcxx :: init (); // initialize UPC ++
6

7 std :: cout << "Hello World"
8 << " ranks:" << upcxx :: rank_n () // how many processes ?
9 << " my rank: " << upcxx :: rank_me () // which process am I?

10 << std :: endl;
11

12 upcxx :: finalize (); // finalize UPC ++
13 return 0;
14 }

Figure 2.1: HelloWorld.cpp program

2.2 Hello World

1 A UPC++ installation should be able to compile and execute the simple Hello World program
shown in Figure 2.1. The output of Hello World, however, is platform-dependent and may
vary between different runs, since there is no synchronization to order the output between
processes. Depending on the nature of the buffering protocol of stdout, output from
different processes may even be interleaved.

2.3 API Reference

1 void init ();

2 Precondition: Called collectively by all processes in the parallel job. Call-
ing thread must have the master persona (§10.5.1) if UPC++ is in an already-
initialized state.

3 If there have been no previous calls to init, or if all previous calls to init have
had matching calls to finalize, then this routine initializes the UPC++ library.
Otherwise, leaves the library’s state as is. Upon return, the calling thread will
be attached to the master persona (§10.5.1).

4 This function may be called when UPC++ is in the uninitialized state.

10 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 2. INIT AND FINALIZE

5 bool initialized ();

6 Returns whether or not UPC++ is in the initialized state. UPC++ is initialized if
there has been at least one previous call to init that has not had a matching
call to finalize.

7 This function may be called when UPC++ is in the uninitialized state.
8 void finalize ();

9 Precondition: Called collectively by all processes in the parallel job. Call-
ing thread must have the master persona (§10.5.1), and UPC++ must be in an
already-initialized state.

10 If this call matches the call to init that placed UPC++ in an initialized state,
then this call uninitializes the UPC++ library. Otherwise, this function does not
alter the library’s state.

11 Before uninitializing the UPC++ library, finalize shall execute a (blocking)
barrier() over team world(). If this call uninitializes the UPC++ library while
there are any asynchronous operations still in-flight (after the barrier), behav-
ior is undefined. An operation is defined as in-flight if it was initiated but still
requires internal-level or user-level progress from any persona on any process
in the job before it can complete. It is left to the application to define and
implement their own specific approach to ensuring quiescence of in-flight oper-
ations. A potential quiescence API is being considered for future versions and
feedback is encouraged.

12 UPC++ progress level: user

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 11

Chapter 3

Global Pointers

3.1 Overview

1 The UPC++ global_ptr is the primary way to address memory in a remote shared memory
segment of a UPC++ program. The next chapter discusses how memory in the shared
segment is allocated to the user.

2 As mentioned in Chapter 1, a global pointer is a handle that may not be dereferenced. This
restriction follows from the design decision to prohibit implicit communication. Logically,
a global pointer has two parts: a raw C++ pointer and an associated affinity, which is a
binding of each location in a shared or device (Ch. 16) segment to a particular process
(generally the process which allocated that shared object). In cases where the use of a
global_ptr executes in a process that has direct load/store access to the memory of the
global_ptr (i.e. is_local is true), we may extract the raw pointer component, and
benefit from the reduced cost of employing a local reference rather than a global one. To
this end, UPC++ provides the local() function, which returns a raw C++ pointer. Calling
local() on a global_ptr that references an address in a remote shared segment or a
device location to which the caller does not have load/store access results in undefined
behavior.

3 Global pointers have the following guarantees:

1. A global_ptr<T, Kind> is only valid if it is the null global pointer, it references a
valid object, or it represents one element past the end of a valid array or non-array
object.

12

CHAPTER 3. GLOBAL POINTERS

2. Two global pointers compare equal if and only if they reference the same object, one
past the end of the same array or non-array object, or are both null.

3. Equality of global pointers corresponds to observational equality, meaning that two
global pointers which compare equal will produce equivalent behavior when inter-
changed.

4 These facts become important given that UPC++ allows two processes which are local to
each other to map the same memory into their own virtual address spaces but possibly
with different virtual addresses. They also ensure that a global pointer can be viewed from
any process to mean the same thing without need for translation.

5 Global pointers are parameterized by the kind of memory they can refer to. A global
pointer of type global_ptr<T, Kind> can only refer to memory on devices described by
Kind, and the referenced memory may be located on a device attached to a local or remote
process. The default global pointer, global_ptr<T, memory_kind::host>, can only refer
to host memory on a local or remote process. A global_ptr<T, memory_kind::any> can
refer to either host memory or memory on any device associated with a local or remote
process.

6 Most UPC++ communication operations only operate on host memory, working on the de-
fault global_ptr<T>. Functions that work with device memory are additionally parame-
terized by memory kind, working with general types such as global_ptr<T, Kind>.

3.2 API Reference

1 using intrank_t = /* implementation - defined */;

2 An implementation-defined signed integer type that represents a UPC++ rank
ID.

3 enum class memory_kind {
any = /* unspecified */,
host = /* unspecified */,
cuda_device = /* unspecified */

};

Constants used with a global pointer to specify the kind of memory (Ch. 16)
that may be referenced by the global pointer.

4 template < typename T, memory_kind Kind = memory_kind ::host >
struct global_ptr ;

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 13

UPC++ Specification v1.0 Draft 10

5 C++ Concepts: DefaultConstructible, TriviallyCopyable, TriviallyDestructible,
EqualityComparable, LessThanComparable, hashable

6 UPC++ Concepts: DefinitelyTriviallySerializable
7 T must not have any cv qualifiers: std::is_const<T>::value and

std::is_volatile<T>::value must both be false.
8 template < typename T, memory_kind Kind >

struct global_ptr {
using element_type = T;
// ...

};

9 Member type that is an alias for the template parameter T.
10 template < typename T, memory_kind Kind >

[static] const memory_kind global_ptr <T, Kind >:: kind = Kind;

11 Constant that has the same value as the Kind template parameter.
12 template < typename T, memory_kind Kind >

global_ptr <T, Kind >:: global_ptr (std :: nullptr_t = nullptr);

13 Constructs a global pointer corresponding to a null pointer.
14 This function may be called when UPC++ is in the uninitialized state.
15 UPC++ progress level: none
16 template < typename T>

template < memory_kind Kind >
global_ptr <T, memory_kind ::any >:: global_ptr (

global_ptr <T, Kind > other);

17 Constructs a global pointer with kind memory_kind::any from an existing
global pointer.

18 UPC++ progress level: none
19 template < typename T, memory_kind Kind >

global_ptr <T, Kind >::~ global_ptr ();

20 Trivial destructor. Does not delete or otherwise reclaim the raw pointer that
this global pointer is referencing.

21 This function may be called when UPC++ is in the uninitialized state.

14 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 3. GLOBAL POINTERS

22 UPC++ progress level: none
23 template < typename T>

global_ptr <T> to_global_ptr (T* ptr);

24 Precondition: ptr is a null pointer, or a valid pointer to host memory such
that the expression *ptr on the calling process yields a (possibly uninitialized)
object of type T that resides within the shared segment of a process in the local
team (§11.2) of the caller

25 Constructs a global pointer corresponding to the given raw pointer.
26 UPC++ progress level: none
27 template < typename T>

global_ptr <T> try_global_ptr (T* ptr);

28 Precondition: ptr is a null pointer, or a valid pointer to host memory such
that the expression *ptr on the calling process yields a (possibly uninitialized)
object of type T

29 If the object referenced by *ptr resides within the shared segment of a process
in the local team (§11.2) of the caller, returns a global pointer referencing that
object. Otherwise returns a null pointer.

30 UPC++ progress level: none
31 template < typename T, memory_kind Kind >

memory_kind global_ptr <T, Kind >:: dynamic_kind () const;

32 If !is_null(), returns the actual memory kind associated with the memory
referenced by this pointer.

If is_null(), the result is unspecified.
33 UPC++ progress level: none
34 template < typename T, memory_kind Kind >

bool global_ptr <T, Kind >:: is_local () const;

35 Returns whether or not the calling process has load/store access to the memory
referenced by this pointer. Returns true if this is a null pointer, regardless of the
context in which this query is called. Otherwise, the result is unspecified if this
pointer refers to device memory (i.e. dynamic_kind() != memory_kind::host).

36 UPC++ progress level: none

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 15

UPC++ Specification v1.0 Draft 10

37 template < typename T, memory_kind Kind >
bool global_ptr <T, Kind >:: is_null () const;

38 Returns whether or not this global pointer corresponds to the null value, mean-
ing that it references no memory. This query is purely a function of the global
pointer instance, it is not affected by the context in which it is called.

39 UPC++ progress level: none
40 template < typename T, memory_kind Kind >

[explicit] bool global_ptr <T, Kind >:: operator bool () const;

41 Explicit conversion operator that returns !is_null().
42 UPC++ progress level: none
43 template < typename T, memory_kind Kind >

T* global_ptr <T, Kind >:: local () const;

44 Precondition: this->is_local()
45 Converts this global pointer into a raw pointer.
46 UPC++ progress level: none
47 template < typename T, memory_kind Kind >

intrank_t global_ptr <T, Kind >:: where () const;

48 Returns the rank in team world() of the process with affinity to the T object
pointed-to by this global pointer. The return value for where() on a null global
pointer is an implementation-defined value.

49 For a non-null device pointer (dynamic_kind() != memory_kind::host), re-
turns the rank in team world() of the process that allocated the memory
referenced by this pointer. The result is undefined if this pointer references
unallocated memory.

50 This query is purely a function of the global pointer instance, it is not affected
by the context in which it is called.

51 UPC++ progress level: none
52 template < typename T, memory_kind Kind >

global_ptr <T, Kind >
global_ptr <T, Kind >:: operator +(std :: ptrdiff_t diff) const;

template < typename T, memory_kind Kind >

16 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 3. GLOBAL POINTERS

global_ptr <T, Kind >
operator +(std :: ptrdiff_t diff , global_ptr <T, Kind > ptr);

template < typename T, memory_kind Kind >
global_ptr <T, Kind >&

global_ptr <T, Kind >:: operator +=(std :: ptrdiff_t diff);

53 Precondition: Either diff == 0, or the global pointer is pointing to the ith
element of an array of N elements, where i may be equal to N, representing a
one-past-the-end pointer. At least one of the indices i+diff or i+diff-1 must
be a valid element of the same array. A pointer to a non-array object is treated
as a pointer to an array of size 1.

54 If diff == 0, returns a copy of the global pointer. Otherwise produces a
pointer that references the element that is at diff positions greater than the
current element, or a one-past-the-end pointer if the last element of the array
is at diff-1 positions greater than the current.

55 operator+= modifies the global_ptr in-place and returns a reference to this
pointer after the operation.

56 These routines are purely functions of their arguments, they are not affected
by the context in which they are called.

57 UPC++ progress level: none

58 template < typename T, memory_kind Kind >
global_ptr <T, Kind >

global_ptr <T, Kind >:: operator -(std :: ptrdiff_t diff) const;
template < typename T, memory_kind Kind >
global_ptr <T, Kind >&

global_ptr <T, Kind >:: operator -=(std :: ptrdiff_t diff);

59 Precondition: Either diff == 0, or the global pointer is pointing to the ith
element of an array of N elements, where i may be equal to N, representing a
one-past-the-end pointer. At least one of the indices i-diff or i-diff-1 must
be a valid element of the same array. A pointer to a non-array object is treated
as a pointer to an array of size 1.

60 If diff == 0, returns a copy of the global pointer. Otherwise produces a
pointer that references the element that is at diff positions less than the
current element, or a one-past-the-end pointer if the last element of the array
is at diff+1 positions less than the current.

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 17

UPC++ Specification v1.0 Draft 10

61 operator-= modifies the global_ptr in-place and returns a reference to this
pointer after the operation.

62 These routines are purely a function of their arguments, they are not affected
by the context in which they are called.

63 UPC++ progress level: none
64 template < typename T, memory_kind Kind >

std :: ptrdiff_t
global_ptr <T, Kind >:: operator -(global_ptr <T, Kind > rhs) const;

65 Precondition: Either *this == rhs, or this global pointer is pointing to the
ith element of an array of N elements, and rhs is pointing at the jth element
of the same array. Either pointer may also point one past the end of the array,
so that i or j is equal to N. A pointer to a non-array object is treated as a
pointer to an array of size 1.

66 If *this == rhs, results in 0. Otherwise, returns i-j.
67 This routine is purely a function of its arguments, it is not affected by the

context in which it is called.
68 UPC++ progress level: none
69 template < typename T, memory_kind Kind >

global_ptr <T, Kind >& global_ptr <T, Kind >:: operator ++();
template < typename T, memory_kind Kind >
global_ptr <T, Kind > global_ptr <T, Kind >:: operator ++(int);
template < typename T, memory_kind Kind >
global_ptr <T, Kind >& global_ptr <T, Kind >:: operator - -();
template < typename T, memory_kind Kind >
global_ptr <T, Kind > global_ptr <T, Kind >:: operator --(int);

70 Precondition: In the first two variants, the global pointer must be pointing
to an element of an array or to a non-array object. In the third and fourth
variants, the global pointer must either be pointing to the ith element of an
array, where i >= 1, or one element past the end of an array or a non-array
object.

71 Modifies this pointer to have the value *this + 1 in the first two variants and
*this - 1 in the third and fourth variants.

The first and third variants return a reference to this pointer. The second and
fourth variants return a copy of the original pointer.

18 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 3. GLOBAL POINTERS

72 This routine is purely a function of its instance, it is not affected by the context
in which it is called.

73 UPC++ progress level: none

74
template < typename T, memory_kind Kind >
bool global_ptr <T, Kind >:: operator ==(

global_ptr <T, Kind > rhs) const;
template < typename T, memory_kind Kind >
bool global_ptr <T, Kind >:: operator !=(

global_ptr <T, Kind > rhs) const;
template < typename T, memory_kind Kind >
bool global_ptr <T, Kind >:: operator <(

global_ptr <T, Kind > rhs) const;
template < typename T, memory_kind Kind >
bool global_ptr <T, Kind >:: operator <=(

global_ptr <T, Kind > rhs) const;
template < typename T, memory_kind Kind >
bool global_ptr <T, Kind >:: operator >(

global_ptr <T, Kind > rhs) const;
template < typename T, memory_kind Kind >
bool global_ptr <T, Kind >:: operator >=(

global_ptr <T, Kind > rhs) const;

75 Returns the result of comparing two global pointers. Two global pointers com-
pare equal if they both represent null pointers, or if they represent the same
memory address with affinity to the same process. All other global pointers
compare unequal.

76 If Kind == memory_kind::any, then two non-null global pointers compare
equal only if the memory locations they reference have affinity to the same
process and represent the same memory address on the same device.

77 A pointer to a non-array object is treated as a pointer to an array of size
one. If two global pointers point to different elements of the same array, or to
subobjects of two different elements of the same array, then the pointer to the
element at the higher index compares greater than the pointer to the element
at the lower index. If one pointer points to an element of an array or to a
subobject of an element of an array, and the other pointer points one past the
end of the array, then the latter compares greater than the former.

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 19

UPC++ Specification v1.0 Draft 10

78 If global pointers p and q compare equal, then p == q, p <= q, and p >= q all
result in true while p != q, p < q, and p > q all result in false. If p and q do
not compare equal, then p != q is true while p == q is false.

79 If p compares greater than q, then p > q, p >= q, q < p, and q <= p all result
in true while p < q, p <= q, q > p, and q >= p all result in false.

80 All other comparisons result in an unspecified value.
81 These routines are purely functions of their arguments, they are not affected

by the context in which they are called.
82 UPC++ progress level: none
83 namespace std {

template < typename T, memory_kind Kind >
struct less <global_ptr <T, Kind >>;
template < typename T, memory_kind Kind >
struct less_equal <global_ptr <T, Kind >>;
template < typename T, memory_kind Kind >
struct greater <global_ptr <T, Kind >>;
template < typename T, memory_kind Kind >
struct greater_equal <global_ptr <T, Kind >>;
template < typename T, memory_kind Kind >
struct hash <global_ptr <T, Kind >>;

}

84 Specializations of STL function objects for performing comparisons and com-
puting hash values on global pointers. The specializations of std::less,
std::less_equal, std::greater, and std::greater_equal all produce a
strict total order over global pointers, even if the comparison operators do
not. This strict total order is consistent with the partial order defined by the
comparison operators.

85 UPC++ progress level: none
86 template < typename T, memory_kind Kind >

std :: ostream & operator <<(std :: ostream &os ,
global_ptr <T, Kind > ptr);

87 Inserts an implementation-defined character representation of ptr into the out-
put stream os. The textual representation of two objects of type global_ptr
<T, Kind> is identical if and only if the two global pointers compare equal.

88 UPC++ progress level: none

20 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 3. GLOBAL POINTERS

89 template < typename T, typename U, memory_kind Kind >
global_ptr <T, Kind >

static_pointer_cast (global_ptr <U, Kind > ptr);
template < typename T, typename U, memory_kind Kind >
global_ptr <T, Kind >

reinterpret_pointer_cast (global_ptr <U, Kind > ptr);

90 Precondition: The expression static_cast<T*>((U*)nullptr) must be well-
formed for the first variant, and reinterpret_cast<T*>((U*)nullptr) must
be well-formed for the second variant.

91 Constructs a global pointer whose underlying raw pointer is obtained by using
a cast expression on that of ptr. The affinity of the result is the same as that
of ptr.

92 If rp is the raw pointer of ptr, then the raw pointer of the result is constructed
by static_cast<T*>(rp) for the first variant and reinterpret_cast<T*>(rp)
for the second.

93 UPC++ progress level: none
94 template < memory_kind ToKind , typename T, memory_kind FromKind >

global_ptr <T, ToKind >
static_kind_cast (global_ptr <T, FromKind > ptr);

template < memory_kind ToKind , typename T, memory_kind FromKind >
global_ptr <T, ToKind >

dynamic_kind_cast (global_ptr <T, FromKind > ptr);

95 Precondition: ptr.is_null() || ToKind == memory_kind::any ||
ptr.dynamic_kind() == ToKind for the first variant

96 Constructs a global pointer with kind ToKind from an existing global pointer
with kind FromKind. It is an error if ToKind != FromKind and neither ToKind
nor FromKind is memory_kind::any.

In the second variant, the result is a null pointer if ToKind != memory_kind::any
and ptr.dynamic_kind() != ToKind.

97 UPC++ progress level: none

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 21

Chapter 4

Storage Management

4.1 Overview

1 UPC++ provides two flavors of storage allocation involving the shared segement. The pair of
functions new_ and delete_ will call the class constructors and destructors, respectively,
as well as allocate and deallocate memory from the shared segment. The pair allocate
and deallocate allocate and deallocate dynamic memory from the shared segment, but
do not call C++ constructors or destructors. A user may call these functions directly, or
use placement new, or other memory management practices.

4.2 API Reference

1 template < typename T, typename ... Args >
global_ptr <T> new_(Args &&... args);

2 Precondition: T(args...) must be a valid call to a constructor for T.
3 Allocates space for an object of type T from the shared segment of the calling

process. If the allocation succeeds, returns a pointer to the start of the allocated
memory, and the object is initialized by invoking the constructor T(args...).
If the allocation fails, throws std::bad_alloc.

4 Exceptions: May throw std::bad_alloc or any exception thrown by the call
T(args...).

5 UPC++ progress level: none

22

CHAPTER 4. STORAGE MANAGEMENT

6 template < typename T, typename ... Args >
global_ptr <T> new_(const std :: nothrow_t &tag , Args &&... args);

7 Precondition: T(args...) must be a valid call to a constructor for T.
8 Allocates space for an object of type T from the shared segment of the calling

process. If the allocation succeeds, returns a pointer to the start of the allocated
memory, and the object is initialized by invoking the constructor T(args...).
If the allocation fails, returns a null pointer.

9 Exceptions: May throw any exception thrown by the call T(args...).
10 UPC++ progress level: none
11 template < typename T>

global_ptr <T> new_array (size_t n);

12 Precondition: T must be DefaultConstructible.
13 Allocates space for an array of n objects of type T from the shared segment of

the calling process. If the allocation succeeds, returns a pointer to the start of
the allocated memory, and the objects are initialized by invoking their default
constructors. If the allocation fails, throws std::bad_alloc.

14 Exceptions: May throw std::bad_alloc or any exception thrown by the call
T(). If an exception is thrown by the constructor for T, then previously initial-
ized elements are destroyed in reverse order of construction.

15 UPC++ progress level: none
16 template < typename T>

global_ptr <T> new_array (size_t n, const std :: nothrow_t &tag);

17 Precondition: T must be DefaultConstructible.
18 Allocates space for an array of n objects of type T from the shared segment of

the calling process. If the allocation succeeds, returns a pointer to the start of
the allocated memory, and the objects are initialized by invoking their default
constructors. If the allocation fails, returns a null pointer.

19 Exceptions: May throw any exception thrown by the call T(). If an exception
is thrown by the constructor for T, then previously initialized elements are
destroyed in reverse order of construction.

20 UPC++ progress level: none
21

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 23

UPC++ Specification v1.0 Draft 10

template < typename T>
void delete_ (global_ptr <T> g);

22 Precondition: T must be Destructible. g must be either a null pointer or a
non-deallocated pointer that resulted from a call to new_<T, Args...> on the
calling process, for some value of Args....

23 If g is not a null pointer, invokes the destructor on the given object and deal-
locates the storage allocated to it. Does nothing if g is a null pointer.

24 Exceptions: May throw any exception thrown by the the destructor for T.
25 UPC++ progress level: none
26 template < typename T>

void delete_array (global_ptr <T> g);

27 Precondition: T must be Destructible. g must be either a null pointer or a non-
deallocated pointer that resulted from a call to new_array<T> on the calling
process.

28 If g is not a null pointer, invokes the destructor on each object in the given
array and deallocates the storage allocated to it. Does nothing if g is a null
pointer.

29 Exceptions: May throw any exception thrown by the the destructor for T.
30 UPC++ progress level: none
31 void* allocate (size_t size ,

size_t alignment = alignof (std :: max_align_t));

32 Precondition: alignment is a valid alignment. size must be an integral mul-
tiple of alignment.

33 Allocates size bytes of memory from the shared segment of the calling process,
with alignment as specified by alignment. If the allocation succeeds, returns
a pointer to the start of the allocated memory, and the allocated memory is
uninitialized. If the allocation fails, returns a null pointer.

34 UPC++ progress level: none
35 template < typename T, size_t alignment = alignof (T)>

global_ptr <T> allocate (size_t n=1);

24 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 4. STORAGE MANAGEMENT

36 Precondition: alignment is a valid alignment.
37 Allocates enough space for n objects of type T from the shared segment of the

calling process, with the memory aligned as specified by alignment. If the
allocation succeeds, returns a pointer to the start of the allocated memory, and
the allocated memory is uninitialized. If the allocation fails, returns a null
pointer.

38 UPC++ progress level: none
39 void deallocate (void* p);

40 Precondition: p must be either a null pointer or a non-deallocated pointer that
resulted from a call to the first form of allocate on the calling process.

41 Deallocates the storage previously allocated by a call to allocate. Does noth-
ing if p is a null pointer.

42 UPC++ progress level: none
43 template < typename T>

void deallocate (global_ptr <T> g);

44 Precondition: g must be either a null pointer or a non-deallocated pointer that
resulted from a call to allocate<T, alignment> on the calling process, for
some value of alignment.

45 Deallocates the storage previously allocated by a call to allocate. Does noth-
ing if g is a null pointer. Does not invoke the destructor for T.

46 UPC++ progress level: none

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 25

Chapter 5

Futures and Promises

5.1 Overview

1 In UPC++, the primary mechanisms by which a programmer interacts with non-blocking
operations are futures and promises.1 These two mechanisms, usually bound together
under the umbrella concept of futures, are present in the C++11 standard. However, while
we borrow some of the high-level concepts of C++’s futures, many of the semantics of
upcxx::future and upcxx::promise differ from those of std::future and std::promise.
In particular, while futures in C++ facilitate communicating between threads, the intent of
UPC++ futures is solely to provide an interface for managing and composing non-blocking
operations, and they cannot be used directly to communicate between threads or processes.

2 A non-blocking operation is associated with a state that encapsulates both the status of
the operation as well as any result values. Each such operation has an associated promise
object, which can either be explicitly created by the user or implicitly by the runtime
when a non-blocking operation is invoked. A promise represents the producer side of the
operation, and it is through the promise that the results of the operation are supplied and
its dependencies fulfilled. A future is the interface through which the status of the operation
can be queried and the results retrieved, and multiple future objects may be associated
with the same promise. A future thus represents the consumer side of a non-blocking
operation.

1Another mechanism, persona-targeted continuations, is discussed in §10.4.

26

CHAPTER 5. FUTURES AND PROMISES

5.2 The Basics of Asynchronous Communication

1 A programmer can invoke a non-blocking operation to be serviced by another process, such
as a one-sided get operation (Ch. 8) or a remote procedure call (Ch. 9). Such an operation
creates an implicit promise and returns an associated future object to the user. When the
operation completes, the future becomes ready, and it can be used to access the results.
The following demonstrates an example using a remote get (see Ch. 10 on how to make
progress with UPC++):

1 global_ptr <double > ptr = /* obtain some remote pointer */;
2 future <double > fut = rget(ptr); // initiate a remote get
3 // ... call into upcxx :: progress () elided ...
4 if (fut.ready ()) { // check for readiness
5 double value = fut. result (); // retrieve result
6 std :: cout << "got: " << value << ’\n’; // use result
7 }

2 In general, a non-blocking operation will not complete immediately, so if a user needs
to wait on the readiness of a future, they must do so in a loop. To facilitate this, we
provide the wait member function, which waits on a future to complete while ensuring
that sufficient progress (Ch. 10) is made on internal and user-level state:

1 global_ptr <double > ptr = /* obtain some remote pointer */;
2 future <double > fut = rget(ptr); // initiate a remote get
3 double value = fut.wait (); // wait for completion and
4 // retrieve result
5 std :: cout << "got: " << value << ’\n’; // use result

3 An alternative to waiting for completion of a future is to attach a callback or completion
handler to the future, to be executed when the future completes. This callback can be
any function object, including lambda (anonymous) functions, that can be called on the
results of the future, and is attached using then.

1 global_ptr <double > ptr = /* obtain some remote pointer */;
2 auto fut =
3 rget(ptr). then(// initiate a remote get and register a callback
4 // lambda callback function
5 [](double value) {
6 std :: cout << "got: " << value << ’\n’; // use result
7 }
8);

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 27

UPC++ Specification v1.0 Draft 10

4 The return value of then is another future representing the results of the callback, if any.
This permits the specification of a sequence of operations, each of which depends on the
results of the previous one.

5 A future can also represent the completion of a combination of several non-blocking opera-
tions. Unlike the standard C++ future, upcxx::future is a variadic template, encapsulating
an arbitrary number of result values that can come from different operations. The following
example constructs a future that represents the results of two existing futures:

1 future <double > fut1 = /* one future */;
2 future <int > fut2 = /* another future */;
3 future <double , int > combined = when_all (fut1 , fut2);

6 Here, combined represents the state and results of two futures, and it will be ready when
both fut1 and fut2 are ready. The results of combined are a std::tuple whose compo-
nents are the results of the source futures.

5.3 Working with Promises

1 In addition to the implicit promises created by non-blocking operations, a user may explic-
itly create a promise object, obtain associated future objects, and then register non-blocking
operations on the promise. This is useful in several cases, such as when a future is required
before a non-blocking operation can be initiated, or where a single promise is used to count
dependencies.

2 A promise can also be used to count anonymous dependencies, keeping track of operations
that complete without producing a value. Upon creation, a promise has a dependency count
of one, representing the unfulfilled results or, if there are none, an anonymous dependency.
Further anonymous dependencies can then be registered on the promise. When registration
is complete, the original dependency can then be fulfilled to signal the end of registration.
The following example keeps track of several remote put operations with a single promise:

1 global_ptr <int > ptrs [10] = /* some remote pointers */;
2 // create a promise with no results
3 // the dependency count starts at one
4 promise <> prom;
5

6 // do 10 puts , registering each of them on the promise
7 for (int k = 0; k < 10; k++) {
8 // rput implicitly registers itself on the given promise
9 rput(k, ptrs[k], operation_cx :: as_promise (prom));

28 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 5. FUTURES AND PROMISES

10 }
11

12 // fulfill initial anonymous dependency , since registration is done
13 future <> fut = prom. finalize ();
14

15 // wait for the rput operations to complete
16 fut.wait ();

5.4 Advanced Callbacks

1 Polling for completion of a future allows simple overlap of communication and computation
operations. However, it introduces the need for synchronization, and this requirement can
diminish the benefits of overlap. To this end, many programs can benefit from the use
of callbacks. Callbacks avoid the need for an explicit wait and enable reactive control
flow: future completion triggers a callback. Callbacks allow operations to occur as soon as
they are capable of executing, rather than artificially waiting for an unrelated operation
to complete before being initiated.

2 Futures are the core abstraction for obtaining asynchronous results, and an API that
supports asynchronous behavior can work with futures rather than values directly. Such
an API can also work with immediately available values by having the caller wrap the
values into a ready future using the make_future function template, as in this example
that creates a future for an ordered pair of a double and an int:

1 void consume (future <int , double > fut);
2 consume (make_future (3, 4.1));

3 Given a future, we can attach a callback to be executed at some subsequent point when
the future is ready using the then member function:

1 future <int , double > source = /* obtain a future */;
2 future <double > result = source .then(
3 [](int x, double y) {
4 return x + y;
5 }
6);

4 In this example, source is a future representing an int and a double value. The argument
of the call to then must be a function object that can be called on these values. Here,
we use a lambda function that takes in an int and a double. The call to then returns a
future that represents the result of calling the argument of then on the values contained

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 29

UPC++ Specification v1.0 Draft 10

in source. Since the lambda function above returns a double, the result of then is a
future<double> that will hold the double’s value when it is ready.

5 In the example just shown, the result of then() is obtained by wrapping the return type
inside a future. However, there is also another case, when the callback function returns a
future rather than a non-future type (double in the previous example) In this case, the
result of then() does not include the step of wrapping the return value in a future, since
we are already returning a future. Thus, the result of the call to then has the same type
as the return type of the callback. However, there is an important difference: the result is
a future, which may or may not be ready. In the first case, it is the returned non-future
value that may or may or may not be ready. This subtle difference, allows the UPC++
programmer to chain the results of one asynchronous operation into the inputs of the next,
to arbitrary degree of nesting.

1 future <int , double > source = /* obtain a future */;
2 future <double > result = source .then(
3 [](int x, double y) {
4 // return a future <double > that is ready
5 return make_future (x + y);
6 }
7);
8 // result may not be ready , since the callback will not be executed
9 // until source is ready

6 A callback may also initiate new asynchronous work and return a future representing the
completion of that work:

1 global_ptr <int > remote_array = /* some remote array */;
2

3 // retrieve remote_array [0]
4 future <int > elt0 = rget(remote_array);
5

6 // retrieve remote_array [remote_array [0]]
7 future <int > elt_indirect = elt0.then(
8 [=](int index) {
9 return rget(remote_array + index);

10 }
11);

7 The then member function is a combinator for constructing pipelines of transformations
over futures. Given a future and a function that transforms that future’s value into another
value, then produces a future representing the transformed value. For example, we can
transform, via a future, the value of elt_indirect above as follows:

30 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 5. FUTURES AND PROMISES

1 future <int > elt_indirect_squared = elt_indirect .then(
2 [](int value) {
3 return value * value;
4 }
5);

8 As the examples above demonstrate, the then member function allows a callback to depend
on the result of another future. A more general pattern is for an operation to depend on the
results of multiple futures. The when_all function template enables this by constructing a
single future that combines the results of multiple futures. We can then register a callback
on the combined future:

1 future <int > value1 = /* ... */;
2 future <double > value2 = /* ... */;
3

4 future <int , double > combined = when_all (value1 , value2);
5 future <double > result = combined .then(
6 [](int x, double y) {
7 return x + y;
8 }
9);

9 In the more general case, we may need to combine heterogeneous mixtures of future and
non-future types. The to_future function template wraps a non-future value in a future
while leaving future values unchanged. Thus, we can use when_all along with to_future
to construct a single future that represents the combination of both future and non-future
values:

1 future <int > value1 = /* ... */;
2 double value2 = /* ... */;
3

4 future <int , double > combined = when_all (to_future (value1),
5 to_future (value2));
6 future <double > result = combined .then(
7 [](int x, double y) {
8 return x + y;
9 }

10);

10 The results of a ready future can be obtained as a std::tuple using the result_tuple
member function. Individual components can be retrieved by value with the result mem-
ber function template or by r-value reference with result_moved. Unlike with std::get, it
is not a compile-time error to use an invalid index with result or result_moved; instead,

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 31

UPC++ Specification v1.0 Draft 10

the return type is void for an invalid index. This simplifies writing generic functions on
futures, such as the following definition of wait:

1 template < typename ...T>
2 template <int I=-1>
3 auto future <T... >:: wait () { // C++14 - style decl for brevity
4 while (! ready ()) {
5 progress ();
6 }
7 return result <I >();
8 }

5.5 Execution Model

1 While some software frameworks provide thread-level parallelism by considering each call-
back to be a task that can be run in an arbitrary worker thread, this is not the case in
UPC++. In order to maximize performance, our approach to futures is purposefully am-
bivalent to issues of concurrency. A UPC++ implementation is allowed to take action as if
the current thread is the only one that needs to be accounted for. This restriction gives
rise to a natural execution policy: callbacks registered against futures are always executed
as soon as possible by the thread that discovers them. There are exactly two scenarios in
which this may happen:

1. When a promise is fulfilled.

2. A callback is registered onto a ready future using the then member function.
2 Fulfilling a promise (via fulfill_result, fulfill_anonymous or finalize) is the only

operation that can change an associated future from a non-ready to a ready state, enabling
callbacks that depend on it to execute. Thus, promise fulfillment is an obvious place for
discovering and executing such callbacks. Whenever a thread calls a fulfillment function
on a promise, the user must anticipate that any newly available callbacks will be executed
by the current thread before the fulfillment call returns.

3 The other place in which a callback will execute immediately is during the invocation of
then on a future that is already in its ready state. In this case, the callback provided will
fire immediately during the call to then.

4 There are some common programming contexts where it is not safe for a callback to execute
during fulfillment of a promise. For example, it is generally unsafe to execute a callback
that modifies a data structure while a thread is traversing the data structure. In such

32 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 5. FUTURES AND PROMISES

a situation, it is the user’s responsibility to ensure that a conflicting callback will not
execute. One solution is create a promise that represents a thread reaching its safe-to-
execute context, and then adding it to the dependency list of any conflicting callback.

1 future <int > value = /* ... */;
2 // create a promise representing a safe -to - execute state
3 // dependency count is initially 1
4 promise <> safe_state ;
5 // create a future that depends on both value and safe_state
6 future <int > combined = when_all (value , safe_state . get_future ());
7 auto fut = // register a callback on the combined future
8 combined .then(/* some callback that requires a safe state */);
9 // do some work , potentially fulfilling value ’s promise ...

10 // signify a safe state
11 safe_state . finalize ();
12 // callback can now execute

5 As demonstrated above, the user can wait to fulfill the promise until it is safe to execute
the callback, which will then allow it to execute.

5.6 Fulfilling Promises

1 As demonstrated previously, promises can be used to both supply values as well as signal
completion of events that do not produce a value. As such, a promise is a unified abstraction
for tracking the completion of asynchronous operations, whether the operations produce a
value or not. A promise represents at most one dependency that produces a value, but it
can track any number of anonymous dependencies that do not result in a value.

2 When created, a promise starts with an initial dependency count of 1. For an empty
promise (promise<>), this is necessarily an anonymous dependency, since an empty promise
does not hold a value. For a non-empty promise, the initial count represents the sole
dependency that produces a value. Further anonymous dependencies can be explicitly
registered on a promise with the require_anonymous member function:

1 promise <int , double > pro; // initial dependency count is 1
2 pro. require_anonymous (10); // dependency count is now 11

3 The argument to require_anonymous must be nonnegative and the promise’s current
dependency count must be greater than zero, so that a call to require_anonymous never
causes the dependency count to reach zero, which would put the promise in the fulfilled

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 33

UPC++ Specification v1.0 Draft 10

state. In the example above, the argument must be greater than -1, and the given argument
of 10 is valid.

4 Anonymous dependencies can be fulfilled by calling the fulfill_anonymous member func-
tion:

1 for (int k = 0; k < 5; i++) {
2 pro. fulfill_anonymous (k);
3 } // dependency count is now 1

5 A non-anonymous dependency is fulfilled by calling fulfill_result with the produced
values:

1 pro. fulfill_result (3, 4.1); // dependency count is now 0
2 assert (pro. get_future (). ready ());

6 Both empty and non-empty promises can be used to track anonymous dependencies. A
UPC++ operation that operates on a promise always increments its dependency count upon
invocation, as if by calling require_anonymous(1) on the promise. After the operation
completes2, if the completion produces values of type T..., then the values are supplied
to the promise through a call to fulfill_result. Otherwise, the completion is signaled
by fulfilling an anonymous dependency through a call to fulfill_anonymous(1).

7 The rationale for this behavior is to free the user from having to manually increment the
dependency count before calling an operation on a promise; instead, UPC++ will implicitly
perform this increment. This leads to the pattern, shown at the beginning of this chapter,
of registering operations on a promise and then finalizing the promise to take it out of
registration mode:

1 global_ptr <int > ptrs [10] = /* some remote pointers */;
2 promise <> prom; // dependency count is 1
3

4 for (int i = 0; i < 10; i++) {
5 rput(i, ptrs[i],
6 operation_cx :: as_promise (prom)); // increment count
7 } // dependency count is now 11
8

9 future <> fut = prom. finalize (); // decrement count , making it 10
10

11 // wait for the 10 rput operations to complete
12 fut.wait ();

2The notification will occur during user-level progress of the persona that initiates the operation. See
Ch. 10 for more details.

34 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 5. FUTURES AND PROMISES

8 A user familiar with UPC++ V0.1 will observe that empty promises subsume the capabilities
of events in UPC++ V0.1. In addition, they can take part in all the machinery of promises,
futures, and callbacks, providing a much richer set of capabilities than were available in
V0.1.

5.7 Lifetime and Thread Safety

1 Understanding the lifetime of objects in the presence of asynchronous control flow can be
tricky. Objects must outlive the last callback that references them, which in general does
not follow the scoped lifetimes of the call stack. For this reason, UPC++ automatically man-
ages the state represented by futures and promises, and the state persists for as long as
there is a future, promise, or dependent callback that references it. Thus, a user can con-
struct intricate webs of callbacks over futures without worrying about explicitly managing
the state representing the callbacks’ dependencies or results.

2 Though UPC++ does not prescribe a specific management strategy, the semantics of fu-
tures and promises are analogous to those of standard C++11 smart pointers. As with
std::shared_ptr, a future may be freely copied, and both the original and the copy
represent the same state and are associated with the same promise. Thus, if one copy
of a future becomes ready, then so will the other copies. On the other hand, a promise
can be mutated by the user through its member functions, so allowing a promise to be
copied would introduce the issue of aliasing. Instead, we adopt the same non-copyable, yet
movable, semantics for a promise as std::unique_ptr.

3 Given that UPC++ futures and promises are already thread-unaware to allow the execution
strategy to be straightforward and efficient, UPC++ also makes no thread safety guarantees
about internal state management. This enables creation of copies of a future to be a very
cheap operation. For example, a future can be captured by value by a lambda function or
passed by value without any performance penalties. On the other hand, the lack of thread
safety means that sharing a future between threads must be handled with great caution.
Even a simple operation such as making a copy of a future, as when passing it by value to
a function, is unsafe if another thread is concurrently accessing an identical future, since
the act of copying it can modify the internal management state. Thus, a mutex or other
synchronization is required to ensure exclusive access to a future when performing any
operation on it.

4 Fulfilling a promise gives rise to an even more stringent demand, since it can set off a
cascade of callback execution. Before fulfilling a promise, the user must ensure that the
thread has the exclusive right to mutate not just the future associated with the promise,
but all other futures that are directly or indirectly dependent on fulfillment of the promise.

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 35

UPC++ Specification v1.0 Draft 10

Thus, when crafting their code, the user must properly manage exclusivity for islands of
disjoint futures. We say that two futures are in disjoint islands if there is no dependency,
direct or indirect, between them.

5 A reader having previous experience with futures will note that UPC++’s formulation is
a significant departure from many other software packages. Futures are commonly used
to pass data between threads, like a channel that a producing thread can supply a value
into, notifying a consuming thread of its availability. UPC++, however, is intended for
high-performance computing, and supporting concurrently shareable futures would require
synchronization that would significantly degrade performance. As such, futures in UPC++
are not intended to directly facilitate communication between threads. Rather, they are
designed for a single thread to manage the non-determinism of reacting to the events
delivered by concurrently executing agents, be they other threads or the network hardware.

5.8 API Reference

1 UPC++ progress level for all functions in this chapter (unless otherwise noted) is: none

5.8.1 future

1 template < typename ...T>
class future ;

2 C++ Concepts: DefaultConstructible, CopyConstructible, CopyAssignable, De-
structible

3 The types in T... must not be void.
4 template < typename ...T>

future <T... >:: future ();

5 Constructs a future that will never become ready.
6 This function may be called when UPC++ is in the uninitialized state.
7 template < typename ...T>

future <T... >::~ future ();

8 Destructs this future object.
9 This function may be called when UPC++ is in the uninitialized state.

36 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 5. FUTURES AND PROMISES

10 template < typename ...T>
future <T...> make_future (T ... results);

11 Constructs a trivially ready future from the given values.

12 template < typename ...T>
bool future <T... >:: ready () const;

13 Returns true if the future’s result values have been supplied to it.

14 template < typename ...T>
std :: tuple <T...> future <T... >:: result_tuple () const;

15 Precondition: this->ready()

16 Retrieves the tuple of result values for this future.

17 template < typename ...T>
template <int I=-1>
future_element_t <I, future <T...>>

future <T... >:: result () const;

18 Precondition: this->ready()

19 If I is in the range [0, sizeof...(T)), retrieves the Ith component from the
future’s results tuple. The return type is U, where U is the Ith component of T.

20 If I is -1, returns the following:

•21 void if T is empty

•22 if T has one element, the single component of the future’s results tuple;
the return type is T

•23 if T has multiple elements, the tuple of result values for the future; the
return type is std::tuple<T...>

24 The return type is void if I is outside the range [-1, sizeof...(T)).

25 template < typename ...T>
template <int I=-1>
future_element_moved_t <I, future <T...>>

future <T... >:: result_moved ();

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 37

UPC++ Specification v1.0 Draft 10

26 Precondition: this->ready()

27 If I is in the range [0, sizeof...(T)), retrieves the Ith component from the
future’s results tuple as an r-value reference. The return type is U&&, where U
is the Ith component of T.

28 If I is -1, returns the following:

•29 void if T is empty

•30 if T has one element, the single component of the future’s results tuple as
an r-value reference; the return type is T&&

•31 if T has multiple elements, the tuple of result values as r-value references
for the future; the return type is std::tuple<T&&...>

32 The return type is void if I is outside the range [-1, sizeof...(T)).
33 Caution: this operation permits mutation of the values via r-value references,

which could be observed by further calls that return the result(s) of a future.
34 template < typename ...T>

template < typename Func >
future_invoke_result_t <Func , T...>

future <T... >:: then(Func func);

35 Precondition: The call func() must not throw an exception.
36 Returns a new future representing the return value of the given function object

func when invoked on the results of this future as its argument list. If func
returns a future, then the result of then will be a semantically equivalent future,
except that it will be in a non-ready state before func executes. If func does
not return a future, then the return value of then is a future that encapsulates
the result of func, and this future will also be in a non-ready state before func
executes. If the return type of func is void, then the return type of then is
future<>.

37 The function object will be invoked in one of two situations:
38 • Immediately before then returns if this future is in the ready state.
39 • During a promise fulfillment which would directly or indirectly make this

future transition to the ready state.
40 template < typename ...T>

std :: tuple <T...> future <T... >:: wait_tuple ();

38 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 5. FUTURES AND PROMISES

41 Blocks until the future is ready, while making UPC++ user-level progress. See
Ch. 10 for a discussion of progress. The return value is the same as that
produced by calling result_tuple() on the future.

42 This function may not be invoked from the restricted context (§10.2).
43 UPC++ progress level: user
44 template < typename ...T>

template <int I=-1>
future_element_t <I, future <T...>>

future <T... >:: wait ();

45 Blocks until the future is ready, while making UPC++ user-level progress. See
Ch. 10 for a discussion of progress. The return value is the same as that
produced by calling result() on the future.

46 This function may not be invoked from the restricted context (§10.2).
47 UPC++ progress level: user
48 template < typename ...T>

template <int I=-1>
future_element_moved_t <I, future <T...>>

future <T... >:: wait_moved ();

49 Blocks until the future is ready, while making UPC++ user-level progress. See
Ch. 10 for a discussion of progress. The return value is the same as that
produced by calling result_moved() on the future.

50 This function may not be invoked from the restricted context (§10.2).
51 UPC++ progress level: user
52 template < typename ... Futures >

future < CTypes ...> when_all (Futures ... fs);

53 Given a variadic list of futures as arguments, constructs a future representing
the readiness of all arguments. The results tuple of this future will be the
concatenated results tuples of the arguments. The type parameters of the
returned object (CTypes...) is the ordered concatenation of the type parameter
lists of the types in Futures.... If Futures... is empty, then the result is a
trivially ready future<>.

54 template < typename T>
future < CTypes ...> to_future (T future_or_value);

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 39

UPC++ Specification v1.0 Draft 10

55 Constructs a future that encapsulates the value represented by future_or_
value. If T is of type future<U...>, then CTypes... is the same as U..., and
the returned future is a copy of future_or_value. If T is not a future, then
CTypes... is T, and the function returns a ready future whose encapsulated
value is future_or_value.

5.8.2 promise

1 template < typename ...T>
class promise ;

2 C++ Concepts: DefaultConstructible, MoveConstructible, MoveAssignable,
Destructible

3 The types in T... must not be void.
4 template < typename ...T>

promise <T... >:: promise (std :: intptr_t dependency_count =1);

5 Precondition: dependency_count >= 1

6 Constructs a promise with its results uninitialized and the given initial depen-
dency count.

7 This function may be called when UPC++ is in the uninitialized state.
8 template < typename ...T>

promise <T... >::~ promise ();

9 Destructs this promise object.
10 This function may be called when UPC++ is in the uninitialized state.
11 template < typename ...T>

void promise <T... >:: require_anonymous (std :: intptr_t count);

12 Precondition: count is nonnegative. The dependency count of this promise is
greater than 0.

Adds count to this promise’s dependency count.
13 template < typename ...T>

template < typename ...U>
void promise <T... >:: fulfill_result (U &&... results);

40 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 5. FUTURES AND PROMISES

14 Precondition: fulfill_result has not been called on this promise before, and
the dependency count of this promise is greater than zero.

15 Initializes the promise’s result tuple with the given values and decrements the
dependency counter by 1. Requires that T and U have the same number of
components, and that each component of U is implicitly convertible to the
corresponding component of T. If the dependency counter reaches zero as a
result of this call, the associated future is set to ready, and callbacks that are
waiting on the future are executed on the calling thread before this function
returns.

16 template < typename ...T>
void promise <T... >:: fulfill_anonymous (std :: intptr_t count);

17 Precondition: count is nonnegative. The dependency count of this promise is
greater than zero and greater than or equal to count. If the dependency count
is equal to count and T is not empty, then the results of this promise must have
been previously supplied by a call to fulfill_result.

18 Subtracts count from the dependency counter. If this produces a zero counter
value, the associated future is set to ready, and callbacks that are waiting on
the future are executed on the calling thread before this function returns.

19 template < typename ...T>
future <T...> promise <T... >:: get_future () const;

20 Returns the future representing this promise being fulfilled. Repeated calls to
get_future return equivalent futures with the guarantee that no additional
memory allocation is performed.

21 template < typename ...T>
future <T...> promise <T... >:: finalize ();

22 Equivalent to calling this->fulfill_anonymous(1) and then returning the
result of this->get_future().

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 41

Chapter 6

Serialization

1 As a communication library, UPC++ needs to send C++ types between processes that might
be separated by a network interface. The underlying GASNet networking interface sends
and receives bytes, thus, UPC++ needs to be able to convert C++ types to and from bytes.

6.1 Class Serialization Interface

1 For standard TriviallyCopyable data types, UPC++ can serialize and deserialize these objects
for the user without extra intervention on their part. For user data types that have more
involved serialization requirements, the user needs to take two steps to inform UPC++ about
how to serialize the object.

1. Declare their type to be a friend of access

2. Implement the visitor function serialize

2 The type must also satisfy the C++ CopyConstructible concept.

3 Figure 6.1 provides an example of this process. The definition of the & operator for the
Archive class depends on whether UPC++ is serializing or deserializing an object instance.

4 UPC++ provides implementations of operator& for the C++ built-in types. UPC++ se-
rialization is compatible with a subset of the Boost serialization interface. This does
not imply that UPC++ includes or requires Boost as a dependency. The reference im-
plementation of UPC++ does neither of these, it comes with its own implementation of
serialization that simply adheres to the interface set by Boost. It is acceptable to have

42

CHAPTER 6. SERIALIZATION

1 class UserType {
2 // The user ’s fields and member declarations as usual.
3 int member1 , member2 ;
4 // ...
5

6 // To enable the serializer to visit the member fields ,
7 // the user provides this ...
8 friend class upcxx :: access ;
9

10 // ... and this
11 template < typename Archive >
12 void serialize (Archive &ar , unsigned) {
13 ar & this -> member1 ;
14 ar & this -> member2 ;
15 // ...
16 }
17 };

Figure 6.1: An example of using access in a user-defined class

friend boost::serialization::access in place of friend upcxx::access. UPC++ will
use your Boost serialization in that case.

5 There are restrictions on which actions serialization/deserialization routines may perform.
They are:

1. Serialization/deserialization may not call any UPC++ routine with a progress level
other than none.

2. UPC++ must perceive these routines as referentially transparent. Loosely, this means
that the routines should be “pure" functions between the native representation and
a flat sequence of bytes.

3. The routines must be thread-safe and permit concurrent invocation from multiple
threads, even when serializing the same object.

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 43

UPC++ Specification v1.0 Draft 10

Figure 6.2: Serializable UPC++ concepts type hierarchy. UPC++ concepts with a corre-
sponding trait query are indicated with a solid line.

6.2 Serialization Concepts

1 UPC++ defines the concepts DefinitelyTriviallySerializable, TriviallySerializable, Definitely-
Serializable, and Serializable that describe what form of serialization a C++ type supports.
Figure 6.2 helps summarize the relationship of these concepts.

2 A type T is DefinitelyTriviallySerializable if either of the following holds:
3 • T is TriviallyCopyable (i.e. std::is_trivially_copyable<T>::value is true), and

if T is of class type, T does not implement the UPC++ serialization interface described
above

4 • upcxx::is_definitely_trivially_serializable<T> is specialized to provide a
member constant value that is true

5 In the latter case, UPC++ treats the type T as if it were TriviallyCopyable for the purposes
of serialization. Thus, UPC++ will serialize an object of type T by making a byte copy, and
it will assume T is TriviallyDestructible when destroying a deserialized object of type T.

6 A type T is TriviallySerializable if it is semantically valid to copy an object by copying its
underlying bytes, and UPC++ serializes such types by making a byte copy. A type T that is
DefinitelyTriviallySerializable is also TriviallySerializable.

7 A type T is DefinitelySerializable if one of the following holds:

44 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 6. SERIALIZATION

8 • T is DefinitelyTriviallySerializable
9 • T is of class type and implements the UPC++ serialization interface

10 • T is explicitly described as DefinitelySerializable by this specification
11 A type T is Serializable if it is either TriviallySerializable or DefinitelySerializable.
12 The type trait upcxx::is_definitely_trivially_serializable<T> provides a member

constant value that is true if T is DefinitelyTriviallySerializable and false otherwise.
This trait may be specialized for user types (types that are not defined by the C++ or
UPC++ standards).

13 The type trait upcxx::is_definitely_serializable<T> provides a member constant
value that is true if T is DefinitelySerializable and false otherwise. This trait may not
be specialized by the user for any types.

14 The set of standard-library container types that are DefinitelySerializable is implementation-
defined. If an implementation defines a container type T to be DefinitelySerializable, then
upcxx::is_definitely_serializable<T>::value must be true.

15 Several UPC++ communication operations require that the objects to be transferred are
of DefinitelyTriviallySerializable type. The C++ standard allows implementations to de-
termine whether or not lambda functions are TriviallyCopyable, so whether or not such
objects are DefinitelyTriviallySerializable is implementation-dependent.

16 Serializability of a type T does not imply that objects of type T are meaningful on an-
other process. In particular, C++ pointer-to-object and pointer-to-function types are
DefinitelyTriviallySerializable, but it is generally invalid to dereference a local pointer that
originated from another process. More generally, objects that represent local resources are
usually not meaningful on other processes, whether their types are Serializable or not.

6.3 Functions

1 In Chapter 7 (Completion) and Chapter 9 (Remote Procedure Calls) there are several cases
where a C++ FunctionObject is expected to execute on a destination process. In these cases
the function arguments are serialized as described in this chapter. The FunctionObject
itself (i.e. the func argument to rpc, rpc_ff, or as_rpc) is converted to a function
pointer offset from a known sentinel in the source program’s code segment. The details of
the implementation are not described here but typical allowed FunctionObjects are

2 • C functions

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 45

UPC++ Specification v1.0 Draft 10

3 • C++ global and file-scope functions

4 • Class static functions

5 • lambda functions

6.4 Special Handling in Remote Procedure Calls

1 Remote procedure calls, whether standalone (§9) or completion based (§7), perform special
handling on certain non-DefinitelySerializable UPC++ data structures. Arguments that
are either a reference to dist_object type (see §14 Distributed Objects) or a team (see
§11 Teams) are transferred by their dist_id or team_id respectively. Execution of the
RPC is deferred until all of the id’s have a corresponding instance constructed on the
recipient. When that occurs, func is enlisted for execution during user-level progress of
the recipent’s master persona (see §10 Progress), and it will be called with the recipient’s
instance references in place of those supplied at the send site. The behavior is undefined if
the recipient’s instance of a dist_object or team argument is destroyed before the RPC
executes.

6.5 View-Based Serialization

1 UPC++ also provides a mechanism for serializing the elements of a sequence. The following
is an example of transferring a sequence with rpc:

1 std ::list <double > items = /* fill with elements */;
2 auto fut = rpc_ff (1, [](view <double > packedlist) {
3 // target side gets object containing iterators
4 for (double elem : packedlist) { // traverse network buffer
5 process (elem); // process each element
6 }
7 }, make_view (items.begin (), items.end ()));

2 In this example, a std::list<double> contains the elements to be transferred. Calling
make_view on its begin and end iterators results in a view, which can then be passed to a
remote procedure call. The elements in the sequence are serialized and transferred as part
of the RPC, and the target receives a view over the elements stored in the network buffer.
The RPC can then iterate over view to obtain each element.

46 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 6. SERIALIZATION

3 There is an asymmetry in the view types at the initiator and target of an
RPC, reflecting the difference in how the underlying sequences are stored
in memory. In the example above, the type of the value returned by
make_view is view<double, std::list<double>::iterator>, since the initia-
tor supplies iterators associated with a list. The target of the RPC, how-
ever, receives a view<double, view_default_iterator_t<double>>, with the
view_default_iterator_t<T> type representing an iterator over a network buffer.
The latter is the default argument for the second template parameter of view, so that a
user can specify view<T> rather than view<T, view_default_iterator_t<T>>.

4 UPC++ provides different handling of view<T> based on whether the element type T is
DefinitelyTriviallySerializable or not. For DefinitelyTriviallySerializable element type, de-
serialization is a no-op, and the view<T> on the recipient is a direct view over a network
buffer, providing both random access and access to the buffer itself. The corresponding
view_default_iterator_t<T> is an alias for T*. On the other hand, if the view element
type is not DefinitelyTriviallySerializable, then an element must be nontrivially deserial-
ized before it can be accessed by the user. In such a case, the view<T> only provides
access through an InputIterator, which deserializes and returns elements by value, and
view_default_iterator_t<T> is an alias for deserializing_iterator<T>.

5 As a non-owning interface, view only provides const access to the elements in the un-
derlying sequence, analogous to C++17 string_view. However, in the case of a view<T>
that is received by the target of an RPC, where T is DefinitelyTriviallySerializable, the
underlying elements are stored directly in a network buffer as indicated above. There is no
external owning container, so UPC++ permits a user to perform a const_cast conversion
on an element and modify it.

6 The lifetime of the underlying data buffer and all view iterators on the target in both the
DefinitelyTriviallySerializable and non-DefinitelyTriviallySerializable cases is restricted by
default to the duration of the RPC. In this case, the elements must be processed or copied
elsewhere before the RPC returns. However, if the RPC returns a future, then the lifetime
of the buffer and view iterators is extended until that future is readied. This allows an
RPC to initiate an asynchronous operation to consume the elements, and as long as the
resulting future is returned from the RPC, the underlying buffer will remain alive until the
asynchronous operation is complete and the future readied.

7 While UPC++ manages the lifetime of the data underlying a view when it is an argument
to an RPC, the library does not support a view as the return type of an RPC due to the
lifetime issues it raises. Thus, an RPC is prohibited from returning a view even though it
is classified as DefinitelySerializable.

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 47

UPC++ Specification v1.0 Draft 10

8 The behavior is unspecified when a view<T, IterType> is passed to rpc, rpc_ff, or
as_rpc if the type T is itself a view.

6.6 API Reference

1 template < typename T>
struct is_definitely_trivially_serializable ;

2 Provides a member constant value that is true if T is DefinitelyTriviallySeri-
alizable and false otherwise. This trait may be specialized for user types.

3 template < typename T>
struct is_definitely_serializable ;

4 Provides a member constant value that is true if T is Definitel-
ySerializable and false otherwise. This trait may not be special-
ized. However, its value may be indirectly influenced by specializing
is_definitely_trivially_serializable<T> or implementing the class se-
rialization interface for T, as appropriate.

5 template < typename T>
class deserializing_iterator {
public :

// types
using iterator_category = std :: input_iterator_tag ;
using value_type = T;
using difference_type = std :: ptrdiff_t ;
using pointer = T*;
using reference = T;

deserializing_iterator ();

// accessors
T operator *() const;

// increment
deserializing_iterator & operator ++();
deserializing_iterator operator ++(int);

};

// comparisons

48 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 6. SERIALIZATION

template < typename T>
bool operator ==(const deserializing_iterator & x,

const deserializing_iterator & y);
template < typename T>
bool operator !=(const deserializing_iterator & x,

const deserializing_iterator & y);

6 C++ Concepts: InputIterator
7 An iterator over elements stored in a network buffer. Dereferencing the

iterator causes the element to be deserialized and returned by value (i.e.
deserializing_iterator<T>::reference is an alias for T).

8 While this iterator is classified as an InputIterator, it does not support
operator->, as the underlying element must be materialized on demand and
its lifetime would not extend beyond the application of the operator.

9 UPC++ progress level for all functions above: none
10 template < typename T>

using view_default_iterator_t = /* ... */;

11 A type alias that is equivalent to T* if T is DefinitelyTriviallySerializable (i.e.
upcxx::is_definitely_trivially_serializable<T>::value is true), and
deserializing_iterator<T> otherwise.

12 template < typename T,
typename IterType = view_default_iterator_t <T>>

class view {
public :

// types
using iterator = IterType ;
using size_type = std :: size_t ;

// iterators
iterator begin ();
iterator end ();

// capacity
size_type size () const;

};

13 C++ Concepts: DefaultConstructible, CopyConstructible, CopyAssignable, De-
structible

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 49

UPC++ Specification v1.0 Draft 10

14 UPC++ Concepts: DefinitelySerializable

15 A class template representing a view over an underlying sequence of elements
of type T, delimited by begin() and end().

16 UPC++ progress level for all member functions of view: none

17 template < typename T>
class view <T, T*> {
public :

// types
using value_type = T;
using pointer = T*;
using const_pointer = const T*;
using reference = T&;
using const_reference = const T&;
using const_iterator = const T*;
using iterator = const_iterator ;
using const_reverse_iterator =

std :: reverse_iterator < const_iterator >;
using reverse_iterator = const_reverse_iterator ;
using size_type = std :: size_t ;
using difference_type = std :: ptrdiff_t ;

// no explicit construct /copy/ destroy for non - owning type

// iterators
const_iterator begin () const;
const_iterator cbegin () const;

const_iterator end () const;
const_iterator cend () const;

const_reverse_iterator rbegin () const;
const_reverse_iterator crbegin () const;

const_reverse_iterator rend () const;
const_reverse_iterator crend () const;

// capacity
bool empty () const;
size_type size () const;

50 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 6. SERIALIZATION

// element access
const_reference operator [](size_type n) const;
const_reference at(size_type n) const;
const_reference front () const;
const_reference back () const;

const_pointer data () const;
};

18 C++ Concepts: DefaultConstructible, CopyConstructible, CopyAssignable, De-
structible

19 UPC++ Concepts: DefinitelySerializable
20 A template specialization representing a view over a network buffer of elements

of type T, delimited by begin() and end().
21 Exceptions: at(n) throws std::out_of_range if n is not in the range

[0, size()).
22 UPC++ progress level for all member functions of view: none
23 template < typename T, typename IterType >

view <T, IterType >:: view ();

24 Precondition: IterType must satisfy the ForwardIterator C++ concept. The
type std::iterator_traits<IterType>::value_type must be the same as
T. T must be DefinitelySerializable.

25 Initializes this view to represent an empty sequence.
26 template < typename IterType >

view < typename std :: iterator_traits <IterType >:: value_type , IterType >
make_view (IterType begin , IterType end ,

typename std :: iterator_traits <IterType >:: difference_type
size = std :: distance (begin , end));

27 Precondition: IterType must satisfy the ForwardIterator C++ concept. The
underlying element type (std::iterator_traits<IterType>::value_type)
must be DefinitelySerializable. size must be equal to the number of elements
in [begin, end).

28 Constructs a view over the sequence delimited by begin and end.
29 UPC++ progress level: none

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 51

UPC++ Specification v1.0 Draft 10

30 template < typename Container >
view < typename Container :: value_type ,

typename Container :: const_iterator >
make_view (const Container & container);

31 Precondition: Container must satisfy the Container C++ concept. The under-
lying element type (Container::value_type) must be DefinitelySerializable.

32 Constructs a view over the sequence delimited by container.cbegin() and
container.cend().

33 UPC++ progress level: none

52 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

Chapter 7

Completion

7.1 Overview

1 Data movement operations come with the concept of completion, meaning that the effect
of the operation is now visible on the source or target process and that resources, such
as memory on the source and destination sides, are no longer in use by UPC++. A single
UPC++ call may have several completion events associated with it, indicating completion of
different stages of a communication operation. These events are categorized as follows:

2 • Source completion: The source-side resources of a communication operation are no
longer in use by UPC++, and the application is now permitted to modify or reclaim
them.

3 • Remote completion: The data have been deposited on the remote target process, and
they can be consumed by the target.

4 • Operation completion: The operation is complete from the viewpoint of the initiator.
The transferred data can now be read by the initiator, resulting in the values that
were written to the target locations.

5 A completion event may be associated with some values produced by the communication
operation, or it may merely signal completion of an action. Each communication operation
specifies the set of completion events it provides, as well as the values that a completion
event produces. Unless otherwise indicated, a completion event does not produce a value.

6 UPC++ provides several alternatives for how completion can be signaled to the program:

53

UPC++ Specification v1.0 Draft 10

7 • Future: The communication call returns a future, which will be readied when the
completion event occurs. This is the default notification mode for communication
operations. If the completion event is associated with some values of type T..., then
the returned future will have type future<T...>. If no value is associated with the
completion, then the future will have type future<>.

8 • Promise: The user provides a promise when requesting notification of a completion
event, and that promise will have one its dependencies fulfilled when the event occurs.
The promise must have a non-zero dependency count. If the completion event is asso-
ciated with some values of type T..., then it must be valid to call fulfill_result()
on the promise with values of type T..., and the promise must not have had
fulfill_result() called on it. The promise will then have fulfill_result()
called on it with the associated values when the completion event occurs. If no value
is associated with the completion, then the promise may have any type. It will have
an anonymous dependency fulfilled upon the completion event.

9 • Local-Procedure Call (LPC): The user provides a target persona and a callback func-
tion object when requesting notification of a completion event. If the completion
is associated with some values of type T..., then the callback must be invokable
with arguments of type T.... Otherwise, it must be invokable with no arguments.
The callback, together with the associated completion values if any, is enlisted for
execution on the given persona when the completion event occurs.

10 • Remote-Procedure Call (RPC): The user provides a Serializable function object when
requesting notification of a completion event, as well as the arguments on which the
function object should be invoked. Each argument must either be DefinitelySeri-
alizable, a dist_object<T>&, or team&. The function object and arguments are
transferred as part of the communication operation, and the invocation is enlisted
for execution on the master persona of the target process when the completion event
occurs.

11 • Buffered: The communication call consumes the source-side resources of the operation
before the call returns, allowing the application to immediately modify or reclaim
them. This delays the return of the call until after the source-completion event. The
implementation may internally buffer the source-side resources or block until network
resources are available to inject the data directly.

12 • Blocking: This is similar to buffered completion, except that the implementation is
required to block until network resources are available to inject the data directly.

13 Future, promise, and LPC completions are only valid for completion events that occur
at the initiator of a communication call, namely source and operation completion. RPC
completion is only valid for a completion event that occurs at the target of a communication

54 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 7. COMPLETION

operation, namely remote completion. Buffered and blocking completion are only valid for
source completion. More details on futures and promises are in Ch. 5, while LPC and
RPC callbacks are discussed in Ch. 10.

14 Notification of completion only happens during user-level progress of the initiator or target
process. Even if an operation completes early, including before the initiation operation
returns, the application cannot learn this fact without entering user progress. For futures
and promises, only when the initiating thread (persona actually) enters user-level progress
will the future or promise be eligible for taking on a readied or fulfilled state. LPC callbacks
will execute once a thread enters user progress of the designated persona. See Ch. 10 for
the full discussion on user progress and personas.

15 If buffered or blocking completion is requested, then the source-completion event occurs
before the communication call returns. However, source-completion notifications, such as
triggering a future or executing an LPC, are still delayed until the next user-level progress.

16 Operation completion implies both source and remote completion. However, it does not
imply that the actions associated with source and remote completion have been executed.

7.2 Completion Objects

1 The UPC++ mechanism for requesting notification of completion is through opaque com-
pletion objects, which associate notification actions with completion events. Completion
objects are CopyConstructible, CopyAssignable, and Destructible, and the same comple-
tion object may be passed to multiple communication calls. A simple completion object
is constructed by a call to a static member function of the source_cx, remote_cx, or
operation_cx class, providing notification for the corresponding event. The member func-
tions as_future, as_promise, as_lpc, and as_rpc request notification through a future,
promise, LPC, or RPC, respectively. Only the member functions that correspond to valid
means of signaling notification of an event are defined in the class associated with that
event.

2 The following is an example of a simple completion object:

1 global_ptr <int > gp1 = /* some global pointer */;
2 promise <int > pro1;
3 auto cxs = operation_cx :: as_promise (pro1);
4 rget(gp1 , cxs);
5 pro1. finalize (); // fulfill the initial anonymous dependency

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 55

UPC++ Specification v1.0 Draft 10

3 The rget function, when provided just a global_ptr<int>, transfers a single int from
the given location to the initiator. Thus, operation completion is associated with an int
value, and the promise used for signaling that event must have type compatible with an
int value, e.g. promise<int>. The user constructs a completion object that requests
operation notification on the promise pro1 by calling operation_cx::as_promise(pro1).
Since a completion object is opaque, the auto keyword is used to deduce the type of the
completion object. The resulting completion object can then be passed to rget, which
fulfills the promise with the transferred value upon operation completion.

4 A user can request notification of multiple completion events, as well as multiple noti-
fications of a single completion event. The pipe (|) operator can be used to combine
completion objects to construct a union of the operands. The following is an example:

1 int foo () {
2 return 0;
3 }
4

5 int bar(int x) {
6 return x;
7 }
8

9 void do_comm (double *src , size_t count) {
10 global_ptr <double > dest = /* some global pointer */;
11 promise <> pro1;
12 persona &per1 = /* some persona */;
13 auto cxs = (operation_cx :: as_promise (pro1) |
14 source_cx :: as_future () |
15 operation_cx :: as_future () |
16 operation_cx :: as_future () |
17 source_cx :: as_lpc (per1 , foo) |
18 remote_cx :: as_rpc (bar , 3)
19);
20 std :: tuple <future <>, future <>, future <>> result =
21 rput(src , dest , count , cxs);
22 pro1. finalize (). wait (); // finalize promise , wait on its future
23 }

5 This code initiates an rput operation, which provides source-, remote-, and operation-
completion events. A unified completion object is constructed by applying the pipe op-
erator to individual completion objects. When rput is invoked with the resulting unified
completion object, it returns a tuple of futures corresponding to the individual future com-
pletions requested. The ordering of futures in this tuple matches the order of application

56 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 7. COMPLETION

of the pipe operator (this operator is associative but not commutative). In the example
above, the first future in the tuple would correspond to source completion, and the second
and third would be for operation completion. If no future-based notification is requested,
then the return type of the communication call would be void rather than a tuple.

6 When multiple notifications are requested for a single event, the order in which those
notifications occur is unspecified. In the code above, the order in which pro1 is fulfilled
and the two futures for operation completion are readied is indeterminate. Similarly, if
both source and operation completion occur before the next user-level progress, the order
in which the notifications occur is unspecified, so that operation-completion requests may
be notified before source-completion requests.

7 Unlike a direct call to the rpc function (Ch. 9), but like a call to rpc_ff, an RPC
completion callback does not return a result to the initiator. Thus, the value returned by
the RPC invocation of bar above is discarded.

8 Arguments to remote_cx::as_rpc are serialized at an unspecified time between the in-
vocation of as_rpc and the source completion event of a communication operation that
accepts the resulting completion object. If multiple communication operations use a single
completion object resulting from as_rpc, then the arguments may be serialized multiple
times. For arguments that are not passed by value, the user must ensure that they re-
main valid until source completion of all communication operations that use the associated
completion object.

7.2.1 Restrictions

1 The API reference for a UPC++ call that supports the completion interface lists the comple-
tion events that the call provides, as well as the types of values associated with each event,
if any. The result is undefined if a completion object is passed to a call and the object
contains a request for an event that the call does not support. Passing a completion object
that contains a request whose type does not match the types provided by the corresponding
completion event, as described in §7.1, also results in undefined behavior.

2 If a UPC++ call provides both operation and remote completion, then at least one must be
requested by the provided completion object. If a call provides operation but not remote
completion, then operation completion must be requested. The behavior of the program is
undefined if neither operation nor remote completion is requested from a call that supports
one or both of operation or remote completion.

3 A promise object associated with a promise-based completion request must have a depen-
dency count greater than zero when the completion object is passed to a UPC++ operation.

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 57

UPC++ Specification v1.0 Draft 10

The result is undefined if the same promise object is used in multiple requests for notifica-
tions that produce values.

7.2.2 Completion and Return Types

1 In subsequent API-reference sections, the opaque type of a completion object is denoted
by CType. Similarly, RType denotes a return type that is dependent on the completion
object passed to a UPC++ call. This return type is as follows:

2 • void, if no future-based completions are requested
3 • future<T...>, if a single future-based completion is requested, where T... is the

sequence of types associated with the given completion event
4 • std::tuple<future<T...>...>, if multiple future-based completions are requested,

where each future’s arguments T... is the sequence of types associated with the
corresponding completion event

5 Type deduction, such as with auto, is recommended when working with completion objects
and return types.

7.2.3 Default Completions

1 If a completion object is not explicitly provided to a communication call, then a default
completion object is used. For most calls, the default is operation_cx::as_future().
However, for rpc_ff, the default completion is source_cx::as_buffered(), and for rpc,
it is source_cx::as_buffered() | operation_cx::as_future(). The default comple-
tion of a UPC++ communication call is listed in its API reference.

7.3 API Reference

1 struct source_cx ;

struct remote_cx ;

struct operation_cx ;

2 Types that contain static member functions for constructing completion objects
for source, remote, and operation completion.

58 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 7. COMPLETION

3 [static] CType source_cx :: as_future ();

[static] CType operation_cx :: as_future ();

4 Constructs a completion object that represents notification of source or opera-
tion completion with a future.

5 UPC++ progress level: none
6 template < typename ...T>

[static] CType source_cx :: as_promise (promise <T...> &pro);

template < typename ...T>
[static] CType operation_cx :: as_promise (promise <T...> &pro);

7 Precondition: pro must have a dependency count greater than zero.
8 Constructs a completion object that represents signaling the given promise

upon source or operation completion.
9 UPC++ progress level: none

10 template < typename Func >
[static] CType source_cx :: as_lpc (persona &target , Func func);

template < typename Func >
[static] CType operation_cx :: as_lpc (persona &target , Func func);

11 Precondition: Func must be a function-object type and CopyConstructible.
func must not throw an exception when invoked.

12 Constructs a completion object that represents the enqueuing of func on the
given local persona upon source or operation completion.

13 UPC++ progress level: none
14 template < typename Func , typename ... Args >

[static] CType remote_cx :: as_rpc (Func func , Args ... && args);

15 Precondition: Func must be Serializable and CopyConstructible and a function-
object type. Each of Args... must either be a DefinitelySerializable and Copy-
Constructible type, or dist_object<T>&, or team&. The call func(args...)
must not throw an exception.

16 Constructs a completion object that represents the enqueuing of func on a
target process upon remote completion.

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 59

UPC++ Specification v1.0 Draft 10

17 UPC++ progress level: none
18 [static] CType source_cx :: as_buffered ();

19 Constructs a completion object that represents buffering source-side resources
or blocking until they are consumed before a communication call returns, de-
laying the return until the source-completion event occurs.

20 UPC++ progress level: none
21 [static] CType source_cx :: as_blocking ();

22 Constructs a completion object that represents blocking until source-side re-
sources are consumed before a communication call returns, delaying the return
until the source-completion event occurs.

23 UPC++ progress level: none
24 template < typename CTypeA , CTypeB >

CType operator |(CTypeA a, CTypeB b);

25 Precondition: CTypeA and CTypeB must be completion types.
26 Constructs a completion object that is the union of the completions in a and

b. Future-based completions in the result are ordered the same as in a and b,
with those in a preceding those in b.

27 UPC++ progress level: none

60 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

Chapter 8

One-Sided Communication

8.1 Overview

1 The main one-sided communication functions for UPC++ are rput and rget. Where possi-
ble, the underlying transport layer will use RDMA techniques to provide the lowest-latency
transport possible. The type T used by rput or rget needs to be DefinitelyTriviallySe-
rializable, as described in Chapter 6 (Serialization).

8.2 API Reference

8.2.1 Remote Puts

1 template < typename T,
typename Completions = decltype (operation_cx :: as_future ())>

RType rput(T value , global_ptr <T> dest ,
Completions cxs= Completions {});

2 Precondition: T must be DefinitelyTriviallySerializable.
3 Initiates a transfer of value that will store it in the memory referenced by dest.

Completions:

4 • Remote: Indicates completion of the transfer of value.

61

UPC++ Specification v1.0 Draft 10

5 • Operation: Indicates completion of all aspects of the operation: the trans-
fer and remote stores are complete.

6 C++ memory ordering: The writes to dest will have a happens-before re-
lationship with the operation-completion notification actions (future readying,
promise fulfillment, or persona LPC enlistment) and remote-completion actions
(RPC enlistment). For LPC and RPC completions, all evaluations sequenced-
before this call will have a happens-before relationship with the execution of the
completion function.

7 UPC++ progress level: internal
8 template < typename T,

typename Completions = decltype (operation_cx :: as_future ())>
RType rput(T const *src , global_ptr <T> dest , std :: size_t count ,

Completions cxs= Completions {});

9 Precondition: T must be DefinitelyTriviallySerializable. The addresses in
[src,src+count) and [dest,dest+count) must not overlap.

10 Initiates an operation to transfer and store the count items of type T begin-
ning at src to the memory beginning at dest. The values referenced in the
[src,src+count) interval must not be modified until either source or operation
completion is indicated.

Completions:
11 • Source: Indicates completion of injection or internal buffering of the source

values, signifying that the src buffer may be modified.
12 • Remote: Indicates completion of the transfer of the values, implying readi-

ness of the target buffer [dest,dest+count).
13 • Operation: Indicates completion of all aspects of the operation: the trans-

fer and remote stores are complete.
14 C++ memory ordering: The reads of src will have a happens-before relationship

with the source-completion notification actions (future readying, promise ful-
fillment, or persona LPC enlistment). The writes to dest will have a happens-
before relationship with the operation-completion notification actions (future
readying, promise fulfillment, or persona LPC enlistment) and remote-comple-
tion actions (RPC enlistment). For LPC and RPC completions, all evaluations
sequenced-before this call will have a happens-before relationship with the exe-
cution of the completion function.

62 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 8. ONE-SIDED COMMUNICATION

15 UPC++ progress level: internal

8.2.2 Remote Gets

1 template < typename T,
typename Completions = decltype (operation_cx :: as_future ())>

RType rget(global_ptr <T> src ,
Completions cxs= Completions {});

2 Precondition: T must be DefinitelyTriviallySerializable.
3 Initiates a transfer to this process of a single value of type T located at src. The

value will be transferred to the calling process and delivered in the operation-
completion notification.

Completions:
4 • Operation: Indicates completion of all aspects of the operation, including

transfer and readiness of the resulting value. This completion produces a
value of type T.

5 C++ memory ordering: The read of src will have a happens-before relationship
with the operation-completion notification actions (future readying, promise
fulfillment, or persona LPC enlistment). All evaluations sequenced-before this
call will have a happens-before relationship with the invocation of any LPC
associated with operation completion.

6 UPC++ progress level: internal
7 template < typename T,

typename Completions = decltype (operation_cx :: as_future ())>
RType rget(global_ptr <T> src , T *dest , std :: size_t count ,

Completions cxs= Completions {});

8 Precondition: T must be DefinitelyTriviallySerializable. The addresses in
[src,src+count) and [dest,dest+count) must not overlap.

9 Initiates a transfer of count values of type T beginning at src and stores them
in the locations beginning at dest. The source values must not be modified
until operation completion is notified.

Completions:

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 63

UPC++ Specification v1.0 Draft 10

10 • Operation: Indicates completion of all aspects of the operation, including
transfer and readiness of the resulting values.

11 C++ memory ordering: The reads of src and writes to dest will have a
happens-before relationship with the operation-completion notification actions
(future readying, promise fulfillment, or persona LPC enlistment). All evalua-
tions sequenced-before this call will have a happens-before relationship with the
invocation of any LPC associated with operation completion.

12 UPC++ progress level: internal

64 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

Chapter 9

Remote Procedure Call

9.1 Overview

1 UPC++ provides remote procedure calls (RPCs) for injecting function calls into other pro-
cesses. These injections are one-sided, meaning the recipient is not required to explicitly
acknowledge which functions are expected. Concurrent with a process’s execution, incom-
ing RPCs accumulate in an internal queue managed by UPC++. The only control a process
has over inbound RPCs is when it would like to check its inbox for arrived function calls and
execute them. Draining the RPC inbox is one of the many responsibilities of the progress
API (see Ch. 10, Progress).

2 There are two main flavors of RPC in UPC++: fire-and-forget (rpc_ff) and round trip (rpc).
Each takes a function Func together with variadic arguments Args.

3 The rpc_ff call serializes the given function and arguments into a message destined for the
recipient, and guarantees that this function call will be placed eventually in the recipient’s
inbox. The round-trip rpc call does the same, but also forces the recipient to reply to the
sender of the RPC with a message containing the return value of the function, providing the
value for operation completion of the sender’s invocation of rpc. Thus, when the future is
ready, the sender knows the recipient has executed the function call. Additionally, if the
return value of func is a future, the recipient will wait for that future to become ready
before sending its result back to the sender.

4 There are important restrictions on what the permissible types for func and its bound
arguments can be for RPC functions. First, the Func type must be a function object (has
a publicly accessible overload of the function call operator, operator()). Second, Func

65

UPC++ Specification v1.0 Draft 10

must be Serializable, and all Args... types must be DefinitelySerializable (see Ch. 6,
Serialization).

9.2 Remote Hello World Example

1 Figure 9.1 shows a simple alternative Hello World example where each process issues an
rpc to its neighbor, where the last rank wraps around to 0.

1 # include <upcxx/upcxx.hpp >
2 # include <iostream >
3 void hello_world (intrank_t num){
4 std :: cout << "Rank " << num <<" told rank " << upcxx :: rank_me ()
5 << " to say Hello World" << std :: endl;
6 }
7 int main(int argc , char ** argv []){
8 upcxx :: init (); // Start UPC ++ state
9 intrank_t remote = (upcxx :: rank_me ()+1)% upcxx :: rank_n ();

10 auto f = upcxx :: rpc(remote , hello_world , upcxx :: rank_me ());
11 f.wait ();
12 upcxx :: finalize (); // Close down UPC ++ state
13 return 0;
14 }

Figure 9.1: HelloWorld with Remote Procedure Call

9.3 API Reference

1 template < typename Func , typename ... Args >
void rpc_ff (intrank_t recipient , Func &&func , Args &&... args);
template < typename Completions , typename Func , typename ... Args >
RType rpc_ff (intrank_t recipient , Completions cxs ,

Func &&func , Args &&... args);
template < typename Func , typename ... Args >
void rpc_ff (team &team , intrank_t recipient ,

Func &&func , Args &&... args);
template < typename Completions , typename Func , typename ... Args >
RType rpc_ff (team &team , intrank_t recipient , Completions cxs ,

Func &&func , Args &&... args);

66 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 9. REMOTE PROCEDURE CALL

2 Precondition: Func must be a Serializable type and a function-object type.
Each of Args... must be a DefinitelySerializable type, or dist_object<T>&,
or team&. The call func(args...) must not throw an exception.

3 In the first and third variants, the func and args... are serialized and inter-
nally buffered before the call returns. The call rpc_ff(rank, func, args...)
is equivalent to rpc_ff(rank, source_cx::as_buffered(), func, args...).

4 In the second and fourth variants, if buffered source completion is not requested,
the func and args... are serialized at an unspecified time between the invo-
cation of rpc_ff and source completion. The serialized results are retained
internally until they are eventually sent.

5 In the first two variants, the target of the RPC is the process whose rank is
recipient in the world team (Ch. 11). In the latter two variants, the target
is the process whose rank is recipient relative to the the given team.

6 After their receipt on the target, the data are deserialized and func(args...)
is enlisted for execution during user-level progress of the master persona. So
long as the sending persona continues to make internal-level progress it is guar-
anteed that the message will eventually arrive at the recipient. See §10.5.3
progress_required for an understanding of how much internal-progress is
necessary.

7 The execution of func(args...) is never performed synchronously, even if the
target is the same as the calling process and this function is invoked during
user-level progress.

8 Special handling is applied to those members of args which are either a refer-
ence to dist_object type or a team, as described in §6.4.

Completions:
9 • Source: Indicates completion of serialization of the function object and

arguments.
10 C++ memory ordering: All evaluations sequenced-before this call will have

a happens-before relationship with the source-completion notification actions
(future readying, promise fulfillment, or persona LPC enlistment) and the re-
cipient’s invocation of func.

11 UPC++ progress level: internal
12 template < typename Func , typename ... Args >

future_invoke_result_t <Func , Args ...>

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 67

UPC++ Specification v1.0 Draft 10

rpc(intrank_t recipient , Func &&func , Args &&... args);
template < typename Completions , typename Func , typename ... Args >
RType rpc(intrank_t recipient , Completions cxs ,

Func &&func , Args &&... args);
template < typename Func , typename ... Args >
future_invoke_result_t <Func , Args ...>

rpc(team &team , intrank_t recipient ,
Func &&func , Args &&... args);

template < typename Completions , typename Func , typename ... Args >
RType rpc(team &team , intrank_t recipient , Completions cxs ,

Func &&func , Args &&... args);

13 Precondition: Func must be a Serializable type and a function-
object type. Each of Args... must be either a DefinitelySe-
rializable type, or dist_object<T>&, or team&. Additionally,
std::result_of<Func(Args...)>::type must be either a DefinitelySe-
rializable type that is not view<U, IterType>, or future<T...>, where each
type in T... must be DefinitelySerializable but not view<U, IterType>. The
call func(args...) must not throw an exception.

14 Similar to rpc_ff, this call sends func and args... to be executed remotely,
but additionally provides an operation-completion event that produces the
value returned from the remote invocation of func(args...), if it is non-void.

15 In the first and third variants, the func and args... are serialized and inter-
nally buffered before the call returns. The call rpc(rank, func, args...) is
equivalent to:

16 rpc(rank ,
source_cx :: as_buffered () | operation_cx :: as_future (),
func , args ...)

17 In the second and fourth variants, if buffered source completion is not requested,
the func and args... are serialized at an unspecified time between the invoca-
tion of rpc and source completion. The serialized results are retained internally
until they are eventually sent.

18 In the first two variants, the target of the RPC is the process whose rank is
recipient in the world team (Ch. 11). In the latter two variants, the target
is the process whose rank is recipient relative to the the given team.

19 After their receipt on the target, the data are deserialized and func(args...)
is enlisted for execution during user-level progress of the master persona.

68 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 9. REMOTE PROCEDURE CALL

20 In the first variant, the returned future is readied upon operation completion.
21 For futures provided by an operation-completion request, or promises used in

promise-based operation-completion requests, the type of the future or promise
must correspond to the return type of func(args...) as follows:

22 • If the return type is of the form future<T...>, then a future provided by
operation completion also has type future<T...>, and promises used in
operation-completion requests must permit invocation of fulfill_result
with values of type T....

23 • If the return type is some other non-void type T, then a future provided by
operation completion has type future<T>, and promises used in operation-
completion requests must permit invocation of fulfill_result with a
value of type T.

24 • If the return type is void, then a future provided by operation completion
has type future<>, and promises used in operation-completion requests
may have any type promise<T...>.

25 Within user-progress of the recipient’s master persona, the result from invok-
ing func(args...) will be immediately serialized and eventually sent back to
the initiating process. Upon receipt, it will be deserialized, and operation-
completion notifications will take place during subsequent user-progress of the
initiating persona.

26 The execution of func(args...) is never performed synchronously, even if the
target is the same as the calling process and this function is invoked during
user-level progress.

27 The same special handling applied to dist_object& and team& arguments by
rpc_ff is also done by rpc.

Completions:
28 • Source: Indicates completion of serialization of the function object and

arguments.
29 • Operation: Indicates completion of all aspects of the operation: serial-

ization, deserialization, remote invocation, transfer of any result, and de-
struction of any internally managed values are complete. This completion
produces a value as described above.

30 C++ memory ordering: All evaluations sequenced-before this call will have a
happens-before relationship with the invocation of func. The return from func,

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 69

UPC++ Specification v1.0 Draft 10

will have a happens-before relationship with the operation-completion actions
(future readying, promise fulfillment, or persona LPC enlistment). For LPC
completions, all evaluations sequenced-before this call will have a happens-before
relationship with the execution of the completion function.

31 UPC++ progress level: internal

70 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

Chapter 10

Progress

10.1 Overview

1 UPC++ presents a highly-asynchronous interface, but guarantees that user-provided call-
backs will only ever run on user threads during calls to the library. This guarantees a good
user-visibility of the resource requirements of UPC++, while providing a better interoper-
ability with other software packages which may have restrictive threading requirements.
However, such a design choice requires the application developer to be conscientious about
providing UPC++ access to CPU cycles.

2 Progress in UPC++ refers to how the calling application allows the UPC++ internal runtime to
advance the state of its outstanding asynchronous operations. Any asynchronous operation
initiated by the user may require the application to give UPC++ access to the execution
thread periodically until the operation reports its completion. Such access is granted by
simply making calls into UPC++. Each UPC++ function’s contract to the user contains its
progress guarantee level. This is described by the members of the upcxx::progress_level
enumerated type:

3 progress_level::user UPC++ may advance its internal state as well as signal completion
of user-initiated operations. This may entail the firing of remotely injected procedure
calls (RPCs), or readying/fulfillment of futures/promises and the ensuing callback
cascade.

4 progress_level::internal UPC++ may advance its internal state, but no notifications
will be delivered to the application. Thus, an application has very limited ways to
“observe" the effects of such progress.

71

UPC++ Specification v1.0 Draft 10

5 Progress level: none UPC++ will not attempt to advance the progress of asynchronous op-
erations. (Note this level does not have an explicit entry in the progress_level
enumerated type).

6 The most common progress guarantee made by UPC++ functions is progress_level::
internal. This ensures the delivery of notifications to remote processes (or other threads)
making user-level progress in a timely manner. In order to avoid having the user contend
with the cost associated with callbacks and RPCs being run anytime a UPC++ function is
entered, progress_level::user is purposefully not the common case.

7 progress is the notable function enabling the application to make user-level progress. Its
sole purpose is to look for ready operations involving this process or thread and run the
associated RPC/callback code.

8 upcxx :: progress (progress_level lev = progress_level :: user)

9 UPC++ execution phases which leverage asynchrony heavily tend to follow a particular pro-
gram structure. First, initial communications are launched. Their completion callbacks
might then perform a mixture of compute or further UPC++ communication with simi-
lar, cascading completion callbacks. Then, the application spins on upcxx::progress(),
checking some designated application state which monitors the amount of pending outgo-
ing/incoming/local work to be done. For the user, understanding which functions perform
these progress spins becomes crucial, since any invocation of user-level progress may exe-
cute RPCs or callbacks.

10.2 Restricted Context

1 During user-level progress made by UPC++, callbacks may be executed. Such callbacks
are subject to restrictions on how they may further invoke UPC++ themselves. We desig-
nate such restricted execution of callbacks as being in the restricted context. The general
restriction is stated as:

2 User code running in the restricted context must assume that for the duration
of the context all other attempts at making user-level progress, from any thread
on any process, may result in a no-op every time.

3 The immediate implication is that a thread which is already in the restricted context should
assume no-op behavior from further attempts at making progress. This makes it pointless
to try and wait for UPC++ notifications from within restricted context since there is no
viable mechanism to make the notifications visible to the user. Thus, calling any routine
which spins on user-level progress until some notification occurs will likely hang the thread.

72 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 10. PROGRESS

10.3 Attentiveness

1 Many UPC++ operations have a mechanism to signal completion to the application. How-
ever, a performance-oriented application will need to be aware of an additional asyn-
chronous operation status indicator called progress-required. This status indicates that for
a particular operation further advancements of the current process or thread’s internal-
level progress are necessary so that completion regarding remote entities (e.g. notification
of delivery) can be reached. Once an operation has left the progress-required state, UPC++
guarantees that remote entities will see their side of the operations’ completion without
any further progress by the current compute resource. Applications will need to leverage
this information for performance, as it is inadvisable for a compute resource to become
inattentive to UPC++ progress (e.g. long bouts of arithmetic-heavy computation) while
other entities depend on operations that require further servicing.

2 As said previously, nearly all UPC++ operations track their completion individually. How-
ever, it is not possible for the programmer to query UPC++ if individual operations no longer
require further progress. Instead, the user may ask UPC++ when all operations initiated by
this process have reached a state at which they no longer require progress. This is achieved
by using the following functions:

3 bool upcxx :: progress_required ();
void upcxx :: discharge ();

4 The progress_required function reports whether this process requires progress, allowing
the application to know that there are still pending operations that will not achieve remote
completion without further advancements to internal progress. This is of particular im-
portance before an application enters a lapse of inattentiveness (for instance, performing
expensive computations) in order to prevent slowing down remote entities.

5 The discharge function allows an application to ensure that UPC++ does not require
progress anymore. It is equivalent to the following:

6 void upcxx :: discharge () {
while(upcxx :: progress_required ())

upcxx :: progress (upcxx :: progress_level :: internal);
}

7 A well-behaved UPC++ application is encouraged to call discharge before any long lapse
of attentiveness to progress.

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 73

UPC++ Specification v1.0 Draft 10

10.4 Thread Personas/Notification Affinity

1 As explained in Chapter 5 Futures and Promises, futures require careful consideration
when used in the presence of thread concurrency. It is crucial that UPC++ is very explicit
about how a multi-threaded application can safely use futures returned by UPC++ calls.

2 The most important thing an application has to be aware of is which thread UPC++ will use
to signal completion of a given future. It is therefore extremely important to know that
UPC++ will use the same thread to which the future was returned by the UPC++ operation
(i.e. the thread which invoked the operation in the first place). This means that the
thread which invoked a future-returning operation will be the only one able to see that
operation’s completion. As UPC++ triggers futures only during a call which makes user-
level progress, the invoking thread must continue to make such progress calls until the
future is satisfied. This requirement has the drawback of banning the application from
doing the following: initiating a future-returning operation on one thread, allowing that
thread to terminate or become permanently inattentive (e.g. sleeping in a thread pool),
and expecting a different thread to receive the future’s completion. This section will focus
on two ways the application can still attain this use-case.

3 The notion of “thread" has been used in a loose fashion throughout this document, the
natural interpretation being an operating system (OS) thread. More precisely, this docu-
ment uses the notion of “thread" to denote a UPC++ device referred to as thread persona
which generalizes the notion of operating system threads.

4 A UPC++ thread persona is a collection of UPC++-internal state usually attributed to a
single thread. By making it a proper construct, UPC++ allows a single OS thread to switch
between multiple application-defined roles for processing notifications. Personas act as the
receivers for notifications generated by the UPC++ runtime.

5 Values of type upcxx::persona are non-copyable, non-moveable objects which the appli-
cation can instantiate as desired. For each OS thread, UPC++ internally maintains a stack
of active persona references. The top of this stack is the current persona. All asynchronous
UPC++ operations will have their notification events (signaling of futures or promises) sent
to the current persona of the OS thread invoking the operation. Calls that make user-level
progress will process notifications destined to any of the active personas of the invoking
thread. The initial state of the persona stack consists of a single entry pointing to a persona
created by UPC++ which is dedicated to the current OS thread. Therefore, if the application
never makes any use of the persona API, notifications will be processed solely by the OS
thread that initiates the operation.

6 Pushing and popping personas from the persona stack (hence changing the current persona)
is done with the upcxx::persona_scope type. For example:

74 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 10. PROGRESS

1 persona scheduler_persona ;
2 std :: mutex scheduler_lock ;
3

4 { // Scope block delimits domain of persona_scope instance .
5 auto scope = persona_scope (scheduler_lock , scheduler_persona);
6

7 // All following upcxx actions will use ‘scheduler_persona ‘
8 // as current .
9

10 // ...
11

12 // ‘scope ‘ destructs :
13 // - ‘scheduler_persona ‘ dropped from active set if it
14 // wasn ’t active before the scope ’s construction .
15 // - Previously current persona revived .
16 // - Lock released .
17 }

7 Since UPC++ will assume an OS thread has exclusive access to all of its active personas, it
is the user’s responsibility to ensure that no OS threads share an active persona concur-
rently. The use of the persona_scope constructor, which takes a lock-like synchronization
primitive, is strongly encouraged to facilitate in enforcing this invariant.

8 There are two ways that asynchronous operations can be initiated by a given OS thread
but retired in another. The first solution is simple:

1. The user defines a persona P.

2. Thread 1 activates P, initiates the asynchronous operation, and releases P.

3. Thread 1 synchronizes with Thread 2, indicating the operation has been initiated.

4. Thread 2 activates P, spins on progress until the operation completes.
9 Care must be taken that any futures created by phase 2 are never altered (uttered) concur-

rently. The same synchronization that was used to enforce exclusivity of persona acquisition
can be leveraged to protect the future as well.

10 While this technique achieves our goal of different threads initiating and resolving asyn-
chronous operations, it fails a different but also desirable property. It is often desirable
to allow multiple threads to issue communication concurrently while delegating a separate
thread to handle the notifications. To achieve this, it is clear that multiple personas are
needed. Indeed, the exclusivity of a persona being current to only one OS thread prevents
the application from concurrent initiation of communication.

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 75

UPC++ Specification v1.0 Draft 10

11 In order to issue operations and concurrently retire them in a different thread, the user
is strongly encouraged to use the LPC completion mechanism described in Chapter 7, as
opposed to the future or promise variants. An example of such a call is:

12 rget(gptr_src , operation_cx :: as_lpc (some_persona , callback_func));

13 In addition to the arguments necessary for the particular operation, the as_lpc completion
mechanism takes a persona reference and a C++ function object (lambda, etc.) such that
upon completion of the operation, the designated persona shall execute the function object
during its user-level progress. Using this mechanism, it is simple to have multiple threads
initiating communication concurrently with a designated thread receiving the completion
notifications. To achieve this, each operation is initiated by a thread using the agreed-upon
persona of the receiver thread together with a callback that will incorporate knowledge of
completion into the receiver’s state.

10.5 API Reference

1 enum class progress_level {
/*none , -- not an actual member , conceptual only */
internal ,
user

};

2 void progress (progress_level lev = progress_level :: user);

3 This call will always attempt to advance internal progress.
4 If lev == progress_level::user then this thread is also used to execute any

available user actions for the personas currently active. Actions include:

1. Either future-readying or promise-fulfilling completion notifications for
asynchronous operations initiated by one of the active personas. By the
execution model of futures and promises this can induce callback cascade.

2. Continuation-style completion notifications from operations initiated by
any persona but designating one of the active personas as the completion
recipient.

3. RPCs destined for this process but only if the master persona is among the
active set.

4. lpc’s destined for any of the active personas.

76 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 10. PROGRESS

5 UPC++ progress level: internal or user

10.5.1 persona

1 class persona ;

2 C++ Concepts: DefaultConstructible, Destructible
3 persona :: persona ();

4 Constructs a persona object with no enqueued operations.
5 This function may be called when UPC++ is in the uninitialized state.
6 UPC++ progress level: none
7 persona ::~ persona ();

8 Destructs this persona object. If this persona is a member of any thread’s
persona stack, the result of this call is undefined. If any operations are currently
enqueued on this persona, or if any operations initiated by this persona require
further progress, the result of this call is undefined.

9 This function may be called when UPC++ is in the uninitialized state.
10 UPC++ progress level: none
11 template < typename Func >

void persona :: lpc_ff (Func func);

12 Precondition: Func must be a function-object type that can be invoked on zero
arguments, and the call func() must not throw an exception.

13 std::move’s func into an unordered collection of type-erased function objects
to be executed during user-level progress of the targeted (this) persona. This
function is thread-safe, so it may be called from any thread to enqueue work
for this persona.

14 The execution of func is never performed synchronously, even if the target
persona is a member of the caller’s persona stack and this function is invoked
during user-level progress.

15 C++ memory ordering: All evaluations sequenced-before this call will have a
happens-before relationship with the invocation of func.

16 UPC++ progress level: none

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 77

UPC++ Specification v1.0 Draft 10

17 template < typename Func >
future_invoke_result_t <Func > persona :: lpc(Func func);

18 Precondition: Func must be a function-object type that can be invoked on zero
arguments, and the call func() must not throw an exception.

19 std::move’s func into an unordered collection of type-erased function objects
to be executed during user-level progress of the targeted (this) persona. The
return value of func is asynchronously returned to the currently active persona
in a future. If the return value of func is a future, then the targeted persona will
wait for that future before signaling the future returned by lpc with its value.
This function is thread-safe, so it may be called from any thread to enqueue
work for this persona. Note that the future returned by lpc is considered to
be owned by the currently active persona, the future returned by func (if any)
will be considered owned by the target (this) persona.

20 The execution of func is never performed synchronously, even if the target
persona is a member of the caller’s persona stack and this function is invoked
during user-level progress.

21 C++ memory ordering: All evaluations sequenced-before this call will have a
happens-before relationship with the invocation of func, and the invocation of
func will have a happens-before relationship with evaluations sequenced after
the signaling of the final future.

22 UPC++ progress level: none
23 persona & master_persona ();

24 Returns a reference to the master persona automatically instantiated by the
UPC++ runtime. The thread that executes upcxx::init implicitly acquires this
persona as its current persona. The master persona is special in that it is the
only one which will execute RPCs destined for this process. Additionally, some
UPC++ functions may only be called by a thread with the master persona in its
active stack.

25 UPC++ progress level: none
26 persona & current_persona ();

27 Returns a reference to the persona on the top of the thread’s active persona
stack.

28 UPC++ progress level: none

78 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 10. PROGRESS

29 persona & default_persona ();

30 Returns a reference to the persona instantiated automatically and uniquely for
this OS thread. The default persona is always the bottom of and can never be
removed from its designated OS thread’s active stack.

31 UPC++ progress level: none
32 void liberate_master_persona ()

33 Precondition: This thread must be the one which called upcxx::init, it must
have not altered its persona stack since calling init, and it must not have
called this function already since calling init.

34 The thread which invokes upcxx::init implicitly has the master persona at
the top of its active stack, yet the user has no persona_scope to drop to allow
other threads to acquire the persona. Thus, if the user intends for other threads
to acquire the master persona, they should have the init-calling thread release
the persona with this function so that it can be claimed by persona_scope’s.
Generally, if this function is ever called, it is done soon after init and then the
master persona should be reacquired by a persona_scope.

35 UPC++ progress level: none

10.5.2 persona_scope

1 class persona_scope ;

2 C++ Concepts: Destructible, MoveConstructible
3 persona_scope :: persona_scope (persona &p);

4 Precondition: Excluding this thread, p is not a member of any other thread’s
active stack.

5 Pushes p onto the top of the calling OS thread’s active persona stack.
6 UPC++ progress level: none
7 template < typename Mutex >

persona_scope :: persona_scope (Mutex &mutex , persona &p);

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 79

UPC++ Specification v1.0 Draft 10

8 C++ Concepts of Mutex: Mutex
9 Precondition: p will only be a member of some thread’s active stack if that

thread holds mutex in a locked state.
10 Invokes mutex.lock(), then pushes p onto the OS thread’s active persona

stack.
11 UPC++ progress level: none

12 persona_scope ::~ persona_scope ();

13 Precondition: All persona_scope’s constructed on this thread since the con-
struction of this instance have since destructed.

14 The persona supplied to this instance’s constructor is popped from this thread’s
active stack. If this instance was constructed with the mutex constructor, then
that mutex is unlocked.

15 UPC++ progress level: none

16 persona_scope & top_persona_scope ();

17 Reference to the most recently constructed but not destructed persona_scope
for this thread. Every thread begins with an implicitly instantiated scope point-
ing to its default persona that survives for the duration of the thread’s lifetime.

18 UPC++ progress level: none

19 persona_scope & default_persona_scope ();

20 Every thread begins with an implicitly instantiated scope pointing to its default
persona that survives for the duration of the thread’s lifetime. This function
returns a reference to that bottommost persona_scope for the calling thread,
which points at the calling thread’s default_persona().

21 UPC++ progress level: none

10.5.3 Outgoing Progress

1 bool progress_required (persona_scope &ps = top_persona_scope ());

80 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 10. PROGRESS

2 Precondition: ps has been constructed by this thread.
3 For the set of personas included in this thread’s active stack section bounded in-

clusively between ps and the current top, nearly answers if any UPC++ operations
initiated by those personas require further advancement of internal-progress of
their respective personas before their completion events will be eventually avail-
able to user-level progress on the destined processes. The exact meaning of the
return value depends on which personas are selected by ps:

4 • If ps does not include the master persona: A return value of true means
that one or more of the personas indicated by ps requires further internal-
progress to achieve completion of its outgoing operations. A value of false
means that none of the personas indicated by ps require internal-progress,
but internal-progress of the master persona might still be required.

5 • If ps does include the master persona: A return value of true means that
one or more of the personas indicated by ps requires further internal-
progress to achieve completion of its outgoing operations. A return value
of false means that none of the non-master personas indicated by ps
requires further internal-progress, but the master persona may or may not
require further internal-progress.

6 UPC++ progress level: none
7 void discharge (persona_scope &ps = top_persona_scope ());

8 Advances internal-progress enough to ensure that progress_required(ps) re-
turns false.

9 UPC++ progress level: internal

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 81

Chapter 11

Teams

11.1 Overview

1 UPC++ provides teams as a means of grouping processes. UPC++ uses teams for collective
operations (Ch. 12). team construction is collective and should be considered moderately
expensive and done as part of the set-up phase of a calculation. teams are similar to
MPI_Groups and the default team is world(). teams are considered special when it comes
to serialization. Each team has a unique team_id that is equal across the team and acts as
an opaque handle. Any process that is a member of the team can retrieve the team object
with the team_id::here() function. Hence, coordinating processes can reference specific
teams by their team_id.

2 While a process within a UPC++ SPMD program can have multiple intrank_t values that
represent their relative placement in several teams, it is the intrank_t in the world() team
that is used in most UPC++ functions, unless otherwise specifically noted. For example,
broadcast takes a rank relative to the specific team over which it operates.

11.2 Local Teams

1 The local team is an ordered set of processes where heap storage in the shared segment
allocated by any process in the team is local to all members. Any process can obtain a
reference to the local team by calling local_team and global pointers behave accordingly:

82

CHAPTER 11. TEAMS

1. global_ptr’s referencing objects allocated in the shared segment of processes that
are members of this team will report is_local() == true and local() will return
a valid T* referencing the corresponding object.

2. The global_ptr where() function will report the rank in team world() of the
process that originally acquired the referenced object using the functions in chapter
4.

2 It is not guaranteed that the T*’s obtained by different processes to the same shared object
will have bit-wise identical pointer values. In the general case, peers may have different
virtual addresses for the same physical memory.

11.3 API Reference

11.3.1 team

1 class team;

2 C++ Concepts: MoveConstructible, Destructible
3 constexpr intrank_t team :: color_none ;

4 A constant used to specify that the calling process of split() will not be a
member of any subteam. This constant is guaranteed to have a negative value.

5 intrank_t team :: rank_n () const;

6 Returns the number of ranks in the given team.
7 UPC++ progress level: none
8 intrank_t team :: rank_me () const;

9 Returns the rank of the calling process in the given team.
10 UPC++ progress level: none
11 intrank_t team :: operator [](intrank_t peer_index) const;

12 Precondition: peer_index >= 0 and peer_index < rank_n().
13 Returns the rank in the world() team of the process with rank peer_index in

this team.

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 83

UPC++ Specification v1.0 Draft 10

14 UPC++ progress level: unspecified between none and internal

15 intrank_t team :: from_world (intrank_t world_index) const;
intrank_t team :: from_world (intrank_t world_index ,

intrank_t otherwise) const;

16 Precondition: world_index >= 0 and world_index < world().rank_n(). For
the single-argument overload, the process with rank world_index in the world()
team must be a member of this team.

17 Returns the rank in this team of the process with rank world_index in the
world() team. For the two-argument overload, if that process is not a member
of this team then the value of otherwise is returned.

18 UPC++ progress level: unspecified between none and internal

19 team team :: split(intrank_t color , intrank_t key);

20 This function is collective (§12.1) over this (i.e. the parent) team, and it must
be called by the thread that has the master persona (§10.5.1).

21 Precondition: color >= 0 || color == team::color_none

22 Splits the given team into subteams based on the color and key arguments. If
color == team::color_none, the return value is an invalid team that cannot
be used in any UPC++ operation except ~team. Otherwise, all processes that
call the function with the same color value will be separated into the same
subteam. Ranks in the same subteam will be numbered according to their
position in the sequence of sorted key values. If two callers specify the same
combination of color and key, their relative ordering in the subteam will be
the same as in the parent team. The return value is the team representing the
calling processes’s new subteam.

23 This call will invoke user-level progress, so the caller may expect incoming RPCs
to fire before it returns.

24 C++ memory ordering: With respect to all threads participating in this col-
lective, all evaluations which are sequenced-before their respective thread’s in-
vocation of this call will have a happens-before relationship with all evaluations
sequenced after the call.

25 UPC++ progress level: user
26 team :: team(team && other);

84 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 11. TEAMS

27 Precondition: Calling thread must have the master persona. No operation on
this team, nor any UPC++ operation with a progress level other than none, may
have been invoked by the calling process between the creation of other and
this call.

28 Makes this instance the calling process’s representative of the team associated
with other, transferring all state from other. Invalidates other, and any
subsequent operations on other, except for destruction, produce undefined
behavior.

29 UPC++ progress level: none
30 void team :: destroy (entry_barrier lev = entry_barrier :: user);

31 This function is collective (§12.1) over this team, and it must be called by the
thread that has the master persona (§10.5.1).

32 Precondition: This instance must not have been invalidated by being passed to
the move constructor, and it must not be an invalid team that resulted from a
call to split(). lev must be single-valued (Ch. 12). After the entry barrier
specified by lev completes, or upon entry if lev == entry_barrier::none,
the operations on this team must not require internal-level or user-level progress
from any persona before they can complete.

33 Destroys the calling process’s state associated with the team. Further lookups
on this process using the team_id corresponding to this team will have unde-
fined behavior.

34 C++ memory ordering: If lev != entry_barrier::none, with respect to all
threads participating in this collective, all evaluations which are sequenced-
before their respective thread’s invocation of this call will have a happens-before
relationship with all evaluations sequenced after the call.

35 UPC++ progress level: user if lev == entry_barrier::user; internal oth-
erwise

36 team ::~ team ();

37 Precondition: Either UPC++ must have been uninitialized since the team’s cre-
ation, or the team must either have had destroy() called on it, been invalidated
by being passed to the move constructor, or be an invalid team that resulted
from a call to split().

38 Destructs this team object.

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 85

UPC++ Specification v1.0 Draft 10

39 This function may be called when UPC++ is in the uninitialized state.
40 UPC++ progress level: none
41 team_id team ::id() const;

42 Returns the universal name associated with this team.
43 UPC++ progress level: none

11.3.2 team_id

1 class team_id ;

2 C++ Concepts: DefaultConstructible, TriviallyCopyable, StandardLayoutType,
EqualityComparable, LessThanComparable, hashable

3 UPC++ Concepts: DefinitelyTriviallySerializable
4 A universal name representing a team.
5 team_id :: team_id ();

6 Initializes this name to be an invalid ID.
7 UPC++ progress level: none
8 team& team_id :: here () const;

9 Precondition: This name must be a valid ID. The calling process must be a
member of the team associated with this name, and it must have completed
creation of the team. The team must not have been destroyed.

10 Retrieves a reference to the team instance associated with this name.
11 UPC++ progress level: none
12 future <team &> team_id :: when_here () const;

13 Precondition: This name must be a valid ID. The calling process must be a
member of the team associated with this name. The calling thread must have
the master persona. The team must not have been destroyed.

14 Retrieves a future which is readied after the calling process constructs the team
corresponding to this name.

15 UPC++ progress level: none

86 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 11. TEAMS

11.3.3 Fundamental Teams

1 team& world ();

2 Returns a reference to the team representing all the processes in the UPC++
program. The result is undefined if a move is performed on the returned team.

3 UPC++ progress level: none
4 intrank_t rank_n ();

5 Returns the number of ranks in the world() team.
6 Equivalent to: world().rank_n().
7 UPC++ progress level: none
8 intrank_t rank_me ();

9 Returns the rank of the calling process in the world() team.
10 Equivalent to: world().rank_me().
11 UPC++ progress level: none
12 team& local_team ();

13 Returns a reference to the local team containing this process. The local team
represents an ordered set of processes where memory allocated from the shared
segment of any member is local to all team members (§11.2). The result is
undefined if a move is performed on the returned team.

14 UPC++ progress level: none
15 bool local_team_contains (intrank_t world_index);

16 Precondition: world_index >= 0 and world_index < world().rank_n().
17 Determines if the process whose rank is world_index in world() is a member

of the local team containing the calling process (§11.2).
18 Equivalent to: local_team().from_world(world_index,-1) >= 0

19 UPC++ progress level: none

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 87

Chapter 12

Collectives

1 A collective operation is a UPC++ operation that must be matched across all participating
processes. Informally, any two processes that both participate in a pair of collective op-
erations must agree on their ordering. Furthermore, if a parameter or other property of
a collective operation is specified as single-valued, all participating processes must provide
the same value for the parameter or property.

2 A collective operation need not provide any actual synchronization between processes, un-
less otherwise noted. The collective requirement simply states a relative ordering property
of calls to collective operations that must be maintained in the parallel execution trace for
all executions of any valid program. Some implementations may include unspecified syn-
chronization between processes within collective operations, but programs must not rely
upon the presence or absence of such unspecified synchronization for correctness.

3 UPC++ provides several collective communication operations over teams, described below.

12.1 Common Requirements

1 For an execution of a UPC++ program to be valid, the collective operations invoked by the
program must obey the following ordering constraints:

•2 For a collective operation C over a team T , let Participants(C) denote the set of
processes that are members of T .

•3 For a process P ∈ Participants(C1) ∩ Participants(C2), let PrecedesP (C1, C2) be
true if and only if C1 6= C2 and C1 is initiated before C2 on P .

88

CHAPTER 12. COLLECTIVES

•4 Let Collectives be the set of collective operations invoked during execution of the
program. The collectives must satisfy the following property:

∀C1,C2 ∈ Collectives. ∀P, Q ∈ Participants(C1) ∩ Participants(C2).
P recedesP (C1, C2) = PrecedesQ(C1, C2)

(12.1)

5 The constraints above formalize the notion that any two processes that both participate
in a pair of collectives must agree on their ordering.

6 A collective operation must be invoked by the thread that has the master persona (§10.5.1)
of a process.

12.2 API Reference

1 enum class entry_barrier {
none ,
internal ,
user

};

2 Constants used with some UPC++ operations to specify the entry barrier to be
used by the operation:

3 • none: the operation has no entry barrier
4 • internal: the operation should perform a barrier at entry that makes

only internal-level progress
5 • user: the operation should perform a barrier at entry that makes user-

level progress
6 void barrier (team &team = world ());

7 This function is collective (§12.1) over the given team, and it must be called by
the thread that has the master persona (§10.5.1).

8 Performs a barrier operation over the given team. The call will not return until
all processes in the team have entered the call. There is no implied relationship
between this call and other in-flight operations. This call will invoke user-level
progress, so the caller may expect incoming RPCs to fire before it returns.

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 89

UPC++ Specification v1.0 Draft 10

9 C++ memory ordering: With respect to all threads participating in this col-
lective, all evaluations which are sequenced-before their respective thread’s in-
vocation of this call will have a happens-before relationship with all evaluations
sequenced after the call.

10 UPC++ progress level: user
11 template < typename Completions = decltype (operation_cx :: as_future ())>

RType barrier_async (team &team = world (),
Completions cxs= Completions {});

12 This function is collective (§12.1) over the given team, and it must be called by
the thread that has the master persona (§10.5.1).

13 Initiates an asynchronous barrier operation over the given team. The call will
return without waiting for other processes to make the call. Operation com-
pletion will be signaled after all other processes in the team have entered the
call.

Completions:
14 • Operation: Indicates completion of the collective from the viewpoint of

the caller, implying that all processes in the given team have entered the
collective.

15 C++ memory ordering: With respect to all threads participating in this col-
lective, all evaluations which are sequenced-before their respective thread’s in-
vocation of this call will have a happens-before relationship with all evaluations
sequenced after the operation-completion notification actions (future readying,
promise fulfillment, or persona LPC enlistment).

16 UPC++ progress level: internal
17 constexpr /* unspecified */ op_fast_add ;

constexpr /* unspecified */ op_fast_mul ;
constexpr /* unspecified */ op_fast_min ;
constexpr /* unspecified */ op_fast_max ;
constexpr /* unspecified */ op_fast_bit_and ;
constexpr /* unspecified */ op_fast_bit_or ;
constexpr /* unspecified */ op_fast_bit_xor ;

18 Instances of unspecified function-object types that have the following over-
loaded function-call operator:

19 T operator ()(T a, T b) const;

90 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 12. COLLECTIVES

20 The unspecified function-object types meet the requirements for the BinaryOp
template parameter to reduce_one and reduce_all (e.g. they are referentially
transparent and concurrently invocable).

21 For op_fast_add, op_fast_mul, op_fast_min, and op_fast_max, the allowed
types for T are those for which std::is_arithmetic<T>::value is true. For
op_fast_bit_and, op_fast_bit_or, and op_fast_bit_xor, the allowed types
for T are those for which std::is_integral<T>::value is true.

22 The operation performed by the function-call operator is, respectively: bi-
nary +, binary *, std::min, std::max, binary &, |, and ^. If T is
bool, then op_fast_add and op_fast_max perform the same operation as
op_fast_bit_or, and op_fast_mul and op_fast_min perform the same op-
eration as op_fast_bit_and.

23 template < typename T, typename BinaryOp ,
typename Completions = decltype (operation_cx :: as_future ())>

RType reduce_one (T && value , BinaryOp &&op ,
intrank_t root , team &team = world (),
Completions cxs= Completions {});

template < typename T, typename BinaryOp ,
typename Completions = decltype (operation_cx :: as_future ())>

RType reduce_all (T && value , BinaryOp &&op , team &team = world (),
Completions cxs= Completions {});

template < typename T, typename BinaryOp ,
typename Completions = decltype (operation_cx :: as_future ())>

RType reduce_one (const T *src , T *dst , size_t count ,
BinaryOp &&op ,
intrank_t root , team &team = world (),
Completions cxs= Completions {});

template < typename T, typename BinaryOp ,
typename Completions = decltype (operation_cx :: as_future ())>

RType reduce_all (const T *src , T *dst , size_t count ,
BinaryOp &&op , team &team = world (),
Completions cxs= Completions {});

24 This function is collective (§12.1) over the given team, and it must be called by
the thread that has the master persona (§10.5.1).

25 Precondition: T must be DefinitelyTriviallySerializable. BinaryOp must be a
function-object type representing an associative and commutative mathemat-
ical operation taking two values of type T and returning a value implicitly

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 91

UPC++ Specification v1.0 Draft 10

convertible to T. BinaryOp must be referentially transparent and concurrently
invocable. BinaryOp may not invoke any UPC++ routine with a progress level
other than none. In the first and third variants, root must be single-valued
and a valid rank in team. In the third variant, src and dst on the process
whose rank is root in the team may be equal but must not otherwise overlap,
and count must be single-valued across all participants. In the fourth variant,
src and dst may be equal but must not otherwise overlap, and src == dst
and count must both be single-valued.

26 Performs a reduction operation over the processes in the given team.
27 If the team contains only a single process, then the resulting operation com-

pletion will produce value in the first two variants. In the latter two variants,
the contents of src will be copied to dst if src != dst.

28 If the team contains more than one process, initiates an asynchronous reduction
over the values provided by each process. The reduction is performed in some
non-deterministic order by applying op to combine values and intermediate
results. In the second and fourth variants, the order in which op is applied may
differ between processes, so the results may differ if op is not fully associative
and commutative (as with floating-point arithmetic on some operands). In the
third and fourth variants, the contents of src are combined element-wise across
the processes in the team, with the results placed in dst.

29 In the first variant, the process whose rank is root in team receives the result
of the reduction as part of operation completion, while the remaining processes
receive an undefined value.

30 In the second variant, each process receives the result of the reduction as part
of operation completion.

31 In the third variant, operation completion signifies that the results have been
stored in dst on the process whose rank is root in team and that src is no
longer in use by the reduction. On the remaining processes, the argument dst
is ignored, and operation completion signifies that src is no longer in use by
the reduction.

32 In the fourth variant, operation completion on each process signifies that the
results have been stored in dst on that process and that src is no longer in
use by the reduction.

33 Advice to users: If op is one of op_fast_* and T is one of the allowed types
for op, implementations may offload the reduction operations to the hardware
network interface controller.

92 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 12. COLLECTIVES

Completions:
34 • Operation: Indicates completion of the collective from the viewpoint of

the caller, implying that the results of the reduction are available to this
process as described above. In the third and fourth variants, also signi-
fies that the src buffer may be modified. In the first two variants, this
completion produces a value of type T. In the latter two variants, this
completion does not produce a value.

35 C++ memory ordering: With respect to all threads participating in this collec-
tive, if a thread receives the results of the collective (the calling thread on the
root process in the first and third variants; all calling threads in the second and
fourth variants), all evaluations which are sequenced-before that thread’s invo-
cation of this call will have a happens-before relationship with all evaluations
sequenced after the operation-completion notification actions (future readying,
promise fulfillment, or persona LPC enlistment).

36 UPC++ progress level: internal
37 template < typename T,

typename Completions = decltype (operation_cx :: as_future ())>
RType broadcast (T && value , intrank_t root ,

team &team = world (),
Completions cxs= Completions {});

template < typename T,
typename Completions = decltype (operation_cx :: as_future ())>

RType broadcast (T *buffer , std :: size_t count ,
intrank_t root , team &team = world (),
Completions cxs= Completions {});

38 This function is collective (§12.1) over the given team, and it must be called by
the thread that has the master persona (§10.5.1).

39 Precondition: root must be single-valued and a valid rank in team. In the
second variant, count must be single-valued. The type T must be Definite-
lyTriviallySerializable.

40 Initiates an asynchronous broadcast (one-to-all) operation, with rank root in
team acting as the producer of the broadcast. In the first variant, value will
be asynchronously sent to all processes in the team, encapsulated in operation
completion, which will be signaled upon receipt of the value. In the second
variant, the objects in [buffer,buffer+count) of rank root in team are sent

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 93

UPC++ Specification v1.0 Draft 10

to the addresses [buffer,buffer+count) provided by the receiving processes.
Operation completion signals completion of the operation with respect to the
calling process. For the root, this indicates that the given buffer is available
for reuse, and for a receiver, it indicates that the data have been received in its
buffer.

Completions:
41 • Operation: In the first variant, indicates that the value provided by the

root is available at the caller, and this completion produces a value of type
T. In the second variant, indicates completion of the collective from the
viewpoint of the caller as described above, and this completion does not
produce a value.

42 C++ memory ordering: With respect to all threads participating in this col-
lective, all evaluations which are sequenced-before the producing thread’s invo-
cation of this call will have a happens-before relationship with all evaluations
sequenced after the operation-completion notification actions (future readying,
promise fulfillment, or persona LPC enlistment).

43 UPC++ progress level: internal

94 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

Chapter 13

Atomics

13.1 Overview

1 UPC++ supports atomic operations on shared memory locations. Atomicity entails that a
read-modify-write sequence on a memory location will happen without interference or inter-
leaving with other concurrently executing atomic operations. Atomicity is not guaranteed
if a memory location is concurrently targeted by both atomic and non-atomic operations.
The order in which concurrent atomics update the same memory is not guaranteed, not
even for successively issued operations by a single process. Ordering of atomics with re-
spect to other asynchronous operations is also not guaranteed. The only means to ensure
such ordering is by waiting for one operation to complete before initiating its successor.
Note that UPC++ atomics do not interoperate with std::atomic.

2 At this time, it is unclear how UPC++ will support mixing of atomic and non-atomic accesses
to the same memory location. Until this is resolved, users must assume that for the duration
of the program, once a memory location is accessed via a UPC++ atomic, only further atomic
operations to that location will have meaningful results (note that even global barrier
synchronization does not grant an exception to this rule). This unfortunately implies that
deallocation of such memory is unsafe, as that would allow the memory to be reallocated
to a context unaware of its constrained condition.

3 All atomic operations are associated with an atomic domain. An atomic domain is defined
for an integer or floating-point type and a set of operations. Currently, the allowed types
are std::int32_t, std::uint32_t, std::int64_t, std::uint64_t, float, and double.
The list of operations is detailed in the API section below. A process’s representative of an

95

UPC++ Specification v1.0 Draft 10

atomic domain is an instance of an atomic_domain class, and the operations are defined
as methods on that class.

4 An atomic domain is created collectively over a team. The result is a semantic binding
of atomic_domain objects as a collective object. We use the phrase atomic domain to
refer to this semantic binding. An atomic domain must be destroyed by the processes in
the team collectively calling the destroy() member function, which releases the resources
associated with the domain.

5 The use of atomic domains permits selection (at construction) of the most efficient available
implementation which can provide correct results for the given set of operations on the given
data type. This is important because the best possible implementation of a operation "X"
may not be compatible with operation "Y". So, this best "X" can only be used when it is
known that "Y" will not be used. This issue arises because a NIC may offload "X" (but not
"Y") and use of a CPU-based implementation of "Y" would not be coherent with the NIC
performing a concurrent "X" operation.

6 Similar to a mutex, an atomic domain exists independent of the data it applies to. User
code is responsible for ensuring that data accessed via a given atomic domain is only
accessed via that domain, never via a different domain or without use of a domain.

7 Users may create as many domains as needed to describe their uses of atomic operations,
so long as there is at most one domain per atomic datum. If distinct data of the same type
are accessed using differing sets of operations, then creation of distinct domains for each
operation set is recommended to achieve the best performance on each set.

8 For example, to use atomic fetch-and-add, load and store operations on an int64_t, a user
must first define a domain as follows:

9 atomic_domain <int64_t > ad_i64 ({ atomic_op ::load ,
atomic_op :: store ,
atomic_op :: fetch_add });

10 Each atomic operation works on a global pointer to the type given when the domain was
constructed.

11 All atomic operations are non-blocking and provide an operation-completion event to indi-
cate completion of the atomic. By default, all operations return futures. So, for example,
this is the way to call an atomic operation for the previous example’s domain:

1 global_ptr <int64_t > x = new_ <int64_t >(0);
2 future <int64_t > f = ad_i64 . fetch_add (x, 2,
3 std :: memory_order_relaxed);
4 int64_t res = f.wait ();

96 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 13. ATOMICS

12 Atomic domains enable a user to select a subset of operations that are supported in hard-
ware on a given platform, and hence more performant.

13.2 Deviations from IEEE 754

1 UPC++ atomics on float and double are permitted to deviate from the IEEE 754 stan-
dard [1], even where float and double otherwise conform to the standard in the underlying
C++ implementation. For example, a UPC++ atomic may perform a compare_exchange
operation on floating-point values as if they were integers of the same width, and it may
compare floating-point values as if they were sign-and-magnitude-representation integers
of the same width. This can lead to non-conforming behavior with respect to NaNs and
negative zero.

13.3 API Reference

1 enum class atomic_op : int {
load , store ,
compare_exchange ,
add , fetch_add ,
sub , fetch_sub ,
mul , fetch_mul ,
min , fetch_min ,
max , fetch_max ,
bit_and , fetch_bit_and ,
bit_or , fetch_bit_or ,
bit_xor , fetch_bit_xor ,
inc , fetch_inc ,
dec , fetch_dec

};

2 template < typename T>
class atomic_domain ;

3 C++ Concepts: MoveConstructible, Destructible
4 template < typename T>

atomic_domain <T >:: atomic_domain (
std :: vector <atomic_op > const &ops ,
team &team = world ());

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 97

UPC++ Specification v1.0 Draft 10

5 This function is collective (§12.1) over the given team, and it must be called by
the thread that has the master persona (§10.5.1).

6 Precondition: T must be one of the approved atomic types: std::int32_t,
std::uint32_t, std::int64_t, std::uint64_t, float, or double. T must be
a permitted type for each of the operations in ops.

7 Constructs an atomic domain for type T, with supported operations ops. This
instance acts as the calling process’s representative in the resulting atomic
domain.

8 UPC++ progress level: internal
9 template < typename T>

atomic_domain <T >:: atomic_domain (atomic_domain && other);

10 Precondition: Calling thread must have the master persona.
11 Makes this instance the calling process’s representative of the atomic domain

associated with other, transferring all state from other. Invalidates other,
and any subsequent operations on other, except for move construction or de-
struction, produce undefined behavior.

12 UPC++ progress level: none
13 template < typename T>

void atomic_domain <T >:: destroy (entry_barrier lev =
entry_barrier :: user);

14 This function is collective (§12.1) over the team associated with this atomic do-
main, and it must be called by the thread that has the master persona (§10.5.1).

15 Precondition: This instance must be the process’s representative of the atomic
domain. lev must be single-valued (Ch. 12). After the entry barrier spec-
ified by lev completes, or upon entry if lev == entry_barrier::none, all
operations on this atomic domain must have signaled operation completion.

16 Destroys the calling process’s state associated with the atomic domain. Sub-
sequent operations on this atomic_domain, other than move construction or
destruction, produce undefined behavior.

17 C++ memory ordering: If lev != entry_barrier::none, with respect to all
threads participating in this collective, all evaluations which are sequenced-
before their respective thread’s invocation of this call will have a happens-before
relationship with all evaluations sequenced after the call.

98 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 13. ATOMICS

18 UPC++ progress level: user if lev == entry_barrier::user; internal oth-
erwise

19 template < typename T>
atomic_domain <T >::~ atomic_domain ();

20 Precondition: Either UPC++ must have been uninitialized since this domain’s
creation, or the atomic_domain must either have had destroy() called on it
or been invalidated by being passed to the move constructor.

21 Destructs this atomic_domain object.
22 This function may be called when UPC++ is in the uninitialized state.
23 UPC++ progress level: none
24 template < typename T>

template < typename Completions = decltype (operation_cx :: as_future ())>
RType atomic_domain <T >:: load(global_ptr <T> p,

std :: memory_order order ,
Completions cxs= Completions {});

25 Precondition: T must be the only type used by any atomic referencing any part
of p’s target memory for the entire lifetime of UPC++. order must be std::
memory_order_relaxed or std::memory_order_acquire. The atomic_op::
load operation must have been included in the ops used to construct this
atomic_domain. The team associated with this domain must not have been
destroyed.

26 Initiates an atomic read of the object at location p and produces its value as
part of operation completion.

Completions:
27 • Operation: Indicates completion of all aspects of the operation: the remote

atomic read and transfer of the result are complete. This completion
produces a value of type T.

28 C++ memory ordering: If order is std::memory_order_acquire then the
read performed will have a happens-before relationship with the operation-
completion notification actions (future readying, promise fulfillment, or persona
LPC enlistment).

29 UPC++ progress level: internal
30

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 99

UPC++ Specification v1.0 Draft 10

template < typename T>
template < typename Completions = decltype (operation_cx :: as_future ())>
RType atomic_domain <T >:: store(global_ptr <T> p,

T val ,
std :: memory_order order ,
Completions cxs= Completions {});

31 Precondition: T must be the only type used by any atomic referencing any part
of p’s target memory for the entire lifetime of UPC++. order must be std::
memory_order_relaxed or std::memory_order_release. The atomic_op::
store operation must have been included in the ops used to construct this
atomic_domain. The team associated with this domain must not have been
destroyed.

32 Initiates an atomic write of val to the location p. Completion of the write is
indicated by operation completion.

Completions:
33 • Operation: Indicates completion of all aspects of the operation: the trans-

fer of the value and remote atomic write are complete.
34 C++ memory ordering: If order is std::memory_order_release then all eval-

uations sequenced-before this call will have a happens-before relationship with
the write performed. The write performed will have a happens-before rela-
tionship with the operation-completion notification actions (future readying,
promise fulfillment, or persona LPC enlistment).

35 UPC++ progress level: internal
36 template < typename T>

template < typename Completions = decltype (operation_cx :: as_future ())>
RType atomic_domain <T >:: compare_exchange (

global_ptr <T> p,
T val1 ,
T val2 ,
std :: memory_order order ,
Completions cxs= Completions {});

37 Precondition: T must be the only type used by any atomic referencing any
part of p’s target memory for the entire lifetime of UPC++. order must be
std::memory_order_relaxed, std::memory_order_acquire, std::memory_
order_release, or std::memory_order_acq_rel. The ops used to construct

100 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 13. ATOMICS

this atomic_domain must have included the atomic_op::compare_exchange
operation. The team associated with this domain must not have been destroyed.

38 Initiates the atomic read-modify-write operation consisting of: reading the
value of the object located at p, and if it is equal to val1, writing val2 back.
The value produced by operation completion is the one initially read.

Completions:
39 • Operation: Indicates completion of all aspects of the operation: the trans-

fer of the given value to the recipient, remote atomic update, and transfer
of the old value to the initiator are complete. This completion produces a
value of type T.

40 C++ memory ordering: If order is either std::memory_order_release or
std::memory_order_acq_rel then all evaluations sequenced-before this call
will have a happens-before relationship with the atomic action. If order is std::
memory_order_acquire or std::memory_order_acq_rel then the atomic ac-
tion will have a happens-before relationship with the operation-completion no-
tification actions (future readying, promise fulfillment, or persona LPC enlist-
ment).

41 UPC++ progress level: internal
42 template < typename T>

template < typename Completions = decltype (operation_cx :: as_future ())>
RType atomic_domain <T >::binary_key (global_ptr <T> p,

T val ,
std :: memory_order order ,
Completions cxs= Completions {});

template < typename T>
template < typename Completions = decltype (operation_cx :: as_future ())>
RType atomic_domain <T >:: fetch_binary_key (global_ptr <T> p,

T val ,
std :: memory_order order ,
Completions cxs= Completions {});

template < typename T>
template < typename Completions = decltype (operation_cx :: as_future ())>
RType atomic_domain <T >::unary_key (global_ptr <T> p,

std :: memory_order order ,
Completions cxs= Completions {});

template < typename T>
template < typename Completions = decltype (operation_cx :: as_future ())>
RType atomic_domain <T >:: fetch_unary_key (global_ptr <T> p,

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 101

UPC++ Specification v1.0 Draft 10

std :: memory_order order ,
Completions cxs= Completions {});

43 Precondition: T must be the only type used by any atomic referencing any part
of p’s target memory for the entire lifetime of UPC++, and it must be one of
the permitted types for the operation. order must be std::memory_order_
relaxed, std::memory_order_acquire, std::memory_order_release, or
std::memory_order_acq_rel. The atomic_op::op operation must have been
included in the ops used to construct this atomic_domain, where op is
the following for each variant, respectively: binary_key, fetch_binary_key,
unary_key, fetch_unary_key. The team associated with this domain must
not have been destroyed.

44 Initiates the atomic read-modify-write operation consisting of: reading the
value of the object located at p, performing the operation corresponding to
binary_key or unary_key, and writing the new value back. For binary opera-
tions, the operation is performed on the value initially read and the val argu-
ment. For unary operations, the operation is performed on the value initially
read. In the fetch variants, the value initially read is produced by operation
completion.

45 The correspondence between binary_key, its respective arithmetic operation,
and the permitted types is as in Table 13.1. All operations support the integral
types std::int32_t, std::uint32_t, std::int64_t, and std::uint64_t.

binary_key Computation Supports float and double
add + yes
sub - yes
mul * yes
min std::min yes
max std::max yes

bit_and & no
bit_or | no
bit_xor ˆ no

Table 13.1: Binary atomic arithmetic computations

46 The correspondence between binary_key, its respective arithmetic operation,
and the permitted types is as in Table 13.2. All operations support the integral
types std::int32_t, std::uint32_t, std::int64_t, and std::uint64_t.

Completions:

102 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 13. ATOMICS

unary_key Computation Supports float and double
inc ++ yes
dec -- yes

Table 13.2: Unary atomic arithmetic computations

47 • Operation: Indicates completion of all aspects of the operation: the trans-
fer of the given value to the recipient and remote atomic update, and
transfer of the old value to the initiator in the fetch variants, are com-
plete. This completion does not produce a value in the non-fetch variants
and produces a value of type T in the fetch variants.

48 C++ memory ordering: If order is either std::memory_order_release or
std::memory_order_acq_rel then all evaluations sequenced-before this call
will have a happens-before relationship with the atomic action. If order is std::
memory_order_acquire or std::memory_order_acq_rel then the atomic ac-
tion will have a happens-before relationship with the operation-completion no-
tification actions (future readying, promise fulfillment, or persona LPC enlist-
ment).

49 UPC++ progress level: internal

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 103

Chapter 14

Distributed Objects

14.1 Overview

1 In distributed-memory parallel programming, the concept of a single logical object parti-
tioned over several processes is a useful capability in many contexts: for example, geometric
meshes, vectors, matrices, tensors, and associative maps. Since UPC++ is a communication
library, it strives to focus on the mechanisms of communication as opposed to the various
programming idioms for managing distribution. However, a basic framework for users to
implement their own distributed objects is useful and also enables UPC++ to provide the
user with the following valuable features:

1. Universal distributed object naming: per-object names that can be transmitted to
other processes while retaining their meaning.

2. Name-to-this mapping: Mapping between the universal name and the calling pro-
cess’s memory address holding that distributed object’s state for the process (the
calling process’s this pointer).

2 The need for universal distributed object naming stems primarily from RPC-based commu-
nication. If one process needs to remotely invoke code on a peer’s partition of a distributed
object, there needs to be some mutually agreeable identifier for referring to that distributed
object. For simplicity, this identifier value should be: identical across all processes so that
it may be freely communicated while maintaining its meaning. Moreover, the name should
be TriviallyCopyable so that it may be serialized into RPCs efficiently (including with the
auto-capture [=] lambda syntax), hashable, and comparable so that it works well with
standard C++ containers. UPC++ provides distributed object names meeting these criteria

104

CHAPTER 14. DISTRIBUTED OBJECTS

as well as the registry for mapping names to and from the calling process’s partition of the
distributed object.

14.2 Building Distributed Objects

1 Distributed objects are built with the upcxx::dist_object<T> constructor over a specific
team (defaulting to team world()). For all processes in the given team, each process
constructs an instance of dist_object<T>, supplying a value of type T representing this
process’s instance value. All processes in the team must call this constructor collectively.
Once construction completes, the distributed object has a universal name which can be
used by any rank in the team to locate the resident instance. When the dist_object<T>
is destructed the T value is also destructed. At this point the name will cease to carry
meaning on this process. Thus, the programmer should ensure that no process destructs a
distributed object until all name lookups destined for it complete and all hanging references
of the form T& or T* to the value have expired.

2 The names of dist_object<T>’s are encoded by the dist_id<T> type. This type is Trivial-
lyCopyable, EqualityComparable, LessThanComparable, hashable, and DefinitelyTriviall-
ySerializable. It has the members .here() and .when_here() for retrieving the resident
dist_object<T> instance registered with the name.

14.3 Ensuring Distributed Existence

1 The dist_object<T> constructor requires it be called in a collective context, but it does
not guarantee that, after the call, all other ranks in the team have exited or even reached
the constructor. Thus users are required to guard against the possibility that when an RPC
carrying an distributed object’s name executes, the recipient process may not yet have an
entry for that name in its registry. Possible ways to deal with this include:

1. Barrier: Before issuing communication containing a dist_id<T> for a newly created
distributed object, the relevant team completes a barrier to ensure global existence
of the dist_object<T>.

2. Point to point: Before communicating a dist_id<T> with a given process, the initi-
ating process uses some two-party protocol to ensure that the peer has constructed
the dist_object<T>.

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 105

UPC++ Specification v1.0 Draft 10

3. Asynchronous point-to-point: The user performs no synchronization to ensure remote
existence. Instead, an RPC is sent which, upon arrival, must wait asynchronously via
a continuation for the peer to construct the distributed object.

2 UPC++ enables the asynchronous point-to-point approach implicitly when dist_object<T>&
arguments are given to any of the RPC family of functions (see Ch. 9).

14.4 API Reference

1 template < typename T>
class dist_object ;

2 C++ Concepts: MoveConstructible, Destructible
3 template < typename T>

dist_object <T >:: dist_object (T value , team &team = world ());

4 This function is collective (§12.1) over the given team, and it must be called by
the thread that has the master persona (§10.5.1).

5 Constructs this process’s member of the distributed object identified by the
collective calling context across team. The initial value for this process is given
in value. The future returned from dist_id<T>::when_here for the corre-
sponding dist_id<T> will be readied during this constructor. This implies
that continuations waiting for that future will execute before the constructor
returns.

6 UPC++ progress level: none
7 template < typename T>

template < typename ... Arg >
dist_object <T >:: dist_object (team &team , Arg &&... arg);

8 This function is collective (§12.1) over the given team, and it must be called by
the thread that has the master persona (§10.5.1).

9 Constructs this process’s member of the distributed object identified by the
collective calling context across team. The initial value for this process is con-
structed with T(std::forward<Arg>(arg)...). The result is undefined if this
call throws an exception. The future returned from dist_id<T>::when_here
for the corresponding dist_id<T> will be readied during this constructor. This

106 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 14. DISTRIBUTED OBJECTS

implies that continuations waiting for that future will execute before the con-
structor returns.

10 UPC++ progress level: none
11 template < typename T>

dist_object <T >:: dist_object (dist_object <T> && other);

12 Precondition: Calling thread must have the master persona.
13 Makes this instance the calling process’s representative of the distributed object

associated with other, transferring all state from other. Invalidates other, and
any subsequent operations on other, except for destruction, produce undefined
behavior.

14 UPC++ progress level: none
15 template < typename T>

dist_object <T >::~ dist_object ();

16 Precondition: Calling thread must have the master persona.
17 If this instance has not been invalidated by being passed to the move con-

structor, then this will destroy the calling process’s member of the distributed
object. ~T() will be invoked on the resident instance, and further lookups on
this process using the dist_id<T> corresponding to this distributed object will
have undefined behavior. If this instance has been invalidated by a move, then
this call will have no effect.

18 UPC++ progress level: none
19 template < typename T>

dist_id <T> dist_object <T >:: id() const;

20 Returns the dist_id<T> representing the universal name of this distributed
object.

21 UPC++ progress level: none
22 template < typename T>

team& dist_object <T >:: team () const;

23 Precondition: The team associated with this distributed object must not have
been destroyed.

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 107

UPC++ Specification v1.0 Draft 10

24 Retrieves a reference to the team instance associated with this distributed ob-
ject.

25 UPC++ progress level: none
26 template < typename T>

T* dist_object <T >:: operator ->() const;

27 Access to the calling process’s value instance for this distributed object.
28 UPC++ progress level: none
29 template < typename T>

T& dist_object <T >:: operator *() const;

30 Access to the calling process’s value instance for this distributed object.
31 UPC++ progress level: none
32 template < typename T>

future <T> dist_object <T >:: fetch(intrank_t rank) const;

33 Precondition: rank must be a valid ID in the team associated with this dis-
tributed object. T must be DefinitelySerializable but not view<U, IterType>.
rank’s instance of this distributed object must not have been destroyed by the
owning process. The team associated with this distributed object must not
have been destroyed.

34 Asynchronously retrieves a copy of the instance of this distributed object asso-
ciated with the peer index rank in this distributed object’s team. The result is
encapsulated in the returned future. This call is equivalent to:

35 rpc(team ()[rank],
[](dist_object <T> &obj) { return *obj; },
*this)

36 UPC++ progress level: internal
37 template < typename T>

struct dist_id <T>;

38 C++ Concepts: DefaultConstructible, TriviallyCopyable, StandardLayoutType,
EqualityComparable, LessThanComparable, hashable

39 UPC++ Concepts: DefinitelyTriviallySerializable
40

108 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 14. DISTRIBUTED OBJECTS

template < typename T>
dist_id <T >:: dist_id ();

41 Initializes this name to be an invalid ID.
42 UPC++ progress level: none
43 template < typename T>

future < dist_object <T>&> dist_id <T >:: when_here () const;

44 Precondition: This name must be a valid ID for the calling process. The
dist_object<T> instance owned by the calling process that is associated with
this name must not have been destroyed. The calling thread must have the
master persona.

45 Retrieves a future representing when the calling process constructs the
dist_object<T> corresponding to this name.

46 UPC++ progress level: none
47 template < typename T>

dist_object <T>& dist_id <T >:: here () const;

48 Precondition: This name must be a valid ID for the calling process. The
dist_object<T> instance owned by the calling process that is associated with
this name must have been previously constructed but not yet destroyed. The
calling thread must have the master persona.

49 Retrieves a reference to the calling process’s dist_object<T> instance associ-
ated with this name.

50 UPC++ progress level: none

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 109

Chapter 15

Non-Contiguous One-Sided
Communication

15.1 Overview

1 UPC++ provides functions to perform one-sided communications similar to rget and rput
which are dedicated to handle data stored in non-contiguous locations. These functions are
denoted with a suffix added to the type of operation, in increasing order of specialization:

2 {rput,rget}_{irregular,regular,strided}

3 The most general variant of the API, {rput,rget}_irregular, accept iterators over an
array or collection of std::pair (or std::tuple) that contain a local or global pointer
to a memory location in the first member while the second member contains the size of
the contiguous chunk of memory to be transferred. This variant is capable of expressing
non-contiguous RMA of arbitrary shape, but pays the highest overhead in metadata to
payload ratio.

4 The next set of functions, {rput,rget}_regular, operates over contiguous elements of
identical size on each side of the transfer, and only requires the caller to provide an array
or collection of base pointers to each element.

5 Finally, the most specialized set of functions, {rput,rget}_strided, provide an interface
for expressing translational and transposing copies between arbitrary rectangular sections
of densely stored N-dimensional arrays. This specialized pattern requires the least meta-
data, which is constant in size for a given dimensionality. An example of such a transfer is
depicted in Figure 15.1.

110

CHAPTER 15. NON-CONTIGUOUS ONE-SIDED COMMUNICATION

Figure 15.1: Example of a 3-D strided translational copy, with associated metadata

15.2 API Reference

15.2.1 Requirements on Iterators

1 An iterator used with a UPC++ operation in this section must adhere to the following
requirements:

2 • It must satisfy the Iterator and EqualityComparable C++ concepts.
3 • Calling std::distance on the iterator must not invalidate it.

15.2.2 Irregular Put

1 template < typename SrcIter , typename DestIter ,
typename Completions = decltype (operation_cx :: as_future ())>

RType rput_irregular (
SrcIter src_runs_begin , SrcIter src_runs_end ,
DestIter dest_runs_begin , DestIter dest_runs_end ,
Completions cxs= Completions {});

Preconditions:

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 111

UPC++ Specification v1.0 Draft 10

2 • SrcIter and DestIter both satisfy the iterator requirements above.
3 • std::get<0>(*std::declval<SrcIter>()) has a return type convertible

to T const*, for some DefinitelyTriviallySerializable type T.
4 • std::get<1>(*std::declval<SrcIter>()) has a return type convertible

to std::size_t.
5 • std::get<0>(*std::declval<DestIter>()) has the return type

global_ptr<T>, for the same type T as with SrcIter.
6 • std::get<1>(*std::declval<DestIter>()) has a return type convert-

ible to std::size_t.
7 • All destination addresses must be global_ptr<T>’s referencing memory

with affinity to the same process.
8 • The length of the expanded address sequence (the sum over the run

lengths) must be the same for the source and destination sequences.
9 For some type T, takes a sequence of source addresses of T const* and a se-

quence of destination addresses of global_ptr<T> and does the corresponding
puts from each source address to the destination address of the same sequence
position.

10 Address sequences are encoded in run-length form as sequences of runs, where
each run is a pair consisting of a starting address plus the number of consecutive
elements of type T beginning at that address.

11 As an example of valid types for individual runs, SrcIter could be an iterator
over elements of type std::pair<T const*, std::size_t>, and DestIter an
iterator over std::pair<global_ptr<T>, std::size_t>. Variations replac-
ing std::pair with std::tuple or size_t with other primitive integral types
are also valid.

12 The source sequence iterators must remain valid, and the underlying addresses
and source memory contents must not be modified until source completion
is signaled. Only after source completion is signaled can the source address
sequences and memory be reclaimed by the application.

13 The destination sequence iterators must remain valid until source completion
is signaled.

14 The destination memory regions must be completely disjoint and must not over-
lap with any source memory regions, otherwise behavior is undefined. Source
regions are permitted to overlap with each other.

112 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 15. NON-CONTIGUOUS ONE-SIDED COMMUNICATION

Completions:
15 • Source: Indicates that the source sequence iterators and underlying mem-

ory, as well as the destination sequence iterators, are no longer in use by
UPC++ and may be reclaimed by the user.

16 • Remote: Indicates completion of the transfer of all values.
17 • Operation: Indicates completion of all aspects of the operation: the trans-

fer and remote stores are complete.
18 C++ memory ordering: The reads of the sources will have a happens-before

relationship with the source-completion notification actions (future readying,
promise fulfillment, or persona LPC enlistment). The writes to the destinations
will have a happens-before relationship with the operation-completion notifica-
tion actions (future readying, promise fulfillment, or persona LPC enlistment)
and remote-completion actions (RPC enlistment). For LPC and RPC com-
pletions, all evaluations sequenced-before this call will have a happens-before
relationship with the execution of the completion function.

19 UPC++ progress level: internal

15.2.3 Irregular Get

1 template < typename SrcIter , typename DestIter ,
typename Completions = decltype (operation_cx :: as_future ())>

RType rget_irregular (
SrcIter src_runs_begin , SrcIter src_runs_end ,
DestIter dest_runs_begin , DestIter dest_runs_end ,
Completions cxs= Completions {});

Preconditions:
2 • SrcIter and DestIter both satisfy the iterator requirements above.
3 • std::get<0>(*std::declval<SrcIter>()) has the type global_ptr<T>

for some DefinitelyTriviallySerializable type T.
4 • std::get<1>(*std::declval<SrcIter>()) has a type that is convertible

to std::size_t.
5 • std::get<0>(*std::declval<DestIter>()) has the type T*, for the same

type T as with SrcIter.

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 113

UPC++ Specification v1.0 Draft 10

6 • std::get<1>(*std::declval<DestIter>()) has a type that is convert-
ible to std::size_t.

7 • All source addresses must be global_ptr<T>’s referencing memory with
affinity to the same process.

8 • The length of the expanded address sequence (the sum over the run
lengths) must be the same for the source and destination sequences.

9 For some type T, takes a sequence of source addresses of global_ptr<T> and a
sequence of destination addresses of T* and does the corresponding gets from
each source address to the destination address of the same sequence position.

10 Address sequences are encoded in run-length form as sequences of runs, where
each run is a pair consisting of a starting address plus the number of consecutive
elements of type T beginning at that address.

11 As an example of valid types for individual runs, DestIter could be an it-
erator over elements of type std::pair<T*, std::size_t>, and SrcIter an
iterator over std::pair<global_ptr<T>, std::size_t>. Variations replac-
ing std::pair with std::tuple or size_t with other primitive integral types
are also valid.

12 The source sequence iterators must remain valid, and the underlying addresses
and memory contents must not be modified until operation completion is sig-
naled. Only after operation completion is signaled can the address sequences
and source memory be reclaimed by the application.

13 The destination sequence iterators must remain valid until operation comple-
tion is signaled.

14 The destination memory regions must be completely disjoint and must not over-
lap with any source memory regions, otherwise behavior is undefined. Source
regions are permitted to overlap with each other.

Completions:
15 • Operation: Indicates completion of all aspects of the operation: the trans-

fer and local stores are complete.
16 C++ memory ordering: The reads of the sources and writes to the destina-

tions will have a happens-before relationship with the operation-completion no-
tification actions (future readying, promise fulfillment, or persona LPC enlist-
ment). For LPC completions, all evaluations sequenced-before this call will have
a happens-before relationship with the execution of the completion function.

114 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 15. NON-CONTIGUOUS ONE-SIDED COMMUNICATION

17 UPC++ progress level: internal

15.2.4 Regular Put

1 template < typename SrcIter , typename DestIter ,
typename Completions = decltype (operation_cx :: as_future ())>

RType rput_regular (
SrcIter src_runs_begin , SrcIter src_runs_end ,
std :: size_t src_run_length ,
DestIter dest_runs_begin , DestIter dest_runs_end ,
std :: size_t dest_run_length ,
Completions cxs= Completions {});

Preconditions:
2 • SrcIter and DestIter both satisfy the iterator requirements above.
3 • *std::declval<SrcIter>() has a type convertible to T const*, for some

DefinitelyTriviallySerializable type T.
4 • *std::declval<DestIter>()) has the type global_ptr<T>, for the same

type T as with SrcIter.
5 • All destination addresses must be global_ptr<T>’s referencing memory

with affinity to the same process.
6 • The length of the two sequences delimited by (src_runs_begin,

src_runs_end) and (dest_runs_begin, dest_runs_end) multiplied by
src_run_length and dest_run_length, respectively, must be the same.

7 This call has the same semantics as rput_irregular with the exception that,
for each sequence, all run lengths are the same and are factored out of the
sequences into two extra parameters src_run_length and dest_run_length,
which express the number of consecutive elements of type T in units of element
count. Thus the iterated elements are no longer pairs, but just pointers.

8 The source sequence iterators must remain valid, and the underlying addresses
and source memory contents must not be modified until source completion
is signaled. Only after source completion is signaled can the source address
sequences and memory be reclaimed by the application.

9 The destination sequence iterators must remain valid until source completion
is signaled.

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 115

UPC++ Specification v1.0 Draft 10

Completions:

10 • Source: Indicates that the source sequence iterators and underlying mem-
ory, as well as the destination sequence iterators, are no longer in use by
UPC++ and may be reclaimed by the user.

11 • Remote: Indicates completion of the transfer of all values.
12 • Operation: Indicates completion of all aspects of the operation: the trans-

fer and remote stores are complete.
13 C++ memory ordering: The reads of the sources will have a happens-before

relationship with the source-completion notification actions (future readying,
promise fulfillment, or persona LPC enlistment). The writes to the destinations
will have a happens-before relationship with the operation-completion notifica-
tion actions (future readying, promise fulfillment, or persona LPC enlistment)
and remote-completion actions (RPC enlistment). For LPC and RPC com-
pletions, all evaluations sequenced-before this call will have a happens-before
relationship with the execution of the completion function.

14 UPC++ progress level: internal

15.2.5 Regular Get

1 template < typename SrcIter , typename DestIter ,
typename Completions = decltype (operation_cx :: as_future ())>

RType rget_regular (
SrcIter src_runs_begin , SrcIter src_runs_end ,
std :: size_t src_run_length ,
DestIter dest_runs_begin , DestIter dest_runs_end ,
std :: size_t dest_run_length ,
Completions cxs= Completions {});

Preconditions:

2 • SrcIter and DestIter both satisfy the iterator requirements above.
3 • *std::declval<DestIter>() has a type convertible to T*, for some Def-

initelyTriviallySerializable type T.
4 • *std::declval<SrcIter>()) has the type global_ptr<T>, for the same

type T as with DestIter.

116 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 15. NON-CONTIGUOUS ONE-SIDED COMMUNICATION

5 • All source addresses must be global_ptr<T>’s referencing memory with
affinity to the same process.

6 • The length of the two sequences delimited by (src_runs_begin,
src_runs_end) and (dest_runs_begin, dest_runs_end) multiplied by
src_run_length and dest_run_length, respectively, must be the same.

7 This call has the same semantics as rget_irregular with the exception that,
for each sequence, all run lengths are the same and are factored out of the
sequences into two extra parameters src_run_length and dest_run_length,
which express the number of consecutive elements of type T in units of element
count. Thus, the iterated elements are no longer pairs, but just pointers.

8 The source sequence iterators must remain valid, and the underlying addresses
and memory contents must not be modified until operation completion is sig-
naled. Only after operation completion is signaled can the address sequences
and source memory be reclaimed by the application.

9 The destination sequence iterators must remain valid until operation comple-
tion is signaled.

Completions:
10 • Operation: Indicates completion of all aspects of the operation: the trans-

fer and local stores are complete.
11 C++ memory ordering: The reads of the sources and writes to the destina-

tions will have a happens-before relationship with the operation-completion no-
tification actions (future readying, promise fulfillment, or persona LPC enlist-
ment). For LPC completions, all evaluations sequenced-before this call will have
a happens-before relationship with the execution of the completion function.

12 UPC++ progress level: internal

15.2.6 Strided Put

1 template <std :: size_t Dim , typename T,
typename Completions = decltype (operation_cx :: as_future ())>

RType rput_strided (
T const *src_base ,
std :: ptrdiff_t const * src_strides ,
global_ptr <T> dest_base ,
std :: ptrdiff_t const * dest_strides ,

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 117

UPC++ Specification v1.0 Draft 10

std :: size_t const *extents ,
Completions cxs= Completions {});

template <std :: size_t Dim , typename T,
typename Completions = decltype (operation_cx :: as_future ())>

RType rput_strided (
T const *src_base ,
std :: array <std :: ptrdiff_t ,Dim > const & src_strides ,
global_ptr <T> dest_base ,
std :: array <std :: ptrdiff_t ,Dim > const & dest_strides ,
std :: array <std :: size_t ,Dim > const &extents ,
Completions cxs= Completions {});

2 Precondition: T must be a DefinitelyTriviallySerializable type.
3 If Dim == 0, src_strides, dest_strides, and extents are ignored, and the

data movement performed is equivalent to rput(src_base, dest_base, 1).
4 Otherwise, performs the semantic equivalent of many put’s of type T. Let

the index space be the set of integer vectors of dimension Dim contained in
the bounding box with the inclusive lower bound at the all-zero origin, and
the exclusive upper bound equal to extents. For each index vector index in
this index space, a put will be executed with source and destination addresses
computed according to the following pseudo-code, where dotprod is the vector
dot product and pointer arithmetic is done in units of bytes (not elements of
�T):

5 src_address = src_base + dotprod (index , src_strides)
dest_address = dest_base + dotprod (index , dest_strides)

6 Note this implies the elements of the src_strides and dest_strides arrays
are expressed in units of bytes.

7 The destination memory regions must be completely disjoint and must not over-
lap with any source memory regions, otherwise behavior is undefined. Source
regions are permitted to overlap with each other.

8 The elements of type T residing in the source addresses must remain valid and
unmodified until source completion is signaled.

9 The contents of the src_strides, dest_strides, and extents arrays are con-
sumed synchronously before the call returns.

Completions:

118 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 15. NON-CONTIGUOUS ONE-SIDED COMMUNICATION

10 • Source: Indicates that the source memory is no longer in use by UPC++
and may be reclaimed by the user.

11 • Remote: Indicates completion of the transfer of all values.
12 • Operation: Indicates completion of all aspects of the operation: the trans-

fer and remote stores are complete.
13 C++ memory ordering: The reads of the sources will have a happens-before

relationship with the source-completion notification actions (future readying,
promise fulfillment, or persona LPC enlistment). The writes to the destinations
will have a happens-before relationship with the operation-completion notifica-
tion actions (future readying, promise fulfillment, or persona LPC enlistment)
and remote-completion actions (RPC enlistment). For LPC and RPC com-
pletions, all evaluations sequenced-before this call will have a happens-before
relationship with the execution of the completion function.

14 UPC++ progress level: internal

15.2.7 Strided Get

1 template <std :: size_t Dim , typename T,
typename Completions = decltype (operation_cx :: as_future ())>

RType rget_strided (
global_ptr <T> src_base ,
std :: ptrdiff_t const * src_strides ,
T *dest_base ,
std :: ptrdiff_t const * dest_strides ,
std :: size_t const *extents ,
Completions cxs= Completions {});

template <std :: size_t Dim , typename T,
typename Completions = decltype (operation_cx :: as_future ())>

RType rget_strided (
global_ptr <T> src_base ,
std :: array <std :: ptrdiff_t ,Dim > const & src_strides ,
T *dest_base ,
std :: array <std :: ptrdiff_t ,Dim > const & dest_strides ,
std :: array <std :: size_t ,Dim > const &extents ,
Completions cxs= Completions {});

2 Precondition: T must be a DefinitelyTriviallySerializable type.

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 119

UPC++ Specification v1.0 Draft 10

3 If Dim == 0, src_strides, dest_strides, and extents are ignored, and the
data movement performed is equivalent to rget(src_base, dest_base, 1).

4 Otherwise, performs the reverse direction of rput_strided where now the
source memory is remote and the destination is local.

5 The destination memory regions must be completely disjoint and must not over-
lap with any source memory regions, otherwise behavior is undefined. Source
regions are permitted to overlap with each other.

6 The elements of type T residing in the source addresses must remain valid and
unmodified until operation completion is signaled.

7 The contents of the src_strides, dest_strides, and extents arrays are con-
sumed synchronously before the call returns.

Completions:
8 • Operation: Indicates completion of all aspects of the operation: the trans-

fer and local stores are complete.
9 C++ memory ordering: The reads of the sources and writes to the destina-

tions will have a happens-before relationship with the operation-completion no-
tification actions (future readying, promise fulfillment, or persona LPC enlist-
ment). For LPC completions, all evaluations sequenced-before this call will have
a happens-before relationship with the execution of the completion function.

10 UPC++ progress level: internal

120 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

Chapter 16

Memory Kinds

1 The memory kinds interface enables the programmer to identify regions of memory requir-
ing different access methods or having different performance properties, and subsequently
rely on the UPC++ communication services to perform transfers among such regions (both
local and remote) in a manner transparent to the programmer. With GPU devices, HBM,
scratch-pad memories, NVRAM and various types of storage-class and fabric-attached
memory technologies featured in vendors’ public road maps, UPC++ must be prepared to
deal efficiently with data transfers among all the memory technologies in any given system.

2 UPC++ uses device objects to represent storage that is distinct from main memory, regardless
of whether the storage is directly addressable from the host process. Each kind of memory
has its own device type; for example, a CUDA-enabled GPU device is represented by a
cuda_device object. The device type has a member type-alias template pointer that
refers to the device’s pointer type, as well as a null_pointer member-function template
that returns a null-pointer value of that type. Each device type is associated with a
memory_kind constant, and global pointers are parameterized by a memory_kind (Ch. 3).

3 Creating active device objects is a collective operation over the world team so that UPC++
can allocate the resources required to support remote access to device memory. The result
is a semantic binding of device objects as a collective object, which we refer to as a col-
lective device. A device type also provides a mechanism for constructing inactive device
objects, so that processes without a device resource can still participate in the collective
device-creation operation. A collective device must be destroyed by collectively calling the
destroy() member function, which releases the resources associated with the collective
device.

121

UPC++ Specification v1.0 Draft 10

1 cuda_device :: id_type device_id =
2 rank_me () % 2 == 0 ? 0 : cuda_device :: invalid_device_id ;
3 cuda_device gpu_device (device_id); // device 0 on even processes
4 ...
5 gpu_device . destroy (); // collective destroy

4 A device object can be associated with a device_allocator that manages memory on the
device. Only one device_allocator may be associated with a particular device object.
The region of memory that a device_allocator manages is called a device segment. Users
can either create their own segments and pass them to the device_allocator constructor,
or they can request that the device_allocator allocate its own segment. In the latter
case, the segment is automatically freed when the device_allocator is destroyed.

1 std :: size_t seg_size = 4*1024*1024; // 4MB
2 device_allocator < cuda_device > gpu_alloc (gpu_device , seg_size);
3 global_ptr <double , memory_kind :: cuda_device > gpu_array =
4 gpu_alloc .allocate <double >(1024);
5 ...
6 gpu_alloc . deallocate (gpu_array);

5 We define the affinity (Ch. 3) of memory allocated by a device_allocator to be the host
process that owns the allocator and its associated device.

6 The device types defined in this section are available to UPC++ programs even in UPC++
installations that are not aware of a particular kind of device. For example, a program
may create cuda_device objects. However, there are no valid CUDA device IDs in a
non-CUDA-aware installation, so any cuda_device object created by the program will be
inactive.

7 The copy functions transfer data between memory locations of any kind. The source and
destination locations may either be local or remote, and they may refer to either host or
device memory.

1 global_ptr <double > host_array = new_array <double >(1024);
2 global_ptr <double , memory_kind :: cuda_device > array0 =
3 broadcast (gpu_array , 0). wait ();
4 // copy from gpu array on process 0 to host array on this process
5 copy(array0 , host_array , 1024). wait ();

122 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 16. MEMORY KINDS

16.1 API Reference

16.1.1 cuda_device

1 struct cuda_device ;

2 C++ Concepts: DefaultConstructible, MoveConstructible, Destructible
3 struct cuda_device {

using id_type = int;
// ...

};

4 Member alias for the type of a CUDA device ID.
5 struct cuda_device {

template < typename T>
using pointer = T*;
// ...

};

6 Member template alias for raw pointer types on a CUDA device.
7 template < typename T>

[static] constexpr cuda_device :: pointer <T>
cuda_device :: null_pointer ();

8 Returns a representation of a null CUDA pointer.
9 template < typename T>

[static] constexpr std :: size_t cuda_device :: default_alignment ();

10 Returns the default alignment of an object of type T on a CUDA device.
11 [static] const memory_kind cuda_device :: kind =

memory_kind :: cuda_device ;

12 Constant that has the same value as memory_kind::cuda_device.
13 [static] constexpr cuda_device :: id_type

cuda_device :: invalid_device_id = /* implementation - defined */;

A constant representing an invalid device ID.

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 123

UPC++ Specification v1.0 Draft 10

14 cuda_device :: cuda_device ();

15 Constructs an inactive cuda_device object.
16 cuda_device :: cuda_device (cuda_device :: id_type device_id);

17 This function is collective (§12.1) over the world team, and it must be called
by the thread that has the master persona (§10.5.1).

18 Precondition: device_id must be cuda_device::invalid_device_id or a
valid CUDA device ID that is not associated with an active cuda_device object
on the calling process

19 If the device ID is valid, constructs a cuda_device with the given device ID,
which acts as the calling process’s representative of the resulting collective
device. If the device ID is cuda_device::invalid_device_id, constructs an
inactive cuda_device object.

20 UPC++ progress level: internal
21 cuda_device :: cuda_device (cuda_device && other);

22 Transfers the state represented by other to this cuda_device. Deactivates
other.

23 UPC++ progress level: none
24 void cuda_device :: destroy (entry_barrier lev =

entry_barrier :: user);

25 This function is collective (§12.1) over the world team, and it must be called
by the thread that has the master persona (§10.5.1).

26 Precondition: If this process’s representative of the collective device being de-
stroyed is inactive, then this cuda_device must be inactive. Otherwise, this
instance must be the process’s representative of the collective device. lev must
be single-valued (Ch. 12). After the entry barrier specified by lev completes,
or upon entry if lev == entry_barrier::none, all asynchronous UPC++ op-
erations on memory associated with this device must have signaled operation
completion.

27 Destroys the calling process’s state associated with this cuda_device, deac-
tivating this device object. Subsequent operations on a device_allocator
associated with this device, other than destruction, produce undefined behav-
ior.

124 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 16. MEMORY KINDS

28 C++ memory ordering: If lev != entry_barrier::none, with respect to all
threads participating in this collective, all evaluations which are sequenced-
before their respective thread’s invocation of this call will have a happens-before
relationship with all evaluations sequenced after the call.

29 UPC++ progress level: user if lev == entry_barrier::user; internal oth-
erwise

30 cuda_device ::~ cuda_device ();

31 Precondition: Either UPC++must have been uninitialized since the cuda_device’s
creation, or the cuda_device must either have had destroy() called on it,
been deactivated by being passed to the move constructor, or be an inactive
cuda_device.

32 Destructs this cuda_device object.
33 This function may be called when UPC++ is in the uninitialized state.
34 UPC++ progress level: none
35 cuda_device :: id_type cuda_device :: device_id () const;

36 Returns the device ID of this cuda_device. If this is an inactive device, returns
cuda_device::invalid_device_id.

37 UPC++ progress level: none
38 bool cuda_device :: is_active () const;

39 Returns whether or not this cuda_device is active. A cuda_device is active
if it was created with a valid device ID, has not been passed to the move
constructor, and has not had its state destroyed by a call to destroy.

40 UPC++ progress level: none

16.1.2 device_allocator

1 template < typename Device >
class device_allocator ;

2 C++ Concepts: DefaultConstructible, MoveConstructible, Destructible
3

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 125

UPC++ Specification v1.0 Draft 10

template < typename Device >
class device_allocator {

using device_type = Device ;
// ...

};

4 Member type that is an alias for the template parameter Device.
5 template < typename Device >

device_allocator <Device >:: device_allocator ();

6 Constructs an invalid device_allocator object.
7 template < typename Device >

device_allocator <Device >:: device_allocator (Device &device ,
size_t sz_in_bytes);

8 Precondition: device.is_active(). device must not have been previously
used to create a device_allocator.

9 Constructs a device_allocator associated with the given device. Allocates
and manages a segment of size sz_in_bytes on the device. If the allocation
fails, throws std::bad_alloc.

10 The segment is allocated from the associated device in a device-specific manner.
Any device-specific properties of the resulting allocation are implementation-
defined. If special properties are required, users may allocate their own segment
instead and use the second constructor to initialize an allocator from that seg-
ment.

11 Exceptions: May throw std::bad_alloc.
12 UPC++ progress level: none
13 template < typename Device >

device_allocator <Device >:: device_allocator (Device &device ,
typename Device :: pointer <void > device_memory ,
size_t sz_in_bytes);

14 Precondition: device.is_active(). device must not have been previously
used to create a device_allocator. device_memory must be a pointer to
memory associated with the given device, and it must not be managed by
another allocator. The memory referenced by device_memory must be at least
sz_in_bytes bytes in size.

126 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 16. MEMORY KINDS

15 Constructs a device_allocator associated with the given device using the
given device_memory for its memory management.

16 UPC++ progress level: none

17
template < typename Device >
device_allocator <Device >:: device_allocator (device_allocator && other);

18 Transfers the state represented by other to this device_allocator. Invali-
dates other, and any subsequent operations on other, except for destruction,
produce undefined behavior.

19 UPC++ progress level: none

20
template < typename Device >
device_allocator <Device >::~ device_allocator ();

21 Destructs this device_allocator object. If this device_allocator allocated
a segment on construction, frees the associated segment, invalidating all global
pointers that reference memory within that segment.

22 This function may be called when UPC++ is in the uninitialized state.

23 UPC++ progress level: none

24
template < typename Device >
template < typename T,

std :: size_t alignment = Device :: default_alignment <T>()>
global_ptr <T, Device ::kind >

device_allocator <Device >:: allocate (size_t n=1);

25 Precondition: alignment is a valid alignment.

26 Allocates enough space for n objects of type T from the segment managed by this
allocator, with the memory aligned as specified by alignment. If the allocation
succeeds, returns a global pointer to the start of the allocated memory, and the
allocated memory is uninitialized. If the allocation fails, returns a null pointer.

27 UPC++ progress level: none

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 127

UPC++ Specification v1.0 Draft 10

28 template < typename Device >
template < typename T>
void device_allocator <Device >:: deallocate (

global_ptr <T, Device ::kind > g);

29 Precondition: g.is_null() || g.where == rank_me(). g must be either
a null pointer or a non-deallocated pointer that resulted from a call to
allocate<T, alignment> on this allocator, for some value of alignment.

30 Deallocates the storage previously allocated by a call to allocate. Does noth-
ing if g is a null pointer. Does not invoke the destructor for T.

31 UPC++ progress level: none

32 template < typename Device >
template < typename T>
global_ptr <T, Device ::kind >

device_allocator <Device >:: to_global_ptr (
typename Device :: pointer <T> ptr) const;

33 Precondition: ptr is a null pointer, or a valid pointer such that the expression
*ptr on this allocator’s device yields a (possibly uninitialized) object of type T
that resides within the segment managed by this allocator

34 Converts a raw device pointer to a global pointer.
35 UPC++ progress level: none

36 template < typename Device >
template < typename T>
[static] typename Device :: pointer <T>

device_allocator <Device >:: local(
global_ptr <T, Device ::kind > g);

37 Precondition: g.is_null() || g.where() == rank_me(). g must be ei-
ther a null pointer or a non-deallocated pointer that resulted from a call to
allocate<T, alignment> on a device_allocator<Device> on the caller’s
process, for some value of alignment.

38 Returns the raw device pointer associated with g. If g is a null pointer, returns
Device::null_pointer<T>().

39 UPC++ progress level: none

40
128 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

CHAPTER 16. MEMORY KINDS

template < typename Device >
template < typename T>
[static] typename Device :: id_type

device_allocator <Device >:: device_id (
global_ptr <T, Device ::kind > ptr);

41 If the pointer is not null, returns the ID of the device where the referenced
object resides. If the pointer is null, returns Device::invalid_device_id.

42 UPC++ progress level: none

16.1.3 Data Movement

1 template < typename T, memory_kind Kind1 , memory_kind Kind2 ,
typename Completions = decltype (operation_cx :: as_future ())>

RType upcxx :: copy(global_ptr <T, Kind1 > src ,
global_ptr <T, Kind2 > dest ,
size_t count , Completions cxs= Completions {});

template < typename T, memory_kind Kind ,
typename Completions = decltype (operation_cx :: as_future ())>

RType upcxx :: copy(T const *src , global_ptr <T, Kind > dest ,
size_t count , Completions cxs= Completions {});

template < typename T, memory_kind Kind ,
typename Completions = decltype (operation_cx :: as_future ())>

RType upcxx :: copy(global_ptr <T, Kind > src , T *dest ,
size_t count , Completions cxs= Completions {});

2 Precondition: T must be DefinitelyTriviallySerializable. The addresses in
[src,src+count) and [dest,dest+count) must not overlap. src in the sec-
ond variant and dest in the third variant must reference host memory.

3 Initiates an operation to transfer and store the count items of type T begin-
ning at src to the memory beginning at dest. The values referenced in the
[src,src+count) interval must not be modified until either source or operation
completion is indicated.

4 Source- and operation-completion operations execute on the master persona
of the calling process. In the first and second variant, remote-completion op-
erations execute on the master persona of the host process associated with
the destination (i.e. dest.where()). In the third variant, remote-completion
operations execute on the master persona of the calling process.

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 129

UPC++ Specification v1.0 Draft 10

Completions:
5 • Source: Indicates completion of injection or internal buffering of the source

values, signifying that the src buffer may be modified.
6 • Remote: Indicates completion of the transfer of the values, implying readi-

ness of the target buffer [dest,dest+count).
7 • Operation: Indicates completion of all aspects of the operation: the trans-

fer and stores are complete.
8 C++ memory ordering: For LPC and RPC completions, all evaluations sequenced-

before this call will have a happens-before relationship with the execution of the
completion function.

9 UPC++ progress level: internal

130 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

Appendix A

Notes for Implementers

The following are possible implementations of template metaprogramming utilities for
UPC++ features.

A.1 future_element_t and future_element_moved_t

1 template <int I, typename T>
struct future_element ; // undefined

template <int I, typename T, typename ...U>
struct future_element <I, future <T, U...>> {

typedef typename future_element <I-1, future <U... > >:: type type;
typedef typename future_element <I-1, future <U... > >:: moved_type

moved_type ;
};

template < typename T, typename ...U>
struct future_element <0, future <T, U...>> {

typedef T type;
typedef T&& moved_type ;

};

template < typename T, typename ...U>
struct future_element <-1, future <T, U...>> {

typedef std :: tuple <T, U...> type;
typedef std :: tuple <T&&, U&&... > moved_type ;

131

UPC++ Specification v1.0 Draft 10

};

template < typename T>
struct future_element <-1, future <T>> {

typedef T type;
typedef T&& moved_type ;

};

template <int I>
struct future_element <I, future <>> {

typedef void type;
typedef void moved_type ;

};

template <int I, typename T>
using future_element_t = typename future_element <I, T >:: type;

template <int I, typename T>
using future_element_moved_t =

typename future_element <I, T >:: moved_type ;

A.2 future<T...>::when_all

Utility types:
1 template <template < typename ...Us > class T, typename A, typename B>

struct concat_type ; // undefined

template <template < typename ...Us > class T,
typename ...As , typename ... Bs >

struct concat_type <T, T<As...>, T<Bs...> > {
typedef T<As..., Bs...> type;

};

template <template < typename ...Us > class T,
typename A, typename ... Bs >

struct concat_element_types {
typedef typename concat_element_types <T, Bs ... >:: type rest;
typedef typename concat_type <T, A, rest >:: type type;

};

132 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

APPENDIX A. NOTES FOR IMPLEMENTERS

template <template < typename ...Us > class T, typename A>
struct concat_element_types <T, A> {

typedef A type;
};

template <template < typename ...Us > class T, typename ...U>
using concat_element_types_t =

typename concat_element_types <T, U... >:: type;

Declaration of future<T...>::when_all:
2 template < typename ... Futures >

concat_element_types_t <future , Futures ...> when_all (Futures ... fs);

A.3 to_future

Utility types:
1 template < typename T>

struct future_type {
typedef future <T> type;

};

template < typename ...T>
struct future_type <future <T...>> {

typedef future <T...> type;
};

template <>
struct future_type <void > {

typedef future <> type;
};

template < typename T>
using future_type_t = typename future_type <T >:: type;

Declaration of to_future:
2 template < typename T>

future_type_t <T> to_future (T future_or_value);

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 133

UPC++ Specification v1.0 Draft 10

A.4 future_invoke_result_t

C++11-compliant implementation:
1 template < typename Func , typename ... ArgTypes >

using future_invoke_result_t =
future_type_t < typename std :: result_of <Func(ArgTypes ...) >:: type >;

C++17-compliant implementation:
2 template < typename Func , typename ... ArgTypes >

using future_invoke_result_t =
future_type_t <std :: invoke_result_t <Func , ArgTypes ...>>;

134 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

Bibliography

[1] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008, pages 1–70, Aug
2008. doi:10.1109/IEEESTD.2008.4610935.

[2] ISO/IEC 14882:2011(E) Information technology - Programming Languages - C++.
Geneva, Switzerland, 2012. URL: https://www.iso.org/standard/50372.html.

[3] ISO/IEC 14882:2014(E) Information technology - Programming Languages - C++.
Geneva, Switzerland, 2014. URL: https://www.iso.org/standard/64029.html.

[4] John Bachan, Scott B. Baden, Steven Hofmeyr, Mathias Jacquelin, Amir Kamil, Dan
Bonachea, Paul H. Hargrove, and Hadia Ahmed. UPC++: A High-Performance Com-
munication Framework for Asynchronous Computation. In Proceedings of the 33rd
IEEE International Parallel & Distributed Processing Symposium (to appear), IPDPS.
IEEE, 2019. doi:10.25344/S4V88H.

[5] Y. Zheng, A. Kamil, M. B. Driscoll, H. Shan, and K. Yelick. UPC++: A PGAS
extension for C++. In IEEE 28th International Parallel and Distributed Processing
Symposium (IPDPS), pages 1105–1114, May 2014. doi:10.1109/IPDPS.2014.115.

135

http://dx.doi.org/10.1109/IEEESTD.2008.4610935
https://www.iso.org/standard/50372.html
https://www.iso.org/standard/64029.html
http://dx.doi.org/10.25344/S4V88H
http://dx.doi.org/10.1109/IPDPS.2014.115

Index

Affinity, 5
allocate, 24
atomic_domain, 97

add, 102
bit_and, 102
bit_or, 102
bit_xor, 102
compare_exchange, 100
constructor, 98
dec, 102
destroy, 98
destructor, 99
fetch_add, 102
fetch_bit_and, 102
fetch_bit_or, 102
fetch_bit_xor, 102
fetch_dec, 102
fetch_inc, 102
fetch_max, 102
fetch_min, 102
fetch_mul, 102
fetch_sub, 102
inc, 102
load, 99
max, 102
min, 102
move constructor, 98
mul, 102
store, 100
sub, 102

atomic_op, 97

barrier, 89
barrier_async, 90
broadcast, 93

C++ Concepts, 5
Collective, 5
Collective Object, 6
Conventions, 5
copy, 129
CType, 58

operator|, 60
cuda_device, 123

constructor, 124
default constructor, 124
default_alignment, 123
destroy, 124
destructor, 125
device_id, 125
id_type, 123
invalid_device_id, 123
is_active, 125
kind, 123
move constructor, 124
null_pointer, 123
pointer, 123

current_persona, 78

deallocate, 25
default_persona, 79

136

INDEX

default_persona_scope, 80
DefinitelySerializable, 6, 44
DefinitelyTriviallySerializable, 6, 44
delete_, 24
delete_array, 24
deserializing_iterator, 47, 49
Device, 6
Device Segment, 6
device_allocator, 125

allocate, 127
allocating constructor, 126
deallocate, 128
default constructor, 126
destructor, 127
device_id, 129
device_type, 126
local, 128
move constructor, 127
non-allocating constructor, 126
to_global_ptr, 128

discharge, 73, 81
dist_id, 108

default constructor, 109
here, 109
when_here, 109

dist_object, 106
constructor, 106
destructor, 107
fetch, 108
id, 107
move constructor, 107
operator*, 108
operator->, 108
team, 107
variadic constructor, 106

entry_barrier, 89
Execution Model, 3

finalize, 11

future, 36
default constructor, 36
destructor, 36
ready, 37
result, 37
result_moved, 37
result_tuple, 37
then, 38
wait, 39
wait_moved, 39
wait_tuple, 38

future_element_moved_t, 132
future_element_t, 132
future_invoke_result_t, 134
Futures and Promises, 6

Global Pointer, 1, 6
global_ptr, 14

comparison operators, 19
comparison operators (STL special-

izations), 20
conversion to kind any, 14
destructor, 14
dynamic_kind, 15
dynamic_kind_cast, 21
element_type, 14
is_local, 15
is_null, 16
kind, 14
local, 16
null constructor, 14
operator bool, 16
operator+, 17
operator++, 18
operator+=, 17
operator-, 17, 18
operator–, 18
operator-=, 17
operator«, 20
reinterpret_pointer_cast, 21

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 137

UPC++ Specification v1.0 Draft 10

static_kind_cast, 21
static_pointer_cast, 21
where, 16

Glossary, 5

init, 10
initialized, 11
intrank_t, 13
is_definitely_serializable, 48
is_definitely_trivially_

serializable, 48

liberate_master_persona, 79
Local, 6
local_team, 87
local_team_contains, 87

make_future, 37
make_view, 46, 51, 52
master_persona, 78
memory_kind, 13

new_, 22, 23
new_array, 23

op_fast_add, 90
op_fast_bit_and, 90
op_fast_bit_or, 90
op_fast_bit_xor, 90
op_fast_max, 90
op_fast_min, 90
op_fast_mul, 90
Operation Completion, 6
operation_cx, 58

as_future, 59
as_lpc, 59
as_promise, 59

Persona, 6
persona, 77

default constructor, 77
destructor, 77

lpc, 78
lpc_ff, 77

persona_scope, 79
constructor, 79
constructor (with mutex), 79
destructor, 80

Private Object, 7
Process, 7
Progress, 7
progress, 72, 76
progress_level, 71, 76

progress_level::internal, 71
progress_level::none, 72
progress_level::user, 71

progress_required, 73, 80
promise, 40

constructor, 40
destructor, 40
finalize, 41
fulfill_anonymous, 41
fulfill_result, 40
get_future, 41
require_anonymous, 40

Rank, 7
rank_me, 87
rank_n, 87
reduce_all, 91
reduce_one, 91
Referentially Transparent, 7
Remote, 7
Remote Procedure Call, 7
remote_cx, 58

as_rpc, 59
rget, 63

bulk rget, 63
rget_irregular, 113
rget_regular, 116
rget_strided, 119
rpc, 68

138 Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400.

INDEX

rpc_ff, 67
rput, 61

bulk rput, 62
rput_irregular, 111
rput_regular, 115
rput_strided, 118
RType, 58

Serializable, 8, 44
Serialization

Concepts, 44
Function objects, 45
Special cases, 46
User-defined, 42
View-based, 46

serialize, 42
Shared Segment, 7
Source Completion, 7
source_cx, 58

as_blocking, 60
as_buffered, 60
as_future, 59
as_lpc, 59
as_promise, 59

Team, 7
team, 83

color_none, 83
destroy, 85
destructor, 85
from_world, 84
move constructor, 84
operator[], 83
rank_me, 83
rank_n, 83
split, 84
team_id, 86

team_id, 86
default constructor, 86
here, 86

when_here, 86
Thread, 7
to_future, 40
to_global_ptr, 15
top_persona_scope, 80
TriviallySerializable, 8, 44
try_global_ptr, 15

view, 46
default constructor, 51
T* iterator specialization, 51
with general iterator, 49

view_default_iterator_t, 47, 49

when_all, 39
world, 87

Base revision d4c7370, Wed Mar 13 00:55:47 2019 -0400. 139

	1 Overview and Scope
	1.1 Preliminaries
	1.2 Execution Model
	1.3 Memory Model
	1.4 Common Requirements
	1.5 Organization of this Document
	1.6 Conventions
	1.7 Glossary

	2 Init and Finalize
	2.1 Overview
	2.2 Hello World
	2.3 API Reference

	3 Global Pointers
	3.1 Overview
	3.2 API Reference

	4 Storage Management
	4.1 Overview
	4.2 API Reference

	5 Futures and Promises
	5.1 Overview
	5.2 The Basics of Asynchronous Communication
	5.3 Working with Promises
	5.4 Advanced Callbacks
	5.5 Execution Model
	5.6 Fulfilling Promises
	5.7 Lifetime and Thread Safety
	5.8 API Reference
	5.8.1 future
	5.8.2 promise

	6 Serialization
	6.1 Class Serialization Interface
	6.2 Serialization Concepts
	6.3 Functions
	6.4 Special Handling in Remote Procedure Calls
	6.5 View-Based Serialization
	6.6 API Reference

	7 Completion
	7.1 Overview
	7.2 Completion Objects
	7.2.1 Restrictions
	7.2.2 Completion and Return Types
	7.2.3 Default Completions

	7.3 API Reference

	8 One-Sided Communication
	8.1 Overview
	8.2 API Reference
	8.2.1 Remote Puts
	8.2.2 Remote Gets

	9 Remote Procedure Call
	9.1 Overview
	9.2 Remote Hello World Example
	9.3 API Reference

	10 Progress
	10.1 Overview
	10.2 Restricted Context
	10.3 Attentiveness
	10.4 Thread Personas/Notification Affinity
	10.5 API Reference
	10.5.1 persona
	10.5.2 persona_scope
	10.5.3 Outgoing Progress

	11 Teams
	11.1 Overview
	11.2 Local Teams
	11.3 API Reference
	11.3.1 team
	11.3.2 team_id
	11.3.3 Fundamental Teams

	12 Collectives
	12.1 Common Requirements
	12.2 API Reference

	13 Atomics
	13.1 Overview
	13.2 Deviations from IEEE 754
	13.3 API Reference

	14 Distributed Objects
	14.1 Overview
	14.2 Building Distributed Objects
	14.3 Ensuring Distributed Existence
	14.4 API Reference

	15 Non-Contiguous One-Sided Communication
	15.1 Overview
	15.2 API Reference
	15.2.1 Requirements on Iterators
	15.2.2 Irregular Put
	15.2.3 Irregular Get
	15.2.4 Regular Put
	15.2.5 Regular Get
	15.2.6 Strided Put
	15.2.7 Strided Get

	16 Memory Kinds
	16.1 API Reference
	16.1.1 cuda_device
	16.1.2 device_allocator
	16.1.3 Data Movement

	A Notes for Implementers
	A.1 future_element_t and future_element_moved_t
	A.2 future<T...>::when_all
	A.3 to_future
	A.4 future_invoke_result_t

	Bibliography
	Index

