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Abstract. We introduce the primitive Eulerian polynomial PA(z) of a central hyperplane
arrangement A. It is a reparametrization of its cocharacteristic polynomial. Previous work
by the first author implicitly shows that for simplicial arrangements, PA(z) has nonnegative
coefficients. For reflection arrangements of types A and B, the same work interprets the
coefficients of PA(z) using the (flag) excedance statistic on (signed) permutations.

The main result of this article is to provide an interpretation of the coefficients of PA(z)
for all simplicial arrangements using only the geometry and combinatorics of A. This
new interpretation sheds more light to the case of reflection arrangements and, for the first
time, gives combinatorial significance to the coefficients of the primitive Eulerian polyno-
mial of the reflection arrangement of type D, for which no well-behaved excedance statistic
is known. In type B, we establish a link between the primitive Eulerian polynomial and
the 1/2-Eulerian polynomial of Savage and Viswanathan (2012). We present some results
and conjectures regarding the real-rootedness of PA(z).
Keywords. Hyperplane arrangement, Eulerian polynomial, Tits product, permutation statis-
tics
Mathematics Subject Classifications. 52C35, 05A05

Introduction

Let A be a finite linear hyperplane arrangement in Rn. We denote by L its intersection lattice
ordered by inclusion and⊥ ∈ L its minimum element (i.e. the intersection of all the hyperplanes
in A). The aim of this article is to study the primitive Eulerian polynomial of A

PA(z) :=
∑
X∈L

|µ(⊥,X)|(z − 1)codim(X),
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where µ is the Möbius function of L.
The primitive Eulerian polynomial is a reparametrization of the cocharacteristic polynomial

studied by Novik, Postnikov, and Sturmfels in [NPS02] which, conjecturally, cannot be obtained
as a specialization of the well-known Tutte polynomial. For simplicial arrangements, it also
appears implicitly in work of the first author [Bas21] as the Hilbert–Poincaré series of a certain
graded subspace of the polytope algebra of generalized zonotopes ofA [McM89, McM93], and
therefore has non-negative coefficients.

The main result of this article is to provide an explanation for the non-negativity of these
coefficients from the geometry and combinatorics of A, more precisely, via generic halfspaces
and the weak order on the regions ofA. Furthermore, for reflection arrangements of types A, B,
and D, we give a combinatorial interpretation of these coefficients in terms of the usual Coxeter
descent statistic.

More precisely, let R denote the collection of regions of A: the (closures of) connected
components of the complement of A in Rn. For any two regions C and C ′, sep(C,C ′) is the
set of hyperplanes H ∈ A that separate C and C ′; that is, such that C and C ′ are not contained
in the same halfspace bounded by H. Fix a base region B ∈ R. The weak order with base
region B [Man82, Ede84] is the partial order relation ⪯B onR defined by

C ⪯B C ′ if and only if sep(B,C) ⊆ sep(B,C ′).

Let des⪯B
(C) denote the number of regions covered by C in the partial order ⪯B.

A hyperplane H is generic with respect toA if it contains⊥ and does not contain any other
flat of A. A halfspace h bounded by such a hyperplane is also said to be generic with respect
toA. A vector v ∈ Rn is very generic with respect toA if it is not contained in any hyperplane
of A and the halfspace h−v := {x ∈ Rn : ⟨x, v⟩ ⩽ 0} is generic with respect to A.

A simplicial arrangement A is sharp if for all regions C ∈ R, the angle between any two
facets of C is at most π

2
. Notably, all Coxeter arrangements are sharp.

Theorem A. Let A be a sharp arrangement. Then, for any very generic vector v ∈ Rn,

PA(z) =
∑
C⊆h−v

z
des⪯B(v)

(C)
,

whereB(v) ∈ R denotes the unique region ofA containing v. The sum is over all regionsC ∈ R
contained in h−v .

For a precise statement see Theorem 3.9. Figure 0.1 illustrates this theorem, as we now
explain. It shows the intersection with the unit sphere of a sharp arrangement A in R3. The
very generic vector v ∈ R3 lies in the region antipodal to the region with label 3, so it is not
visible on this picture. The blue regions C are those contained in the halfspace h−v , and their
labels indicate the values des⪯B(v)

(C). It follows that the primitive Eulerian polynomial of this
arrangement is PA(z) = z3 + 10z2 + 4z.

WhenA is the reflection arrangement of type An−1 (resp. Bn) in Rn, the first author provides
in [Bas21] a combinatorial interpretation of the coefficients of PA(z) in terms of the excedance
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Figure 0.1: A sharp arrangement in R3.

(resp. flag-excedance) statistic. Concretely, let cusp(Sn) (resp. cusp(Bn)) denote the collection
of elements whose action on Rn only fixes points in ⊥, then

PSn(z) =
∑

w∈cusp(Sn)

zexc(w) and PBn(z) =
∑

w∈cusp(Bn)

zexcB(w).

The notation reflects the fact that these are precisely the cuspidal elements of the corresponding
Coxeter group [GP00]. In Sn, they are precisely the cycles of order n; and in Bn,
they are the fixed-point-free products of balanced cycles. See Sections 5 and 6 for details.
However, up to now, there was no combinatorial interpretation for the reflection
arrangement of type D: using Theorem 3.9 and building upon the work of Björner and
Wachs [BW04], we provide such an interpretation. More precisely, the Coxeter group of type Dn

can be identified with the group of even signed permutations: words w = w1w2 . . . wn

with wi ∈ [±n] = {−n, . . . ,−2,−1, 1, 2, . . . , n} such that |w1||w2| . . . |wn| ∈ Sn and w has an
even number of negative letters. Let BWD

n be the collection of w such that all the right-to-left
maxima of |w1||w2| . . . |wn| ∈ Sn are negative in w and |w1| ≠ n. We obtain the following.

Theorem B. For all n ⩾ 2,
PDn(z) =

∑
w∈BWD

n

zdes(w).

For a precise statement see Theorem 7.1. Analogous results for type A and B appear in
Theorems 5.2 and 6.3.

The article is organized as follows. In Section 1, we review some preliminaries on hyperplane
arrangements. We introduce the primitive Eulerian polynomial in Section 2 and give a combi-
natorial interpretation for its coefficients, in the case of simplicial arrangements, in Section 3.
We specialize our results to the case of Coxeter arrangements in Section 4; closely examine the
types A, B, and D cases in Sections 5 to 7; and compute the primitive Eulerian polynomial for an
infinite family of simplicial arrangements sitting between the type D and type B arrangements
in Section 8. In Section 9, we explore some real-rootedness results and conjectures. Finally, we
conclude with some open questions and potential directions for further research in Section 10.
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1. Preliminaries and notation

We start by recalling some classical definitions, including restriction, localization and the Tits
semigroup (or face semigroup) of a hyperplane arrangement; see for instance [AM17, Sta07] for
more details. We also recall the definition of the f and h polynomials of simplicial complexes
and polytopes. The reader familiar with these concepts can safely proceed to Section 2.

In this article we only consider finite real linear hyperplane arrangements in Rn, i.e., a
finite collection of linear hyperplanes H ⊆ Rn. The subspaces obtained by intersecting some hy-
perplanes inA are called flats ofA. The collection L[A] of flats ofA is naturally ordered by in-
clusion. It turns out that the poset (L[A],⩽) is a graded lattice with maximum element⊤ := Rn

and minimum element ⊥ :=
⋂
A. The arrangement A is essential if ⊥ = {0}. Otherwise, we

denote by ess(A) the essentialization of A, i.e., the intersection of A with the subspace orthog-
onal to ⊥.

1.1. Restriction and localization

Let X ∈ L[A] be a flat ofA. The restriction ofA to X is the following hyperplane arrangement
inside X:

AX = {X ∩ H : H ∈ A, X ̸⊆ H}.

Note that the hyperplanes ofAX are precisely the flats Y < X of dimension dim(X)−1. On the
other hand, the localization ofA at X is the arrangement in Rn consisting of those hyperplanes
of A containing X:

AX = {H ∈ A : X ⊆ H}.

1.2. Regions and faces

The complement ofA in Rn is the disjoint union of open sets whose closures are convex polyhe-
dral cones. These full-dimensional cones are the regions of A. Denote by R[A] the collection
of regions of A. A face of A is any face of a cone in R[A]. Denote by Σ[A] the collection of
faces of A, it forms a complete polyhedral fan. Its maximal elements are the regions of A, and
its unique minimal face, which coincides with the minimal flat⊥, is denoted O ∈ Σ[A]. Finally,
the rank of A, denoted rank(A), is the rank of the poset Σ[A] or, equivalently, the rank of the
lattice L[A].

The arrangement A is simplicial if every region contains exactly rank(A) faces of rank 1.
If A is essential, this is equivalent to each cone in Σ[A] being simplicial.

1.3. The Tits product

The set Σ[A] has the structure of a monoid under the Tits product. Informally, the product FG
of two faces F,G ∈ Σ[A] is the first face you enter when moving a small positive distance from
a point in the relative interior of F to a point in the relative interior of G, this is illustrated in
Figure 1.1. In order to formalize this product, it will be useful to review the sign sequence of a
face.
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F

G

CFC

FG

GC

Figure 1.1: The Tits product for some faces of a rank 2 arrangement. After moving a small
positive distance from the marked point in F to the marked point in G, we land in the region
labeled FG.

Each hyperplane H ∈ A defines two halfspaces H+ and H−. The choice of signs + and −
for each hyperplane is arbitrary, but fixed. The sign sequence of a face F ∈ Σ[A] is the vec-
tor σ(F ) ∈ {0,+,−}A determined by

σH(F ) =


0 if F ⊆ H,

+ if F ⊆ H+ and F ̸⊆ H,

− if F ⊆ H− and F ̸⊆ H.

Given two faces F,G ∈ Σ[A], the product FG is the face with sign sequence

σH(FG) =

{
σH(F ) if σH(F ) ̸= 0,

σH(G) otherwise.
(1.1)

This operation first appeared in work of Tits [Tit74] on Coxeter complexes and of Bland [Bla74]
on oriented matroids. Brown observed in [Bro00] that the monoid Σ[A] is a left-regular band,
that is, it satisfies F 2 = F and FGF = FG for all faces F,G ∈ Σ[A]. We highlight two other
important properties of the Tits product. LetO ∈ Σ[A] be the central face ofA and F,G ∈ Σ[A]
be any two faces. Then,

OF = F = FO F ⩽ FG (1.2)
That is, Σ[A] is a monoid with unit O, and F is always a face of the product FG.

A hyperplane H separates two faces F and G if {σH(F ), σH(G)} = {+,−}. That is, if H
contains neither F nor G, and F and G are contained in opposite halfspaces determined by H.
Let F ∈ Σ[A], its opposite face F is the face with sign sequence σH(F ) = −σH(F ). Geomet-
rically, F = {−x : x ∈ F}.

1.4. f and h polynomial

Let ∆ be a (d − 1)-dimensional simplicial complex. For i = 0, 1, . . . , d, let fi(∆) denote the
number of (i− 1)-dimensional faces (that is, the number of faces having exactly i vertices). In
particular, f0(∆) = 1 corresponds to the empty face. The f -polynomial of ∆ is

f(∆, z) := f0(∆) + f1(∆)z + · · ·+ fd(∆)zd.
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The h-polynomial of ∆ is the following reparametrization of f(∆, z)

h(∆, z) := (1− z)nf(∆, z
1−z

).

We warn the reader that some authors use prefer to reverse the order of the coefficients of f(∆, z)
and h(∆, z), see for instance [Zie95, Section 8.3]. We follow the conventions in, for example,
[Ste08, Section 1.1].

Let now p be a d-dimensional polytope, and let fi(p) denote the number of i-dimensional
faces of p for i = 0, 1, . . . , d. The f -polynomial of p is

f(p, z) := f0(p) + f1(p)z + · · ·+ fd(p)z
d,

and the h-polynomial of p is
h(p, z) := f(p, z − 1).

Importantly, if p is a simple polytope and ∆ is the simplicial complex dual to p, then the
Dehn–Sommerville equations imply that h(p, z) = h(∆, z).

2. The primitive Eulerian polynomial

We introduce the main definition of this article. Let A be a linear arrangement.

Definition 2.1. The primitive Eulerian polynomial of A is

PA(z) =
∑
X∈L

|µ(⊥,X)|(z − 1)codim(X),

where µ denotes the Möbius function of L. The sum is over all the flats of the arrangement.

The primitive Eulerian polynomial can also be obtained as a reparametrization of the cochar-
acteristic polynomial ΨA(z):

ΨA(z) :=
∑
X∈L

|µ(⊥,X)|zdim(X). (2.1)

Explicitly,
PA(z) = (z − 1)nΨA

( 1

z − 1

)
. (2.2)

Novik, Postnikov, and Sturmfels encountered this polynomial in their study of unimodular toric
arrangements and remarked that this polynomial does not seem to be a specialization of the
Tutte polynomial ofA; see [NPS02, Remark 5.6]. If that is the case, then the primitive Eulerian
polynomial cannot be a specialization of the well-known Tutte polynomial either.

The primitive Eulerian polynomial is monic: its leading coefficient is |µ(⊥,⊥)| = 1. More-
over, if A is not trivial (contains at least one hyperplane), then

PA(0) =
∑
X∈L

|µ(⊥,X)|(−1)codim(X) = (−1)rank(A)
∑
X∈L

µ(⊥,X) = 0.
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That is, the constant term of PA(z) is zero. Finally, the sum of the coefficients of PA(z) is

PA(1) =
∑
X∈L

|µ(⊥,X)|(0)codim(X) = |µ(⊥,⊤)|,

the Möbius number of the (intersection lattice of) A.

Example 2.2 (Rank 1 arrangement). Let A be a hyperplane arrangement of rank 1: it consists
of a single hyperplane H. Then, L[A] = {⊥ < ⊤}, where ⊥ = H, and

PA(z) = (z − 1) + 1 = z.

Remark 2.3. Observe that PA(z) is independent of the dimension of the ambient space. Indeed,
for any arrangement A, the codimension of a flat X ∈ L[A] is precisely the corank of X in the
lattice L[A]. Thus, the polynomial PA(z) is completely determined by L[A]. In particular,

PA(z) = Pess(A)(z).

Example 2.4 (Rank 2 arrangements). For k ⩾ 2, let I2(k) be the linear arrangement of k lines
in R2. The Möbius function of L[A] is determined by

µ(⊥,L) = −1 for all lines L ∈ A, and µ(⊥,⊤) = k − 1.

We obtain
PI2(k)(z) = (z − 1)2 + k(z − 1) + (k − 1) = z2 + (k − 2)z.

It directly follows from the definition that the primitive Eulerian polynomial of a Cartesian
product of arrangements is the product of the corresponding primitive Eulerian polynomials.
That is,

PA×A′(z) = PA(z)PA′(z). (2.3)
Previous work of the first author implicitly shows that the polynomial PA(z) has nonnegative

coefficients whenever the arrangement A is simplicial. We provide the details below.

Proposition 2.5. For any simplicial arrangement A, the coefficients of PA(z) are nonnegative.

Proof. For every flatY ∈ L[A], let zY be a zonotope dual toAY. That is, such that the normal fan
of zY isΣ[AY]. In particular, the zonotope zY is a simple polytope. Then, [Bas21, Equation (17)]
shows that the polynomial

∑
Y µ(⊥,Y)h(zY, z), where h(zY, z) denotes the h polynomial of zY,

has nonnegative coefficients. Manipulating Definition 2.1, we obtain

PA(z + 1) =
∑
X,Y,Z
X⩾Z⩾Y

µ(⊥,Y)|µ(Z,X)|zcodim(X) =
∑
Y

µ(⊥,Y)f(zY, z),

where the second equality follows from Zaslavsky’s [Zas75, Theorem A] and Las Vergnas’
[LV75, Proposition 8.1] formulas to count the number of regions of an arrangement. There-
fore,

PA(z) =
∑
Y

µ(⊥,Y)f(zY, z − 1) =
∑
Y

µ(⊥,Y)h(zY, z)

has nonnegative coefficients.
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The nonnegativity of the coefficients of PA(z) fails for arbitrary arrangements, as the fol-
lowing example shows.

Example 2.6. LetA be the graphic arrangement of a 4-cycle g, see Figure 2.1 for an illustration.
The flats of A are in correspondence with the bonds of g, see for instance [AM17, Section 6.9].
The lattice L[A] and the values µ(⊥,X) of its Möbius function are also shown in Figure 2.1.
Using those values, we obtain

PA(z) = (z − 1)3 + 6(z − 1)2 + 8(z − 1) + 3 = z3 + 3z2 − z.

Observe that the coefficient of the linear term is negative.

1

−1 −1 −1 −1 −1 −1

2 2 2 2

−3

Figure 2.1: The lattice of flats of the graphic arrangement of a 4-cycle. In red, the values of the
Möbius function µ(⊥,X).

In view of the relation between the primitive Eulerian polynomial and the cocharacteristic
polynomial in Equation (2.2), the following recursive formula is equivalent to [NPS02, Propo-
sition 4.2].

Proposition 2.7. Let H be a hyperplane of A. Then,

PA(z) = (z − 1)PAH(z) +
∑
L

PAL
(z),

where the sum is over all rank 1 flats L ∈ L[A] that are not contained in H.

In Sections 5 to 7, we employ the previous result to obtain quadratic recursive formulas for
the primitive Eulerian polynomials of the classical reflection arrangements (types A, B, and D).
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3. Generic halfspaces, descents, and a combinatorial interpretation

In this section, we interpret the coefficients of PA(z) in combinatorial terms for any simplicial
arrangement and therefore provide a proof of Theorem A.

3.1. Generic halfspaces

LetA be a nontrivial hyperplane arrangement in Rn. A hyperplane H ⊆ Rn (not in the arrange-
ment) is generic with respect toA if it contains the minimum flat⊥ and it does not contain any
other flat of A. The first condition guarantees that there is a canonical correspondence between
generic hyperplanes with respect to A and generic hyperplanes with respect to its essentializa-
tion ess(A).

Figure 3.1: Two copies of the spherical representation of an arrangement A in R3, each with a
different hyperplane H not inA (dashed, in red). The hyperplane on the left is not generic since
it contains the marked flat of rank 1 of A. The hyperplane on the right is generic.

A halfspace h is generic with respect toA if its bounding hyperplane is generic with respect
to A. Let h be such a halfspace. A result of Greene and Zaslavsky [GZ83, Theorem 3.2] shows
that the number of regions C ∈ R[A] completely contained in h is |µ(⊥,⊤)|. Note that for
all flats X, the halfspace h ∩ X is generic with respect to the arrangement AX. As a straight-
forward generalization of Greene and Zaslavsky’s result, and in view of the definition of the
cocharacteristic polynomial in Equation (2.1), we obtain:

ΨA(z) =
∑
F⊆h

zdim(F ), (3.1)

where the sum is over all the faces F ∈ Σ[A] that are contained in h.
Given a subset K of the ambient space, let ΣA(K) ⊆ Σ[A] and RA(K) ⊆ R[A] denote

the collection of faces and regions, respectively, ofA contained in K. When the arrangementA
is clear from the context, we drop A from the notation and simply write Σ(K) and R(K). If
the arrangement A is simplicial, then Σ(K) can be viewed as a simplicial complex, where the
vertices are the rays ofA contained in K and the central face ofA corresponds to the empty face
of the simplicial complex. We obtain the following geometric interpretation for the coefficients
of PA(z) in the simplicial case.
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Figure 3.2: The arrangement and the bounding hyperplane of h are those in second example of
Figure 3.1. In this picture we see the front and back view of A. Observe that even though h is
a convex set, the underlying set of Σ(h) is not. We have that ΨA(z) = 1 + 7z + 12z2 + 6z3

and PA(z) = z3 + 4z2 + z.

Proposition 3.1. LetA be a simplicial arrangement and h a generic halfspace with respect toA.
Then,

PA(z) = znh(Σ(h), 1
z
).

Proof. Formula Equation (3.1) is equivalent to ΨA(z) = f(Σ(h), z). Thus,

znh(Σ(h), 1
z
) = zn(1− 1

z
)nf

(
Σ(h),

1/z

1− 1/z

)
= (z − 1)nΨA

( 1

z − 1

)
.

The result follows by Equation (2.2).

Remark 3.2. Reiner [Rei90] and Stembridge [Ste08] studied h-vectors of complexes of the
form Σ(K), where A is a Coxeter arrangement and K is a cone (parset) of the arrangement–a
convex set obtained as the union of some regions of A. The complexes obtained form a generic
halfspace are in general not convex; see for instance Figure 3.2. In that example, Σ(h) is not
convex, and therefore not a cone of the corresponding arrangement (the essentialization of the
braid arrangement in R4).

3.2. The weak order

The definitions and results of this section hold for arbitrary linear arrangements, including non-
simplicial arrangements.

Recall that a hyperplaneH ∈ A separates faces F,G ∈ Σ[A] if {σH(F ), σH(G)} = {−,+}.
Given any two regions C,C ′ ∈ R[A], let sep(C,C ′) denote the collection of hyperplanesH ∈ A
that separate C and C ′. Fix a region B ∈ R[A] which we call a base region, and consider the
following relation onR[A]:

C ⪯B D if and only if sep(B,C) ⊆ sep(B,D).

Then, ⪯B is a partial order with minimum element B and maximum element B, the region
opposite to the base region B. This order is called the weak order ofAwith base regionB, and
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was independently introduced by Mandel [Man82] and Edelman [Ede84]. Mandel’s definition
was given in the context of oriented matroids, where it was called the Tope graph ofA. This order
was further studied by Björner, Edelman and Ziegler [BEZ90], who showed that wheneverA is
simplicial, the weak order with respect to any base region is a lattice. When the base region B
is clear from the context, we write ⪯ instead of ⪯B.

For any face F ∈ Σ[A], the collection of regions that contain it,

RF := {C ∈ R[A] : F ⩽ C},

is called the top-star of F . See Figure 3.3 for an example.

Lemma 3.3. For any base region B and face F , the top-star RF is an interval in the partial
order ⪯B: its minimum element is FB and its maximum element is FB.

Proof. The result is a direct consequence from the next two observations, which follow from
the Tits product description in Equation (1.1). First, if H ∈ A separates B and F , then it also
separates B and any region in RF . Moreover, any hyperplane H ∈ A containing F does not
separate B and FB, and does separate B and FB.

Figure 3.3: A non-simplicial arrangementA. The faces F (blue) and G (red) have rank 1 and 2,
respectively. The top-stars RF and RG (shaded) contain a minimum and maximum element in
the order ⪯B.

3.3. Descents sets

Fix a base region B ∈ R[A]. Given a polyhedral subcomplex ∆ ⊆ Σ[A], its descent set is

DesB(∆) := {F ∈ Σ[A] : FB ∈ ∆}.

Observe that, since F ⩽ FC for any faces F and C (see Equation (1.2)), we necessarily have
that DesB(∆) ⊆ ∆. However, DesB(∆) might fail to be a complex, as illustrated in Figure 3.4.

Lemma 3.4. Let ∆ ⊆ Σ[A] be a nonempty polyhedral subcomplex. Then, DesB(∆) = ∆ if and
only if ∆ is pure andR(∆) := ∆ ∩R[A] is a nonempty upper set of the partial order ⪯B.



12 Jose Bastidas et al.

Figure 3.4: A subcomplex ∆ ⊆ Σ[A] in blue, it includes face F in red. Observe, however,
that FB /∈ ∆. Thus, F /∈ DesB(∆), DesB(∆) ̸= ∆, and DesB(∆) is not a complex.

Proof. Suppose DesB(∆) = ∆. Since O ∈ ∆, we have B = OB ∈ ∆, so R(∆) is not empty.
Moreover, every face F ∈ ∆ is contained in an element of R(∆), namely FB, so ∆ is pure.
Let C ∈ R(∆) and D ∈ R[A] be a region covering C in the order ⪯B. Let F = C ∩ D be
the common facet of C and D. In particular, F ⩽ C and F ∈ ∆. Since the top-star of F is
simply RF = {C,D} and C ⪯B D, we have FB = max⪯B

RF = D ∈ DesB(∆). Since this
occurs for every C ∈ R(∆) and region D covering C, we conclude thatR(∆) is an upper set.

Now assume ∆ is pure andR(∆) is a nonempty upper set ofR. Recall that DesB(∆) ⊆ ∆
holds in general, we prove the reverse inclusion. Let F ∈ ∆ and C ∈ R(∆) containing F ,
which exists since ∆ is pure. In particular, C ∈ RF and C ⪯B max⪯B

RF = FB. SinceR(∆)
is an upper set, we have that FB ∈ ∆, so F ∈ DesB(∆), as we wanted to show.

3.4. The simplicial case

Let A be a simplicial arrangement. Given a base region B ∈ R[A], we let des⪯B
(C) denote

the number of regions covered by C in the weak order ⪯B. If the base region B is clear from
context, we simply write des(C). The collection of faces F ⩽ C such that FB = C forms a
boolean poset of rank des(C), see for example [AM17, Section 7.1.1]. Therefore,

(z + 1)des(C) =
∑

F :FB=C

zcodim(F ). (3.2)

The following result is obtained by combining Equation (3.2) and Lemma 3.4.

Proposition 3.5. Let ∆ ⊆ Σ[A] be a pure complex such that R(∆) is a nonempty upper set.
Then, ∑

C∈R(∆)

(z + 1)des(C) =
∑
F∈∆

zcodim(F ).

Remark 3.6. The preceding result can also be deduced using the fact that any linear extension
of the weak order gives a shelling of the corresponding complex. See for example [BLVS+99,
Proposition 4.3.2] for a result in the language of oriented matroids, and [Rea05, Proposition 3.4]
for a generalization to complete polyhedral fans.



combinatorial theory 4 (1) (2023), #16 13

When ∆ = Σ(h) for a generic halfspace h, Proposition 3.5 takes the following form.

Proposition 3.7. Let h be a generic halfspace with respect to A such thatR(h) is an upper set.
Then,

PA(z) =
∑
C⊆h

zdes(C).

Proof. Let H′ be an affine hyperplane contained in h; it is necessarily a parallel translate of the
bounding hyperplane of h. The collection A ∩ H′ := {H ∩ H′ : H ∈ A} forms an affine
hyperplane arrangement in ambient space H′. The bounded faces of A∩H′ are precisely those
of the form F ∩ H′ for F ∈ Σ(h) \ {O}. A result of Zaslavsky [Zas75, Corollary 9.1] shows
that the bounded complex of a hyperplane arrangement is pure, and consequently Σ(h) is pure.

It now follows from Equation (3.1) and Proposition 3.5 that

PA(z) = (z − 1)dΨA(
1

z−1
) = (z − 1)d

∑
F⊆h

(z − 1)− dim(F ) =
∑
F⊆h

(z − 1)codim(F ) =
∑
C⊆h

zdes(C),

as claimed.

A halfspace h bounded by a hyperplane inA (not generic) satisfies thatR(h) is an upper set
if and only if it contains the region B. The same is not true for generic halfspaces, as illustrated
in Figure 3.5. In what follows we describe a class of simplicial arrangements for which a generic
simultaneous choice of B and h always satisfy the hypothesis of Proposition 3.7.

Figure 3.5: Not every halfspace h containing the maximum region B satisfies that R(h) is an
upper set of ⪯B. The arrows show two instances of cover relations C ⪯ D where C ∈ R(h)
yet D /∈ R(h).

3.5. Sharp arrangements

In this section we use d to denote the dimension of the ambient space, and reserve n to denote
normal vectors.

Definition 3.8. We say that an arrangement A in Rd is sharp if it is simplicial, and the angle
between any two facets of any region C ∈ R[A] is at most π

2
.
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Notably, all finite reflection arrangements are sharp. In particular, the coordinate arrange-
ment in Rd is sharp for all d. Figure 3.6 presents a non-sharp arrangement combinatorially
isomorphic to the coordinate arrangement in R2. This shows that sharpness is a geometric and
not a combinatorial condition. Moreover, observe that an arrangement A is sharp if and only if
its essentialization is sharp.

Assume that A is essential and take a region C ∈ R[A]. Let r1, r2, . . . , rd be vectors span-
ning its rays (faces of dimension 1). Let n1, . . . , nd be the basis of Rd dual to r1, r2, . . . , rd; that
is ⟨ni, rj⟩ = δi,j . It follows that nk is an inward normal to the facet Fk ⋖ C with rays spanned
by r1, . . . , rk−1, rk+1, . . . , rd. Thus, the angle between facets Fi and Fj is cos−1(− ⟨ni,nj⟩

||ni|| ||nj ||). That
is, an arrangementA is sharp if for all regions C ∈ R[A] we have ⟨ni, nj⟩ ⩽ 0 for i ̸= j. In this
case, since

nk = ⟨nk, nk⟩rk +
∑
j ̸=k

⟨nk, nj⟩rj,

we have that

rk ∈ R+{r1, . . . , rk−1, nk, rk+1, . . . , rd}, for k = 1, . . . , d. (3.3)

A vector v ∈ Rd is generic with respect to A if v is not contained in any hyperplane of A.
Given a generic v ∈ Rd, let B(v) ∈ R[A] be the region of A containing v, and let h−v be the
halfspace {x ∈ Rd : ⟨v, x⟩ ⩽ 0}. We say that v is very generic if in addition h−v is generic with
respect to A.

Figure 3.6: A rank 2 arrangement that is not sharp. For this particular choice of v, the collec-
tion R(h−v ) (consisting of a single region) is not an upper set with respect to ⪯B(v). For the
region C inR(h−v ) we have des(C) = 1, but PA(z) = z2. That is, equation Equation (3.4) does
not hold for this choice of v.

Theorem 3.9 (Theorem A). Let A be a sharp arrangement. Then, for any very generic vec-
tor v ∈ Rd,

PA(z) =
∑
C⊆h−v

z
des⪯B(v)

(C)
. (3.4)

Proof. By Proposition 3.7, it is enough to show thatR(h−v ) is an upper set of the weak order with
base region B(v). Take regions C,D with C ∈ R(h−v ) and D covering C in the order⪯B(v), we
claim that D ∈ R(h−v ).
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By intersecting with the space orthogonal to ⊥ if necessary, we assume without loss of
generality that A is essential. Let H ∈ A be the hyperplane separating C and D, and nH be a
normal vector of H such that C ⊆ H+ := {x ∈ Rd : ⟨nH, x⟩ ⩾ 0}. Since C ⪯B(v) D, we
have that B(v) is also contained in H+. In particular, ⟨nH, v⟩ > 0. Let r1, . . . , rd−1, rd be the
vectors spanning the rays of D numbered so that r1, . . . , rd−1 are the rays of the common facet
between C and D, namely C ∩D. In particular, r1, . . . , rd−1 are rays of C and, since C ⊆ h−v
by hypothesis, ⟨ri, v⟩ < 0 for all i ∈ [d− 1]. Observe that nH = −λnd for some λ > 0. It then
follows from Equation (3.3) with k = d that ⟨rd, v⟩ < 0 and D ⊆ h−v , as we wanted to show.

4. The primitive Eulerian polynomial of finite Coxeter arrangements

Let (W,S) be a finite Coxeter system and AW be the associated reflection arrangement. For
the combinatorics of Coxeter groups, and realizations of the groups of type A, B, and D as
permutation groups, we refer the reader to the book of Björner and Brenti [BB05].

The Eulerian polynomial of AW is

EW (z) =
∑
w∈W

zdes(w),

where des denotes the descent statistic on W . That is des(w) := #{s ∈ S : l(ws) < l(w)}
and l(w) denotes the length of w with respect to S.

Let us now choose a base region B ∈ R[AW ]. The group W acts simply transitively
on R[AW ] and des(w) = des⪯B

(wB) for every w ∈ W . A real reflection arrangement is
always sharp, so Theorem 3.9 yields the following.

Corollary 4.1. For every very generic vector v with respect to AW ,

PW (z) =
∑

w∈W :wB⊆h−v

zdes(w), (4.1)

where B = B(v) ∈ R[AW ] is the region containing v.

Since any reflection arrangement is the Cartesian product of irreducible reflection arrange-
ments, we only concentrate in studying the primitive Eulerian polynomial for irreducible ar-
rangements. In Sections 5 to 7, we make an explicit choice of generic v for the arrangements of
type A, B, and D, respectively, and use formula Equation (4.1) to give a combinatorial interpre-
tation for the primitive Eulerian polynomial of the corresponding type.

The relation between the Eulerian polynomial and the primitive Eulerian polynomial be-
comes even more apparent when we compare their generating functions in types A, B, and D.
The generating function for the classical Eulerian polynomials was established by Euler him-
self [Eul55]:

A(z, x) :=
∑
n⩾0

EAn(z)
xn

n!
=

z − 1

z − ex(z−1)
. (4.2)
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We refer the reader to Foata’s survey [Foa10, Section 3] for a derivation of this formula. The
generating function for the Eulerian polynomials of type B and D are due to Brenti [Bre94,
Theorem 3.4 and Corollary 4.9]. They can be expressed in terms of A(z, x) as follows:∑

n⩾0

EBn(z)
xn

n!
= ex(z−1)A(z, 2x)

∑
n⩾0

EDn(z)
xn

n!
=

(
ex(z−1) − zx

)
A(z, 2x).

Compare with the generating functions for the primitive Eulerian polynomials below.

Theorem 4.2. The generating function for the primitive Eulerian polynomials of type A, B,
and D, with PD1(z) := 0, are:

Type A Type B Type D

1 + logA(z, x) ex(z−1)A(z, 2x)1/2
(
ex(z−1) − zx

)
A(z, 2x)1/2

The formulas in type A and B appear in the proofs of Lemma 5.3 and Lemma 6.2 in [Bas21],
respectively. We complete the type D case in Section 7. Setting PD1(z) = 0 is not an accident
of the proof, it also simplifies the recursive formulas for the primitive Eulerian polynomials for
type D and related arrangements in Theorems 7.3 and 8.1.
Remark 4.3. The reader might recognize the factor A(z, 2x)1/2 above: it is the generating func-
tion for the 1/2-Eulerian polynomials introduced by Savage and Viswanathan [SV12]; see Sec-
tion 6 for more details.

Table 4.1 shows the primitive Eulerian polynomial for the exceptional reflection arrange-
ments. They were computed with the help of SageMath [Sag]. The corresponding table for the
Eulerian polynomials can be found in Petersen’s book [Pet15, Table 11.5].

W PW (z)

H3 z3 + 28z2 + 16z

H4 z4 + 1316z3 + 3844z2 + 900z

F4 z4 + 116z3 + 220z2 + 48z

E6 z6 + 633z5 + 4098z4 + 5698z3 + 1773z2 + 117z

E7 z7 + 8814z6 + 118560z5 + 332200z4 + 252960z3 + 51234z2 + 1996z

E8
z8 + 440872z7 + 11946408z6 + 60853504z5

+92427088z4 + 43792992z3 + 6056496z2 + 139080z

Table 4.1: The primitive Eulerian polynomial of the reflection arrangements of exceptional type.
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5. The type A primitive Eulerian polynomial

The braid arrangement An in Rn consists of the hyperplanes with equations xi = xj for
all 1 ⩽ i < j ⩽ n. This arrangement is not essential. Below, we show the arrangements A3

(intersected with the hyperplane perpendicular to ⊥) and A4 (intersected with the unit sphere
inside the hyperplane perpendicular to ⊥).

A3

x1 = x3

x1 = x2

x2 = x3

x1 ⩽ x2 ⩽ x3

A4

It is the reflection arrangement corresponding to the symmetric group Sn, the Coxeter group of
type An−1. Sn is the group of permutations w : [n] → [n] under composition,
where [n] := {1, 2, . . . , n}. As it is usual, we might write a permutation w ∈ Sn in its one-
line notation w1w2 . . . wn, where wi = w(i), or as a product of disjoint cycles. For example,
both 2 4 1 3 5 and (1 2 4 3)(5) denote the same element of S5. The descent and excedance statis-
tic of a permutation w ∈ Sn are:

des(w) = #{i ∈ [n− 1] : w(i) > w(i+ 1)};
exc(w) = #{i ∈ [n− 1] : w(i) > i}.

Using [Bas21, Corollary 5.5], we can interpret the coefficients of PAn(z) in terms of the
excedance statistic on the cuspidal elements of the symmetric group Sn:

PAn(z) =
∑

w∈cusp(Sn)

zexc(w). (5.1)

The cuspidal elements of the symmetric group Sn are precisely the long cycles; that is, the
permutations whose cycle decomposition consists of exactly one cycle of order n.

Example 5.1. The distribution of the excedance statistic on the long cycles of S4 is shown
below.

w exc(w)

(1 2 3 4) 3

(1 3 2 4) 2

(2 1 3 4) 2

w exc(w)

(2 3 1 4) 2

(3 1 2 4) 2

(3 2 1 4) 1

Excedances are marked in red. Thus, PA4(z) = z3 + 4z2 + z.

Let us now interpret the coefficients of PAn(z) using Theorem 3.9. For this, we recall the
usual identification between the elements of Sn and the regions of the braid arrangement An:

w = w1w2 . . . wn ∈ Sn ←→ Cw := {x ∈ Rn : xw1 ⩽ xw2 ⩽ . . . ⩽ xwn} ∈ R[An].
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Under this identification, the weak order ofR[An] with respect to the region Ce, where e ∈ Sn

denotes the identity of the symmetric group, coincides with the usual weak order of Sn as a
Coxeter group. In particular, des(w) = des⪯(Cw).

Let h = h−v be the halfspace determined by the vector v = (−1, . . . ,−1, n − 1) ∈ Rn.
Björner and Wachs [BW04] characterized the permutations w ∈ Sn such that Cw ⊆ h, we
let BWA

n denote the collection of such permutations. They show that

BWA
n = {w ∈ Sn : w1 = n}.

The halfspace h−v is generic, however v itself is not generic since it lies in the boundary of the
region Ce. Nonetheless, we can perturb v so that it lies in the interior of Ce without changing
which regions are contained in h−v . The following is then a direct consequence of Theorem 3.9.

Theorem 5.2. For every n ⩾ 1,

PAn(z) =
∑

w∈Sn :w1=n

zdes(w). (5.2)

Example 5.3. The distribution of the descent statistic on BWA
4 is shown below.

w des(w)

4 3 2 1 3

4 2 3 1 2

4 3 1 2 2

w des(w)

4 1 3 2 2

4 2 1 3 2

4 1 2 3 1

The positions where a descent occurs are are in red. Observe that this distribution agrees with
Example 5.1.

Figure 5.1: Regions corresponding to elements in BWA
4 .

The equivalence between formulas Equations (5.1) and (5.2) can be proved combinatorially
via Foata’s first fundamental transformation [Foa65].

There is a natural bijectionBWA
n → Sn−1 sendingw = nw2 . . . wn tow2 . . . wn, in one-line

notation. If n ⩾ 2, this map reduces the descent statistic by exactly one. Therefore, for n ⩾ 2,

PAn(z) = zEAn−1(z). (5.3)
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That is, the primitive Eulerian polynomials of type A are just the usual Eulerian polynomials
(with an additional factor of z and a shift of 1 on its index). This explains the appearance of the
Eulerian numbers in Example 5.1. With this identification in mind, the recursion obtained by
Proposition 2.7 is equivalent to the following well-known quadratic recurrence for the classical
Eulerian polynomials:

EAn(z) = (1 + z)EAn−1(z) + z

n−2∑
k=1

(
n− 1

k

)
EAk

(z)EAn−1−k
(z) for all n ⩾ 2.

See for example [Pet15, Theorem 1.6].

6. The type B primitive Eulerian polynomial

The type B Coxeter arrangement Bn in Rn consists of the hyperplanes with equations xi = xj ,
xi = −xj for all 1 ⩽ i < j ⩽ n, and xi = 0 for all 1 ⩽ i ⩽ n.

B2
x1 = 0

x2 = 0

x1 = x2

x1 = −x2

B3

It is the reflection arrangement corresponding to the hyperoctahedral group Bn, the Coxeter
group of type Bn. Bn is the group of permutations w of [±n] := {−n, . . . ,−1, 1, . . . , n}
satisfying w(−i) = −w(i). Elements of Bn are called signed permutations. The window
notation of a signed permutation w ∈ Bn is the word w1w2 . . . wn, where wi = w(i). We often
write j instead of −j for j ∈ [±n], so j = j.

In a signed permutation, cycles can be of two forms:

((i1 i2 . . . ik)) :=(i1 i2 . . . ik)(i1 i2 . . . ik),

[i1 i2 . . . ik] :=(i1 i2 . . . iki1 i2 . . . ik),

where {i1, i2, . . . , ik} ⊆ [±n] is an involution-exclusive subset; see for instance [Ker71, BW02].
Recall that a subset S ⊆ [±n] is involution-exclusive if S ∩ S = ∅, where S := {j : j ∈ S}.
Cycles of the form ((. . . )) are called paired cycles, while those of the form [. . . ] are called
balanced cycles. Every element in Bn decomposes uniquely as a product of disjoint paired or
balanced cycles, up to reordering and equivalence of cycles. For instance, the following are two
expressions in cycle notation for the element w ∈ B7 whose window notation is 1 2 4 3 6 7 5:

[1] ((2)) ((3 4)) [5 6 7] = [1] ((2)) ((3 4)) [6 7 5].
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We will make use of the following statistics on signed permutations. For w ∈ Bn, define

desA(w) = #{i ∈ [n− 1] : w(i) > w(i+ 1)};
desB(w) = #{i ∈ [0, n− 1] : w(i) > w(i+ 1)}, where w(0) := 0;

excA(w) = #{i ∈ [n− 1] : w(i) > i};
neg(w) = #{i ∈ [n] : w(i) < 0}.

desB corresponds to the Coxeter descent statistic, so we will abbreviate it to des when no con-
fusion arises.

Adin and Roichman [AR01] pioneered the study of flag statistics on the hyperoctahedral
group. Soon after, Adin, Brenti, and Roichman [ABR01] introduced the flag-descent statis-
tic fdes, which in some sense refines des. Later, Bagno and Garber [BG04] introduced the
flag-excedance statistic fexc (although with a different name and in the more general context of
colored permutations). We review these definitions below:

fdes(w) = desA(w) + desB(w);

fexc(w) = 2 excA(w) + neg(w);

excB(w) = ⌊
fexc(w) + 1

2
⌋.

Foata and Han [FH09] proved that fexc and fdes have the same distribution. Since

des(w) = desB(w) = ⌊
fdes(w) + 1

2
⌋ for all signed permutations w ∈ Bn, the statistic excB is

also Eulerian (i.e. it has the same distribution as des).
Similar to the type A case, [Bas21, Corollary 6.6] gives an interpretation of the coefficients

of PBn(z) in terms of the statistic excB on the cuspidal elements of Bn:

PBn(z) =
∑

w∈cusp(Bn)

zexcB(w), (6.1)

The cuspidal elements of the hyperoctahedral group Bn are those whose cycle decomposition
only involves balanced cycles.

Example 6.1. The distribution of excA, neg, and excB on cusp(B3) is shown below.

w excA neg excB
[1 2 3] 2 1 3

[1][2 3] 1 1 2

[2][1 3] 1 1 2

[3][1 2] 1 1 2

[1 3 2] 1 1 2

w excA neg excB
[3 1 2] 1 1 2

[2 1 3] 1 1 2

[2 3 1] 1 1 2

[1 3 2] 0 3 2

[1 2 3] 0 3 2

w excA neg excB
[1][2][3] 0 3 2

[1][3 2] 0 2 1

[2][3 1] 0 2 1

[3][2 1] 0 2 1

[3 2 1] 0 1 1

Thus, PB3(z) = z3 + 10z2 + 4z.
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Remark 6.2. Other definitions of excedance-like statistics on the hyperoctahedral group have
been considered, in chronological order, by Steingrimsson [Ste92], Brenti [Bre94], Fire [Fir04],
Bagno and Garber [BG04]. In fact, except for Brenti’s definition, these apply in the more general
context of colored permutations. Restricted to the hyperoctahedral group:

• Steingrimsson and Brenti’s statistics are both Eulerian and have the same distribution as
excB on cuspidal elements. That is, Formula Equation (6.1) can also be expressed in terms of
these statistics.

• Fire’s statistic (which agrees with Bagno and Garber absolute excedance) has the same
distribution as fexc, but not when restricted to cuspidal elements.

• The color excedance of Bagno and Garber coincides with fexc.

Let us now interpret the coefficients of PBn(z) using Theorem 3.9. We identify the elements
of Bn and the regions of the type B Coxeter arrangement Bn as follows:

w = w1w2 . . . wn ∈ Bn ←→ Cw := {x ∈ Rn : 0 ⩽ xw1 ⩽ xw2 ⩽ . . . ⩽ xwn} ∈ R[Bn],

where xi = −xi for all i ∈ [n]. Again, the weak order of R[Bn] with respect to the region Ce

coincides with the weak order of Bn as a Coxeter group. In particular, desB(w) = des⪯(Cw).
Let h = h−v be the halfspace determined by the vector v = (1, 2, 4, . . . , 2n−1) ∈ Rn.

Then, Cw ⊆ h if and only if all the right-to-left maxima of |w| := |w1||w2| . . . |wn| ∈ Sn

are negative in w, see [BW04, Proposition 7.2]. We let BWB
n denote the collection of such

elements. The vector v is very generic and v ∈ Ce. The following is a direct consequence of
Theorem 3.9.

Theorem 6.3. For all n ⩾ 1,
PBn(z) =

∑
w∈BWB

n

zdes(w). (6.2)

Example 6.4. The distribution of the descent statistic on BWB
3 is shown below.

w des(w)

1 2 3 3

1 2 3 2

1 2 3 2

2 1 3 2

2 1 3 2

w des(w)

2 1 3 2

2 1 3 2

1 3 2 2

3 1 2 2

3 1 2 2

w des(w)

2 3 1 2

1 2 3 1

1 3 2 1

2 3 1 1

3 2 1 1

Observe that this distribution agrees with Example 6.1.

Table 6.1 shows the primitive Eulerian polynomials of type B for the first values of n.
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Figure 6.1: Regions corresponding to elements in BWB
3 .

n PBn(z)

0 1
1 z
2 z2 + 2z
3 z3 + 10z2 + 4z
4 z4 + 36z3 + 60z2 + 8z
5 z5 + 116z4 + 516z3 + 296z2 + 16z

Table 6.1: The first primitive Eulerian polynomials of type B. The coefficients form the sequence
A185411 in the OEIS [OEI].

6.1. Relation to the 1/2-Eulerian polynomials

The coefficients appearing in Table 6.1 are the 1/2-Eulerian numbers, as introduced by Savage
and Viswanathan in [SV12]. However, the order of the coefficients is reversed with respect to
the 1/2-Eulerian polynomials. We prove this observation in Proposition 6.5.

Let In,2 be the set of 2-inversion sequences defined by

In,2 = {e ∈ Zn : 0 ⩽ ei ⩽ 2(i− 1)}.

For e ∈ In,2, define

asc(e) = #

{
i ∈ [n− 1] :

ei
2(i− 1) + 1

<
ei+1

2i+ 1

}
.

The 1/2-Eulerian polynomial A(2)
n (z) is the polynomial that keeps track of the distribution of

asc on In,2. Explicitly,
A(2)

n (z) :=
∑
e∈In,2

zasc(e).

Savage and Viswanathan [SV12] showed that the exponential generating function of the poly-
nomials A

(2)
n (z) is A(z, 2x)1/2, with A(z, x) as in equation Equation (4.2). A more general

definition of 1/k-Eulerian polynomial A(k)
n (z) exists. We do not explore these polynomials here.

https://oeis.org/A185411
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Proposition 6.5. For all n ⩾ 0, PBn(z) = znA
(2)
n (1

z
).

Proof. In view of Savage and Viswanathan’s result, the generating function of the polynomi-
als znA(2)

n (1
z
) is

A(1
z
, 2xz)1/2 =

( 1
z
− 1

1
z
− e2zx(

1
z
−1)

)1/2

=
((1− z)e2x(z−1)

e2x(z−1) − z

)1/2

= ex(z−1)A(z, 2x)1/2.

This is precisely the generating function of the polynomials PBn(z) in Theorem 4.2.

There are yet more ways to interpret the polynomials A(k)
n (z). Savage and Schuster [SS12]

showed that A(k)
n (z) is the h∗-polynomial of the k-lecture hall polytope of dimension n; and

Ma and Mansour [MM15] proved that A(k)
n (z) is the generating function for the ascent-plateau

statistic on k-Stirling permutations. More recently, Tolosa Villareal [TV21] conjectured
that A(2)

n (z) is the h-polynomial of the positive signed sum system ∆(Q+(v)) associated to
a generic weight v. We recall the definition of ∆(Q+(v)) and prove this conjecture below.

A weight v ∈ Rn is generic if for all involution-exclusive subsets ∅ ⊊ J ⊆ [±n],
vJ :=

∑
i∈J vi ̸= 0. To such a weight v, we associate the collection Q+(v) = {J : vJ > 0}.

Elements ofQ+(v) are partially ordered by inclusion, and ∆(Q+(v)) denotes the corresponding
order complex.

Proposition 6.6 ([TV21, Conjecture 5.1]). For every generic weight v ∈ Rn, the h-polynomial
of ∆(Q+(v)) is A(2)

n (z).

Proof. Proper involution-exclusive subsets correspond to rays of Bn. In this manner, Q+(v)
corresponds to the rays of Bn contained in the half-space h = {x ∈ Rn : ⟨v, x⟩ ⩾ 0},
and ∆(Q+(v)) corresponds to the complex Σ(h). Since the f -polynomial, and therefore the
h-polynomial, of ∆(Q+(v)) is independent of v, we can assume that−v lies in the fundamental
region of Bn. The result follows by Propositions 3.5 and 6.5.

Remark 6.7. Tolosa Villareal’s conjecture is originally stated in terms of the h∗-polynomial of
the 2-lecture hall polytope. The statement above is equivalent in view of Savage and Schuster’s
work [SS12, Theorem 5].

Tolosa Villareal also conjectured a stronger version of Proposition 6.6: The 2-lecture hall
polytope Pn,2 has a unimodular triangulation that is combinatorially isomorphic to the cone
over ∆(Q+(1, 2, . . . , 2n)) [TV21, Conjecture 5.2]. Constructing such triangulations for all n is
a work in progress of Ardila and Tolosa Villareal (personal communication).

In view of Proposition 6.5, all the recurrences for the polynomials A(2)(z) discovered by
Savage and Viswanathan can be translated into recurrences for the type B primitive Eulerian
polynomials. For instance, we can verify that the generating function PB(z, x) for the polyno-
mials PBn(z) satisfies the differential equation

zPB(z, x) + 2(xz − 1)
∂PB(z, x)

∂x
+ 2z(1− z)

∂PB(z, x)

∂z
= 0,

and deduce the following result, which is a specialization of the recurrence (20) in [SV12].
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Proposition 6.8. The type B primitive Eulerian polynomials are determined by the differential
recurrence

PBn(z) = (2n− 1)zPBn−1(z) + 2z(1− z)P ′
Bn−1

(z),

with initial condition PB0(z) = 1.

This is analogous to the following recurrence for the type B Eulerian polynomials:

EBn(z) = (1 + (2n− 1)z)EBn−1(z) + 2z(1− z)E ′
Bn−1

(z).

6.2. Some recurrences

Remarkably, Proposition 2.7 gives a new recurrence for the polynomials PBn(z) that does not
follow from those known for A(2)

n (z).

Theorem 6.9. The type B primitive Eulerian polynomials satisfy the following recursion.
With PB0(z) = 1,

PBn(z) = zPBn−1(z) +
n−1∑
k=1

(
n− 1

k

)
2kPBn−1−k

(z)PAk+1
(z),

for all n ⩾ 1.

This is analogous to the following quadratic recurrence for the type B Eulerian polynomials

EBn(z) = (1 + z)EBn−1(z) + 2z
n−1∑
k=1

(
n− 1

k

)
2kEBn−1−k

(z)EAk
(z),

with EB0(z) = 1. See for example [Pet15, Theorem 13.2].
In order to prove Theorem 6.9, we need to review the correspondence between flats of Bn

and type B partitions of [±n].
A type B set partition of [±n] is a (weak) set partition X = {S0, S1, S1, . . . , Sk, Sk} of [±n]

such that S0 = S0 is the only block allowed to be empty. The block S0 is called the zero
block of X. Since blocks are pairwise disjoint, the nonzero blocks are involution-exclusive. We
write X ⊢B [±n] to denote that X is a type B set partition of [±n]. Given a partition X ⊢B [±n],
the corresponding flat ofBn is the intersection of the hyperplanes xi = xj for all i, j that belong to
the same block of X (recall that x−i = −xi for i ∈ [n]). Observe that dim(X) is half the number
of nonzero blocks of X as a type B partition. The partial order relation of L[Bn] becomes the or-
dering by refinement of set partitions. If X corresponds to the partition {S0, S1, S1, . . . , Sk, Sk},
then

(Bn)X ∼= Bk and (Bn)X ∼= B|S0|/2 ×A|S1| × · · · × A|Sk|.

Proof of Theorem 6.9. Let n ⩾ 1 and H ∈ Bn be the hyperplane xn = 0. Then, BH
n
∼= Bn−1.

The lines not in H correspond to partitions {S0, S1, S1} with n /∈ S0. If the line L corresponds
to such partition, then

(Bn)L ∼= B|S0|/2 ×A|S1|.
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It follows from Equation (2.3) and Proposition 2.7 that

PBn(z) = (z − 1)PBn−1(z) +
∑

PBn−1−k
(z)PAk+1

(z),

where the sum is over partitions {S0, S1, S1} with n ∈ S1 and |S1| = k + 1. Such a partition
is completely determined by the set S1 \ {n}, which can be any involution-exclusive k subset
of [±(n− 1)]. The result follows since there are exactly

(
n−1
k

)
2k such subsets, and(

n− 1

0

)
20PBn−1−0(z)PA0+1(z) = PBn−1(z).

We conclude this section with another result on the primitive analogue of a relation between
the type A and type B Eulerian polynomials. An explicit computation shows that

∂

∂x
A(z, x) = ex(z−1)A(z, x)2,

where A(x, z) is the generating function for the Eulerian polynomials in Equation (4.2). The
following result is obtained by comparing the function above with the generating function of the
type B Eulerian polynomials.

Proposition 6.10. For all n ⩾ 0,

n∑
k=0

(
n

k

)
EBk

(z)EBn−k
(z) = 2nEAn+1(z).

In a similar manner, we can verify the following identity between the generating functions
for the type A and type B primitive Eulerian polynomials in Theorem 4.2:(

ex(z−1)A(z, 2x)1/2
)2

=
∂(1 + logA)

∂x
(z, 2x).

Proposition 6.11. For all n ⩾ 0,

n∑
k=0

(
n

k

)
PBk

(z)PBn−k
(z) = 2nPAn+1(z).

In view of Theorem 5.2, Proposition 6.5, and the symmetry of the coefficients of the Eulerian
polynomial, this formula is equivalent to a result of Ma and Yeh [MY17, Proposition 1].
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7. The type D primitive Eulerian polynomial

The type D Coxeter arrangementDn in Rn consists of the hyperplanes with equations xi = xj

and xi = −xj for all 1 ⩽ i < j ⩽ n. It is a subarrangement of Bn, and contains the braid
arrangement An.

D2
x1 = x2

x1 = −x2

D3

It is the reflection arrangement corresponding to the group of even signed permutations Dn,
the Coxeter group of type Dn. Dn is the subgroup of Bn consisting of those signed permuta-
tions w such that neg(w) is even. The descent statistic in Dn has the following combinatorial
interpretation:

desD(w) = #{i ∈ [0, n− 1] : w(i) > w(i+ 1)} where w(0) := −w(2).

Unlike the type A and B cases, no combinatorial interpretation of the coefficients of PDn(z)
can be deduced from [Bas21]. The obstacle being that no known excedance-like statistic on Dn

has the right distribution on cuspidal elements. In fact, none of the excedance statistics in Sec-
tion 6 restricts to an Eulerian statistic on Dn. Another excedance-like statistic on Dn, the flag
weak excedance of type D fwexD, was considered by Cho and Park [CP18], but this statistic is
not Eulerian.

Using Theorem 3.9, we will for the first time interpret the coefficients of PDn(z) in combi-
natorial terms. We identify the elements of Dn and the regions of the type D Coxeter arrange-
ment Dn as follows:

w = w1w2 . . . wn ∈ Dn ←→ Cw := {x ∈ Rn : |xw1| ⩽ xw2 ⩽ . . . ⩽ xwn} ∈ R[Dn].

Note that the region of Dn associated to w1w2 . . . wn ∈ Dn is the union of the regions of Bn
corresponding to w1w2 . . . wn ∈ Bn and w1w2 . . . wn ∈ Bn. The weak order of R[Dn] with
respect to the region Ce coincides with the weak order of Dn as a Coxeter group. In
particular, desD(w) = des⪯(Cw).

Let h = h−v for v = (1, 2, 4, . . . , 2n−1) be the halfspace we considered in the previous section.
Then, Cw ⊆ h if and only if all the right-to-left maxima of |w| := |w1||w2| . . . |wn| ∈ Sn are
negative in w and |w1| ≠ n. See [BW04, Proposition 8.3]. We let BWD

n denote the collection of
such elements. The vector v is very generic for Bn, and therefore it is very generic for any of its
(essential) subarrangements; in particular it is very generic for Dn. Since v ∈ Ce, the following
is a direct consequence of Theorem 3.9.

Theorem 7.1. For all n ⩾ 2,
PDn(z) =

∑
w∈BWD

n

zdes(w).
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Figure 7.1: Regions corresponding to elements in BWD
3 .

Example 7.2. The following tables show the distribution of desD on BWD
3 .

w desD(w)

1 3 2 3

1 2 3 2

2 1 3 2

w desD(w)

2 1 3 2

2 3 1 2

1 2 3 1

Thus, PD3(z) = z3 + 4z2 + z.

Note that PD3(z) is equal to the primitive Eulerian polynomial of the braid arrangementA4.
This is not surprising since D3 is isomorphic to (the essentialization of)A4. However, the com-
binatorics of the complexes BWA

4 and BWD
3 (Figures 5.1 and 7.1) are very different. Indeed,

the complex BWA
n is always a top-star, meaning that it consists of all the regions containing a

fixed face, in this case the face corresponding to the set composition ([n− 1], {n}). This is not
true for the complex BWD

3 .
The following table shows the primitive Eulerian polynomials of type D for the first values

of n.

n PDn(z)

2 z2

3 z3 + 4z2 + z
4 z4 + 20z3 + 20z2 + 4z
5 z5 + 76z4 + 216z3 + 116z2 + 11z
6 z6 + 262z5 + 1732z4 + 2072z3 + 632z2 + 26z
7 z7 + 862z6 + 11824z5 + 28064z4 + 18404z3 + 3158z2 + 57z

Table 7.1: The first primitive Eulerian polynomials of type D. The coefficients form the sequence
A363935 in the OEIS [OEI].

We now proceed to establish a quadratic recursion for the polynomials PDn(z) in terms of the
primitive Eulerian polynomial of reflection arrangements of lower rank. A key difference with
the type A and B cases is that the arrangement under a hyperplane ofDn is not (combinatorially

https://oeis.org/A363935
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isomorphic to) a reflection arrangement (i.e. Dn it is not a good reflection arrangement in the
language of Aguiar and Mahajan [AM17, Section 5.7]).

Theorem 7.3. The type D primitive Eulerian polynomials satisfy the following recursion.
With PD0(z) = 1 and PD1(z) = 0,

PDn(z) = (z − 1)2PBn−2(z) +
n−2∑
k=0

(
n− 2

k

)
2k
(
(z − 1)PDn−2−k

(z)PAk+1
(z)+

2PDn−1−k
(z)PAk+1

(z) + PDn−2−k
(z)PAk+2

(z)
)
,

for all n ⩾ 2.

We are not aware of a similar recursion for the type D Eulerian polynomials EDn(z).
Since Dn is a subarrangement of Bn, the flats of Dn are also flats of Bn. Specifically, the flats
of Bn that are flats of Dn are those corresponding to type B partitions of [±n] such that the zero
block S0 does not have cardinality 2; see for instance Mahajan’s thesis [Mah02, Appendix B]. If
the flat X ∈ L[Dn] corresponds to the partition {S0, S1, S1, . . . , Sk, Sk}, then

(Dn)
X ∼=

{
Dk,r if |S0| = 0,

Bk if |S0| ≠ 0,
and (Dn)X ∼= D|S0|/2 ×A|S1| × · · · × A|Sk|,

whereDk,r is the arrangement obtained by adding the first r coordinate hyperplanes toDk and r
is the number of blocks Si with |Si| > 1; not counting Si and Si twice. We will compute the
primitive Eulerian polynomial of the arrangements Dk,r in Section 8.

Proof of Theorem 7.3. Let n ⩾ 2 and H ∈ Dn be the hyperplane x1 = x2. Then,

DH
n
∼= Dn−1,1 = Dn−1 ∪

{
{x ∈ Rn−1 : x1 = 0}

}
.

The lines not in H correspond to partitions {S0, S1, S1} such that 1, 2 are not in the same block.
If L corresponds to such partition, then

(Dn)L ∼= D|S0|/2 ×A|S1|.

These partitions come in three flavors:

1 ∈ S0 and 2 ∈ S1, or 2 ∈ S0 and 1 ∈ S1, or 1, 2 ∈ S1.

It follows from Proposition 2.7 that

PDn(z) = (z − 1)PDH
n
(z) +

∑
PDn−1−k

(z)PAk+1
(z) +

∑
PDn−2−k

(z)PAk+2
(z),

where the first sum is over partitions of the first two kinds and |S1| = k+1, and the second sum
is over partitions of the third kind and |S1| = k + 2. Such partitions are completely determined
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by the set S1\{2}, S1\{1}, or S1\{1, 2}, respectively; which can be any involution-exclusive k
subset of [±n] \ [±2] (as long as |S0| ≠ 2). That is,

PDn(z) = (z−1)PDH
n
(z)+

n−2∑
k=0

(
n− 2

k

)
2k
(
2PDn−1−k

(z)PAk+1
(z)+

∑
PDn−2−k

(z)PAk+2
(z)

)
.

Observe that by settingPD1(z) = 0, we have implicitly taken care of the cases where {S0, S1, S1}
is not a partition of type D. We now proceed to express PDH

n
(z) in terms of primitive Eulerian

polynomials for reflection arrangements of lower rank.
Let H′ ∈ DH

n be the hyperplane obtained by intersecting x1 = −x2 with H. Then,

(DH
n )

H′
= DH∩H′

n
∼= Bn−2.

The lines contained in H and not contained in H′ correspond to partitions where 1, 2 are in the
same block but 1, 2 are not. That is, partitions of the form {S0, S1, S1} with 1, 2 ∈ S1. In this
case,

(Dn)
H
L
∼= D|S0|/2 ×A|S1|−1.

Again, such partition is completely determined by S1 \ {1, 2}, so

PDH
n
(z) = (z − 1)PBn−2(z) +

n−2∑
k=0

(
n− 2

k

)
2kPDn−2−k

(z)PAk+1
(z).

The result follows by substituting this into the expression for PDn(z) above.

7.1. Generating function

This section completes the proof of Theorem 4.2. We employ the following type B analog of
the compositional formula.

Proposition 7.4. Let

f(x) =
∑
n⩾0

fn
xn

n!
g(x) = 1 +

∑
n⩾1

gn
xn

n!
a(x) =

∑
n⩾1

an
xn

n!
.

If

h(x) =
∑
n⩾0

hn
xn

n!
where hn =

∑
{S0,S1,S1,...,Sk,Sk}⊢B [±n]

f|S0|/2gka|S1| . . . a|Sk|,

then
h(x) = f(x)g

(a(2x)
2

)
.

Notice that we have adapted [Bas21, Proposition 6.3] for exponential generating functions,
and to allow f0, and therefore h0 = f0, to be different to 1.
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Proof of Theorem 4.2. Recall the identification between the flats of the arrangement Dn and
the type D partitions of [±n] from the previous section. Let X ∈ L[Dn] correspond to the
partition {S0, S1, S1, . . . , Sk, Sk}. Then,

µ(⊥,X) =

{
(−1)k(2k − 3)!!(k + r − 1) if |S0| = 0,

(−1)k(2k − 1)!! if |S0| ≠ 0,

where r denotes the number of pairs of blocks that are not singletons, and (−1)!! := 1. See for
instance [JT84, Example 2.3]. Observe that in the first case, we necessarily have k ⩾ 1.

We introduce the auxiliary polynomials

Ψ0
Dn

(z) =
∑

(2k − 3)!!(k + r − 1)zk Ψ>0
Dn

(z) =
∑

(2k − 1)!!zk,

where the first sum is over partitions {S0, S1, S1, . . . , Sk, Sk} ⊢D [±n] with |S0| = 0 and the
second is over partitions with |S0| ≠ 0. Observe that ΨDn(z) = Ψ0

Dn
(z) + Ψ>0

Dn
(z). Now

consider the bivariate polynomial

Φn(y, z) =
∑

(2k − 3)!!yr(yz)k,

where the sum is over the same partitions defining Ψ0
Dn

(z). Then,

∂

∂y

Φn(y, z)

y

∣∣∣∣
y=1

= Ψ0
Dn

(z).

Using Proposition 7.4 with

f(x) = 1, g(x) = 1 +
∑
n⩾1

(2d− 3)!!
xn

n!
= 2− (1− 2x)1/2, and

a(y, z, x) = yzx+
∑
n⩾2

y2z
xn

n!
= yzx+ y2z(ex − x− 1),

we obtain that

1 + yzx+
∑
n⩾2

Φn(y, z)
xn

n!
= 2−

(
1− 2yzx− y2z(e2x − 2x− 1)

)1/2
.

Moving the constant term and dividing by y

−1

y
+ zx+

∑
n⩾2

Φn(y, z)

y

xn

n!
= −

(
1

y2
− 2zx

y
− z(e2x − 2x− 1)

)1/2

.

and differentiating with respect to y and setting y = 1

1 +
∑
n⩾2

Ψ0
Dn

(z)
xn

n!
=

(
1− zx

)(
1− z(e2x − 1)

)−1/2
. (7.1)
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Recall that if |S0| ≠ 0, then |S0|/2 ⩾ 2. Therefore, using Proposition 7.4 with

f(x) =
∑
n⩾2

1
xn

n!
= ex − x− 1, g(x) = 1 +

∑
n⩾1

(2n− 1)!!
xn

n!
= (1− 2x)−1/2, and

a(z, x) =
∑
n⩾1

z
xn

n!
= z(ex − 1),

we have ∑
n⩾2

Ψ>0
Dn

(z)
xn

n!
=

(
ex − x− 1

)(
1− z(e2x − 1)

)−1/2
. (7.2)

Adding Equation (7.1) and Equation (7.2),

1 +
∑
n⩾2

ΨDn(z)
xn

n!
=

(
ex − x(1 + z)

)(
1− z(e2x − 1)

)−1/2
,

and
1 +

∑
n⩾2

PDn(z)
xn

n!
=

(
ex(z−1) − zx

)( z − 1

z − e2x(z−1)

)1/2

,

as we wanted to show.

8. Primitive Eulerian polynomial of arrangements between type B and D

Let Dn,k be the arrangement obtained from Dn by adding k coordinate hyperplanes. Note that
the isomorphism class of Dn,k does not depend on the particular coordinate hyperplanes we
choose, since any two choices are equal modulo the action of Sn ⊆ Dn.

SinceDn,k is a subarrangement of Bn, faces ofDn,k are the union of some of the faces of Bn.
Faces of Bn are in correspondence with type B compositions of [±n]; these are ordered type B
partitions of the form (Sk, . . . , S1, S0, S1, . . . , Sk). The corresponding face of Bn is determined
by inequalities xa ⩽ xb whenever the block containing a weakly precedes the block contain-
ing b; in particular, the face is contained in the hyperplanes xa = 0 for all a ∈ S0 and in the
hyperplanes xa = xb whenever a and b are in the same block of the composition.

Faces of Dn,0 = Dn are described by Mahajan in [Mah02, Appendix B.6]. They are either

• faces of Bn corresponding to a compositions (Sk, . . . , S1, S0, S1, . . . , Sk) with |S0| ⩾ 4,

• faces of Bn corresponding to a compositions (Sk, . . . , S1,∅, S1, . . . , Sk) with |S1| ⩾ 2, or

• the union of exactly three faces of Bn corresponding to compositions

– (Sk, . . . , S2, {a, a}, S2, . . . , Sk),
– (Sk, . . . , S2, {a},∅, {a}, S2, . . . , Sk), and
– (Sk, . . . , S2, {a},∅, {a}, S2, . . . , Sk),

for some a ∈ [n].
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Faces of the first two types are faces of all arrangements Dn,k. A face of the third type is a
face of Dn,k if and only if the hyperplane xa = 0 is not in the arrangement Dn,k, otherwise the
corresponding three faces of Bn are faces of Dn,k.

Theorem 8.1. For all 0 ⩽ k ⩽ n, the primitive Eulerian polynomial of Dn,k is given by the
following formula.

PDn,k
(z) = PDn(z) + kznPBn−1(

1
z
).

Proof. Since Bn = Dn,n, the result follows from the following two claims.

(i.) For all n ⩾ 0, PBn(z) = PDn(z) + nznPBn−1(
1
z
).

(ii.) For fixed n ⩾ 0, the difference PDn,k+1
(z)−PDn,k

(z) is the same for all k = 0, . . . , n− 1.

We prove (i.) by using the power series of Theorem 4.2. We first compute the generating
function for nznPBn−1(

1
z
):∑

n⩾0

nznPBn−1(
1
z
)
xn

n!
= zx

∑
n⩾1

PBn−1(
1
z
)
(zx)n−1

(n− 1)!
= zxezx(

1
z
−1)

( 1
z
− 1

1
z
− e2zx(

1
z
−1)

)1/2

= zxex(1−z)
( 1− z

1− ze2x(1−z)

)1/2

= zxA(z, 2x)1/2.

The relationPBn(z) = PDn(z)+nznPBn−1(
1
z
) for alln is thus equivalent to the following equality

between the corresponding generating functions:

ex(z−1)A(z, 2x)1/2 =
(
ex(z−1) − zx

)
A(z, 2x)1/2 + zxA(z, 2x)1/2.

We proceed to prove (ii.) Let h = h−v for v = (1, 2, 4, . . . , 2n−1), a generic halfspace for
all Dn,k. In view of Equation (3.1), it suffices to show that the difference between f -polynomial
of ΣDn,k+1

(h) and ΣDn,k
(h) is independent of k ∈ [0, n − 1]. Without loss of generality, as-

sumeDn,k isDn with the first k coordinate arrangements, and thatDn,k+1 is obtained by adding
the hyperplane xn = 0 to Dn,k. By the description of the faces of Dn,k above, Σ[Dn,k+1] is
obtained from Σ[Dn,k] by removing the faces of the third type with a = n and adding the cor-
responding faces of Bn. Which of these faces are contained in h (both the ones removed and
added) is independent of k.

9. Real-rootedness

9.1. Real-rootedness in rank at most 3

In this section, we employ the theory of interlacing polynomials to prove that the primitive Eu-
lerian polynomial of any arrangement of rank at most 3 is real-rooted.

Let f(z), g(z) be real-rooted polynomials of degree d and d − 1 respectively. The polyno-
mial g interlaces f if

α1 ⩽ β1 ⩽ α2 ⩽ . . . ⩽ βd−1 ⩽ αd,

where α1, . . . , αd and β1, . . . , βd−1 are the roots of f and g, respectively. In this case, the poly-
nomial f(z) + g(z) is real-rooted. See for example [Brä04, Theorem 8].
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Theorem 9.1. Let A be an arrangement of rank r ⩽ 3. Then, PA(z) is real-rooted.

Proof. The cases r = 1, 2 follow from the explicit computations in Examples 2.2 and 2.4.
Let A be an essential arrangement of n hyperplanes in R3. Fix a hyperplane H0 ∈ A,

and let k (resp. m) be the number of lines of A contained in H0 (resp. not contained in H0).
Proposition 2.7 reads

PA(z) = (z − 1)PAH0 (z) +
∑
L

PAL
(z).

We will show that
∑

L PAL
(z) interlaces (z − 1)PAH0 (z), and therefore PA(z) is real-rooted.

First, Example 2.4 shows that PAH0 (z) = z2 + (k − 2)z, so the polynomial (z − 1)PAH0 (z)
has zeros at

z = −(k − 2), 0, 1.

On the other hand, ∑
L

PAL
(z) = mz2 +

∑
L

(nL − 2)z,

where the sum is over the lines not contained in H0 and nL denotes the number of hyperplanes
containing L. The zeros of this polynomial are

z = −
(∑

L nL

m
− 2

)
, 0.

Claim: For any L not contained in H0, nL ⩽ k.
To prove the claim, note that for all pair of distinct hyperplanes H,H′ ∈ A containing L, the
lines H ∩ H0 and H′ ∩ H0 are distinct. Otherwise, a dimension argument shows that

L = H ∩ H′ = H ∩ H′ ∩ H0 ⊆ H0.

Since H0 contains k lines, no more than k distinct hyperplanes of A can contain L.
Therefore we have 2 ⩽ nL ⩽ k for all L, and 0 ⩽

∑
L nL

m
− 2 ⩽ k − 2. It follows

that
∑

L PAL
(z) interlaces (z − 1)PAH0 (z):

−(k − 2) ⩽ −
(∑

L nL

m
− 2

)
⩽ 0 ⩽ 0 ⩽ 1,

as we wanted to show.

Remark 9.2. Note that this result does not assume the arrangement to be simplicial. For instance,
the primitive Eulerian polynomial of the graphic arrangement of a 4-cycle in Example 2.6 is real-
rooted:

z3 + 3z2 − z = z(z − −3+
√
13

2
)(z − −3−

√
13

2
).

Remark 9.3. It immediately follows from Theorem 9.1 that the cocharacteristic polynomial of
any arrangement of rank at most 3 is real-rooted. The same is not true for the characteristic
polynomial. For instance, the characteristic polynomial of the graphic arrangement of a 4-cycle
is z(z − 1)(z2 − 3z + 3), which has a pair of conjugate complex roots.
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9.2. Real-rootedness fails non-simplicial arrangements in higher rank

If A is a non-simplicial arrangement of rank at least 4, PA(z) might fail to be real-rooted.

Example 9.4. For n ⩾ 2, let Gn be the arrangement of n + 1 generic hyperplanes in Rn. It
makes sense to say the arrangement, because any two such arrangements are combinatorially
isomorphic; this is not true if we have more hyperplanes. The arrangement G2 is isomorphic
to I2(3), and G3 is isomorphic to the graphic arrangement of a 4-cycle.

We verify using Proposition 2.7 and induction that

PGn(z) = zn +
n−1∑
k=1

(−1)k+1

(
n

k + 1

)
zn−k = z(z − 1)n + (n+ 1)zn − zn+1.

The second expression makes the inductive step cleaner, even though it involves terms of higher
degree. For n = 2, we have

z(z − 1)2 + 3z2 − z3 = z2 + z = PI2(3)(z).

Now assume n ⩾ 3 and let H be any hyperplane in Gn. The arrangement GHn consists of n
hyperplanes in generic position, so GHn ∼= Gn−1. Moreover, any line in Gn is contained in ex-
actly n − 1 hyperplanes; thus there are

(
(n+1)−1

n−1

)
= n lines not contained in H, and (Gn)L is

isomorphic to a coordinate arrangement of n− 1 hyperplanes for each line L. Therefore,

PGn(z) = (z − 1)PGn−1(z) + nzn−1

= (z − 1)(z(z − 1)n−1 + nzn−1 − zn) + nzn−1

= z(z − 1)n + (n+ 1)zn − zn+1,

as claimed. Already for n = 4, we have PG4(z) = z4 + 6z3 − 4z2 + z, which has two complex
roots.

9.3. Real-rootedness for Coxeter and simplicial arrangements

Frobenius [Fro10] first proved that the classical (type A) Eulerian polynomials are real-rooted.
In view of identity Equation (5.3), this implies that the type A primitive Eulerian polynomials are
real-rooted. Later, Savage and Visontai [SV15] proved that the polynomials A(2)

n (z) have only
real roots. It then follows by Proposition 6.5 that so do the type B primitive Eulerian polynomials.

With the help of SageMath [Sag], we verified that primitive Eulerian polynomials of the
exceptional type in Table 4.1 are all real-rooted. We have also verified that the type D primitive
Eulerian polynomial PDn(z) is real-rooted for n ⩽ 300. We conjecture this is true for all values
of n, and therefore that the primitive Eulerian polynomial of any Coxeter arrangement is real-
rooted.

Conjecture 9.5. The primitive Eulerian polynomial of any real reflection arrangement is real-
rooted.
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The corresponding conjecture for the Eulerian polynomial was originally posed by
Brenti [Bre94] and solved two decades later by Savage and Visontai [SV15].

The arrangements Dn,k are all simplicial, and not combinatorially isomorphic to reflection
arrangements whenever k ̸= 0, n. We have computationally verified that PDn,k

(z) is real-rooted
for all k ⩽ n ⩽ 150. We have also verified that the primitive Eulerian polynomial of the crystal-
lographic simplicial arrangements of Cuntz and Heckenberger [CH15], and the two additional
examples in rank 4 by Geis [Gei19], are all real-rooted. We conclude this section with the fol-
lowing conjecture, which would of course imply Conjecture 9.5.

Conjecture 9.6. The primitive Eulerian polynomial of any real simplicial arrangement is real-
rooted.

10. Further questions

As mentioned in Section 2, it is unknown whether the primitive Eulerian polynomial can be
obtained as a specialization of the well-studied Tutte polynomial, see [NPS02].

Problem 10.1. Find two arrangements, A and A′, having the same Tutte polynomial but differ-
ent primitive Eulerian polynomials. Alternatively, write the primitive Eulerian polynomial as a
specialization of the Tutte polynomial.

At the end of Section 5, we briefly explained how to use Foata’s first fundamental trans-
formation to prove the equivalence between the two formulas for the type A primitive Eulerian
polynomial in Equations (5.1) and (5.2). We would like to have a similar argument in the type B
case, giving a combinatorial proof of the equivalence between Equations (6.1) and (6.2).

Problem 10.2. Find a bijection φ : BWB
n → cusp(Bn) such that

excB(φ(w)) = des(w) for all w ∈ BWB
n .

The fact that BWA
n (resp. BWB

n ) and cusp(Sn) (resp. cusp(Bn)) have the same cardinality
is not coincidental. Recall that the sum of the coefficients of the primitive Eulerian polynomial
is precisely |µ(⊥,⊤)|. When A = AW is the reflection arrangement associated with a Coxeter
group W , this corresponds to the number of elements w ∈ W whose action on the ambient
space only fixes the points in the minimum flat ⊥ ([ST54, Theorem 5.3]); in other words, it
counts the cuspidal elements of W . For the type D arrangement, these numbers appear in the
sequence A001879 in the OEIS [OEI]. Even tough we do not have an interpretation of PDn(z)
using cuspidal elements, the following is an interesting problem.

Problem 10.3. Find a bijection between BWD
n and cusp(Dn).

In Section 6.1, we discussed that znPBn(
1
z
) is the Ehrhart h∗-polynomial of the 2-lecture hall

polytope or, in the language of Savage and Visontai [SV15], the s-lecture hall polytope P(s)
n

with s = (1, 3, 5, 7, . . . ). Similarly, znPAn(
1
z
) = EAn−1(z) is the h∗-polynomial of P(s)

n−1

for s = (1, 2, 3, 4, . . . ). In contrast, we verified using SageMath [Sag] that z4PD4(
1
z
) is not

https://oeis.org/A001879
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the h∗-polynomial of P(s)
n for any s and n. This was done by explicitly computing the s-

Eulerian polynomial [SV15] for a few finite sequences s (as the product of the entries in s has to
equal PD4(1) = 45, and consecutive ones in s do not change the polynomial).

Problem 10.4. Find a family of polytopes q4, q5, . . . such that

h∗(qn, z) = znPDn(
1
z
) for all n ⩾ 4.
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[GP00] Meinolf Geck and Götz Pfeiffer. Characters of finite Coxeter groups and Iwahori-
Hecke algebras, volume 21 of London Mathematical Society Monographs. New
Series. The Clarendon Press, Oxford University Press, New York, 2000.

[GZ83] Curtis Greene and Thomas Zaslavsky. On the interpretation of Whitney num-
bers throug arrangements of hyperplanes, zonotopes, non-Rado partitions, and
orientations of graphs. Trans. Amer. Math. Soc., 280(1):97–126, 1983. doi:

10.2307/1999604.
[JT84] Michel Jambu and Hiroaki Terao. Free arrangements of hyperplanes and supersolv-

able lattices. Adv. in Math., 52(3):248–258, 1984. doi:10.1016/0001-8708(84)
90024-0.

[Ker71] Adalbert Kerber. Representations of permutation groups. I. Lecture Notes in Math-
ematics, Vol. 240. Springer-Verlag, Berlin-New York, 1971.

[LV75] Michel Las Vergnas. Matroı̈des orientables. C. R. Acad. Sci. Paris Sér. A-B, 280:Ai,
A61–A64, 1975.

[Mah02] Swapneel Arvind Mahajan. Shuffles, shellings and projections. PhD thesis, Cornell
University, 2002. URL: https://www.proquest.com/docview/251796807.

[Man82] Arnaldo Mandel. Topology of oriented matroids. PhD thesis, University of Water-
loo (Canada), 1982. URL: https://www.proquest.com/docview/303277038.

[McM89] Peter McMullen. The polytope algebra. Adv. Math., 78(1):76–130, 1989. doi:

10.1016/0001-8708(89)90029-7.
[McM93] Peter McMullen. On simple polytopes. Invent. Math., 113(2):419–444, 1993. doi:

10.1007/BF01244313.
[MM15] Shi-Mei Ma and Toufik Mansour. The 1/k-Eulerian polynomials and k-Stirling

permutations. Discrete Math., 338(8):1468–1472, 2015. doi:10.1016/j.disc.
2015.03.015.

[MY17] Shi-Mei Ma and Yeong-Nan Yeh. Eulerian polynomials, Stirling permutations of
the second kind and perfect matchings. Electron. J. Combin., 24(4):Paper No. 4.27,
18, 2017. doi:10.37236/7288.

[NPS02] Isabella Novik, Alexander Postnikov, and Bernd Sturmfels. Syzygies of ori-
ented matroids. Duke Math. J., 111(2):287–317, 2002. doi:10.1215/

S0012-7094-02-11124-7.
[OEI] The OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences.

https://oeis.org.
[Pet15] T. Kyle Petersen. Eulerian numbers. Birkhäuser Advanced Texts: Basler
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