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ABSTRACT OF THE DISSERTATION

Methods for Comparative Genome Analysis With Applications to Pan-genomics and
Genome Annotation

by

Qihua Liang

Doctor of Philosophy, Graduate Program in Genetics, Genomics and Bioinformatics
University of California, Riverside, December 2020

Dr. Stefano Lonardi, Chairperson

Comparative genomics is a powerful analytical tool for understanding the structure

of genomes and their evolution. The tenet of comparative genomics is that evolutionarily

conserved (thus functionally important) genomic features between two species share signif-

icant similarity at the DNA or protein level. Recent technological advancement in DNA

sequencing instruments enabled the number of sequenced genomes for different species to

increase exponentially. The expanded set of available genomes has provided new opportu-

nities to carry out comparative genome analyses at unprecedented scale.

In this dissertation, we discuss and investigate a set of comparative genomics meth-

ods relevant to genome assembly, genome annotation and pan-genome analysis. Compara-

tive genomics can assist de novo genome assembly during the scaffolding phase and in the

evaluation of assembly quality. The annotation phase takes advantage of comparative ge-

nomics by leveraging annotations from related species to predict coding and non-coding gene

boundaries, intron/exon boundaries, repetitive elements, and many other genomic features.

Functional annotation also relies on comparative genomics to assign putative functions to

vii



annotated genes using known functions of evolutionarily-conserved genes and proteins. Fi-

nally, intraspecies comparative genomics is the cornerstone of pan-genome analyses that

allows one to determine which portions of the genome are common to all individuals, and

which portions are variable among the individual of a species. A new pan-genome represen-

tation and visualization method is introduced here to elucidate complex structural genomic

variations.

Experimental results on the genomes of (1) Vigna unguiculata (cowpea or black-

eyed pea) which provides a valuable source of protein to millions of people in developing

countries, (2) Phytophthora infestans which is an oomycete which causes a potato and

tomato disease known as late blight, and (3) Babesia duncani which is tick-transmitted

protozoan parasites that causes severe infection in immunocompetent individuals, demon-

strate the effectiveness and utility of these comparative genomics methods.
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Chapter 1

Introduction

Life science research was revolutionized by the invention of DNA sequencing in

the 1970s, which led to a new era of genomic scientific investigation. The first complete

bacterial genome, Haemophilus influenzae, was fully sequenced in 1995. The 1.83Mb genome

sequence revealed 1742 protein-coding genes along with a small complement of transfer

RNAs (tRNAs) and ribosomal RNAs [23]. Since then, advancement in DNA sequencing

technology has allowed Life scientists to obtain the primary DNA genomic sequence of tens

of thousands of bacteria and viruses, thousands of individual humans, and thousands of

other eukaryotic species [98].

1.1 Genome Sequencing and Assembly

Deoxyribonucleic acid, or DNA, is the primary hereditary material in all living

organisms. DNA is a double helix in which nucleotides (or bases) pair up with each other,

A with T and C with G, to form units called base pairs. The genome is the complete set of
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DNA in an organism and it contains all the genetic information needed to “build” an entire

individual and maintain all necessary metabolic activities [1].

DNA sequencing instruments are used to obtain the primary DNA sequence of an

organism, but they are unable to read chromosomes from their beginning to their end. The

most popular type of sequencing strategy in use today, called second generation sequencing

or next generation sequencing (NGS), is based on sequencing by synthesis (Illumina). DNA

polymerase, which is the enzyme in cells that synthesizes DNA, is used to generate a new

strand of DNA based on a target strand to be sequenced. During the sequencing reaction,

DNA polymerase utilizes fluorescently labeled nucleotides into synthesizing a new comple-

mentary strand of the target DNA strand. Four nucleotides are used separately in order

to react with DNA polymerase. When the paired nucleotide is present to incorporate with

target sequence, the fluorescent signal is emitted during such incorporation and detected

by a camera. The signal is different for four nucleotides and thus the current nucleotide is

determined based on the detected signal. NGS can generate massive amounts of short reads

few hundreds nucleotides long, and for this reason it is called high-throughput sequencing.

The third generation of sequencing technologies (i.e., Pacific Biosciences and Ox-

ford Nanopore) can generate reads with size up to 100,000bp. Such read length is a signif-

icant improvement from second generation sequencing but the throughput is much lower.

The first commercially available long read sequencing platform was introduced by Pacific

Biosciences’ (PacBio), called single molecule real-time (SMRT) sequencing technology [5].

SMRT sequencing also takes advantage of sequencing by synthesis and utilizes fluorescently

labeled nucleotides as NGS. SMRT employs a zero-mode waveguide where a DNA poly-
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merase enzyme is attached at the bottom of the flow-cell. Oxford Nanopore is the most

recent third generation sequencing technology on the market. A nanopore is a nano-scale

hole through which an ionic current is passed through. As the DNA passes through the pore,

different nucleotides along the negatively charged DNA strand cause different electric cur-

rent changes. The sensor detects ionic current fluctuations and determines the nucleotide

passing through the pole. No DNA is synthesized during Nanopore sequencing process,

which is a significant departure from NGS or PacBio technonologies.

Due to the limitations of sequencing instruments, a strategy called whole genome

sequencing (WGS) has been developed to obtain the primary sequence of large eukaryotic

genomes. In WGS, the genome is broken down into a collection of smaller DNA fragments

by a random process called shotgun, and then each fragment is read by the sequencing

instruments to get the order of nucleotides (i.e., each fragment generates a read). After the

sequencing of the DNA fragments, the whole genome needs be assembled into the most con-

tiguous and complete sequences based on the overlap between sequencing reads. The process

of combining fragmented reads into longer fragments of the genome is called assembly. Cur-

rently, assembly algorithms can be divided in two general classes: overlap–layout–consensus

(OLC) and de-Bruijn graph (DBG). OLC was introduced by Staden [103] and later adopted

by several long-reads based assembly algorithm such as the Celera Assembler and more re-

cently Canu [42], Falcon, etc. The OLC approach consists of three steps: (i) the overlaps

phase (O), in which all overlaps among all the reads are detected; (ii) the layout phase (L),

in which all the read overlaps are represented on a graph; (iii) the consensus phase (C), in

which the assembled sequence is inferred [54]. The DBG approach first breaks all the reads
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into shorter k-mers (which is a string of length k). Then, a de-Bruijn graph is constructed

and used to infer the genome sequence. Many short-reads based assembly tools are based

on DBG, such as ABySS [99] and SOAPdenovo [52]. DBG assemblers provides an efficient

and effective genome assembly ideal for NGS short reads.

Even though genome assembly has considerably improved due to improvement

in sequencing technologies and algorithmic innovations, assemblies produced entirely on

sequencing reads are typically fragmented and they often cannot span entire chromosomes.

To further improve quality of assemblies, several long-range technologies such as optical

mapping and genetic maps have been developed [91]. An optical map is a sequence of lengths

of fragmented DNA sequence resulting from restriction enzymes cutting at restriction sites.

A genetic map is a type of species-specific chromosome map that shows the relative genetic

distance of genomic marker (e.g., SNPs) [121]. Optical and genetic maps together with

new assembly methods have enabled the generation of complete and high-quality genome

assemblies for large eukaryotic genomes.

The cowpea genomes in Chapter 2 and Chapter 3 were sequenced with different

technologies of second and third generation sequencing. Such sequencing reads together

with genetic maps and optical maps are used in assembling the genomes of different cowpea

accessions.

1.2 Genome Annotation

While the research community in genomics is mostly focused on genome sequencing

assembly, genome annotation is starting to attract more and more attention [105]. Genome
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annotation can be classified into two major types: (1) structural annotation, that is the

identification of all elements in a genome, such as repeats, genes/pseudo-genes, 5’/3’ UTRs,

introns/exons; (2) functional annotation, that is the prediction of the biological functions

of the elements detected in (1). Genome annotation is necessary because genome sequenc-

ing and assembly only produces the primary DNA sequence of the genome devoid of any

interpretable information [2].

Structural annotation primarily aims to find repeats and genes within the genome.

A significant portion of eukaryotic genomes is characterized as repetitive or interspersed

repeat regions. In these genomes, it is challenging to identify repetitive regions prior to

gene finding because of the complex multi-scale structure of repeats and high proportion

of repetitive elements present. In many instances of genome annotation, repeat masking is

the first annotation step, prior to gene finding. For instance, over 20% of the Arabidopsis

thaliana genome is composed of repetitive elements [66]. These percentages are much higher

in legumes (which are one of the focuses of this dissertation): it is 53.9% in soybean [122],

45.2% in common bean, 50.1% in mung bean [40], and 44.5% in adzuki bean [123]. As

said, masking repetitive elements is carried out before the identification of other structures

along the genome. Unfortunately, curated repeat libraries are available only for a limited

number of species. Using repeat libraries for distantly-related species can lead to missing

repeats thus negatively affecting gene prediction accuracy. In order to address this challenge,

species-specific repeat libraries species can be built based on the sequence information of

each genome. In small prokaryotic genomes, gene finding is mostly about identifying long

open reading frames (ORFs). For instance, in the Haemophilus influenzae genome, 85%

5



of the primary DNA sequence consists of coding regions. The fraction of the genome that

encodes for proteins is much lower in eukaryotic genomes, e.g., it is 70% in yeast, less

than 25% in fruit fly and worm, and only about 1% in the human genome. For eukaryotic

genomes, structures like 5’/3’ UTRs and introns/exons are also critical and they are usually

identified during gene finding.

Gene prediction methods can be classified broadly into two classes, namely de novo

and homologous-based. De novo gene predictors use probabilistic models trained on known

genes to detect putative genes. For example, predictors that use Hidden Markov models

(HMM) may explicitly calculate how individual probabilities of a sequence of features are

combined into probability estimate for the whole gene [105]. Several well-established de

novo predictors have been used in gene finding for many species, including Augustus [104],

GeneMark [59] and SnapHMM [43]. De novo predictors increase the possibility to annotate

genes that are rarely expressed and would be missed by homologous-based methods (e.g.,

when no transcript evidence is available).

Homologous-based or evidence-based methods annotate genes from transcript ev-

idences (e.g., ESTs, expressed proteins, RNA-Seq) and/or protein evidences either for the

species under consideration or from related species. Genes annotated or supported by

homologous comparison are expected to be more reliable than de novo prediction. Never-

theless, deriving a complete gene model from sequence similarity is not as straightforward

as extracting sequence alignment results. Most genes in eukaryotic genomes are spliced into

multiple exons, which significantly complicates the sequence alignment analysis. Besides,

the homologous evidences may not be of high quality. For example, cDNA sequences may
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contain repetitive sequences that may cause incorrect genomic sequence match. Protein

sequences from related species can introduce unnecessary evolutionary divergence prob-

lems. To address such issues one can combine multiple homologous resources from different

species as well as de novo predicted gene models. Annotation pipelines such as Maker2 [13],

Funannotate [79] and EVM [31] combine both de novo and homologous approaches using

adjustable weights applied to different predictors or evidence.

The final step after genome assembly and gene/repeat annotation is to evaluate the

overall quality of the assembly and the annotation. As said, the objective is the obtain the

most contiguous and error-free assembly, and the most complete catalogue of all the genes.

A popular evaluation pipeline is BUSCO, which was designed to assess the completeness

of genomes, gene sets, and transcriptomes [92]. BUSCO compares a given assembly and

annotation to a set of universal single-copy genes that are expected to be present in any

genome in that category of organisms.

After collecting the complete set of genes, the functional annotation steps aims

at providing the most accurate biological functions to the annotated genes. For instance,

Haemophilus influenzae has only 1,709 genes, yeast has about 5,600 genes and human has

more than 30,000 genes [105]. A large fraction of the genes for many organisms still do not

have well a characterized biological function. The function of a protein encoded by a gene

is tied to its 3D structure (folding), which is hard to obtain experimentally. Functional

annotation is typically carried out by seeking proteins that have similar sequence, and have

a known functions. For instance, OrthoMCL [51] is designed to identify ortholog groups

for eukaryotic genomes based on protein-level sequence similarity. To distinguish functional
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redundancy from divergence, OrthoMCL detects recent paralogs to be considered in ortholog

groups as within-species reciprocally hits. Protein databases SWISS-PROT TrEMBL [7],

PFAM [9], PRINTS [6], PROSITE [34] and InterPro [4] are commonly used to identify gene

functions based on sequence similarity.

Another important step in functional annotation is associate genes to biological

processes such as cell cycle, metabolism, and cell component localization. One of the stan-

dard classification scheme is called Gene Ontology (GO) [76]. GO contains standardized

terms to describe eukaryotic gene functions along three ”components”, namely molecular

function, biological process and cellular component. GO organizes the functional terms

hierarchically in a directed acyclic graph, making it easy to determine the dependencies

among terms.

In Chapter 2 and Chapter 3 the genomes of cowpea, Phytophthora infestans and

Babesia duncani were annotated with a combination of above mentioned de novo and

homologous-based methods. Genome annotations of such species provide complete and

accurate structure and function of genome features in order to advance in further genomic

study.

1.3 Pan-genome

As sequencing costs continue to decrease, there is an exponentially increasing num-

ber of available genome for different species. These genome sequencing project are aimed

to produce a reference genome for a species, i.e., they are based on single individual for

that species. Such reference genomes serve as the basis of many genetic analyses includ-
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ing genome comparisons and variation studies within and across species. A high-quality

and well-annotated reference genome facilitates comparative genomic studies with its re-

lated species. For example, our cowpea reference genome reported in Chapter 2 allows the

comparative study with other legumes such as soybean and common bean, revealing both

similarities and differences of the genome characteristics and can help researchers to better

understand traits and gene functions.

However, recent studies have shown that genomic sequences of one individual

cannot fully representing the full range of genetic diversity of a species (see, e.g., [125, 56,

94, 10]). For example, recent sequencing of 910 humans of African descent reports up to

10% of the total genome size missing from the reference genome [93]. As said, the cost of

whole genome sequencing has been decreasing rapidly and this has enabled sequencing for

multiple individuals within the same species in order to capture the genetic diversity of a

species [69, 65, 33, 110].

The term pan-genome was first used by Sigaux [96] to describe a public database

containing an assessment of genome and transcriptome alterations in the major types

of tumors as well as in relevant normal cells and experimental models. Later, Tettelin

et al. [112] defined a microbial pan-genome with eight different strains of Streptococ-

cus agalactiae, a pathogenic species isolated from human, as the combination of a core

genome, composed of genes shared by all strains, and a dispensable genome (also known

as flexible or accessory genome) consisting of partially shared and strain-specific. (Fig-

ures 1.1) A generalization of such a representation could contain not only the genes, but

also other variations present in the collection of genomes. Here we adopt the defini-
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tion proposed in [28] where a pan-genome consists of three components, namely, i) the

core genome, formed by genes that are shared by all individual genomes (these genes

are usually involved in essential cellular processes, like house-keeping genes); ii) acces-

sory or dispensable genome, composed of genes that absent in some individuals; and iii)

individual-specific genes, which are those genes that are present in a single individual

genome. The main goal of pan genome analysis is to identify these three genomic com-

ponents by comparing the genomes of different individuals of the same species. We should

note that the number and the quality of the genome assemblies directly affects these no-

tions. For instance, genes belong to very repetitive regions of the genome (i.e., centromers)

are likely to be absent from the assembly because assembly tools struggle with repeti-

tive regions. As a consequence, a gene could be declared dispensable or individual-specific

only because it is missing from most the assemblies, not because it is truly dispensable.

Figure 1.1: Pan-genome composition
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In plants the notion of a pan-genome was first used to describe short variable

regions of transposable elements in the rice and maize genomes [72]. It took almost ten

years for plant pan-genomes to be available after the initial bacterial pan-genome study

[10]. The first published plant pan-genome was based on whole genome assemblies of seven

wild soybean accessions [53]. Genes present in wild Glycine soja but not identified in

domesticated Glycine max were related to seed composition, flowering and maturity time,

organ size and biomass. Such present-absent variation analyses also showed an increase of

copy number of disease-resistance genes in wild Glycine soja. Later, pan-genomes have been

constructed for other crop species, including rice [127], tomato [25], soybean [53, 56], among

others. The motivation for building a pan-genome for a crop species is to understand the

genetic diversity within different accessions and eventually identify key variations which are

linked to agricultural production phenotypes in order to improve breeding.

Although crops have been selectively bred since their domestication, the genes un-

derlying the selected phenotypes often remain unknown and are sometimes linked to genes

with undesirable phenotypes. For example, a cultivar that produces larger fruit might be

lacking in disease-resistance genes. Discovering these phenotype-causing genes can help

both to breed and to genetically modify plants so as to create crops that are more disease-

resistant, are more productive, have a longer shelf life or taste better, without sacrificing

other desired phenotypes. Pan-genomic approaches in plants have already uncovered nu-

merous associations between agronomic phenotypes and the presence or absence of specific

genes. Inspired by previous plant pan-genome studies, we embarked on a project to build

the pan-genome of cowpea (Vigna unguiculata [L.] Walp.), also known as black eye pea.
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Cowpea is a major crop for worldwide food and nutritional security, providing a valuable

source of protein to millions of people in developing countries. The cowpea pan genome

incorporates multiple cowpea accessions from around the world, and will provides new bio-

logical insights into the genetic diversity of this important legume. Chapter 3 of this thesis

reports on our the analysis of the cowpea pan-genome.

In response to the availability of the pan-genomes for many species, new analysis

tools have been developed to answer some of the main questions, namely (1) how to find

core/dispensable/unique portions of the pan-genome, (2) how to visualize the pan-genome

in an effective/intuitive way. So far, no analytical pipeline has emerged that can satis-

factorily address all these issues. The majority of the available pan-genome analysis tools

either: (i) focus only on the genes, or (ii) they can only handle small genomes (e.g., bacterial

genomes) and are unable to scale to larger eukaryotic genomes, or (iii) they require users to

arbitrarily label one of the individual genomes as the reference. Most pan-genome studies

to date have focused on the genic portion of the genome. However, study in maize genome

has revealed that genomic regions in open chromatin also play a significant role in molec-

ular phenotypes such as gene expression and recombination [86]. This suggests that many

important agronomic traits may be determined by variations in intergenic regions through

gene regulation rather than present-absent variation (PAV) at the gene level. Combined

with further functional annotations of regulators, pan-genomes provide a rich resource for

regulatory sequence variations that can be harnessed in breeding. Pan-genome studies fo-

cusing on genes may ignore variations in intergenic regions and thus may underestimate

agronomic traits related to such intergenic variations.
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For intergenic sequences, defining what is core versus dispensable/private becomes

more important and challenging, especially in species in which a large fraction of genome is

composed of divergent repeats. For instance, PanX first identifies orthologous gene clusters

from a set of individual genomes, then allows users to interactively explore the relationships

between genes via a web-based visualization tool [21]. Similarly, PanWeb [80] is a web-

based front-end for PGAP (Pan-Genome Analysis Pipeline) [129]. PGAP provides several

types of gene-level analysis, including gene cluster analysis, pan-genome profile analysis,

variation analysis, evolution analysis and function enrichment analysis. PPanGGOLiN

models a microbial pan-genome using a graph in which nodes represent gene families and

edges represent genomic neighborhood [26]. The Genome Context Viewer is a genome

browser that can identify and visualize micro-synteny regions, i.e., co-linear arrangement

of homologous genes, in a pan-genome [18]. Other tools provide genome-wide insights

by comparing the whole genomes. PanSeq identifies core, accessory and novel regions of

genome-level by carrying out a pairwise alignment against one of the individual genome

which need to be considered the reference [46]. PGAP-X is an extension of PGAP which

uses whole genome sequence alignment to distinguish core, dispensable and strain-specific

genes [128]. The Genome Context Viewer allows the exploration of precomputed macro-

synteny blocks in pan-genomes [18].

In order to address the limitations of current tools mentioned above, in Chapter 4

we introduce a novel pan-genome representation and visualization method called PGV. The

PGV representation: (i) is reference-agnostic (i.e., there is no need to artificially declare

one of the individual genomes to be the reference), (ii) can handle large eukaryotic genomes
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including human genomes, and (iii) is very intuitive and simple for users to use and under-

stand.
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Chapter 2

Assembly and annotation of V.

unguiculata, P. infestans and B.

duncani

In this chapter we report on the de novo assembly and annotation of Vigna un-

guiculata, Phytophthora infestans and Babesia duncani. All genomes were sequenced using

long reads (Pacific Biosciences for cowpea and phytophthora, Oxford Nanopore for babesia).

For an introduction to sequencing technologies and assembly, please refer to Chapter 1.

2.1 Assembly and annotation of Vigna unguiculata

Cowpea (Vigna unguiculata [L.] Walp.), also known as black eye pea, is a major

crop for worldwide food and nutritional security, providing a valuable source of protein to

millions of people in developing countries. One of the strengths of cowpea is its resilience
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to harsh conditions, including hot and dry environments, and poor soils [12]. Cowpea is a

diploid (2n = 22) member of the family Fabaceae tribe Phaseoleae, closely related to mung

bean, common bean, soybean and several other protein-rich warm-season legumes. In spite

of its importance in food security, modest progress has been made in the generation of

high quality genomic sequences for more effective breeding and development of improved

varieties.

2.1.1 Genome Assembly

A highly fragmented draft assembly and BAC sequence assemblies of the cowpea

variety called IT97K-499-35 were previously published [74]. Although this draft assembly

has enabled significant progress on cowpea genomic studies, e.g., [126, 15, 71, 57, 35], it

lacked the contiguity and completeness required for accurate genome annotation, detailed

investigation of candidate genes or whole-genome comparative analyses.

Here two different sequencing strategies were used in order to obtain a high quality

genome for accession IT97K-499-35, namely Pacific Biosciences (PacBio) long reads and 10x

Genomics linked reads. About 56.8 Gb of PacBio data were generated with ∼91.7x coverage

and reads N50 of 14,595 bp. 331.42M 10x linked reads were generated with ∼77.1x coverage.

Three different assemblers including CANU [42], Falcon [17] and ABruijn [55] were used to

assemble the PacBio reads into draft contigs. With the help of two optical maps and ten

genetic maps a final assembly at the pseudo-molecule level was generated. 10x reads were

assembled using superNova [119]. A summary of the basic statistics for these two assemblies

is shown in Table 2.1. Observe that both assemblies had a comparable assembly size over

500Mb. The PacBio assembly was more contiguous with a N50 of over 41Mb and had a
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smaller number of scaffolds/contigs, and thus this assembly was used in further downstream

analyses.

Even though PacBio sequencing technology provided a higher quality assembly,

it was not economically feasible for the planned pan-genome project that required the se-

quencing of several additional accessions. In order to evaluate a cheaper alternative in

pan-genome sequencing, cowpea accession CB5-2 was sequenced and assembled by Dove-

tail Genomics from Illumina short reads (150x2). Dovetail Genomics used Meraculous [16]

to assemble the reads, then Chicago and Hi-C libraries (using their proprietary chromatin

proximity-ligation technology) to resolve possible mis-assemblies and to increase contiguity.

The final assemblies were processed using ALLMAPS [108] using ten high-density genetic

linkage maps previously generated [74, 60] to further increase contiguity. The CB5-2 Dove-

tail assembly was compared to the previous two assemblies of IT97K-499-35 in terms of

assembly contiguity and completeness (Table 2.1 and Figure 2.1). Genome completeness

was calculated using BUSCO v3 [97] with embryophyta-odb9 dataset in terms of genome,

transcripts and proteins. Observe that the assembly contiguity and genome level BUSCO

completeness of CB5-2 were similar to that of IT97K-499-35 using PacBio reads. The CB5-2

Table 2.1: Assembly Statistics

IT97K-499-35(PacBio) IT97K-499-35(10x) CB5-2(Dovetail)

Total (bp) 519,435,864 506,741,239 448,043,751
# contigs 686 27,997 6,534
# contigs ≥ 100 kb 177 653 28
# contigs ≥ 1 Mb 61 110 11
# contigs ≥ 10 Mb 11 0 11
N50(bp) 41,684,185 765,309 36,897,245
L50 6 173 6
GC (%) 33.0 32.4 32.5
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IT97K-499-3
(10x)

CB5-2
(Dovetail)

IT97K-499-3
(PacBio)

Figure 2.1: BUSCO completeness analysis for the three assemblies in Table 2.1

assembly was composed of eleven pseudo-molecules, and its high BUSCO gene completeness

indicated high quality of the assembly.

2.1.2 Chromosome Numbering

The numbering of chromosomes of Phaseoleae tribe has been assigned by different

research groups independently within and across species. The common bean ( vulgaris)

genome sequence appeared to be a reasonable model for a standardized chromosome num-

bering system for Phaseoleae tribe [90]. A synteny view between cowpea (Vu) and com-

mon bean (Pv) chromosomes was made using the previous cowpea chromosome numbering

adopted in a previously published draft assembly [73, 74]. Extensive synteny was identified

between cowpea and common bean, as shown in Figure 2.2(A), which provided a fundamen-
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Figure 2.2: Synteny view between cowpea and common bean using the previous chromosome
nomenclature. (A) Circos illustration of synteny. (B) Cowpea chromosomes painted based
on syntenic relationships with common bean chromosomes (in different colors)

tal basis for a revised chromosome numbering system for cowpea. The total length of the

syntenic matches (exact match of least 100bp, alignment length of least 1kb) with the top

two P. vulgaris (Pv) chromosomes was shown. Chromosomes that were inverted to meet

the “short arm on top” convention were indicated in parenthesis. The asterisk indicated

the optimal solution to the assignment problem. Chromosomes indicated with arrows were

inverted to meet the convention “short arm on top” based on previous BAC-FISH analysis

[38].

As summarized in Figure 2.2 and Table 2.2, six cowpea chromosomes, including

chromosome 2, 6, 8, 9, 10, 11, were highly syntenic with six common bean chromosomes

in one-to-one correspondence relationships. Chromosome numbering conversion of these
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Table 2.2: Cross-reference between old and new chromosome numbers for cowpea (Vu)

Old Vu Chr. Pv Chr (kb) Pv Chr (kb) New Vu Chr.

1 8 (671.2) 5 (485.1) 5*
2 7 (1390.0) 7
3 3 (1493.9) 2 (899.8) 3
4 1 (932.0) 5 (245.0) 1
5 8 (573.3) 1 (309.0) 8*
6 6 (996.8) 6 (inverted)
7 2 (736.9) 3 (163.8) 2
8 9 (1439.5) 9
9 11 (751.8) 11 (inverted)
10 10 (593.9) 10 (inverted)
11 4 (564.1) 4

six chromosomes was straightforward. Each of the remaining five cowpea chromosomes

was related to parts of two P. vulgaris chromosomes. Generally, numbering for most of

these chromosomes were converted based on the common bean chromosome sharing largest

syntenic region with cowpea. For example, old cowpea chromosome 3 had extensive synteny

with both common bean chromosome 2 and 3, specifically Pv chromosome 3 shared 1493kb

with Vu chromosome 3; Pv chromosome 2 shared 899kb. Therefore, Pv chromosome 3

was used to assign for cowpea old chromosome 3. However two cowpea chromosomes (old

chromosome 1 and chromosome 5) both shared their largest block of synteny with P. vulgaris

chromosome 8. The optimum solution was to assign Vu08 to previous cowpea chromosome

5 and assign Vu05 to previous chromosome 1.

2.1.3 Comparisons with other warm-season legumes

Synteny analyses were performed between cowpea and its close relatives including

adzuki bean (Vigna angularis) [123], mung bean (Vigna radiata) [40] and common bean (P.
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vulgaris) [89]. Extensive synteny was observed between cowpea and the other three diploid

warm-season legumes although, as expected, a higher conservation was observed with the

two Vigna species (Figure 2.3a–c) than with common bean. Six cowpea chromosomes (Vu04,

Vu06, Vu07, Vu09, Vu10 and Vu11) largely had synteny with single chromosomes in all three

other species. Cowpea chromosomes Vu02, Vu03 and Vu08 also had one-to-one relationships

with the other two Vigna species but one-to-two relationships with P. vulgaris, suggesting

that these chromosome rearrangements were characteristic of the divergence of Vigna from

Phaseolus. The remaining cowpea chromosomes Vu01 and Vu05 had variable syntenic re-

lationships, each with two chromosomes in each of the other three species, suggesting that

these chromosome rearrangements were more characteristics of speciation within the Vigna

genus. It should be noted also that most chromosomes that have a one-to-two relationship

across these species or genera were consistent with translocations involving the centromeric

regions (Figure 2.3a–c). On the basis of these synteny relationships, adoption of the revised

cowpea chromosome numbering for adzuki bean, mung bean and presumably other Vigna

species is straightforward. This will facilitate reciprocal exchange of genomic information

on target traits from one Vigna species to another.

Figure 2.3(c) showed major structural variations including inversions and translo-

cation between cowpea and common bean on chromosome 2 and 3, which indicated possible

chromosome rearrangements between Vigna and Phaseolus. In order to further investigate

such inversions and translocation among Vigna and P. vulgaris, more synteny analyses were

done on the two corresponding chromosomes for P. vulgaris-V. unguiculata, P. vulgaris-V.

angularis and V. unguiculata-V. angularis. (Figure 2.4)
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Sequence synteny data identified additional complex micro rearrangements, includ-

ing several inversions and translocations. Approximate regions of long arm Vu2 and short

arm Vu3 mapped to short and long arms of Pv2 (green lines) respectively, while regions of

short arm Vu2 and long arm Vu3 mapped at short and long arms of Pv3 (red lines) respec-

tively (Figure 2.4a). About 47.3% of the chromosomal total length of Vu2 corresponded to

Pv2. Similar but not equal rearrangement patterns were observed from Va10 to Pv2/Pv3

(Figure 2.4b). Over 70% of Va10 had synteny to Pv2, which was much higher than Vu2 to

Pv2. Despite the gap at pericentromeric region, the Va2 centromere seemed to be mapped

to Pv2 sequences (green lines), while the Vu2 centromere seemed to be mapped to Pv3

sequences (red lines).

Va1 and Vu3 had similar rearrangement patterns: two inversions and one translo-

cation. Short arm regions of Va1 and Vu3 had an inversion to the long arm Pv2 individually

(green lines). The long arm of Va1 and Vu3 had another inversion compared to the long

arm Pv3 (red lines).

Sequence synteny from Vu2/Vu3 to Va10/Va1 showed that these two chromosomes

were macrosyntenic between Vigna species, with micro translocations found, especially be-

tween Va1 and Vu3 (Figure 2.4c). It was interesting to find that V. angularis and V. un-

guiculata share the translocation and inversions when aligned with P. vulgaris, with similar

patterns. Synteny links were colored by blocks as in Pv2/Pv3, with red links representing

Pv2 blocks and green links representing Pv3 blocks.
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Table 2.3: Predicted centromeric positions in cowpea

Chromosome Start (bp) End (bp) Range (bp)

1 14,698,036 16,525,496 1,827,460
2 10,238,236 14,020,258 3,782,022
3 30,476,981 31,470,261 993,280
4 19,069,641 21,130,843 2,061,202
5 25,704,431 33,885,354 8,180,923
6 9,156,830 9,235,637 78,807
7 16,587,031 16,604,960 17,929
8 14,914,119 15,164,402 250,283
9 20,802,610 22,685,597 1,882,987

10 18,917,563 19,028,450 110,887
11 17,283,961 18,283,861 999,900

2.1.4 Genome Annotations

Centromeric Region Identifications. Centromeric positions were predicted based on

sequence similarity to a previously identified 455bp tandem repeat [37]. Start and end

positions of centromeric regions were calculated based on first and last clustering BLAST

alignment of this tandem repeat on each chromosome. Centromeric position predictions are

summarized in Table 2.3. Centromeric regions on chromosome 6 and 7 were significantly

smaller than other chromosomes, which may indicate an incomplete assembly around such

regions.

Gene Annotations. Transcript assemblies were produced from ≈1.5B 2x100 paired-end

Illumina RNA-seq reads from leaf, stem, root, flower, pod and seed tissue [126, 88] using

Cufflinks [116]. The set of 120,745 assembled transcripts produced by Cufflinks, 29,728

EST sequences from [73] and transcripts from common bean and Arabidopsis were used in

the gene annotation pipeline as available transcript evidences. Gene models were predicted
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by MAKER [13]. Genes were de novo predicted by Augustus [104], GeneMark [59] and

SnapHMM [43] on the repeat-masked cowpea genome using RepeatMasker [77]. GeneMark

was trained using CEGMA [81]; Augustus and SnapHMM were trained by MAKER [14]

using transcript evidences listed above. Trained gene predictors together with above assem-

bled transcripts were used in MAKER to identify the final gene models. In total, 22,683

protein-coding genes were annotated, with a BUSCO v3 [97] completeness of 85.9% against

the plant data set embryophyta odb9.

An alternative annotation pipeline was also used for the cowpea genome to provide

a comparative viewpoint. In this alternative pipeline the set of ESTs and RNA-Seq data

listed above was used together with protein sequences of arabidopsis, common bean, soy-

bean, medicago, poplar, rice and grape. In total, 29,773 protein-coding loci were annotated,

along with 12,514 alternatively spliced transcripts. Most (95.9%) of the 1440 expected plant

genes in BUSCO v3 were identified in the cowpea gene set, indicating high completeness

of genome assembly and annotation. The average gene length was 3881 bp, the average

exon length was 313 bp, and there were 6.29 exons per gene on average. The GC content

in coding exons was higher than in introns plus UTRs (40.82% versus 24.2%, respectively).

Intergenic regions had an average GC content of 31.84%. Due to its higher completeness,

this second annotated gene set was used in subsequent gene analysis.

Recombination rate was calculated as a polynomial curve fit of cM position for

each of the eleven linkage groups from ten genetic maps obtained from biparental RIL pop-

ulations. Together with the above annotated repeat and gene density, Figure 2.6 shows

a comparisons between gene density (green line), repeat density (blue line) and recombi-
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nation rate (red line) across the 11 cowpea chromosomes. Gene and repeat density were

measured in 1 Mb non-overlapping windows, while recombination rate was measured in

non-overlapping windows of 100kb. Vertical lines delimit the predicted centromeric regions.

Observe that cowpea centromeric and pericentromeric regions were highly repetitive in se-

quence composition, and exhibited low gene density and low recombination rates, while both

gene density and recombination rate increased as the physical position became more distal

from the centromeres. Contrasting examples include Vu04, where the recombination rate

near the telomeres of both arms of this metacentric chromosome were roughly ten times the

rate across the pericentromeric region, versus Vu02 and Vu06, where the entire short arm

in each of these acrocentric chromosomes had a low recombination rate (Figure 2.6). These

patterns were also observed in other plant genomes including legumes [89, 90], and have

important implications for genetic studies and plant breeding. For example, a major gene

for a trait that lies within a low recombination region can be expected to have high linkage

drag when introgressed into a different background. Knowledge of the recombination rate

can be integrated into decisions on marker density and provide weight factors in genomic

selection models to favor rare recombination events within low recombination regions.

Gene Family Clustering. Cowpea gene families were analyzed using two approaches

with different related species, namely (i) with four other closely related species including

common bean (P. vulgaris), adzuki bean (V. angularis), mung bean (V. radiata) and soy-

bean (G. max ); (ii) with four other further related species including soybean (G. max ),

arabidopsis (A. thaliana, TAIR10) [47], rice (O. sativa) [78] and medicago (M. truncatula)

[107]. A total of 173,383 protein sequences from five closely related legumes included in
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(i) and 277,700 protein sequences from five related plants in (ii) were collected. All pro-

tein sequences for genes in such selected species were used to perform all-to-all BLAST.

Alignments with E-value ≤ E-30 were chosen to group orthologous protein sequences in

OrthoMCL [51].

There were 19,539 OrthoMCL gene families clustered in five legumes comparisons

among cowpea, adzuki bean, mungbean, common bean and soy bean, whereas 17,600 gene

clusters were consisted of cowpea genes. Exactly 13,192 gene clusters were shared by all

five legumes, indicating common orthologs in such legumes. Exactly 236 gene clusters were

specific to cowpea, containing 686 cowpea genes (Figure 2.7-a).

For gene clustering among cowpea, soybean, arabidopsis, rice and Medicago trun-

catula, a total of 27,027 clusters were identified with 9,057 orthologous clusters. The total

number of gene clusters were higher than the clustering on the five related legumes and the

number of orthologs were lower, mainly because genes were less conserved than in legume

species. Exactly 651 gene clusters containing 2110 cowpea genes were specific to cowpea

(Figure 2.7-b).

2.2 Structural Variations on IT97K-499-35

2.2.1 SNPs

Whole-genome shotgun data from an additional 36 diverse accessions relevant to

Africa, China and USA were previously used to identify 957,710 single-nucleotide poly-

morphisms (SNPs; hereinafter referred as the “1M list”) [74]. Almost all (99.83%) of the
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Table 2.4: Number and location of SNPs relative to annotated cowpea genes.

1M list iSelect

# SNPs 957,710 51,128
# SNPs in genes (%) 336,285 (35%) 31,708 (62%)
# SNPs in exons (%) 138,892 (15%) 16,898 (33%)
# SNPs in or within 1 kb from gene (%) 460,709 (48%) 38,286 (75%)
# SNPs in or within 2 kb from gene (%) 540,773 (56%) 39,856 (78%)
# SNPs in or within 10 kb from gene (%) 792,318 (83%) 45,648 (89%)
# unique genes containing or near SNPs (< 1 kb) (%) 25,433 (85%) 19,319 (65%)
# unique genes containing or near SNPs (< 2 kb) (%) 26,130 (88%) 19,818 (67%)
# unique genes containing or near SNPs (< 10 kb) (%) 27,021 (91%) 21,205 (71%)

957,710 discovered SNPs were detected in the reference genome sequences, including 49,697

SNPs that can be assayed using the Illumina iSelect Consortium Array [74]. About 35% of

the SNPs in the 1M list were associated with genes (336,285 SNPs), while that percentage

increased to 62% in the iSelect array (31,708 SNPs; Table 2.4). This indicates that the

intended bias towards genes in the iSelect array design [74] was successful. The number of

annotated cowpea gene models containing a SNP was 23,266 (78% of total) or 27,021 (91%

of total) when considering genes within 10 kb of a SNP (Table 2.4). In general, SNP density

was lowest near centromeric regions (Figures 2.5 and Figure 2.8). This information enables

formula-based selection of SNPs, including distance to gene and recombination rate. When

these metrics are combined with minor allele frequency and nearness to a trait determinant,

one can choose an optimal set of SNPs for a given constraint, for example cost minimization,

on the number of markers.

2.2.2 4.2Mb Inversion on Chromosome 3

Ten genetic maps were used to anchor and orient scaffolds into pseudochromo-

somes. Plots of genetic locations against physical positions for SNPs on seven of those
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genetic maps showed a relatively large region in inverted orientation relative to IT97K-499-

35 (Figures 2.9(a)). The other three genetic maps showed no recombination in this region,

suggesting that the two parents in the cross had opposite orientations. The genotype data

from all of the parental lines showed that one of the parents from each of those three pop-

ulations, but not the other parent, had the same haplotype as IT97K-499-35, and hence

presumably the same orientation. To define the inversion breakpoints, WGS data available

from some of these accessions [74] were used. In both break-point regions, contigs from

accessions that presumably had the same orientation as the reference (type A) showed good

alignments, while those from accessions with the opposite orientation (type B) aligned only

until the breakpoints. An additional de novo assembly of a ‘type B’ accession enabled a

sequence comparison with the reference genome for the entire genomic region containing the

inversion (Figure 2.9(b)). This provided a confirmation of the chromosomal inversion and

the position of the two breakpoints in the reference sequence: 36,118,991 bp (break-point

1) and 40,333,678 bp (break-point 2) for a 4.21-Mb inversion containing 242 genes. PCR

amplifications of both break-point regions further validated this inversion.

2.3 Assembly and annotation of Phytophthora infestans

Phytophthora infestans is an oomycete which causes a potato and tomato disease

known as late blight or potato blight. P. infestans has an estimated genome size of ≈240Mb

with about eighteen thousand genes. However, the genome released in 2009 was quite

fragmented with scaffold-level assembly [30]. Here a new pseudomolecule-level assembly of

P. infestans is presented to provide a more contiguous and complete genome for further
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Table 2.5: Statistics for our assembly of Phytophthora infestans

P. infestans P. infestans [30] P. sojae P. ramorum

estimated genome size (Mb) 240 240 95 65
assembly size (Mb) 247.23 228.54 86.0 66.7
N50 length (kb) 13450 44.5 105.7 47.5
# scaffolds 671 4,921 1,810 2,576
GC content (%) 51.54 51 54.4 53.9
# annotated genes 23,880 17,797 16,988 14,451

analysis. This genome was assembled using PacBio long reads, with a total assembly size of

247.23Mb and N50 of 13.45Mb (see Table 2.5). Fifteen chromosomes were constructed with

sequence length range from 10.1Mb to 22.9Mb. Overall, this assembly provided a significant

improvement compared to the assembly previously published in [30].

P. infestans, P. sojae and P. ramorum are the three major phylogenetic clades of

phytophthora [11] and thus the genome assembly and annotation statistics of P. sojae and

P. ramorum were also included in Table 2.5 for cross species comparisons.

The repeat library was built using RepeatModeler [24] based on P. infestans

genome. High-frequency sequences were used to identify interspersed repeat seeds in multi-

ple alignment extension in order to discover the youngest and most abundant repeat families;

older transposable element (TE) families were detected using a clustering and relationship

determination approaches. Structural LTR elements identification results was also included

in the repeat library. A total of 780 custom repeats for P. infestans genome were used

by RepeatMasker [77] to identify repetitive elements. An estimated 66.6% of P.infestans

genome was composed of repeats: 45.51% was composed of long terminal repeat (LTR),

8.44% of DNA transposons and 11.26% of unclassified repeats (Table 2.6).
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Table 2.6: Repeat analysis in our assembly of P. infestans

Number of elements Total length (bp) Genome fraction

SINEs 47 7,030 ≈0%
LINEs 1,339 3,484,059 1.41%

LINE1 164 286,552 0.12%
L3/CR1 219 240,430 0.10%

LTR elements 48,378 112,514,363 45.51%
DNA elements 28,031 20,867,109 8.44%
Unclassified 40,022 27,833,020 11.26%
Total interspersed repeats 164,705,581 66.62%
Small RNA 40,022 27,833,020 1.35%
Satellites 16 1,716 ≈0%
Simple repeats 6,112 285,238 0.12%
Low complexity 751 38,485 0.02%

A total of 110,667 transcripts were assembled from about 346 million reads of

single-end Illumina RNA-Seq data using PASA [29]. These transcripts together with pro-

tein sequences from Phytophthora infestans, Phytophthora parasitica, Phytophtora sojae,

Pythium ultimum, and Uniprot sequences were employed to annotate the genome using the

Funannotate pipeline [79]. In this context, transcripts were aligned to genome by Min-

imap2 [49]; proteins were aligned by Exonerate [102]; RNA-Seq reads were aligned by BWA

[50] with mapping quality ≥ 20. All such alignments allowed us to train Augustus for de

novo gene predictions. Augustus predicted genes were then used to train Snap [43] and

GlimmerHMM [63]. Genes predicted from Augustus, Snap, GlimmerHMM and previously

trained GeneMark’s genes were passed to EvidenceModeler [31] to generate comprehensive

gene models. tRNA genes were predicted using tRNAscan-SE [61]. This pipeline iden-

tified 20,195 protein-coding genes and 11,272 tRNA genes. Previously annotated protein

sequences of Phytophthora infestans [30] were mapped to these newly annotated protein

sequences. Sequences with an alignment of less than 70% of their length or less than 70%

identity were lifted over to this genome assembly. Exactly 4620 genes (4420 protein coding
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genes and 200 pseudogenes) were lifted by Flo [85], 117 genes (115 protein coding genes and

two pseudogenes) were manually lifted. In total, 36,204 genes were identified, where 24,730

were protein-coding genes.

The assembled genome was annotated using de novo gene prediction and transcript

evidence based on RNA-Seq data from different tissue, and protein sequences of protein se-

quences from Phytophthora infestans, Phytophthora parasitica, Phytophtora sojae, Pythium

ultimum, and UNIPROT. In total 35,152 genes were annotated where 23,880 genes were

protein-coding genes and 11,272 tRNA genes. There were significantly higher number of

genes annotated by this method than what was previously reported [30], which indicates

a better and more complete gene set for P. infestans (Table 2.5). Most (95.8%) of the

215 protist genes in BUSCO v3 were found in this phytophthora gene set, indicating high

completeness of genome assembly and annotations. The average length of protein-coding

genes was 1815 bp; the average exon length was 578; there were 2.76 exons per gene on

average. The average length of tRNA genes was 73 bp. The GC content in protein coding

gene regions was 52.88%, higher than in intergenic regions of 50.30%. The GC content in

coding exons was 53.85%, also higher than 49.50% in introns and UTRs.

2.3.1 Effectors

Phytophthora species, like many pathogens, secrete effector proteins that alter

host physiology and facilitate colonization [115]. The genome of P. infestans revealed

large complex families of effector genes encoding secreted proteins that are implicated in

pathogenesis [39]. Among different categories of effector proteins, most notable are the

RXLR and Crinkler (CRN) cytoplasmic effectors. All oomycete avirulence genes (encoding
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products recognized by plant hosts and resulting in host immunity) discovered so far encode

RXLR effectors, modular secreted proteins containing the amino-terminal motif Arg-X-Leu-

Arg (in which X represents any amino acid) that defines a domain required for delivery inside

plant cells [120]. CRN cytoplasmic effectors were originally identified from P. infestans

transcripts encoding putative secreted peptides that elicit necrosis in plants, a characteristic

of plant innate immunity [115].

Several computational strategies have been previously used to identify candidate

effectors within genome sequences, relying on matches to an HMM profile or to a sequence

pattern. Here we used effectR [106] to search for the motifs of interest (RxLR-EER motif

for RxLR effectors and LFLAK motif for CRN effectors) using regular expressions.

We exploited known motifs and other conserved sequence features to predict 588

RXLR genes in the P. infestans genome, slightly higher than previously reported RXLR

genes in [30]. RXLR genes are notably expanded in P. infestans, with 60% more predicted

than in P. sojae and P. ramorum (Table 2.7). Analysis of the P. infestans genome sequence

revealed an enormous family of 133 CRN genes of unexpected complexity and diversity, that

is heavily expanded in P. infestans relative to P. sojae (100 CRNs) and P. ramorum (19

CRNs) (Table 2.7). Like RXLRs, CRNs are modular proteins. CRNs are defined by a

highly conserved N-terminal 50-amino-acid LFLAK domain.

Bacterial proteins that contain PAAR repeat sequences are associated with the

VgrG-like spikes found in the type VI secretion system of bacteria and have been shown to

be essential in target cell killing by the bacterial species Vibrio cholerae and Acitenobacter

baylyi [95]. The PAAR proteins have a homonymous amino acid sequence motif (PAAR)
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with one or more repeats. Here we also use effectR to identify 884 proteins with PAAR

repeats.

P.infestans P.infestans in [30] P.sojae P.ramorum

CRN 133 196 100 19
RxLR 588 563 350 350
PAAR 884

Table 2.7: Effectors of Phytophthora

2.4 Assembly and annotation of Babesia duncani

Babesia species are tick-transmitted parasites that infect red blood cells and can

cause babesiosis, a malaria-like disease with major health impacts [64]. Of the different

species of Babesia that infect humans, Babesia duncani is identified as a zoonotic pathogen

and causes severe infection in immunocompetent individuals [117]. Here, the genome of B.

duncani was assembled using PacBio long reads. Different long-read assembly tools were

used, namely CANU [42], Minimap+MiniAsm [48] and wtdbg2 [87]. The assemblers were

used to generate three preliminary de novo assemblies. Then, nanopolish [58] and pilon [118]

were used to polish the assemblies independently, producing a six additional assemblies. In

total, nine preliminary assemblies were generated. Table 2.8 includes the genome statistics

for these nine assemblies. Observe that Minimap-based assembly had a larger assembly

size than other two tools, in unpolished and two polished results. CANU had the smallest

results in all three categories. Nanopolish seemed to increase the assembly size slightly,

while pilon reduced it. All assemblies had similar GC content of around 37%.
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Table 2.8: Statistics of various de novo assemblies of Babesia duncani

CANU minimap wtdbg2 CANU+nano minimap+nano wtdbg2+nano CANU+pilon minimap+pilon wtdbg2+pilon

Assembly Size (bp) 8,983,470 9,635,426 9,080,066 9,030,406 9,637,100 9,142,069 8,737,144 9,345,322 8,878,105
N50(bp) 1,667,772 1,389,405 1,679,388 1,676,306 1,390,359 1,692,087 1,608,929 1,327,910 1,632,243
GC content(%) 37.1 37.0 37.3 37.1 37.1 37.4 37.2 37.2 37.5
#Scaffolds 25 21 52 25 21 52 25 21 52
Repeats(%) 1.27 1.2 1.1 1.26 1.16 1.11 1.3 1.21 1.1
#Genes 6,286 6,540 5,564 4,998 5,122 4,920 5,033 4,704 4,956
Avg Gene Length 625.05 795.16 524.04 1160.90 1185.42 972.93 1049.29 1233.64 972.93
Avg Exon Length 267.49 314.53 261.55 403.70 407.05 736.36 747.07 798.47 736.36
#Exon per Gene 2.00 2.20 1.76 2.61 2.60 1.27 1.33 1.44 1.27

Transcripts were assembled using Trinity [27], Cufflinks [116], StringTie [84] and

PASA [29] from ≈5.8M pairs of 2x100 paired-end Illumina RNA-seq reads extracted from

blood tissue. These transcripts, together with PASA generated genes and protein sequences

of Babesia bigemina, Babesia bovis, Babesia microti, Plasmodium falciparum, Toxoplasma

gondii and Swiss-Prot proteomes, were used in the FUNAnnotate pipeline to generate gene

models. Transcripts were aligned to genome by Minimap2; proteins were aligned by Exoner-

ate. All such alignments were used to train and run Augustus for de novo gene predictions.

Augustus predicted genes were then employed to train Snap and GlimmerHMM. Genes pre-

dicted from Augustus, Snap, GlimmerHMM and previously trained GeneMark’s genes, as

well as input PASA genes were passed to EvidenceModeler to generate comprehensive gene

models. Genes were filtered by length, spanning gaps, and transposable elements match.

tRNA genes were predicted using tRNAscan-SE [61].

Observe in Table 2.8 that the number of annotated genes were lower in polished

assemblies, but those genes were longer in length with longer exons, on average. These

results indicated that the polishing step may correct base-pairs which encoded stop codon

incorrectly and thus be able to combine fragmented genes in unpolished assemblies into

longer genes.
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Table 2.9: Genome statistics of species related to B. duncani

P. falciparum B. bovis B. microti B. bigemina

Assembly size (bp) 23,326,872 8,179,706 6,434,485 13,840,936
# chromosomes/scaffolds 15 14 6 483
N50 (bp) 1,687,656 1,797,577 1,766,409 2,541,256
GC content(%) 19.3 41.6 36.2 50.6
# genes 5,392 3,076 3,601 5,079
average gene length (bp) 2483.33 1635.14 1438.77 1810.91
average # exons per gene 2.59 2.74 7.45 2.62
average exon length (bp) 868.91 556.09 356.89 652.73

A comparison of genome statistics for species related to Babesia duncani is shown

in Table 2.9, which includes Plasmodium falciparum, Babesia bovis, Babesia microti and

Babesia bigemina. Observe that the sizes of our nine assemblies of Babesia duncani, ranging

from 8.7Mb to 9.6Mb, were similar to assembly size of B. bovis, and larger than B. microti

which also infects human. The number of genes in our nine assemblies ranged from 4704

to 6540, which was similar or slightly higher than gene counts in B. bigemina and P.

falciparum.
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Figure 2.3: Synteny analysis between cowpea and other closely related legumes; (a) adzuki
bean (Va; V. angularis); (b) mung bean (Vr; V. radiata); and (c) common bean (Pv; P.
vulgaris); the cowpea (Vu; V. unguiculata) genome uses the revised chromosome numbering
system.
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(a)

(b)

(c)

Figure 2.4: Synteny analysis between cowpea (Vu; V. unguiculata) and other closely related
species; (a) common bean (Pv; P. vulgaris) to cowpea (Vu; V. unguiculata); (b) common
bean to adzuki bean (Va; V. angularis); and (c) cowpea to adzuki bean.
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Figure 2.5: Summary of recombination rate (b), gene density (c), repeat coverage (d) and
SNP density (e) along the eleven chromosomes of the cowpea genome (see text for details);
orange blocks in track (a) represent predicted centromeric positions

38



Chromosome 1 

Index

N
U

LL

0 10Mb 20Mb 30Mb 40Mb

0
1

2
3

4
5

6
7

8
9

0
20

40
60

80
10

0

Chromosome 2 

Index

N
U

LL

0 10Mb 20Mb 30Mb

0
1

2
3

4
5

6
7

8
9

0
20

40
60

80
10

0

Chromosome 3 

Index

N
U

LL

0 10Mb 20Mb 30Mb 40Mb 50Mb 60Mb

0
1

2
3

4
5

6
7

8
9

0
20

40
60

80
10

0

Chromosome 4 

Index
N

U
LL

0 10Mb 20Mb 30Mb 40Mb

0
1

2
3

4
5

6
7

8
9

0
20

40
60

80
10

0

Chromosome 5 

Index

N
U

LL

0 10Mb 20Mb 30Mb 40Mb 50Mb

0
1

2
3

4
5

6
7

8
9

0
20

40
60

80
10

0

Chromosome 6 

Index

N
U

LL

0 10Mb 20Mb 30Mb

0
1

2
3

4
5

6
7

8
9

0
20

40
60

80
10

0

Chromosome 7 

Index

N
U

LL

0 10Mb 20Mb 30Mb 40Mb

0
1

2
3

4
5

6
7

8
9

0
20

40
60

80
10

0

Chromosome 8 

Index

N
U

LL

0 10Mb 20Mb 30Mb

0
1

2
3

4
5

6
7

8
9

0
20

40
60

80
10

0

Chromosome 9 

Index

N
U

LL

0 10Mb 20Mb 30Mb 40Mb

0
1

2
3

4
5

6
7

8
9

0
20

40
60

80
10

0

Chromosome 10 

Index

N
U

LL

0 10Mb 20Mb 30Mb 40Mb

0
1

2
3

4
5

6
7

8
9

0
20

40
60

80
10

0

Chromosome 11 

Index

N
U

LL

0 10Mb 20Mb 30Mb 40Mb

0
1

2
3

4
5

6
7

8
9

0
20

40
60

80
10

0

Chromosome location

R
ec

om
bi

na
tio

n 
ra

te
 (

cM
/M

b)

G
en

e/
re

pe
at

 d
en

si
ty

 (
%

)

Figure 2.6: Gene density, repeat density, and recombination rate in the cowpea genome.
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(a) (b)

Figure 2.7: Venn diagram for the gene families shared by these five species
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Figure 2.8: SNP distribution in the cowpea genome. SNPs from the “1M list” (red) and
the Illumina iSelect Consortium Array (blue). Arrows delimit the predicted centromeric
regions.
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Figure 2.9: A large chromosomal inversion detected on chromosome 3 in cowpea.
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Chapter 3

Cowpea Pan-genome Analysis

Cowpea (Vigna unguiculata L. Walp.) is a diploid warm-season legume, also

known as black-eyed pea, among other common names. Cowpea is relevant as a grain

legume in the USA, Europe and Latin America, and as a fresh vegetable in China and

elsewhere in Asia. Cowpea presently serves as a major source of calories and protein for

many people, especially in developing countries.

The phylogenetic distribution of several hundred domesticated cowpea accessions

from SNP data generated using the Cowpea iSelect Consortium array was described in

[74], defining six major sub-populations. Representative within the unguiculata cultivar

group include (1) IT97K-499-35 from the breeding program at the International Institute

of Tropical Agriculture in Nigeria, (2) CB5-2 from early breeding activities for California

blackeyes, (3) Suvita2 as a landrace from Burkina Faso, (4) Sanzi as a landrace from Ghana,

and (5) UCR779 as a landrace from Botswana. In addition, two longbean accessions were

included from the Asian sub-population, which represents the sesquipedalis cultivar group,
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namely (6) elite TZ30, and (7) landrace ZN016. Elite African variety IT97K-499-35 is a

Striga- and Alectra-resistant, high yielding blackeye variety developed at the International

Institute of Tropical Agriculture in Ibadan, Nigeria[100]. CB5-2 is a fully inbred stock that is

closely related to CB5, which was the predominant Blackeye of the US Southwest for several

decades. CB5 (Blackeye 8415) was bred by WW Mackie at the University of California [62]

to add resistances to Fusarium wilt and nematodes to a previously preferred California

Blackeye landrace. Suvita2, also known as Gorom Local (IITA accession TVu-15553, US

NPGR PI 583259), is resistant to bruchids and some races of Striga, and is relatively drought

tolerant. This landrace was collected from a local market by VD Aggarwal at the Institut

de l’Environnement et de Recherches Agricoles (INERA) in Burkina Faso [3]. Sanzi is an

early flowering, small-seeded landrace from Ghana with resistance to flower bud thrips [101].

UCR779 (PI 583014) is a landrace from Botswana, provided to UC Riverside as BOTS 19A

in 1987 by CJ DeMooy of Colorado State University. Yardlong bean or asparagus bean (V.

unguiculata L. Walp. ssp. sesquipedalis), the vegetable type of cowpea, is widely grown in

Asian countries for consumption of tender long pods. TZ30 is an elite Chinese variety with

the pod length of around 60 cm. ZN016 is a landrace originating from southeastern China

with the pod length of around 35 cm and showing resistances to multiple major diseases of

cowpea.

As explained in Chapter 1, the pan-genome of a species has been defined as the

full complement of genes contained within that species. Initial results from Zea mays,

Brachypodium distachyon and a few other plants have shown that each pan-genome is

much larger than any individual genome. We have been characterizing the pan-genome of
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domesticated cowpea to facilitate the use of genome information when choosing parents and

progeny in cowpea breeding and for decisions related to germplasm management, while also

to support and encourage basic research on this crop plant of such historical and current-

day importance for worldwide food and nutritional security. For example, large inversions

in certain regions of the genome when comparing one accession to another, and the relative

rates of genetic variation and recombination as a function of position along a chromosome,

must be considered in the design of breeding strategies. Additionally, the list of well-

mapped major loci controlling traits relevant to agriculture, which are ripe for mechanistic

and population diversity studies, has been rapidly expanding, including biotic and abiotic

stress resilience, time to flowering, plant architecture, and seed and pod characteristics,

among others. Cowpea has a compact genome of about 641 Mb [60] and the advantage of

being usually an inbreeder, which has facilitated the establishment of fully inbred (single

haplotype) stocks for sequencing.

To capture the genomic diversity of this important legume and build a cowpea

pan-genome with full complement of genes, we performed de novo genome assemblies for

representatives of the six major sub-populations of cowpea: CB5-2, Suvita2, Sanzi, UCR779,

ZN016 and TZ30.

3.1 De Novo Genome Assembly and Annotation

The IT97K-499-35 genome was previously sequenced and assembled from Pacific

Biosciences long reads, two Bionano Genomics optical maps and ten genetic linkage maps

[60]. Six new de novo assemblies for CB5-2, Suvita2, Sanzi, UCR779, TZ30 and ZN016
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Table 3.1: Genome Statistics of Pan-genome

IT97K-499-35 CB5-2 Suvita2 Sanzi UCR779 ZN016 TZ30

Assembly size (bp) 519,435,864 448,043,751 447,585,192 447,277,261 453,970,486 451,130,807 451,468,680
N50 (bp) 41,684,185 36,897,245 36,142,647 34,759,918 35,700,653 37,764,243 36,906,789
#Contigs/scaffolds 686 6,534 9,123 11,268 12,939 7,032 6,771
#Contigs/scaffolds ¿= 100kbp 103 28 28 17 13 28 48
#contigs/scaffolds ¿= 1Mbp 13 11 11 11 11 11 11
#contigs/scaffolds ¿= 10Mp 11 11 11 11 11 11 11
Longest contig (bp) 65,292,630 60,086,998 58,539,223 58,655,738 58,369,212 60,653,587 59,481,915
Repetitive content 47.25% 45.52% 45.43% 45.50% 45.89% 45.68% 45.76%
Annotated genes (#) 31,948 28,297 28,545 28,461 28,562 27,723 27,742
BUSCO completeness
Genome 1595 98.8% 1574 97.5% 1580 97.8% 1581 97.9% 1574 97.6% 1589 98.5% 1583 98.1%
Transcripts 1594 98.8% 1570 97.2% 1582 98.0% 1585 98.2% 1581 97.9% 1584 98.1% 1580 97.8%
Proteins 1595 98.8% 1569 97.3% 1584 98.2% 1587 98.3% 1585 98.2% 1584 98.1% 1582 98.0%

were produced by Dovetail Genomics from Illumina short reads (150x2). Dovetail Genomics

used Meraculous [16] to assemble the reads, then Chicago and Hi-C libraries (using their

proprietary pipeline) to resolve mis-assemblies and increase contiguity. The final assemblies

were processed using AllMaps [108] using ten high-density genetic linkage maps previously

generated [74, 60]. A summary of the main statistics for the seven assemblies is reported in

Table 3.1.

The contiguity of the new six assemblies, as indicated by their N50s, is comparable

to the PacBio assembly for IT97K-499-35 despite being based on short-read sequences. In

all six assemblies each of the eleven chromosomes of cowpea is represented by a single

scaffold. These six newly assembled genomes ranged very narrowly in size from 447.58 Mb

to 453.97 Mb, with a mean of 449.91 Mb. IT97K-499-35 had a 15% larger (more complete)

assembled size (519.44 Mb) than these six accessions due to long-read sequencing and optical

mapping. The difference between the two sequencing methods is partially attributable to the

centromeric regions of some chromosomes of the six new accessions appearing to be missing

from the assemblies (Figure 3.5, Figure 3.6 and Table 3.2). The new six accessions share
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the same percentage of repetitive content of about 45-46%. IT97K-499-35 had a slightly

higher repetitive content, which may be a result of higher completeness of the centromeric

regions.

All cowpea genomes of different accessions were annotated using the JGI plant

genome annotation pipelines that integrated gene call and gene model improvement. RNA

was prepared from each accession to support gene annotation from young leaves and roots

of well-watered and water limited plants, flower buds, seeds at the color break stage of

maturation, and pods from 2-5 days after pollination. The number of genes annotated in

the six new assemblies ranged from 27,723 to 28,562 with a mean of 28,222 (Table 3.1).

IT97K-499-35 had ∼13% more annotated genes with a total of 31,948, reflecting deeper

transcriptome sequencing and to some extent the more complete assembly of the IT97K-

499-35 genome using PacBio long-read sequences. The number of alternative transcripts in

the six new assemblies ranged from 15,088 to 17,115. Again, IT97K-499-35 had a higher

number alternative transcripts, a total of 22,536. The average number of exons was 5.4 in

each of the six new assemblies, and 5.2 in IT97K-4899-35, with a median length ranging from

162 to 169 bp. Gene density and repeat density were computed in 1 Mb non-overlapping

sliding windows along each chromosome (Figure 3.7b and Figure 3.2), and in each accession

(Figure 3.1). All chromosomes have a higher gene density in their telomeric regions, while

repeat density peaks in the centromeric regions. Also, all accessions have similar gene and

repeat density. All accessions have high BUSCO v4 completeness at the genome, transcript

and protein levels, again with somewhat higher numbers for IT97K-499-35 than the six new

assemblies.
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Figure 3.1: Gene density (red) and repeat density (blue)
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Figure 3.2: Gene density (red) and repeat density (blue)

Gene density and repeat density were calculated in 1Mb non-overlapping sliding

windows. In Figure 3.1, different shade of red/blue indicated different accessions, from

light to dark as IT97K-499-35, CB5-2, Suvita2, Sanzi, UCR779, ZN016, TZ30 in order.

The peaks of IT97K-499-35 in both gene density and repeat density for some chromosomes

shifted towards right in a few Mb, mainly because of the completeness in centromeric regions

in IT97K-499-35 and thus a larger chromosome size with a larger position of long arm ends

of chromsomes.
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Table 3.2: Putative centromeric region coordinates (all numbers are bp)
Assemblies IT97K-499-35 CB5-2 Sanzi ZN016 TZ30

chr start end size start end size start end size start end size start end size
1 14,698,036 16,525,496 1,827,460 12,796,513 14,236,341 1,439,828 - 13,289,165 17,690,285 4,401,120 -
2 10,238,236 14,020,258 3,782,022 - - - -
3 30,476,981 31,470,261 993,280 - - - -
4 19,069,641 21,130,843 2,061,202 16,669,712 18,502,124 1,832,412 15,648,675 16,247,976 599,301 - -
5 25,704,431 33,885,354 8,180,923 26,553,015 26,811,298 258,283 - 25,404,785 27,305,040 1,900,255 -
6 9,156,830 9,235,637 78,807 - - - -
7 16,587,031 16,604,960 17,929 14,903,264 14,933,285 30,021 - 14,573,279 14,601,618 28,339 13,530,446 14,858,230 1,327,784
8 14,914,119 15,164,402 250,283 12,820,933 14,867,106 2,046,173 - 13,476,113 14,282,079 805,966 -
9 20,802,610 22,685,597 1,882,987 - - - -
10 18,917,563 19,028,450 110,887 - - - -
11 17,283,961 18,283,861 999,900 - - - -
total 20,185,680 5,606,717 599,301 7,135,680 1,327,784

Centromeric regions were defined based on the presence of a 455-bp tandem repeat

that was previously identified by FISH [38]. Table 3.2 shows the coordinates of the putative

centromeric regions in IT97K-499-35 for all eleven chromosomes for total span of 20.18 Mb,

in CB5-2 on five chromosomes for a total span of 5.6 Mb, in Sanzi on one chromosome for

a total span of 0.59 Mb, in ZN016 on four chromosomes for a total of 7.13 Mb and in TZ30

on one chromosome for 1.32 Mb. The tandem repeat was not found in any assembled chro-

mosome in Suvita2 or UCR779, nor in the other chromosome assemblies where coordinates

are not listed in Table 3.2.

3.2 Pairwise Whole Genome Comparisons

Pairwise whole genome alignment (WGA) identified synteny relations as well as

large structural variations between two genome assemblies. To perform WGA for pan-

genomes, each of the six newly sequenced accession were compared to the published cowpea

reference genome of IT97K-499-35 independently. Alignments were generated using MUM-

mer3 [45], with a minimum length of an exact match set to 100 bp. Alignments with a length

less than 10 kb were filtered out. The output alignments between genomes were visualized

using Circos v0.69-3 [44] Synteny relations identified by WGA detect whole chromosome
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(a) (b)

(c) (d)

Figure 3.3: Whole Chromosome Inversions in Suvita2(a), UCR779(b), ZN016(c) and
TZ30(d)

inversion in Suvita2, UCR779, ZN016 and TZ30 draft genome assembly. In Figure 3.3,

Suvita2 chromosome 9, 10, 11 were reversed compared to corresponding chromosomes in

IT97K-499-35, as well as UCR779 chromosome 2, 3, ZN016 chromosome 1 and TZ30 chro-

mosome 2, 3, 7. Such chromosomes were reversed in order to keep the same orientations

across pan-genome. Reversed chromosomes were used in following analyses.

Extensive synteny had been observed between IT97K-499-35 and other accessions.

(Figure 3.4) There were gaps with missing synteny near centromeric regions on some chro-

51



mosomes of IT97K-499-35, which indicated incompleteness of centromeric regions on some

other accessions.

In order to better visualize the structural variations between IT97K-499-35 and

other six accessions, we carried out a pairwise whole genome comparison using dot plots for

each chromosome. Each individual genome for the new six accessions was aligned against the

IT97K-499-35 genome assembly using Minimap2 [49]. The resulting pairwise whole-genome

alignments were visualized chromosome by chromosome with a modified dotplotly script.

Figure 3.5 and Figure 3.6 provided direct visualization for large structural variations among

cowpea pan-genome, including centromeric region deletions, inversions and translocations.

3.3 Variation Analysis

3.3.1 Present-Absent Variations

To answer the question of whether adding more accessions is likely to significantly

change the numbers and proportions of core, dispensable and private genes, we carried out

the same homology analysis above by using subsets of accessions of size s = 1, 2, . . . , 7. For

each value of s, we computed the number of core, dispensable and private genes for all

possible choices of s accessions. In Figure 3.7-A, the green points represent the cumulative

number of distinct genes in all accessions (i.e., in which homologous genes across accessions

are counted once, or the set of pan-genes), and the yellow points are the number of core

genes, as a function of s (on the x-axis). Observe that the number of green/yellow points

for each value of s is
(
7
s

)
, that is 7 for s = 1 or s = 6, 21 for s = 2 or s = 5, 35
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for s = 3 or s = 4. The green curve is a polynomial fit on the pan-genes, while the

yellow curve is a polynomial fit on the core genes. As expected, the number of pan-genes

increased as additional accessions were “added” to pan-genome, while the number of core

genes decreased. However, the fact that the yellow curve is flattening considerably for s = 6

or s = 7 indicates that the vast majority of the core genes have been identified with these

seven diverse accessions. In contrast, the green curve is not flattening, indicating that there

are many more dispensable and private genes not included among these seven accessions,

which means also that it would be necessary to sequence more genomes to thoroughly

represent the entire pan-genome of cowpea.

Present-absent variation analyses were performed, both at the gene level and at

the genome level, by comparing the seven cowpea genome assemblies to each other, along

with their corresponding annotations.

For gene-level analysis, homologous genes were identified using BLAT. Coding

sequences (CDS) of genes in IT97K-499-35 were mapped to CDS from the other six ac-

cessions using BLAT [41]. Alignments with 95% identity and 90% length coverage were

counted as positive matches. If there was more than one gene hit, neighboring genes were

used to determine one-to-one correspondence. After finding the correspondences between

IT97K-499-35 genes to genes from the other accessions, the same strategy was repeated to

seek correspondences for unpaired genes from CB5-2 by mapping to unpaired genes from

remaining five accessions, in the order of Suvita2, Sanzi, UCR779, ZN016 and TZ30. Genes

that were present in all seven accessions were called core, genes present in two to six acces-

sions were called dispensable and genes present in only one accession were called private.
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The total number of distinct genes (i.e., counting homologous genes only once) was 44,861,

of which 21,330 were core, 10,065 were dispensable and 13,466 were private. Figure 3.7B

shows the cumulative length of core, dispensable and private genes. Figure 3.7D shows

the cumulative length of core, dispensable, and private genes in each individual accession.

Figure 3.7F shows the fraction of each accession’s transcriptome into core, dispensable,

and private genes. IT97K-499-35 stood out as having higher number of private genes than

the other accessions, which is likely due to the higher total number of genes annotated in

IT97K-499-35. The other six accessions had a comparable number of private genes. The

total lengths of dispensable genes in each accession were also similar.

For the genome-level analysis, seven assemblies were aligned using progressive-

Mauve [20], to identify core, dispensable and private genomic blocks using a pan-genome

representation called PGV. Genomic blocks that were present in all seven accessions were

called core, blocks present in two to six accessions were called dispensable and block

present in only one accession were called private. Genomic blocks were classified based

on a reference-agnostic pan-genome representation called PGV. Briefly, PGV carries out

a genome-wide multiple sequence alignment on all genomes using progressiveMauve, then

computes the consensus ordering for the common blocks, which constitute the backbone of

the pan-genome. Blocks in each genome are then ordered according to the consensus or-

dering. PGV detected 2,863 core blocks (comprising 77.41% of the cowpea genome), 11,856

dispensable blocks and 42,484 private blocks. Core genomic blocks covered about 360 Mb

across all seven accessions on average; dispensable blocks were less than 50 Mb; and the

collective total of private genomic blocks covered over 480 Mb (Figure 3.7C). Figure 3.7E
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shows the cumulative length of core, dispensable and private blocks. IT97K-499-35 has

more than 100 Mb of private blocks, which is much higher than other accessions and again

is likely to be due to IT97K-499-35 having a more complete assembly than the other six

accessions. The other accession had a comparable fraction of their genome to be private

(Figure 3.7G), except for UCR779 which was significantly higher.

By comparing genes against genomic blocks (i.e., Figure 3.7B vs. C, D vs. E or

F vs. G) it is clear that private genomic blocks constitute a much higher fraction of the

genome, compared to the total length of private genes relative to the entire transcriptome.

This indicates that private genomic regions have a lower gene density than other two types

of regions.

3.3.2 Paralogous Genes

OrthoMCL was used to cluster the 200,235 protein sequences for all genes in

the seven accessions. The total of 200,235 protein sequences for all genes in the seven

accessions were used to perform all-to-all BLAST. Alignments with E-value less than E-30

were chosen to group orthologous protein sequences in OrthoMCL [51]. Resulting gene

clusters had genes from all seven accessions were core, dispensable clusters had genes from

2-6 accessions, and private clusters had genes only from one accession. OrthoMCL produced

25,436 clusters of paralogous genes in the cowpea pan genome, of which 20,071 were core

(i.e., they had genes from all seven accessions), 5155 were dispensable (i.e., they had genes

from 2-6 accessions) and 147 were private to one accession (see Table 2). Exactly 140

of the private clusters were present in IT97K-499-35, while CB5-2, Sanzi and TZ30 did

not have any private clusters. Exactly 16,028 of the core clusters were composed of genes
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Table 3.3: Summary of OrthoMCL clusters

IT97K-499-35 CB5-2 Suvita2 Sanzi UCR779 ZN016 TZ30

Core 20,071
Dispensable 2,989 2,806 2,925 2,911 2,719 2,282 2,277
Private 140 0 2 0 4 1 0

from the same core gene correspondence, and 9408 core clusters had genes from multiple

correspondences. Exactly 3223 of dispensable clusters had genes from the same dispensable

gene correspondence and 1932 had genes from multiple dispensable and/or private gene

correspondence.

3.3.3 Structural Variations (SNPs, indels, and large SVs)

To investigate the structural variations in the cowpea pan-genome small varia-

tions, namely (a) SNPs and short indels, and large structural variations (b) inversions,

translocations, deletions and inversions, were identified.

For SNPs and short indels the genome of each accession was used in turns as

the “reference”, mapping the reads for all other accessions against that genome. SNPs

were detected from the mapped reads of each accession individually using GATK [67] as

well as collectively. SNPs and indels were called using one reference genome versus the

reads from six other accessions using two complementary approaches, namely (i) reads

from the other six accessions than the specific reference were used and combined to call all

small variations of this reference accession, and (ii) reads from each of other six accessions

were used independently to call small variations. Selected reads were mapped to a specific

reference genome using BWA. Alignments were merged (for first approach of combined small
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Table 3.4: Summary of cowpea SNPs across the accessions

IT97K-499-35 CB5-2 Suvita2 Sanzi UCR779 ZN016 TZ30 Merged (reads) Merged (by position)

IT97K-499-35 1,607,267 1,660,122 1,692,267 1,974,970 2,092,617 1,839,113 3,472,245 4,963,630
CB5-2 1,747,504 1,528,608 1,499,900 2,501,756 1,812,756 1,466,499 3,210,892 5,293,181
Suvita2 1,766,011 1,489,850 1,512,626 2,625,678 2,056,752 1,847,818 3,252,450 5,292,933
Sanzi 1,813,050 1,485,875 1,539,212 2,468,787 2,002,988 1,811,927 3,232,415 5,303,979
UCR779 2,029,638 2,427,619 2,605,364 2,417,122 2,440,589 2,424,480 3,438,834 5,349,217
ZN016 2,091,894 1,692,125 1,980,368 1,896,387 2,382,090 1,338,143 3,265,483 5,278,946
TZ30 1,939,167 1,442,388 1,865,974 1,802,432 2,472,527 1,422,297 3,228,656 5,302,674

Table 3.5: Summary of cowpea indels across the accessions

IT97K-499-35 CB5-2 Suvita2 Sanzi UCR779 ZN016 TZ30 All

IT97K-499-35 500,184 493,649 516,920 586,252 580,477 548,279 1,066,944
CB5-2 397,913 367,662 377,767 592,079 425,572 373,435 853,116
Suvita2 393,125 363,343 372,008 619,009 472,306 446,080 853,899
Sanzi 413,050 373,961 372,460 583,945 460,767 440,759 850,746
UCR779 462,494 575,960 610,235 575,146 556,606 572,875 898,249
ZN016 466,574 415,167 470,203 457,046 561,920 330,037 869,572
TZ30 435,661 364,014 442,477 436,458 579,168 331,440 852,546

variations using reads from six accessions) and removed duplicates using Picard [36]. The

union of all SNPs for one accession was collected by merging SNPs identified by approach

(i) by their locations on this accession. All SNP calling used GATK pipeline with same

parameters and filters of ’QD < 2.0||FS > 200.0||ReadPosRankSum < −20.0||SOR >

10.0’. Indels were identified using same pipeline with different filters of ’QD < 2.0||FS >

200.0||ReadPosRankSum < −20.0||SOR > 10.0’.

SNPs from the six accessions were combined using two different methods: in the

first, mapped reads (i.e., the BAM files) from each of the six accessions were merged together

before re-calling the SNPs using GATK; in the second, the six SNP sets (i.e., the GATK

outputs) were merged by taking the union of the SNPs based on their location on the target

genome (i.e., a SNPs in two accessions was counted only once if it appeared in the same

genomic position). Table 3.4 summarizes the number of SNPs detected, where the reference
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genome is listed on each row. For instance, using Suvita2 as the reference, 1,489,850 SNPs

were detected using mapped reads from CB5-2, compared to 2,625,678 SNPs using the reads

from UCR779. Combining the SNPs by counting all distinct SNPs in the union of the six

sets of SNPs, the number of SNPs for Suvita2 was 5,292,933. Observe in Table 3.4, that

IT97K-499-35 had the highest number of combined SNPs (about 3.4 million), while the other

six accessions had a lower, but similar, number of SNPs (about 3.2 million). For pairwise

SNPs calling (i.e., using reads from only one accession), observe that when UCR779 was

used as the reference, a much higher number SNPs was detected, indicating that UCR779

is the most “different” among all accessions. Also, CB5-2 has a relatively lower number of

SNPs with respect to TZ30 and ZN016 than other accessions. This suggests that CB5-2 is

somewhat closer to these two accessions than to the other four accessions. Table 3.5 reports

a similar analysis for indels, where again UCR 779 stands out as being the most different

from the other accessions. In Table 3.5, “all” refers to the number of indels obtained by

combining the read mapping for all six accessions against that reference. Figure 3.9A shows

a phylogenetic tree of the seven accessions that was constructed using SNPhylo based on

the SNPs of IT97K-499-35.

The SNP frequency ranged from one in 309 bp to one in 139 bp; and the indel

frequency ranged from one in 529 bp to one in 486 bp. Circos plots for SNP density (SNPs

per Mb) on each chromosome using each accessions as the reference are in Figure 3.8. Chro-

mosome 4 and 10 had the highest SNP frequency, chromosome 5 and 9 had the lowest. Also,

when using UCR779 as the “reference” (Figures 3.8), the number of SNPs on chromosome

4 and 10 was significantly amplified.
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Structural variations were identified by aligning each individual genome against

the IT97K-499-35 genome and then visualizing the corresponding pairwise whole-genome

alignments with a dot-plot (Figure 3.5 and Figure 3.6). A total of fifteen translocations and

inversions larger than 1 Mbp were identified (Table 3.6). In the table, each row indicates a

structural variation, with an approximate start and end positions on the chromosome. Two

rows are used to describe a translocation, the genomic region in the first set of coordinates

is swapped with the genomic region in the second set of coordinates. The inversion and

translocation on chromosome 1 between IT97K-499-35 and TZ30 refer to the same regions,

which indicates that this inversion is also part of a translocation. Similar situation is

observed for inversion and translocation on chromosome 10 between IT97K-499-35 and

ZN016. Several large variations appear within the IT97K-499-35 centromere regions. It

is noted that that the ∼4.2Mb region on chromosome 3 that was previously reported in

[60] occurs in the same orientation in six accessions and in the opposite orientation only

in IT97K-499-35. On chromosomes 4, 5 and 7, several inversions within the centromeric

regions defined from the IT97K-499-35 assembly are shared by the majority of accessions.

The ∼9.0Mb inversion on chromosome 6 is the largest structural variation found and its

orientation is private to Suvita2.

59



Table 3.6: Large structural variations (larger than 1 Mb). Coordinates are in Mb.

chr type IT97K CB5-2 Suvita2 Sanzi UCR779 ZN016 TZ30 comments
start end start end start end start end start end start end start end

1 inversion 7.8 11.8 6.8 10.5 7.0 10.7 9.4 12.5 shared with translocation

1 translocation 8.1 11.5 9.4 12.5 shared with inversion
11.9 13.9 7.5 9.4

3 inversion 36.1 40.3 32.4 36.4 31.2 35.0 31.0 35.2 30.8 34.8 32.8 36.8 31.5 35.5 Inversion on IT97K

4 inversion 17.7 21.1 14.8 17.8 14.0 17.0 14.8 15.6 13.9 16.2 14.8 16.2 Overlaps centromeric region

5 inversion 25.7 27.0 23.5 24.8 23.3 24.6 23.0 24.0 24.0 25.3 23.4 24.7 Overlaps centromeric region

6 inversion 0.01 9.0 0.06 8.1 Only in one accession

6 inversion 29.0 30.1 26.3 27.4 26.6 27.6

7 inversion 14.0 15.0 13.6 14.0 Only in one accession

7 inversion 15.7 16.7 14.8 15.4 14.8 15.1 14.5 15.0 14.5 15.3 14.6 15.1 Overlaps centromeric region

10 inversion 14.5 16.3 13.6 15.6 Shared with translocation

10 inversion 16.5 17.2 13.9 14.7 13.9 14.7 13.3 13.7 13.9 14.7

10 inversion 17.5 18.7 14.8 15.9 14.8 15.8 15.0 16.0 14.7 15.8

10 translocation 14.5 16.3 13.6 15.6 Shared with inversion
17.5 18.8 12.0 13.1

11 inversion 16.1 16.7 14.8 15.4 14.3 14.9

11 inversion 30.5 33.6 26.3 29.3 Only in one accession
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(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Synteny view between IT97K-499-35 and other accessions
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Chr01 Chr02

Chr03 Chr04

Chr05 Chr06

Figure 3.5: Pairwise comparison for chromosomes 1-6
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Chr07 Chr08

Chr09 Chr10

Chr11

Figure 3.6: Pairwise comparison for chromosomes 7-11
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Figure 3.7: Pan-Genome Analyses; (a) number of pan-genes and core genes as a function
of the number of accessions analyzed; (b) cumulative length for gene classified as core, dis-
pensable or private; (c) cumulative length for genome blocks classified as core, dispensable
or private; (d) cumulative length of core, dispensable or private gene in each individual
accession; (e) cumulative length of core, dispensable or private genome blocks in each ac-
cession; (f) fraction of the transcript for core, dispensable or private gene in each individual
accession; (g) fraction of the genome for core, dispensable or private genomic blocks in each
individual accession
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Figure 3.8: SNP density (number of SNPs per Mb) of different accessions
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Figure 3.9: (a) phylogenetic tree for the seven accession based on IT97K-499-35 SNPs, (b)
circos plot of gene density (red) and repeat density (blue) in 1Mb non-overlapping sliding
windows, (c) number of SNPs in private, dispensable and core genomics blocks in each
accession, (d) number of indels in private, dispensable and core genomics blocks in each
accession
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Chapter 4

Pan-genome Representation and

Visualization

4.1 Introduction

As more and more individuals (cultivars, accessions, or strains) of a given species

are sequenced and made available, the adequacy of the accepted notion of the reference

genome for a species represented by a single DNA sequence is being challenged [8]. Declaring

one individual as the reference for a species introduces a representational bias in downstream

analyses, including SNP discovery, structural analysis, genome-wide association studies, etc.

[8]. Recently, a large number of genomes from different individuals of the same species have

become publicly available, and such genomes have significantly increase the possibility of

analyzing multiple genomic features. One way to investigate these features is through the

pan-genomic approach. The pan-genome captures the entire genetic diversity of a species
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gene based genome based alignment method to reference largest genome that it was tested on reference

PanX X pairwise alignment using Diamond microbial genome [21]
PGAP X all-pairs alignment and BLAST all microbial genome [129]
PGAP-X X X reference-agnostic alignment using progressiveMauve microbial genome [128]
PPanGGOLiN X uses gene families tens of 1000s of microbial genomes [26]
PanSeq X pairwise alignment to reference not mentioned [46]

Table 4.1: Comparison of pan-genome analysis tools

by cataloging all the structural variants of its genome [19]. As explained in Chapter 1,

a pan-genome is composed of (i) the core genome containing DNA sequences present in

all individuals within the species, (ii) the dispensable genome containing DNA sequences

present in a subset of the individuals, which includes unique individual-specific DNA se-

quences [110, 68, 28]. An effective representation (and its visualization) of a pan-genome

is particularly challenging due to the complex rearrangements that can be observed when

comparing multiple genome of the same species [114].

As discussed in Chapter 1, existing methods for pan-genome analysis mainly focus

on either small genomes like bacterial genomes or genes only instead of whole genome

sequences. Table 4.1 summarizes the main features and limitations for these tools. Most

of such available methods requires a pre-selected individual as ”reference”. In response to

such limitations, we propose here a novel pan-genome representation called PGV. The PGV

representation is (i) reference-agnostic (i.e., there is no need to artificially declare one of

the individual genome to be the reference), (ii) can handle large eukaryotic genomes, and

(iii) is very intuitive and simple to understand. The PGV representation can be visualized

by a dot-plot or using our genome browser, in which each block is colored depending on

whether it is a core, dispensable or unique. Structural variations such as inversions and

translocations are highlighted, and shared core/dispensable blocks are linked to illustrate
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how the different accessions relate to each other. Users are also allowed to upload annotation

tracks (e.g., gene annotations).

4.2 Methods

4.2.1 PGV Pipeline

The input to PGV is a set of n individual genomes for the same species, or a set of

genomes from very closely-related species. To obtain the best results, input genomes must

have a similar level of assembled contiguity. First, PGV carries out a genome-wide multiple

sequence alignment on all the inputs using progressiveMauve [20]. Based on the output of

the multiple sequence alignment, PGV classifies each alignment block into three types. A

core genome block, or C-block, corresponds to an alignment that contains all n individuals.

A dispensable genome block (also called accessory), or D-block, corresponds to an alignment

which contains at least two individuals and at most n − 1. A unique genome block (also

called strain-specific), or U-block, is a block that belongs exclusively to one individual

genome. Please note that in the literature a unique block is a special type of dispensable

block, while PGV distinguishes them. Next, PGV converts each individual genome into an

ordered sequence of C, D, and U-blocks, each with its corresponding identifier (represented

by a unique integer). In the example in Figure 4.3, the alignment of the five input genomes

has produced seven common, four dispensable and nine unique blocks.

After the conversion of each genome into blocks, PGV computes the consensus

ordering for the C-blocks, which will constitute the “back-bone” of the pan-genome. If

we only consider C-blocks, observe that each genome can be represented by a permutation
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σ of the C-block identifiers {1, 2, . . . ,m}, where m is the number of C-blocks. Let σi be

the permutation for the i-th genome, where i ∈ [1, n]. We define the consensus ordering

of the C-blocks as the ordering σ∗ that minimizes the quantity
∑n

i=1 L(σi, σ∗) where L is

the Levenshtein (edit) distance between the permutations. In the literature, the string σ∗

is called the median string of the set σi. The problems of finding the median for a set of

strings under the Levenshtein distance is known to be NP-complete [32]. Similar theoretical

results have been derived from more complex metrics [109]. A similar notion of consensus

ordering for homology blocks was proposed by [75], but their pan-genome is captured by

general bidirectional sequence graphs instead of paths.

PGV uses an efficient greedy algorithm to compute an approximation of the op-

timal ordering σ∗. The algorithm is described in the online Methods, including a detailed

example that illustrates it step-by-step. Once the consensus ordering is computed, PGV

produces a set of .bed tracks (one for each genome, plus the consensus track) that can be

visualized off-line or on-line. In the off-line option, PGV generates a dot-plot between the

ordering of C-blocks in each genomes and the consensus ordering (Figure 4.4). This option

allows users to identify major structural variations in each genome compared to the con-

sensus ordering, and to produce figures to be shared in reports or manuscripts. The on-line

option is a genome browser which allows users to visually inspect genome rearrangements

(see Figure 4.1). For the browser, PGV allows to generate an alternative type of .bed

tracks in which gaps are introduced so that C-blocks are aligned vertically (see Figure 4.2).

Users can upload in the browser any subset of the .bed tracks for individual genomes or

the consensus ordering. Each genome is represented as a set of blocks whose sizes are pro-
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portional to the underlying sequence length. Light blue blocks are core blocks with same

relative ordering and orientation compared to the consensus ordering (e.g., not reversed

or translocated); dark blue blocks are core blocks that are translocated compared to the

consensus ordering; pink blocks are core blocks that are inverted compared to the consensus

ordering. Green blocks are dispensable blocks and red blocks are unique blocks. Tracks can

be reordered by clicking on the track names and dragging them with the mouse. The usual

navigation tools are available (zoom in/out, pan left/right, select a chromosome, search for

a block). Clicking on a block highlights the identifier of that block, namely U for unique,

D for dispensable and C for core, followed by a unique ID. Clicking on a D or C-block

generates a link that connects corresponding blocks in other genomes (if they are within

the current zoom window). The browser also allows users to upload GFF3 containing gene

annotations, which are shown as grey blocks.

Figure 4.1 shows a sample screenshot of cowpea pan-genome representation. In this

example, the coordinates of each block match their original position in the genome, and thus

users can upload annotation tracks to compare genes in core and dispensable blocks. The

red lines between different accessions show the linkage information of a block across different

genomes. Such linkage information also provides information whether a genomic block is

core, dispensable or private and whether it is related to potential structural variations.

Figure 4.2 shows the PGV mode in which the pan-genome is visualized so that the core

blocks are aligned vertically.

PGV was implemented using Python. The PGV genome browser was implemented

using Javascript and HTML. It is a light implementation that can either be used locally or
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Figure 4.1: A screenshot of the PGV Genome Browser on four cowpea accessions; the first
track represents the consensus ordering; IT97K, CB5-2 and Suvita2 and Sanzi are cowpea
genomes; light blue blocks are core blocks with same relative ordering and orientation com-
pared to the the consensus ordering; dark blue blocks are core blocks that are translocated
compared to the consensus ordering; pink blocks are core blocks that are inverted compared
to the consensus ordering; green blocks are dispensable blocks; red blocks are unique blocks.

be vendored by a remote server. The current version is running on Google Firebase. The

D3.js library was used for data binding. Canvas was used for plotting the main elements,

such as blocks, genes and links. An SVG layer was added to the diagram for plotting axes

and tool tips. The Bootstrap library was used for the front-end cosmetics. The genome

browser can be accessed at http://pgv.cs.ucr.edu The source code for PGV and the

genome browser are available at https://github.com/ucrbioinfo/PGV. The github page

offers some sample data to test the software installation.
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Figure 4.2: A screenshot of the PGV Genome Browser on cowpea accessions using aligned
bed tracks; the first track represents the consensus ordering; IT97K, CB5-2 and Suvita2
and Sanzi are cowpea genomes; light blue blocks are core blocks with same relative ordering
and orientation compared to the the consensus ordering; dark blue blocks are core blocks
that are translocated compared to the consensus ordering; pink blocks are core blocks that
are inverted compared to the consensus ordering; green blocks are dispensable blocks; red
blocks are unique blocks.

4.2.2 PGV’s Consensus Algorithm

While the ideal outcome is to produce a single linear (consensus) ordering for

each chromosome, in some situations PanViz can only compute a partial ordering of the

C-blocks. For this reason, PanViz maintains a set of linear orderings O, which is initially

empty. PanViz starts from an arbitrarily C-block Ci which is added to O as the “seed”

of a new linear ordering (or a path). Then, PanViz determines the list Ci’s neighbors in

the n input genomes and their frequency. Let C1, C2 and C3 be the three neighbors of Ci

with the highest frequency, and let f1, f2 and f3 be their frequency. If either C1, C2 or C3

are already in O, they are not considered for the next step. Several cases are possible, (i)
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f1 ≥ f2 > f3, (ii) f1 > f2 = f3, (iii) f1 = f2 = f3. In case (i), blocks C1 and C2 become the

candidates neighbors of Ci in the consensus ordering. The consensus ordering is extended

as C1 → Ci → C2. Then, PanViz repeats the same process on C1 and C2, first extending

to the left as much as possible, then extending to the right as much as possible. In case

(ii), only block C1 is added to the ordering and the process is repeated from C1. In case

(iii), the current consensus ordering is suspended and a new ordering starts from another

arbitrary block that has not be processed yet (i.e., not in O).

Once PanViz has processed all C-blocks, PanViz aligns each path in O to the

n genome orderings of the C-blocks to decide its orientation and determine whether it

contains mis-joins. Each path and its reversed path are aligned to the original genome

(C-block) orderings and an alignment scores is calculated. The alignment score is +1

for an aligned block and -1 for a gap or a mismatch. The local alignment with highest

score is used to determine the correct orientation and possible mis-joins. If the alignment

score of the reversed path is higher than the score of the alignment for the forward path,

the path is reversed. After the orientation is decided, if the overall alignment score is

lower than a minimum threshold (i.e., 80% of the highest possible alignment score for that

genome length), (i) the path is removed from O, (ii) the path is broken into two or three

pieces, namely a central region with the highest alignment, a left overhang (possibly empty),

and a right overhang (possibly empty), (iii) the two/three sub-paths are added to O and

processed individually through another round of alignments. When all paths are in the

correct orientations and have an overall alignments score with the input genomes of at least

80% of the maximum, PanViz obtains the coordinates of each path by taking a majority
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vote on their best alignment against the input genomes. PanViz uses these coordinates

to order the paths, and produce the final consensus ordering (ideally composed of a single

path). In the next section we provide a step-by-step explanation of the algorithm using the

example in Figure 4.3(b).

4.2.3 An Example of PGV’s Consensus Algorithm

In the example in Figure 4.3(b) we assume that PanViz arbitrarily starts from

C6, and sets the consensus ordering O = {C6}. Then, PanViz collects the frequencies for

the neighbors of C6: C3 occurs three times, C1 occurs three times, and C3 occurs three

times. Since there is a tie for the second position, we are in case (ii) discussed above,

and only C6 is added to O, resulting in O = {C6 → C2}. In Step 2, PanViz collects

the frequencies for the neighbors of C6. In the top two, only C5 is not in O, and thus

we extend O = {C5 → C6 → C2}. Similarly, in Step 3, 4 and 5, C5, C4 and C3 are

appended to the consensus. In Step 6, C3 cannot be extended because both its top two

neighbors are already in O. Thus PanViz starts a new path by arbitrarily picking C1, thus

now O = {C1, C3 → C4 → C5 → C6 → C2}. The top two neighbors of C1 are H and

C2. Since C2 is in O, only H is appended to C1. PanViz cannot extend H because H

is a chromosome boundary. In Step 8, a new path is created which is extended in Step

9 to the other chromosome boundary. The preliminary set of consensus ordering is thus

O = {p1 = C3 → C4 → C5 → C6 → C2, p2 = C1 → H, p3 = C7 → T}. At this point,

PanViz aligns p1, p2 and p3 to the individual genome orderings to decide their orientations.

For instance, the alignment score of H → C1 is higher than the alignment score of C1→ H,
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so p2 is reversed. Paths p1 and p3 are left as is. Then, PanViz checks whether p1, p2 and

p3 have a good agreement with the input genomes. For instance, the alignment score of

p1 against the five input genomes is 4, 3, 5, 3, and 3, respectively. The total score for p1

is 18, which is lower than 80% of the highest possible score, which is 0.8*5*5=20. Based

on this, PanViz considers p1 not to be a good ordering and it breaks it, as follows. The

highest scoring sub-path of p1 is C3 → C4 → C5 → C6 on the majority of the input

genomes, so PanViz splits p1 into p4 = C3 → C4 → C5 → C6 and p5 = C2, thus now

O = {p2, p3, p4, p5}. PanViz again checks the alignments of p2, p3, p4, p5 in O. If any of them

is not sufficiently high (i.e., at least 80% of the maximum score), it will be broken again.

Once this iterative process is concluded, each path in O is aligned against the genomes

and the starting position of its best alignment is recorded. The position with most votes

(majority) determines the coordinate of each path. For instance, the best alignment of p4 on

the input genomes are at position 4,3,4,6 and 5, respectively. Thus, p4 is given coordinate

4. Similarly, PanViz assigns p2 position 1, p3 position 8 and p5 position 3. Based on

these coordinate, PanViz orders the paths as p2 → p5 → p4 → p3 which provides the final

consensus ordering H → C1 → C2 → C3 → C4 → C5 → C6 → C7→ T .

4.3 Results

Human. PGV was used on four Homo sapiens assemblies, namely GCA 1405.28, GCA 3634875.1,

GCA 2180035.3, and GCA 1292825.2. PGV identified 3,548 core blocks (comprising 94.8%

of the human genome), 2,390 dispensable blocks and 11,807 unique blocks. Upon inspec-

tion of the initial PGV’s dot plot we determined that ten chromosomes in GCA 003634875.1

76



were inverted. Figure 4.4(a) shows the dot-plot after reorienting those chromosomes. The

four assemblies show a very high degree of consistency for the core blocks, with very few

translocations indicated by the isolated dots.

Arabidopsis. PGV was run on three Arabidopsis thaliana assemblies, namely TAIR10.1,

Ler, and Ath.Ler-0.MPIPZ. PGV identified 144 core blocks (comprising 96.17% of Ara-

bidopsis genome), 31 dispensable blocks and 352 unique blocks. The higher fraction of the

genome in core blocks compared to other species indicated that the three accessions are

very closely related. Figure 4.4(b) shows high consistency between the three accessions and

the consensus ordering, with very few translocations mostly on chromosome three.

Rice. PGV was used on four Oryza sativa assemblies, namely Japonica, Japonic HEG4,

Indica, and Aus cultivar. PGV identified 2,632 core blocks (comprising 90.11% of genome),

2,531 dispensable blocks and 12,396 unique blocks. Figure 4.4(c) shows a significant amount

of translocations (shown as single dots), and a (centromeric) inversion on chromosome 6 in

Indica (orange anti-diagonal in the plot) which was previously reported ([22]).

Cowpea. PGV was run on eight Vigna unguiculata genome assemblies namely IT97K

[60], CB5-2, Suvita2, Sanzi, UCR779, ZN016, TZ30 and G98. PGV detected 2,863 core

blocks (77.41% of the cowpea genome), 11,856 dispensable blocks and 42,484 unique blocks.

Figure 4.4(d) shows several inversions (anti-diagonals): (i) two large inversions at the begin-

ning of chromosome 1 and 2 in G98 (further analysis showed that they were mis-assemblies),

(ii) one inversion near the center of chromosome 3 of IT97K, which was previously reported

by [60], (iii) an inversion shared by Suvita2, ZN016 and TZ30, previously unreported.
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4.4 Conclusion

We introduced a representation of the pan-genome based on the notion of consensus

ordering, which is reference-agnostic. Experimental results on several species demonstrate

the utility of our representation.
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Figure 4.3: A detailed example of PGV’s processing steps. (a) the input to PGV is a set
of n = 5 genomes; PGV first carries out a multiple sequence alignment, then classifies each
alignment block into core blocks (C), dispensable block (D) and unique block (U); each
genome is then converted in an ordered sequence of C-, D-, and U-blocks, each with its
corresponding identifier; (b) in the second phase, PGV computes the consensus ordering
of the common blocks; red C-nodes are the active nodes; green C-nodes are the neighbors
selected to be added to the linear ordering
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Figure 4.4: Human, arabidopsis, rice, and cowpea pan genome analysis using PGV. The
x-axis represents the coordinates of the consensus ordering of core blocks computed by
PGV. Genomes coordinates for the core blocks are used on the y-axis (staggered to avoid
overlapping lines).
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Chapter 5

Conclusions

In this new era of genomic research, more and more genomes for different species

(and different individuals within the same species) are becoming available. Due to this

availability, genomic analysis increasingly relies on the knowledge accumulated on well-

studied species, e.g., model organisms. The principle behind comparative genomics is to

exploit the genomic knowledge of evolutionarily related organism that share high similarity

at the sequence level with the genome of interest. In most genomic analysis pipeline, several

comparative genomic methods are combined in order to provide the most complete and

comprehensive results. Comparative genomics analyses have a broad application in genome

assembly, genome annotation as well as pan-genome studies. In this dissertation, multiple

methods for comparative genomics analysis were used in our analysis pipeline for genome

annotations, variants calling and pan-genome analysis and visualization.

Genome annotation is the process of identifying the structures and functions of all

functional elements in genome, such as repeats, genes, intron/exons, promoters, enhancers,
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etc. The typical annotation pipeline combines prediction tools with pre-trained libraries. In

this dissertation, we introduced an improved annotation workflow which combines different

predictors that use trained libraries and transcript evidence from RNA-Seq, ESTs and pro-

tein databases. This pipeline was applied on genome annotation of three different species,

namely Vigna unguiculata (cowpea), Phytophthora infestans and Babesia duncani. The

comparative evaluation on these genome assemblies and annotations have provided clear

evidence that our assemblies have high-quality (high completeness, high contiguity, etc).

During the genome annotation and structural variation analysis of cowpea, interspecific

comparisons were applied in order to gain new insights from evolutionarily related legumes

such as Phaseolus vulgaris (common bean). Such comparisons allowed us: (1) the estab-

lishment of a uniform numbering system for cowpea chromosomes, (2) the identification of

large chromosomal inversions and translocations in cowpea (one of which was experimen-

tally validated), (3) the identification of repeat and gene family changes among legumes. In

the newly sequenced and assembled genome of Phytophthora infestans, our gene annotation

pipeline was able to detect an additional six thousand genes compared to the previously

published genome. In our de novo assembly of Babesia duncani, the gene annotations were

significantly improved compared to the annotations carried out in a previous draft assembly.

The annotation pipeline used on these genomes could be adapted and generalized for other

eukaryotic genomes with minor modification.

As we have shown in Chapter 3, a pan-genome can be obtained from the com-

parative genome analysis of a set of individuals genomes within the same species. In our

cowpea pan-genome, these comparisons were carried out both at the genome level and at
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the gene level in order to provide a comprehensive report of the distribution of present-

absent variations. We showed that the size of the core genome in the cowpea pan-genome

(composed of seven accessions) approaches a plateau, which indicates a satisfactory com-

pleteness of the core genome. Other structural variations were also identified in the cowpea

pan-genome, such as large inversions and translocation, and small variations, such as SNPs

and indels. A total of fifteen large inversions and translocations with size greater than 1 Mb

were reported, including an experimentally validated 4.2 Mb inversion on chromosome 3 for

cowpea accession IT97K-449-35.

In order to carry out whole genome comparison for large genomes, a new pan-

genome representation and visualization pipeline called PGV was developed. The PGV

pipeline is reference-agnostic, which allows one to eliminate the representational bias intro-

duced by arbitrarily using one of the genomes to be the reference. PGV uses a multiple

genome alignment for classifying genomic blocks into core, dispensable or private. PGV

then computes a consensus ordering of core genomic blocks which provides the “backbone”

of the pan-genome. PGV also provides an intuitive linear representation of consensus and

the assembled genomes. The interactive web-based visualization companion tool allows

users to easily explore the structures and the variations across the pan-genome.

In summary, this thesis combined multiple comparative genomics methods for the

genome annotation of three different species, the pan-genome construction of cowpea and a

novel pan-genome representation and visualization. These analytical methods have provided

new biological insights for these species and can serve as a general guidance for genome

annotation, variation analysis and pan-genome studies in other eukaryotic organisms.
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[60] Stefano Lonardi, Maŕıa Muñoz-Amatriáın, Qihua Liang, Shengqiang Shu, Steve I
Wanamaker, Sassoum Lo, Jaakko Tanskanen, Alan H Schulman, Tingting Zhu, Ming-
Cheng Luo, Hind Alhakami, Rachid Ounit, Abid Md Hasan, Jerome Verdier, Philip A
Roberts, Jansen R P Santos, Arsenio Ndeve, Jaroslav Doležel, Jan Vrána, Samuel A
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