UCLA

UCLA Electronic Theses and Dissertations

Title
Unsupervised Learning of Object Descriptors and Compositions

Permalink
https://escholarship.org/uc/item/25k5m6p1l|

Author
Ye, Xingyao

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/25k5m6p1
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Unsupervised Learning of Object Descriptors
and Compositions

A dissertation submitted in partial satisfaction
of the requirements for the degree

Doctor of Philosophy in Statistics
by

Xingyao Ye

2012

(© Copyright by
Xingyao Ye
2012

ABSTRACT OF THE DISSERTATION

Unsupervised Learning of Object Descriptors
and Compositions

by

Xingyao Ye
Doctor of Philosophy in Statistics
University of California, Los Angeles, 2012
Professor Alan L. Yuille, Chair

This thesis presents methods and results to solve the problem of joint object recog-
nition and reconstruction. The proposed solution is a dictionary of deformable
image patches and a hierarchical model encoding spatial compositions. Both the
dictionary and the composition model are learned from data without supervi-
sion. The patch dictionary is shown to achieve state-of-art performance on digit
recognition while capable of high-quality reconstruction. The hierarchical model
is shown to account for human chunk learning behavior not captured by previous
theories. Both learning algorithms are significantly faster and easier to use than

previous methods of similar purpose.

i

The dissertation of Xingyao Ye is approved.

Hongjing Lu

Zhuowen Tu

Ying Nian Wu

Alan L. Yuille, Committee Chair

University of California, Los Angeles

2012

11

TABLE OF CONTENTS

1 Introduction 1
1.1 Part I: Learning a Dictionary of Generative Descriptors 3
1.2 Part II: Learning Spatial Compositions 4
1.3 Previous Works 6

2 A Dictionary of Redundant, Deformable Image Patches 8
2.1 The D-Patch Representation 8

2.1.1 Transformations oL 9
2.1.2 Redundancy o 10
2.2 Matching Patches To An Image 11
2.3 Joint Recognition and Reconstruction 13
2.3.1 Object Classification 13
2.3.2 Reconstruction oo 13
2.4 Will A Random Dictionary Do The Trick? 14

3 Learning the D-Patch Dictionary 18

3.1 The Learning Algorithm 18
3.1.1 Seed Clustering 18
3.1.2 Applying Transformations 19
3.1.3 Parallel Matching using GPUs 20
3.1.4 Feature Selection 21

3.2 The Learned Dictionaries 21

3.3 State-of-Art Digit Recognition and Reconstruction. 24

v

3.4 Dictionary Transfer 25

3.5 Conclusions 26
4 Modeling Human Visual Chunk Learning Behavior 31
4.1 Backgroundo 32
4.2 The Bayesian Chunk Learner (BCL) 33
4.3 The Hierarchical Chunk Learner 34
4.3.1 Model Formulation 34
4.3.2 Maximum-Likelihood Based Inference 36

4.4 Learning The Hierarchical Chunk Model 36
4.5 Predicting Human Chunk Learning Behavior 38
4.5.1 Methods 38
4.5.2 Psychophysical Experiment Settings. 39
4.5.3 Results on Previously Reported Experiments 40

4.6 A New Experiment on Human Learning of Hierarchical Visual Chunks

41
4.6.1 DMotivations 41
4.6.2 Experiment Design 42
4.6.3 Experiment Results 43
4.7 Conclusions 44
5 Summary and Discussions 51
References 53

2.1

2.2

2.3

3.1

3.2

3.3

L1sT OF FIGURES

[ustration of the D-Patch representation. The dictionary of de-

formable patches are generated from a set of seeds plus transfor-

mations. Patches are perturbed and matched to local image regions.

Applying transformations to a seed patch.

Two digit images from the MNIST dataset (top left panel) together
with their reconstructed versions using our learned dictionary (ad-
jacent panel) and a complete list of patches that are activated by
respective images. The patches are sorted in descending order of

their matching scores.

Examples of learned seeds and patches. The left half of the figure
shows seeds learned from MNIST, as well as the most frequent (up
to 5) bases from some of the seeds. The right half shows shows

seeds and patches from USPS.

Synthesized images using the learned and transferred D-Patch dic-
tionaries. The top half shows 100 reconstructed MNIST images
synthesized from a dictionary learned on the same dataset. The
bottom half shows synthesized USPS images by a dictionary learned
on USPS.

Using learned bases as features for recognition. For two MNIST
images, the activation histograms are shown for some of the fired
bases. Observe that some bases are very discriminative, e.g. U-

shape for 4, X-junction for 8, etc.

vi

9

10

17

23

28

3.4

4.1

4.2

4.3

4.4

4.5

Synthesized images using transferred D-Patch dictionaries. The
top half shows 100 reconstructed MNIST images synthesized from
a dictionary learned on USPS. The bottom half shows the other

way around. L.

An illustration of the proposed hierarchical model. The training
scenes in the left column are generated by the inventory of chunks
in the middle column. The right column shows how our hierarchical
model and the Bayesian chunk learner model (BCL) may provide

different explanations over the same training scenes.

Searching for the model’s maximum-likelihood states in two rounds
of belief propagation. Black, white, or striped nodes indicate that

their ML states are on, off, or undecided respectively.

Learning the model structure in two stages. Top: the model com-
position stage starting from 4 basic features. Composed chunks are
listed in a queue. Rectangles show the likelihood ratio tests per-
formed during the process. Bottom: the model selection stage for

the same features.

[lustration of previous experiments on human chunk learning, along
with predictions from our model and the BCL model. Top: the gen-
eral procedure of these experiments. Middle: chunk inventory and
results for an experiment in both [FA05] and [OFA08]. Bottom:

chunk inventory and results for another experiment in [OFA0S].

Top: the chunk inventory and example training scenes used in our
new experiment. Colors are for illustration purpose only and were

not used in the experiment. Bottom: testing trials used in the ex-

30

46

47

48

49

periment, along with human performance and our model’s prediction. 50

Vil

2.1

2.2

3.1

3.2

3.3

L1sT OoF TABLES

List of transformation settings for a seed patch with original size

(s§,sg) onto an image of size (s7,sY).

Error rates of MNIST digit classification.

Statistics of the learned dictionaries.

Comparison of state-of-art digit recognition methods on benchmark

datasets.

Recognition using dictionaries learned on another dataset. Results
are compared between transferring both seeds and patches, trans-

ferring seeds only, and no transfer at all.

viil

10

15

22

25

26

Summer 2007

2008

Summer 2010

Summer 2011

2008-2012

ViTA

Research Intern, Microsoft Research Asia, Beijing, China.

B.Eng. in Computer Software, Tsinghua University, Beijing,
China.

Software Engineering Intern, Google Inc., Mountain View, Cal-

ifornia.

Software Engineering Intern, Facebook Inc., Palo Alto, Califor-

nia.

Research Assistant, Department of Statistics, UCLA, Los An-

geles, California.

PUBLICATIONS

Xingyao Ye, Alan L. Yuille. Learning a Dictionary of Deformable Patches using
GPUs. ICCV 2011 Workshop on GPU in Computer Vision Applications.

Long Zhu, Yuanhao Chen, Xingyao Ye, Alan L. Yuille. Structure-Perceptron
Learning of a Hierarchical Log-linear Model. CVPR, 2008.

Min Zhang, Xingyao Ye. A Generation Model to Unify Topic Relevance and

Lexicon-based Sentiment for Opinion Retrieval. SIGIR 2008.

1X

CHAPTER 1

Introduction

Learning effective mid-level visual representations has long been a topic of interest
in computer vision research. Such a representation facilitate the information flow
of a visual system in both bottom-up and top-down directions. In the bottom-up
flow, raw images are mapped to abstract concepts and categories. Core tasks of
computer vision, such as object detection and recognition, belong to this cate-
gory. In the top-down flow, realistic images are generated from specific high-level

concepts. The whole field of computer graphics is devoted to this problem.

There are many advantages of using a single representation for all kinds of
bottom-up and top-down tasks. First of all, a shared representation is the most
economical solution to deal with the sheer size of possible visual tasks. The human
brain, the best vision system we naturally possess, is able to handle a variety of
vision and graphics tasks effortlessly. It would not be possible for the brain to train
a separate module to solve each task it encounters, for instance, when recognizing
a new object category. The components of a good representation must be shared

and reusable for all possible visual tasks.

A second advantage is that generative features, which possess the capability
of reconstructing the input images, are much more intuitive than discriminative
features, which are adopted mainly because of their superior classification per-
formance. Intuitiveness helps identify the effectiveness of individual components
within the representational framework, and provides better insights on how to

improve them. For discriminative features, progress are made on a more trial-

and-error basis, fine-tuning many parameters in the hope of the desired results
popping out.

Nevertheless, there are several challenges to learning an effective generative
representation. The first one is to compete with discriminative features on recog-
nition performance. In recent years, discriminative features such as SIFT and
HOG enjoy massive popularity due to their good performance on object recog-
nition benchmark datasets. No generative features are able to compete directly
with them on any widely-accepted datasets. If their recognition performance can
level with that of discriminative features, there would be very few reasons not to

use generative features because of the advantages discussed above.

The second challenge is the speed of the algorithm. It is difficult to expect a
representation so general as the one we are proposing here to be faster than dis-
criminative methods. However we do not want to compromise on this point. Part
of the reason for the popularity of discriminative features comes from its relative
fast speed over cumbersome generative ones which try to model everything at
the same time. And to turn computer vision progress into high-impact consumer
products, we have to keep the complexity to a minimum and the algorithm as
near real-time as possible. Basically anything more than linear complexity is not
good enough for the industry to apply to the massive data they possess. So we
made an explicit decision to use linear and sub-linear complexity algorithm all the

time.

State-of-art recognition systems are rarely based on generative representations
for two reasons. First, learning such representation is complex and takes a long
time, and the gain in recognition performance over popular hand-craft features,
such as HOG and shape context, is rarely good enough to compensate for this
cost. Second, many of these systems restrict themselves to recognition only, and
therefore do not require their features to preserve those image details that are

useful for reconstruction. We believe, however, that image dictionaries will be

increasingly important in the future. Future advanced computer vision systems
will need to work on multiple tasks simultaneously, which will encourage them
to adopt the more versatile dictionary representation. But, to achieve this future
requires us to deal with the learning complexity issue and motivates developing
rapid learning algorithms perhaps taking advantage of recent developments in

computer hardware.

1.1 Part I: Learning a Dictionary of Generative Descrip-

tors

In this thesis, we present models and algorithms for learning a shared generative
representation for multiple object categories. Our approach has two main parts.
One is a dictionary of deformable image patches. The dictionary we learn is
comprehensive — the patches are of varying sizes, capturing generic patterns as
well as object-specific structures. Moreover, we neither provide the category labels
nor specify the size of the dictionary during training, making the learning task
harder but more realistic. As a result, we explore a search space of image patterns
much larger than what is usually framed by interest point detectors or random
initializations.

We deal with this challenge by combining two innovations. First, we define a
set of common transformations of patches, and use them to guide our search of
suitable dictionary elements. Instead of trying to collect and cluster all possible
patches in the training images, we construct a preliminary patch set by imposing
transformations on a small random set of seed patches. We have found the result-
ing patch set to be very comprehensive for our needs, capturing almost all useful

patterns for discrimination and reconstruction.

Second, we design a parallel matching framework on Graphical Processors

(GPUs) for evaluating the preliminary patch set on training images. The basic

matching operation computes a similarity measure between a patch and a local
image area. And we use the aggregated similarity statistics as the criteria for
selecting patches into the dictionary. The challenge is that we have to perform
this operation for billions of times during training, because both the preliminary
patch set and the training image set are very large. Such scale of computation is
impossible for a single CPU workstation to handle. Buying or renting thousands of
distributed machines for developing this algorithm is not cost-effective for research
labs either. Therefore, we turn to the recently-available commercial GPU cards,

which are specifically designed to handle such massively parallel computations.

We demonstrate our algorithm and the effectiveness of the learned dictionary
on handwritten digits. The results are preliminary since digits lack the rich tex-
ture of real images. Nevertheless, images of digits possess great variability in
shapes and plenty of intra-class and inter-class ambiguities. We report state-of-
art recognition results on two extensively studied datasets of handwritten digits,
outperforming previous dictionary learning methods as well as classic hand-craft
features like shape context, without using specific domain knowledge or any com-
plex classifiers. In addition, our trained features on one dataset transfer very well
to the other, which proves the generality of our approach. Last but not least, our
dictionary is relatively fast to train. And recognition using our dictionary takes

much shorter time than competing methods thanks again to the prowess of GPUs.

1.2 Part II: Learning Spatial Compositions

The other crucial component of a generative object representation is the spatial
compositions. Descriptors alone can form a naive bag-of-words type model and
achieve fairly good results on many vision tasks. But they are not enough to ad-
dress challenges posted by a lot of common object categories that are articulated.

For example, the human limbs are highly articulated subparts of the body. If

we want to detect them purely by storing patch templates and matching, there
would be too many possible combinations to remember. But this complexity
can be greatly reduced if we introduce a compositional model which encodes the

probability distribution of relative spatial positions of all subparts.

The second part of this thesis proposes a novel hierarchical chunk learning
framework to detect suspicious coincidences of elements during training, and to
form efficient representations of complex visual scenes. We choose to demon-
strate our model’s capability on the problem of predicting human chunk learning
behavior in the area of psychophysics. In this area, basic visual features are rep-
resented by highly abstract symbols, so we are freed from the ambiguous nature
of real image patterns and can focus on evaluating the effectiveness of the spatial

composition model we learned.

The most advanced theory for this problem used to be an ideal Bayesian model,
which has been shown to account for human performance in learning chunks by
passively viewing complex visual scenes. However, this model assumes indepen-
dence among a single layer of visual chunks, and is very time-consuming to train

or test due to the sampling method used to explore the large structure space.

In Chapter 4, we describe a hierarchical visual chunk model coupled with a
novel structure learning algorithm, which addresses these problems. Our model
captures part-to-whole relations between visual chunks, and is able to learn ex-
plicit object representations in an unsupervised manner. The learning algorithm
employs data-driven methods to recover an inventory of visual chunks as well as
their most probable relations. It takes less than a minute to run, much faster
than the several days of sampling required by previous models. Our model is able
to predict human performance on not only previously reported experiments, but
also a newly designed one that addressed the learning of spatial configurations

and the subparts of visual chunks, respectively.

1.3 Previous Works

There has long been interest in describing images in terms of generative dictio-
naries to provide adaptive representations for a variety of vision tasks. Examples
include modeling receptive fields [OF96], texture [EF01], appearances [BPP0S|,
and object categories [FJ03]. In this thesis, we are particularly interested in the

use of dictionaries for object recognition and reconstruction.

Various types of generative descriptors have been designed and tested over
recent years. Ullman and collaborators have advocated the use of intensity patches
in segmentation [BU02| as well as object recognition [EU05]. But their patches
were not deformable. Wu et al [WSFO07] introduced local deformation in their
active basis model, but the bases were pre-specified to be Gabor functions. Zhu et
al [ZCT10] and Fidler et al [FLO7] proposed methods to learn hierarchical object
models based on edgelets. However, their recognition performance were inferior
on most object categories including handwritten digits to purely discriminative

systems.

Recent progress in deep learning by Hinton et al [HOTO06] has led to a series of
works for learning unsupervised generative dictionaries [RHB07, LGR09, JKR09]
using hierarchical convolutional networks. However, as discussed in [BBLI10,
CLN10], a lot of parameters needs to be carefully selected for the network to per-
form well. But neither the meaning of the network units nor their relationships
to the parameters were intuitive enough to guide the tuning. By contrast, our ap-
proach opts for a very intuitive dictionary with a small set of easy-to-understand

parameters.

Another notable approach to dictionary learning is reported by Mairal et al
[MBPO08], who trained supervised dictionaries for objects and texture classes. But
their approach is not scalable since dictionaries of each class are trained separately,

requiring additional training images and labels whenever a new class is added. On

the contrary, our unsupervisedly trained dictionary enables features to be shared

among different categories.

Previous theories on human’s chunk learning behavior are mainly discussed in
the relevant chapter in Section 4.1. Though the idea of compositionality has not
played a role in this area before, it has long been advocated by vision researchers
in related fields. For example, Geman et al. [BGP98] argued for its economical
representation of shared parts between objects, and robustness to occlusion and
deformation in visual cognition. Considerable success has been achieved by ap-
plying this principle to learn hierarchies of features and parts for the computer
vision application of object recognition [ZCY07, EU05, FL0O7]. Compositions of
shape fragments, interest points, and grayscale patches in these papers are good

examples of grouping visual features into a hierarchy of chunks.

CHAPTER 2

A Dictionary of Redundant, Deformable Image

Patches

In this chapter, we present a novel mid-level representation — the D-Patch dictio-
nary, for the problem of simultaneous object recognition and reconstruction. We
first give an overview of this representation framework in Section 2.1, highlighting
its two key aspects: redundancy and transformation. The problem of inference,
i.e. how to map an input image to an instance of this representation, is tackled
in Section 2.2. Finally, we present methods to utilize the dictionary for object

recognition and reconstruction in Section 2.3.

2.1 The D-Patch Representation

We choose to use the most basic image descriptor - patches in their raw intensity
values - as features in our generative dictionary. They are simple, easy to interpret,

and are suitable for both discriminative and generative tasks.

Note that features like HOG, SIF'T, and shape context are based on histograms,
and so are not well suited for reconstruction (despite their successes for recogni-
tion). Filter-banks of Gabor or wavelet functions are alternative descriptors, but

have restricted forms and cannot adapt flexibly to different appearances.

The patches in the dictionary are designed to be flexible. They are rectangular
areas cropped directly from any training images. They can be of any sizes larger

than 5 x 5. They can come in any orientations, covering non-rectangular local

Seeds H|

Transformation ¢
Dictionary e
X

Perurbation i

& Matching
Images H:'\V

Figure 2.1: Ilustration of the D-Patch representation. The dictionary of de-
formable patches are generated from a set of seeds plus transformations. Patches

are perturbed and matched to local image regions.

image patterns. We describe a D-Patch P in terms of a seed patch S (always in

upright orientation) and its transformation parameters 7.

P=(5T), T = (84,84,0,2,7) (2.1)

2.1.1 Transformations

The transformations are controlled by five parameters T = (s, sY,0, z,y). (s*, s¥)
are the width and height of the patch in its upright form. # is the rotation angle.
And (x,y) specifies the image position of the rotated patch. See Figure 2.2 for a

graphical illustration on how these 2D transformation is applied to a seed patch.

Table 2.1 summarizes all the supported transformation configurations. As a
result of these pre-defined transformations, our dictionary is capable of covering
a wide spectrum of local image patterns from smaller, generic ones (edgelets,
strokes, corners) to larger, object-specific ones (T-junctions, X-junctions, rings).

See Figure 2.1 for an illustration.

& : E E g
R [\
- Scaling P I I L™ L™ L™ Rotation ["] Translation n n
T leeceee Tl e, | PEE
LEE
| aaE
 J H . M

Figure 2.2: Applying transformations to a seed patch.

Table 2.1: List of transformation settings for a seed patch with original size (sg, sf)

. . €T y
onto an image of size (s7, s¥).

Type Parameter | Min Value Max Value | Stride
s” max(5,0.5s7) | min(s7,2s7) | 2 pixels
Scale
sY max(5,0.5s§) | min(s¥,2s§) | 2 pixels
Orientation 0 —45° 45° 15°
x 1 s7—s5+1 | 1 pixel
Position
Yy 1 s —sp+1 | 1 pixel

2.1.2 Redundancy

Another crucial characteristics of this dictionary is its redundancy. We do not
pursue to cluster semantically-equivalent structures into one dictionary element.
Strokes and junctions can have many different actual configurations and our dic-
tionary should cover all frequent instantiations by including all these different
templates. The capability of neatly grouping these concepts is of secondary im-
portance to us. This deliberation ensures the quality of pattern reconstruction
from the dictionary without modeling the interactions between the dictionary

elements.

Neither do we aim to segment image areas into non-overlapping regions, each

10

explained by a different patch template. Such an approach is adopted widely in
the image modeling works based on local basis functions. We elaborately keep the
activated patches for one single image as redundant as possible. For example, a
short stroke can simultaneously be part of a long stroke patch, part of a corner,
and part of parallel strokes. All three larger components can contribute to the
comprehension of the whole image. See Figure 2.3 for a visual illustration of
this idea. Consequently we have plenty of features to aid the recognition task,

explained in the last section of this chapter.

2.2 Matching Patches To An Image

To obtain a D-Patch representation of an image, we match the whole dictionary to
the image and record a list of activated patch templates. The core decision here
is the similarity measure between a patch and its corresponding image region.
Following the example of Ullman et al, we use the normalized correlation between

the patch P and the image I:

rGujzijzyx_zf_y)ePLu (2.2)

z€P yel
In order to make the matching robust to local variations, we allow the patch
to perturb locally in terms of its transformation parameters. The best normalized
correlation value among all perturbed versions is adopted as our actual matching

score.

P=(S\T+Ar) Ar<|(2215°272) (2.3)
7(I, P) = maxr(/,]5) (2.4)
P

11

We represent an image by the set of patches that fire on the image. A patch
P; fires on an image I; if its matching score after perturbation is higher than a

threshold.

However, a fixed threshold is not good enough for our flexible D-Patch dictio-
nary, since we allow patches of different sizes. The normalized correlation value is
by itself a rather inconsistent indicator of visual similarity across different vector
sizes. Two small patches tend to yield a high correlation easily, while it is very

difficult for two large patches to do so even when they are visually more similar.

To solve this problem, we introduce the t-statistics of the normalized corre-
lation value. When we consider the correlation as a statistics computed from
two samples, the correlation value follows the t-distribution of a freedom degree

determined by the sample size N, which is exactly the size of the patch.

_ [N =2
t=r 1_f2~T(N—2) (2.5)
p=1—tcdf(t, N —2) (2.6)

After this calibration step, we can compute the activation of patches as follows
using a fixed 7. Picking the threshold value is very easy because this is a widely-
used p-value statistics. Normally people use 0.01 or 0.005 to indicate a significant
trend, which in our case corresponds to a match between a patch and the input

image.

1 if p(1;, P;) > 1
Fz‘,j _ P(J) (2.7)
0 otherwise

The firing states of all patches in the dictionary on an image forms a binary

vector, which we use as features for training recognition models and classifying

12

test images. Figure 2.3 shows the fired patches among our learned dictionary for

two digit images.

2.3 Joint Recognition and Reconstruction

In this section we introduce ways to use the same D-Patch dictionary for both

object recognition and reconstruction.

2.3.1 Object Classification

The recognition method is straightforward and standard in computer vision re-
search. We treat each firing vector as the feature vector of the image. Then we

feed these vectors to a standard classifier such as SVM or boosting trees.

In the case of multi-class classification (M > 2), we train C%, one-versus-one
classifiers, each trained from a binary classification sub-problem. For example, to
classify 10 digits, we train 45 1-vs-1 classifiers. The final prediction is obtained

from majority voting of these classifiers.

Throughout experiments reported in this thesis, we utilize the standard SVM-
Light package [Joa] and employed two most basic kernels - linear and radial basis
function. For linear kernels, the default parameter set by SVM-Light is used. For
RBF kernel, we use a validation set of 10,000 images to choose the best values of

a pair of parameters (v,).

2.3.2 Reconstruction

The reconstruction of an image from the dictionary is carried out on a per-pixel
basis. We synthesize each pixel in the image from the corresponding pixel of
the best matching patch in the dictionary that covers this pixel. This non-linear

image model essentially generate each pixel from the patch in the dictionary that

13

provides the closest match to its neighboring image area.

I(x) = P*(x) P*(xz) = argmax p(l,P;) (2.8)

Pj:xePjAFj=1

Another way to understand this reconstruction process is through the analogy
of a piling up process. We sort all matched templates by their score from top to
bottom, pile them all together, layer over layer, and finally look over the pile from
the very top. What we see is the highest-scored patch, followed by the second-best

patch excluding its overlapping area with the first, and so on.

Such a process is quite commonly used in the field of computer graphics. The
phenomenal work on textual synthesis by Efros and Freeman [EF01] used a similar
approach of merging overlapping patches with consistency constraint to get a full

reconstruction of the desired texture.

2.4 Will A Random Dictionary Do The Trick?

To assess the effectiveness of our representational framework, we experiment with
a baseline system where patches are sampled at random. No parameterized trans-
formations or local perturbations are allowed. Elements in such a dictionary are
not very flexible individually. The effectiveness relies solely on the redundancy of

the random seed patches.

To obtain a set of seeds, we randomly extract 100 rectangular patches from
each training image. For our handwritten digit dataset, the images are of size
28 x 28. We extract patches at random sizes from 7 x 7 up to 14 x 14 at all
possible pixel locations. This dense multi-scale sampling strategy ensures the

completeness of the seed set.

Then we carry out a few edge-based shape cleaning to the sampled patches.

First we use the Canny edge detector to track edges in each patch. Patches whose

14

longest edge chain is shorter than the width or height of the patch, and whose
shortest edge chain is less than 3 pixels long, are discarded. Second, we crop out
empty rows and columns on the patch boundaries, provided that the entire row
or column is at least 2 pixels away from the nearest edge pixel. Other than these

no further pruning or deliberate selection is applied.

Such a naive representation leads to surprisingly good digit recognition per-
formances. The results are summarized in Table 2.2. In particular, a random
dictionary sampled from 10,000 images achieves much better performance than
using 60, 000 raw images, which demonstrates the effectiveness of the patch rep-
resentation framework. Furthermore, the patch dictionaries work very well with
linear classifiers. This is an important achievement because linear classifier is
much faster than K-NN or SVMs with polynomial kernels, and can scale to large

amount of data fairly easily.

Table 2.2: Error rates of MNIST digit classification.

Training Set Size
Dictionary Learning Method | 1,000 10,000 60,000

Random Patches | Linear Classifier | 7.73% 2.87%
Learned Patches | Linear Classifier | 2.73% 1.40% 0.70%

Raw Image Linear Classifier 12.0%
Raw Image K-NN Classfier 2.83%

The biggest problem with the random dictionary is that it scales badly with
the size of the training set. Randomly-cropped patches are overly redundant when
the training set gets big, wasting unnecessary storage and processing time. As a
result, we were unable to apply this random dictionary to the complete MNIST
training set. On the contrary, a learning process serves to discard less useful
patches and maintain a more compact set of patch which is good enough for the

task at hand. This will enable us to exploit the complete training set fairly quickly,

15

reaping better recognition results than the baseline system.

16

Illlll.ll..lll
AENEAnaENEANES
HEEEEEEAEEEEEE
iGN SAOEEEEE
1 I I I S P S I O S
HEESNERNNNEEEE
HEAENEnAnSAEnE
HHENDENEENnEES
HEENEEENNRENE
GHENEESENANEES
L 15 1 I o e

Figure 2.3: Two digit images from the MNIST dataset (top left panel) together

with their reconstructed versions using our learned dictionary (adjacent panel) and

a complete list of patches that are activated by respective images. The patches

17

are sorted in descending order of their matching scores.

CHAPTER 3

Learning the D-Patch Dictionary

In this chapter, we present a method to learn a D-Patch dictionary given a set of
training images. The images contain objects from different classes but we don’t
have the label information. The size of the dictionary is not specified either. Our
learning algorithm is able to discover a reasonable set of image patches that can
fulfill both the recognition and the reconstruction tasks outlined in the previous

chapter.

3.1 The Learning Algorithm

The D-Patch dictionary are learned through four stages after the initial seed set
is extracted from the training images, as described in the previous section. We
describe them in detail below, along with an estimate of the complexities involved

at each step.

3.1.1 Seed Clustering

First, a clustering algorithm is employed to reduce the redundant shape patterns.
We used a density-based clustering method described in [EKS96]. The algorithm
scans through the list of patches and assigns a patch to an existing cluster if the
similarity between the patch and the center of the cluster is above a threshold.
Here we used the same similarity measure and threshold presented in Eqn. 2.7. If

no good match can be found, a new cluster centered around the current patch is

18

created. Given the threshold, the number of clusters are determined automatically.
This clustering algorithm has a complexity of O(NM) where N and M are the

number of patches before and after clustering.

The resulting cluster centers form our set of seed patches. The outcome may
vary depending on different orderings of the patches being fed to the clustering al-
gorithm. But in our experiments this has negligible effect on the final dictionary’s

performance in recognition and reconstruction.

We intentionally limit our seed candidate to be sampled from a relatively
small set of training images, because the cost of dense-sampling and subsequent
clustering is high. Therefore, the next stage aims to enrich this compact set of
seeds so that we can have a set of patches flexible enough to cover most shape

variations in the training images.

3.1.2 Applying Transformations

We have found that applying a set of transformations on each seed suits this
purpose well. This is because a lot of the shape variations can be attributed to
parameterizable transformations — scaling, rotation, and translation. After we
factor them out, the remaining variations are relatively small and seem to have

been captured by our seed set.

For each seed, we apply all possible transformations defined in Table 2.1, as
illustrated by 2.2. There are roughly 10,000 transformation settings in total. Our
last clustering step results in around 1,000 centers. Therefore we end up with
around 10 million preliminary patches to select our final dictionary from. In order
to evaluate them, we have to match them to all the training images, which is
60,000 for MNIST. A problem of this scale is out of the reach of normal computer
hardware. Fortunately, an emerging generation of massively parallel Graphical

Processors (GPUs) makes such computation possible.

19

3.1.3 Parallel Matching using GPUs

The matching operation between a patch and an image, as described in Section 2.2,
needs to be performed billions of times during the training of D-Patch dictionary.
However, a lot of these operations is parallelizable on GPUs. We make use of
two key observations on this problem. First, the result of all these matching
operations are independent of each other, meaning the matching can be computed
by separate hardware units. Second, many operations, if carried out at the same
time, access the same piece of data. In particular, accesses to image pixels by
neighboring matching operations exhibit a coalesced pattern, which is ideal for

the GPU architecture.

To match all transformed copies of a seed to the entire set of training images,
we first stitch together all training images as one giant one. Then scaling and ro-
tation is performed on the seed. Finally, we match each of these semi-transformed
patches to all pixels of the stitched image simultaneously on parallel cores. Under
this strategy, all matching operations between the same scaled and rotated patch
to every possible image regions in the training set are parallelized. Tens of millions

of matching operations can be performed at the same time.

On the memory access front, all the parallelized operations read from the
same semi-transformed patch, which is a small matrix and can be stored in con-
stant memory for fastest access. Matching operations centered on neighboring
pixels always read neighboring image values and write back to neighboring out-
put addresses, which enable coalesced global memory access almost everywhere.
Pre-loading data into shared memory may bring further speedup but we have not

adopted this strategy yet.

Using a single 240-core Tesla C1060 GPU card, we are able to reduce the time
for computing normalized correlations between 10 million preliminary patches and

60,000 training images to about 4 hours. The same parallel matching strategy is

20

used for classifying a new image using a learned dictionary of about 10,000 patches.
And we are able to process more than 100 testing images in parallel in less than

a second, achieving real-time performance.

3.1.4 Feature Selection

After matching all preliminary bases to the images and obtaining their firing statis-
tics, we then select the final D-Patch dictionary elements in a greedy manner. The
selection is mainly based on the firing frequency. First, non-maximal suppression
is applied to firings between the same patch and multiple neighboring positions
of the same image to remove duplicate counts. Then, we sort the preliminary
patches from the most to the least frequent, and select them in this order. Every
time a patch is selected, we suppress similar versions of it by eliminating patches
generated from the same seed under similar transformation settings (the suppres-
sion range is twice the perturbation range described by Eqn. 2.3). The selection
stops when the firing frequency falls below a threshold. We set the threshold to

be 1% in this paper.

We list in Table 3.1 the number of patches we are dealing with at each stage of
the learning process. Though the transformation stage significantly increased the
number of patches we consider, only about 0.1% of them were picked in the final
selection stage. From another perspective, on average 10 transformation settings

of each seed were accepted as useful patches.

3.2 The Learned Dictionaries

In this section we present qualitative properties of the learned dictionaries. In
particular, we evaluate the quality of the learned dictionary from four aspects —

intuitiveness, completeness, sparseness, and discriminative ability.

First, we show in Figure 3.1 a subset of the learned dictionary. The dictionary

21

Table 3.1: Statistics of the learned dictionaries.

Dataset MNIST USPS
Training Size 1,000 | 10,000 | 60,000 7,291
Seeds 1,140 603
Prelim Patches 15,427,836 9,685,896

Learned Patches 10,264 | 9,714 | 9,727 6,343
Firing Freq. (Train) | 5.08% | 5.23% | 5.20% | 8.03%
Firing Freq. (Test) | 5.15% | 5.36% | 5.32% | 8.30%

elements are very intuitive. Our seeds set captures a wide range of structures, from
elementary ones (edgelets, corners) and complex ones (T-junctions, X-junctions,
rings). Most seeds contain structures that can be shared between multiple digits,
while some are more digit-specific. The D-Patch dictionary successfully captures
the frequent modes of transformations. Interestingly, different transformations of
a seed patch may correspond to different digits. For example, a ring pattern could

become part of 2, 6, 8 and 9 when appearing at different locations.

For completeness, we show a collection of synthesized images using the learned
dictionary in the left half of Figure 3.2. The synthesized images are obtained by
the method described at the end of Section 2.3. We observe that our dictionary
is capable of covering all possible shape variations, with no details left behind,
although we do not explicitly minimize reconstructive errors in our learning algo-

rithm.

Our learning algorithm does not impose sparsity either, but sparseness of the
firing vectors comes out naturally after training. Table 3.1 shows around 5% of
the learned patches fire on average for an MNIST image. For USPS, the pro-
portion is 8%, a bit higher but still quite sparse. This sparsity behavior can be
mainly attributed to the many digit-specific mid-level structures contained in the

dictionary for 10 different digits.

22

moll
m B
BRI E e
GRS
RS
—EEEEE
el B
m R
- EESEE
—

Figure 3.1: Examples of learned seeds and patches. The left half of the figure

shows seeds learned from MNIST, as well as the most frequent (up to 5) bases

from some of the seeds. The right half shows shows seeds and patches from USPS.

Finally, we demonstrate the discriminative power of the patches in Figure
3.3. For each D-Patch, we visualize its firing rates on the 10 digit categories in
an activation histogram, for training and testing images respectively. We find
that some of the learned patches are very good weak classifiers. For example, an
X-junction near the center of the image is a strong indicator for an 8, a weak
indicator for a 2, and a negative indicator for other digits. It is the presence
of many patches like this that leads to impressive digit recognition performance,

which is reported in the next subsection.

23

3.3 State-of-Art Digit Recognition and Reconstruction

We achieved state-of-art handwritten digit recognition results on both highly com-
petitive benchmark datasets, the MNIST and USPS handwritten digits. Both sets
have been extensively studied in the past and near-human level performance have
been reported already. We are able to match the state-of-art performance with a

much simplified representation and learning framework.

For the purpose of a fair and easy-to-reproduce comparison, we use the stan-
dard SVM-Light package [Joa] and employed two most basic kernels - linear and
radial basis function for our recognition tasks. For linear kernels, the default pa-
rameter set by SVM-Light is used. For RBF kernel, we use a validation set of

10,000 images to choose the best values of a pair of parameters (v, C).

Note that the above choice of classifiers is much less elaborate than previous
methods. Most deep learning works employ a specially-trained Support Vector
Machine with 5 to 9 degree polynomial kernel. Such training takes too long to

complete and have a high tendency towards over-fitting.

Table 3.2 shows that our classification error rates are better than the best
competing methods from supervised dictionary learning [MBPO8], which also re-
ported performance on both MNIST and USPS. Our results are also better than
the deep learning based method when training on a smaller set of images [LGR09].
Our recognition performance is very close to the individual state-of-art on either
MNIST [JKR09] or USPS [HK02]. And we perform better than the classic shape

context feature [BMP02] without having to store all training images in testing.

Our approach delivers good performance even with simple linear classifiers.
This is important because linear classifiers are very fast to train and therefore
can be applied to large datasets easily. This merit is usually downplayed in the
academia but is a must-have quality for developing exciting vision products in the

industry.

24

Table 3.2: Comparison of state-of-art digit recognition methods on benchmark

datasets.
Dataset MNIST USPS
Training Size 1,000 | 10,000 | 60,000 | 7,291
Testing Size 10,000 2,007

D-Patch Dictionary + Linear SVM | 2.73% | 1.40% | 0.70% | 3.04%

D-Patch Dictionary + RBF SVM 2.56% | 1.26% | 0.60% | 2.84%

Shape Context + kNN [BMP02] 0.62%
Supervised Dictionary [MBPOS] 1.05% | 3.54%

Deep Belief Network [LGR09] 2.62% 0.82%

Convolution Network [JKR09] 0.52%
USPS-specific Kernel Learning [HK02] 2.40%

3.4 Dictionary Transfer

Finally we demonstrate the transfer capability of our dictionaries. Few prior
works have addressed the issue of using features learned on one dataset to encode
another dataset, as generality of the learned dictionary are usually considered
secondary to classification performance. However, we feel that a useful dictionary
must be general enough to transfer its discriminative ability across datasets. We

demonstrated such ability in our learned dictionaries.

We tested two different transfer settings. One is to transfer the complete D-
Patch dictionary trained on one digit database to the other. The other setting
transfers the seed candidate set only and learns a new D-Patch dictionary on the
target dataset. Results are summarized in Table 3.3 for recognition and Fig 3.4

for reconstruction.

In general, transferred dictionaries work effectively for our applications. Seeds

appear to be a better choice to transfer since they encode invariant structures,

25

Table 3.3: Recognition using dictionaries learned on another dataset. Results are
compared between transferring both seeds and patches, transferring seeds only,

and no transfer at all.

Seeds Bases Test | Linear SVM | RBF SVM
MNIST MNIST 3.39% 3.14%
MNIST USPS USPS 3.03% 2.89%

USPS USPS 3.04% 2.84%

USPS USPS 0.96% 0.87%

USPS MNIST MNIST 0.78% 0.66%
MNIST MNIST 0.70% 0.60%

while patches can be affected by different digit writing styles in different datasets.
For instance, USPS digits are often wider and thicker than MNIST counterparts.
In addition, seeds learned from MNIST seems to encompass richer structures than
seeds from USPS and gives better results, probably due to a more comprehensive

training set.

3.5 Conclusions

This chapter presents a method for learning deformable dictionaries of image
patches for representing shapes. Our learning algorithm imposes a large set of
transformation on a randomly sampled set of seed patches to enrich the search
space of dictionary elements. The evaluation of this space is made possible by
using Graphical Processors and designing a massively-parallel template matching
framework. We evaluated our approach quantitatively on the MNIST and USPS
databases and obtained results comparable to the state of the art. We also demon-
strated the possibility of transferring the learned dictionaries from one dataset to

the other.

26

The key insight of the learning procedure is that the emergence of parallel
computing hardware such as GPUs enables the aggregation of certain computa-
tion (deformable template matching by normalized correlation in our case) on
a unprecedented scale. We are then able to opt for simpler techniques (inten-
sity patches as features, greedy feature selection based on frequency, and linear
classifier) without losing performance as compared to more complex counterparts.
Besides, we get much faster speed and more intuitive intermediate representations

at each step of the whole system.

27

QESEINESSE
SEOSOO0AEIS
Sl fafobelm ool
S0CESSNGGE
Lo~ O[S fe-l ol il Of=1
L =l Qs oo [
-EEgﬁEE%EE-IHIﬂEEEIIE
SERANNSNEEN AASSOEHEGN
ENSORNEESE BRENSRGCSE
ZROVHARGHNS BDESSREEOE

8lo]al[0[2]

Figure 3.2: Synthesized images using the learned and transferred D-Patch dictio-

IEEHEE

naries. The top half shows 100 reconstructed MNIST images synthesized from a

dictionary learned on the same dataset. The bottom half shows synthesized USPS
28

images by a dictionary learned on USPS.

1 .
08 M Train
0.6 : W Test
01234567829
1 - . 1 .
08 - . N Train 08 N Train
0.6 - B Test 0.6 B Test
0.4 - 0.4
0.2 - 0.2 I '
0 = 0 =l
01234567879 01234567829
1 - . 1 .
08 - M Train 08 M Train
0.6 - W Test 0.6 B Test
0.4 - I 0.4
0.2 - 0.2 I
0 - 0 A= -.-
012345678%9 01234567 8%59
1 .
08 M Train .
0.6 W Test J
g 0.4
0.2
0
01234567 8°5
1 - . 1 - i
08 - W Train 08 - W Train
0.6 - MTest 0.6 4 MTest :
0.4 - 0.4 -
0.2 - 0.2 -
1] . 0 B ..
012345678%9 01234567889
1 - . 1 - .
08 - M Train - 08 - M Train !
0.6 - HETest 0.6 - MTest
0.4 - 04 -
0.2 - 0.2 -
o - 0 P | A
01234567879 01234567829

Figure 3.3: Using learned bases as features for recognition. For two MNIST
images, the activation histograms are shown for some of the fired bases. Observe

that some bases are very discriminative, e.g. U-shape for 4, X-junction for 8, etc.

29

REBGCIeR8SGH
2L/4ak 19 jequizialy,
HDIIIIII

R
G eI
E
=
3 €
0
AL

~C

Be

m
2
7161

&
Iﬂﬂﬂllmlll

Eﬂﬂﬂﬂﬂﬁ“ﬂiﬂﬂﬂﬂ!ﬂﬂ!ﬂﬂ

Figure 3.4: Synthesized images using transferred D-Patch dictionaries. The top
half shows 100 reconstructed MNIST images synthesized from a dictionary learned
on USPS. The bottom half shows the other way around.

CHAPTER 4

Modeling Human Visual Chunk Learning

Behavior

Though the patch descriptors introduced in the previous chapters are very effective
in various tasks, it is lacking several key ingredients for representing real-world
objects. Most visual objects are compositional, and many exhibit flexible spatial
configurations. Therefore a well-rounded object representation must be able to
deal with hierarchical compositions of local descriptors. In this chapter, we provide
a solution for this problem and show that it accounts for human compositional

learning behavior under a novel experiment.

The chapter is organized as follows. We first summarize existing theories on the
topic of human compositional learning in Section 4.1. Among them, we pick out
the latest state-of-art model, the Bayesian Chunk Learner, and provide a detailed
analysis in Section 4.2. Then we present our new model, the Hierarchical Chunk
Learner in Section 4.3, followed by a novel inference algorithm in Section 4.3.2 and
a learning procedure in Section 4.4, highlighting the reduction of computational
complexity. In Section 4.6, we report a new psychophysical experiment, where
human observers learned compositional concepts that are not supported by BCL

but our model.

31

4.1 Background

Ever since Helmholtz [Hel25] characterized perception as a process of unconscious
inference, a fundamental question in perception research has been how the vi-
sual system forms efficient representations of complex scenes, allowing seemingly
effortless inferences to be made. The classic study by Miller [Mil56] on human
short-term memory demonstrated that chunks can be formed in order to increase

the number of items that the human mind can code and represent at one time.

Later research showed that, as early as 14 months of age, human infants are
able to bind individuals into sets and thereby increase their representational capac-
ity [FHO3]. Furthermore, Fiser and Aslin [FAO1] reported that after a brief period
of passive viewing of complex visual scenes, human adults can readily encode and
remember shape conjunctions, even though observers were not instructed to at-
tend to any particular features of the displays. More generally, the ability to form

chunks from complex inputs is a hallmark of human perception and cognition.

However, the mechanisms by which a human learner can form chunks remain
poorly understood. Two general explanations have been offered in the literature.
One is that high-level schema processing may provide top-down information, which
is combined with low-level information to form chunks [CS73]. Although this is an
appealing proposal, the origin of the high-level schema knowledge remains unclear
(i.e., whether the schemas are innate or acquired via some learning mechanisms).
The other proposal is that humans rely on bottom-up statistical learning based
on repeated exposures to inputs and detecting suspicious coincidences [ZCY07]
of elements during learning, thereby extracting chunks from low-level information

[GLCO01] via a bootstrapping approach.

32

4.2 The Bayesian Chunk Learner (BCL)

Recent work by Orban et al. [OFA08] provides support for the second mechanism
of statistical learning. They found that a Bayesian model based on extracting
chunks from complex visual patterns accounted for human performance much bet-
ter than did a simple associative learning model that encodes the full correlational

structure of the visual inputs.

Although this Bayesian chunk learner model (denoted BCL) advanced our
understanding of the underlying principles in visual chunk learning, two critical
issues prevent this model from being a general computational framework for hu-
man chunk learning. Below we elaborate on these limitations and present our

approach to overcome these issues.

The first limitation stems from BCL’s representation of visual chunks as a
single layer of hidden units that never interact with each other. As a consequence,
the appearance of any two chunks constitute independent events. However, it
is apparently advantageous for the human visual system to represent complete

objects and their parts as separate but interacting chunks.

This idea, termed the compositionality principle, has long been advocated
by vision researchers in related fields. For example, Geman et al. argued for
the economical representation of shared parts between objects, which can yield
robustness to occlusion and deformation in visual cognition [BGP98]. Consider-
able success has been achieved in computer vision by applying this principle to
learn hierarchies of features and parts for the application of object recognition

[ZCY07, EU05, FLO7].

Accordingly, we propose using hierarchical models to represent visual chunks.
The hierarchical structure allows large chunks to be composed of other smaller
ones, leading to more accurate probability distributions for modeling part-based

objects. In a new psychophysical experiment reported in this paper, we show that

33

human performance agrees with the prediction of our hierarchical approach for the
task of picking up an untrained visual chunk that is part of a larger trained chunk.
Such an effect could not be captured by BCL, which predicts chance performance

on the untrained chunk.

The second limitation of BCL is the efficiency of their algorithm. BCL adopted
a fully Bayesian computation using MCMC sampling over the entire model space.
Given the high dimensionality of visual scenes, the algorithm typically takes sev-
eral days of computation. We demonstrate in this paper that the maximum-
likelihood (denoted ML) estimates of model states, parameters, and structure are
sufficient to account for human performance. The proposed ML method can esti-
mate model states via an efficient inference algorithm, and assess structure by a
data-driven composition and validation procedure based on a series of likelihood
ratio tests. As a result, we are able to dramatically reduce model training time

to less than one minute.

4.3 The Hierarchical Chunk Learner

In this thesis, we aim to model a set of scenes where a number of elementary shapes
appear over a range of discrete locations. The presence of shapes is determined by
a hidden inventory of visual chunks. Knowledge about these hidden chunks can
only be inferred from a set of training scenes without explicit supervision. This

setting is standard in related literature.

4.3.1 Model Formulation

We develop a probabilistic model to explain the scenes using a hierarchy of visual
chunks (see Figure 4.1). The leaf nodes in the model correspond to directly
observed elementary shapes. The hidden nodes encode the configurations of visual

chunks. One critical difference between this model and BCL is that we allow

34

hidden nodes to be parents of other hidden nodes.

P(x,u|bs,S) = H P (24, 4| par(i)> Upar(i), 05, S) (4.1)

P(x;, | T par(s) WPar(i), 0s,.S) = Bernoulli(z;; Sigmoid(w; + x;jw;;))-
1 o
(ZDNormal(ui; ¢;i,o1 - I)(DNormal(u;; uj + ¢;j, 09 -]))Ij) (4.2)

j = argmax P(x;,u;]0s, 5)
j€Par(i)

Each node 7 in our hierarchical model, whether observed or hidden, can be
present x; = 1 with a discrete 2D position u;, or absent x; = 0, in a scene. Given
a configuration of model structure S and parameters 6g, the probability of a joint
model state of all nodes (x,u) is given by Eqn. 4.1 as the product of individual

nodes’ conditional probabilities on their parents (Eqn. 4.2).

w; gives the spontaneous appearance weight of node i and (¢;, 0 - I) gives its
prior spatial distribution. When a parent is present (x; = 1), w;; quantifies its
influence on the appearance probability of z;, and (c;;, 02 - I') denotes the influence
of parent position u; on u;. DNormal(c,o - I) is a 2D Gaussian kernel defined on
discrete positions. Z is a suitable normalizing factor for the spatial term. We

describe how to estimate these parameters from data in Section 4.4.

The status of a single node can be affected by multiple parent nodes. Since our
model may have more than two layers of nodes, this setting leads to difficulty in
inference due to possible loops in the model structure [Pea88|. Learning also be-
comes more challenging due to the explaining-away effect caused by the existence
of loops [HOTO06]. Therefore we restrict each node to have at most one active
parent, reducing the graph structure to a tree. The parent is chosen at inference

time to maximize the marginal probability of the child node.

35

4.3.2 Maximum-Likelihood Based Inference

In both training and testing, we need to find out the maximum-likelihood state of
the model under a given scene. We use (y, v) for the states of the observed nodes
and (x,u) for those of the hidden nodes. The ML states of the hidden nodes can

be written as:

(x*,u") = argmax P(y,v|x,u, g, S)P(z,ulbs, S) (4.3)

We search for (z*,u*) using a "node-splitting” technique proposed by Choi
et al. [3], which is a variation of belief propagation in its max-product version.
Figure 4.2 gives an illustration of the inference process. In the first bottom-up
pass, we propagate messages from a child node to all of its parents in parallel as if
each of them is the only parent. Then in the first top-down pass, we obtain a set of
marginal distributions for each node (computed by Eqn 4.2). We select the parent
and the node state that provides the maximum marginal probability. After this
step, the graph is reduced to a set of trees. A second round of belief propagation
is performed on the reduced model. This second round is necessary because the

ML states of some nodes might change when they become disconnected from their

children.

4.4 Learning The Hierarchical Chunk Model

Given a set of training scenes D = (y*,v¥), k = 1,..., N, we aim to learn the single
best model structure S* and its associated parameters ¢ under the maximum

likelihood principle.

(0%, S*) = argmax P(D|fs, S) = argmax | | P(y*,v"|0s, S) (4.4)
0s,S 0s,S L

36

The ML solution is much easier to obtain than the entire posterior distribution
P(0s,S|D) required in a Bayesian framework. In Section 4.5.3, we show that this
solution is capable of correctly predicting human chunk learning performance in

previous experiments.

We learn the hierarchical model in two stages, as illustrated by Figure 4.3.
In the model composition stage, we adopt a data-driven approach to search for
possible visual chunks in a highly probable subspace. We compose elementary
shapes into visual chunks in a progressive manner, each time trying to combine
two shapes or chunks together. If a combination appears frequently, we propose
the formation of a new visual chunk. The proposal is validated by a likelihood
ratio test (Eqn. 4.5) between this single-chunk model and a default model with
independent shapes. Accepted proposals are subject to further composition and

later model selection.

P(D|0g,S") _ max,, P(D|z,u,0g S")P(x,ulfg, S")
P(D|#2,5%) ~ max,, P(D|z,u, 62, S?)P(z,u|6%, 5?)

(4.5)

Note that Eqn. 4.5 is using the likelihood under the ML model states as
an approximation of the full likelihood. This saves the learning algorithm from
having to sum over all hidden states (z,u). Instead, we are able to utilize the

efficient inference procedure for (z*,u*), as described in section 4.3.2.

In the model selection stage, we start with the default model, and at each step
greedily add to the model a visual chunk that maximizes the likelihood of training
images. Edges are added between chunks whose shape combinations are a subset
or a superset of each other. The iteration stops when no additional visual chunks
can improve the likelihood. The bottom half of Figure 4.3 illustrates the model

selection process.

Whenever a new visual chunk is added to the model, we need to estimate

the parameters associated with it. Among the six types of parameters 6 =

37

{w;, wij, ¢;, cij, 01,02}, spatial variance gy and o, are hand-specified and fixed
in all experiments. ¢;’s are fixed at the center of each scene. ¢;;’s are estimated
as the mean values of all observed relative positions in scenes where both child
node ¢ and parent node j are present. w;’s and w;;’s are estimated from empirical

statistics with minimum smoothing, as given by the following equations:

Scene;an—pari) + 1 . L S ini + 1
w; = Sigmoid ™ # A= Par() w;; = Sigmoid ! w — w;
#Scene-pqy(iy + 2 #Scene; + 2

(4.6)
4.5 Predicting Human Chunk Learning Behavior

4.5.1 Methods

After the model is learned, we need a way to assess how well the model simulates
actual human chunk learning behaviors. Since the standard way to measure hu-
man learning performance in the literature is to ask human observers to choose
the more familiar chunk between a trained one 7T} and a random distractor 75, our
model simulates this choice by computing the probability of picking the trained

visual chunk as:

(4.7)

P Ty T * *
P(choose Ty) = Sigmoid (ﬁlog (y't,v'10g, S))

P(y™, 0|05, 5*)

The deciding factor in Eqn. 4.7 is the likelihood ratio between the two test
scenes. Note that we use the likelihood of ML states under the ML model structure
and parameters to approximate the full likelihood. Following the setting of BCL,

£ is a parameter used to fit human performance.

38

4.5.2 Psychophysical Experiment Settings

Previous psychophysical experiments [FA01, FA05, OFA08] have investigated how
humans learn structures of visual chunks via passive viewing, a paradigm known
as visual statistical learning. The top panel in Figure 4.4 shows the general pro-
cedure used in these studies (adopted from [FA01]). First, an inventory of visual
chunks was generated by randomly grouping shapes together. Each chunk de-
fined a fixed spatial relationship among its constituent shapes. Then, training
scenes were generated by randomly placing chunks next to each other without
overlaps. Participants passively viewed these scenes during the training session.
Lastly, learning performance was measured in a testing session consisting of sev-
eral trials. In each trial, the participant was presented with one true chunk that
was taken from the inventory, and one false chunk (distractor) that was gener-
ated by randomly putting shapes together in the same spatial layout as the true
chunk. Participants were asked to judge which chunk looked more familiar to
them. Learning performance was taken as the proportion of trials in which par-

ticipants chose the true chunk.

An interesting finding from these experiments is that, while humans were able
to learn larger, complex chunks, they were unable to learn ”sub-chunks” that were
embedded within the learned complex chunks. For example, the middle panel of
Figure 4.4 shows an experiment designed by Fiser and Aslin [FA05], and later
repeated by Orban et al. [OFA08]. Their inventory contained two 4-shape chunks
(quadruple) and two 2-shape chunks (pairs). Each training scene contained one
quadruple and one pair adjacent to each other. They found that learning perfor-
mance for the quadruples and pairs inside the inventory was significantly better
than chance. On the contrary, for pairs that were embedded within quadruples,
observers showed chance level performance despite the pure frequency of display-

ing the embedded pairs were the same as chunks in the inventory.

39

A similar pattern of result was found in a later experiment in [OFA08], as
shown in the bottom panel of Figure 4.4. The inventory included four 3-shape
chunks (triplets), two pairs, and a square quadruple. Each training scene consisted
of either the quadruple and a pair, or a triplet plus a pair plus a single shape from
the quadruple. Their results showed that human learning performance of the
true triplets was better than that of a triplet embedded within the quadruple.
Recognition performance of the latter was not significantly different from chance

level.

4.5.3 Results on Previously Reported Experiments

We include our model predictions for the above experiments in Figure 4.4, side-
by-side with the predictions by BCL. As shown in the figure, our model achieved
comparable accuracies to BCL in predicting human learning performance for both
experiments. All predictions by our model were made using the same 3 value.
Note that although we advocate the modeling of part-to-whole relations, our
learning algorithm will not pick up embedded subparts if they are not distinc-

tive themselves.

At the same time, our model takes less than one minute to train and less than
one second to test for each of these experiments, whereas BCL needs several days
to obtain the millions of MCMC samples required for approximating the posterior
distribution of model configurations. These results demonstrate the significant

improvement in efficiency achieved by our learning algorithm.

40

4.6 A New Experiment on Human Learning of Hierarchi-

cal Visual Chunks

4.6.1 Motivations

Experiments discussed in the last section indicate that an embedded part within
a larger configuration are not encoded as explicit components in internal repre-
sentations. If this were the case, a flat representation with disconnected hidden
units, which was used by BCL, would be adequate. However, as suggested by the
compositionality principle, explicitly encoding parts provides a more robust and
economical representation for common visual perception tasks. For example, face,
arms, and legs are all parts of the human body, but due to frequent occlusions,
these parts are not always visible together in a scene. Yet humans are able to
recognize them both separately and as a whole. For many part-based objects
such as the human body, it is more natural to model their various visual chunks

using a hierarchical structure.

One possible reason why previous experiment results failed to capture the
importance of encoding visual parts might be that observers never viewed an em-
bedded part as a stand-alone visual chunk during training. As a consequence,
the gain in data explanation ability from forming sub-chunks did not compensate
for the increase in model complexity, leading human observers to favor a flat rep-
resentation. To test this hypothesis, we designed a new experiment in which a
shape combination could appear both as part of a large configuration and as a
stand-alone chunk. If human observers are able to form explicit representation of
subparts, we expect that they could readily recognize the trained embedded shape
combination, and, more importantly, induce the complementary shape combina-
tion as a part, despite the fact that the latter combination was never displayed

alone during training.

41

4.6.2 Experiment Design

The basic settings of the new experiment followed those discussed in the last
section. 20 observers in total participated in the experiment. We used the same
12 elementary shapes and randomized the assignment of shapes to chunks for each
human observer. Without loss of generality, letters from A to L are used here to
represent these shapes for easier reference. As shown in the top panel of Figure
4.5, our inventory included two quadruples (ABCD and EFGH) and two pairs (1J
and KL). We then introduced the critical manipulation: for each observer, one
of the quadruples (e.g., EFGH) was chosen to be the target quadruple, and an
embedded pair within it (e.g., EG) was chosen to be the trained embedded pair
(denoted TEP). Choices of both target quadruple and TEP were counterbalanced
across observers. This design of the inventory would allow us to test whether
recognition of the complementary pair (FH) embedded in the target quadruple
would be better recognized than that of the untrained embedded pairs (AC or

BD) in the non-target quadruple.

Training was carried out in two phases. Phase 1 aimed to let observers form
a solid representation of TEP before seeing the quadruple that enclosed it. Ob-
servers first viewed the TEP for 30s. Then, they were asked to detect the TEP
in 96 scenes (48 distinct scenes with 2 repetitions, 2 seconds per scene). Each
scene consisted of 4 adjacent shapes, which may or may not include the TEP.
Afterwards, observers were given a facilitation test block consisting of 12 trials,
with 4 trials for each of the three true pairs in the inventory, i.e. the TEP and the
two stand-alone pairs (IJ and KL). In each trial they judged whether the true pair
or a randomly generated false pair looked more familiar. Observers were 92% ac-
curate on the TEP detection task, and 98% accurate on the familiarity judgment

for TEP, indicating successful formation of representation for TEP after phase 1.

In phase 2, observers passively viewed 104 distinct training scenes, one after

42

another, without doing any task. Each training scene consisted of one quadru-
ple (ABCD or EFGH) and one pair (EG, 1J or KL). As all shapes in a scene
must be distinct, there were five possible types of training scenes: ABCD+1J,
ABCD+KL, ABCD+EG, EFGH+1J and EFGH+KL, with respective frequencies
of 0.125, 0.125, 0.25, 0.25, and 0.25. This setting ensured that the frequencies
for all the untrained embedded pairs (FH, AC, and BD) were equal, allowing us
to have a fair comparison among their recognition performance. The final testing
session consisted of 12 trials, with 2 trials for each of the following 6 conditions:
Target quadruple (EFGH), Non-target quadruple (ABCD), Pair (IJ or KL), Com-
plimentary pair embedded in the target quadruple (FH), Untrained embedded pair
in the non-target quadruple (AC or BD), and the Trained embedded pair (EG).

See Figure 4.5 for visual illustrations on these training and testing scenes.

4.6.3 Experiment Results

Human performance for the TEP (EG) was rather good as expected (0.95), in-
dicating that learning of this substructure in phase 1 was retained in phase 2.
For the other five test conditions, human performance is depicted in Figure 4.5.
Observers recognized the non-target quadruple (ABCD) much more accurately
than identification of its embedded pair (AC/BD) (accuracy 0.75 versus 0.55),
replicating the previous results reported by Fiser and Aslin [FA05]. However for
the target quadruple (EFGH), after learning the TEP (EG), observers were able
to recognize the untrained complementary embedded pair (FH) with a better-
than-chance performance level of 0.68, despite the fact that the complementary
pair had never been displayed alone (just like AC/BD). In other words, observers
induced the complementary pair as a component of a larger structure after acquir-
ing knowledge of the trained embedded pair. This result supports the existence of
a hierarchical representation for the target quadruple; i.e., embedded pairs were

explicitly represented as a component of the target quadruple.

43

Given such training sequences in our new experiment, BCL preferred a fam-
ily of models containing two independent visual chunks for the target quadruple
(EFGH) and the TEP (EG). None of the untrained embedded pairs (FH, AC, and
BD) was picked up as an explicit chunk. Therefore, FH was assigned the same
probability as AC/BD and any other random pairings of shapes. As a result, the

model predicted similar performance on all these untrained pairs at chance level.

Our hierarchical chunk model, on the other hand, placed EFGH as the parent
of EG, which in effect forms a weak representation of the complimentary pair FH.
The resulting hierarchical model assigned more probability to FH compared to

AC/BD, and increased the recognition performance of FH to above chance level.

The human performance in this experiment clearly agreed with the prediction
of the hierarchical model. As discussed in the last subsection, the recognition
accuracy of FH was significantly higher than that of AC/BD and chance level,
but not as good as specifically trained EG and other stand-alone visual chunks.
Apart from FH, human performance on other tested visual chunks roughly agreed
with the predictions of our hierarchical model. Overall, the experiment and sim-
ulation results demonstrated that our hierarchical chunk model is a better fit for
modeling human chunk learning behavior than previous flat models, especially in
complex scenarios where one visual chunk might be a component of other large

configurations.

4.7 Conclusions

In this chapter, we have presented a novel hierarchical approach for modeling
human’s visual chunk learning behavior. The framework includes a hierarchical
chunk model, a fast inference algorithm, and an unsupervised learning algorithm.
There are two main novelties. First, we utilized the hierarchical model structure to

capture part-to-whole relations between visual chunks. Second, we adopt a data-

44

driven maximum-likelihood approach to learn this model, reducing running time
from several days to less than one minute. We reported a new experiment where
chunks and their components were trained at the same time. Human observers
were able to learn a special type of untrained embedded parts under this scenario.
This result is in accordance with our model’s prediction but not BCL’s, due to

the latter’s flat model structure.

45

Scenes Chunk Inventory

(" ™ d ™y
NG
HEBEININE el s ol
alm|l|é]l|a Al
x| % |1 |+ x :
Al |4 - r
F D A
L. . \ A

Hierarchical Chunk Model

,,
=]z
[¥]
s\ AR
T||allt((m] |||]|e]]]

. Y,

Bayesian Chunk Learner
I ™y

7o o
VANA

=||(al[x]

Figure 4.1: An illustration of the proposed hierarchical model. The training
scenes in the left column are generated by the inventory of chunks in the middle
column. The right column shows how our hierarchical model and the Bayesian
chunk learner model (BCL) may provide different explanations over the same

training scenes.

46

1 2 3 4 5

JL instantiations

T

Deduood b
mlm uu[u[u=

2 4 5

first bottom-up ; first top-down

B 7

Figure 4.2: Searching for the model’s maximum-likelihood states in two rounds of
belief propagation. Black, white, or striped nodes indicate that their ML states

are on, off, or undecided respectively.

47

Model Compasition

Ao

observed features validated chunk proposals

Model Selection

CC -
o %&)
=|[2]lx][e] [=][~][2][e]

Figure 4.3: Learning the model structure in two stages. Top: the model composi-

tion stage starting from 4 basic features. Composed chunks are listed in a queue.
Rectangles show the likelihood ratio tests performed during the process. Bottom:

the model selection stage for the same features.

48

- Training: Passive Viewing Testing: Familiarity Judgment
Inventory e
Qe
~ = I o Vs vs vs .o
o X| Iy =
@ i rtse 1] |
\ Time >
(Inventory h 0.9+ - Eggl??/rl.lodel
0.8
Quadruples Pairs §0 7l % j—_E - [JOur Model ’
Bk f
x| [<05 =
[o] o 04" l 1
Llé Quadruple Pair Embedded Pair
L el) [+]1 [1]= [=] [+] [1] a
* X|V5 s ‘vl [i Vs u iI\IS E
- ~N [JHuman
Inventory 0.8 Il BCL Model
— — [C]Our Model
e |T E gOJ il;
|4][¥]0] <1 [1][=r1] | 3°%°] T
<05 aE =
(m[a][w[a] ~ [1] <[+ |7
LAl [+] '
1:6 1:2 1:6 2:6 __ Triplet__ Embedded Triplet
N\ Y, = vs * = v .
D] o] x[+] " [&]x]

Figure 4.4: Illustration of previous experiments on human chunk learning, along
with predictions from our model and the BCL model. Top: the general procedure
of these experiments. Middle: chunk inventory and results for an experiment
in both [FA05] and [OFA08]. Bottom: chunk inventory and results for another

experiment in [OFA0S].

49

(" aYd ™
Inventory 7 Example i
Training [[+]1 +[x
[+]1 [+] e [B] [scenes L
¥ (X A (2 >
T A EW (g
Target Trained Non-target Pairs 1le =|a |+
Quadruple Embedded Pair Quadruple = s 1
\ J\ L
I I CIHuman
0.9+ Il BCL Model|
[CJour Model
%08 + — 4

o

S 07 -
[5)

Q

<€ 0.6 _
T TN Iﬂ ____]
0.4

Target Non-target Complementary Untrained
Quadruple Quadruple Pair Pair Embedded Pair
[#]
+
e e E 1]
a
A VS A A VS
+
(=]~ = 1]
False
Ll 1 0

Figure 4.5: Top: the chunk inventory and example training scenes used in our
new experiment. Colors are for illustration purpose only and were not used in
the experiment. Bottom: testing trials used in the experiment, along with human

performance and our model’s prediction.

50

CHAPTER 5

Summary and Discussions

In this thesis, we tackle the problem of learning a generative representation of
multiple object categories for the application of simultaneous recognition and
reconstruction. We learn such a representation in two separate and complimentary

modules.

The first module is a dictionary of deformable patches. Our approach relies on
two key innovations — introducing a pre-defined set of transformations on patches
to enrich the search space, and designing a parallel framework on Graphical Pro-
cessors (GPUs) for matching a large number of deformable templates to a large set
of images efficiently. We illustrate our method on two handwritten digit databases
— MNIST and USPS, and report state-of-art recognition performance without us-
ing any domain-specific knowledge on digits. We briefly show that our dictionary
has many desirable properties: it includes intuitive low- and mid-level structures,
it is sufficient to synthesize digits, it gives sparse representations of digits, and
contains elements which are useful for discrimination. In addition, we are the first
dictionary learning method to report good results when transferring the learned

dictionary between different datasets.

The key insight of this work is that the emergence of parallel computing hard-
ware such as GPUs enable the aggregation of certain computation (deformable
template matching by normalized correlation in our case) on a unprecedented
scale. We are then able to opt for simpler techniques (intensity patches as fea-

tures, greedy feature selection based on frequency, and linear classifier) without

o1

losing performance as compared to more complex counterparts. Besides, we get
much faster speed and more intuitive intermediate representations at each step of

the whole system.

The second module is a hierarchical model encoding spatial contributions of
low-level descriptors. We presented a novel hierarchical visual chunk model, along
with a fast unsupervised algorithm to learn the structure and parameters of this
model. We demonstrated that the learned model is able to predict previously
reported human chunk learning behavior, and that the training takes less than a
thousandth of the time required by an ideal Bayesian chunk learner. Our model
captures dependence between hidden visual chunks, especially the relation be-
tween objects and parts, which are essential to visual processing but absent from
previous models. In addition, we reported a new experiments that yielded hu-
man results consistent with our model’s predictions concerning learning of chunks
together with their parts, the latter of which cannot be predicted by previous

single-layer chunk models.

52

[Bar89]

[BBL10]

[BGPYS]

[BMP02]

[BPPOS]

[BUO2]

[CCDO7]

[CLN10]

(CS73]

[EF01]

[EKS96]

[EUO5]

[FAO1]

REFERENCES

H.B. Barlow. “Unsupervised learning.” Neural Computation, 1:295—
311, 1989.

Y. Boureau, F. Bach, Yann LeCun, and Jean Ponce. “Learning mid-
level features for recognition.” In CVPR, 2010.

E. Bienenstock, S. Geman, and D. Potter. “Compositionality, MDL
Priors, and Object Recognition.” In Advances in Neural Information
Processing Systems 10 (NIPS-97), 1998.

S. Belongie, J. Malik, and J. Puzicha. “Shape Matching and Object
Recognition Using Shape Contexts.” I[EEFE Transactions on Pattern
Analysis and Machine Intelligence, 24(4):509-522, April 2002.

E. Bart, I. Porteous, P. Perona, and M. Welling. “Unsupervised Learn-
ing of Visual Taxonomies.” In C'VPR, 2008.

E. Borenstein and S. Ullman. “Class specific top-down segmentation.”

In ECCV, 2002.

A. Choi, M. Chavira, and A. Darwiche. “Node Splitting: A Scheme
for Generating Upper Bounds in Bayesian Networks.” In Proceedings

of the Twenty-Third Annual Conference on Uncertainty in Artificial
Intelligence (UAI-07), pp. 57-66, 2007.

A. Coates, H. Lee, and A. Ng. “An analysis of single-layer networks
in unsupervised feature learning.” In NIPS 2010 Workshop on Deep
Learning and Unsupervised Feature Learning, 2010.

W.G. Chase and H.A. Simon. “Perception in chess.” Cognitive Psy-
chology, 4:55-81, 1973.

A. A. Efros and W. T. Freeman. “Image Quilting for Texture Synthesis
and Transfer.” In SIGGRAPH, 2001.

M. Ester, H. Kriegel, J. Sander, and X. Xu. “A density-based algorithm
for discovering clusters in large spatial databases with noise.” In KDD,
p. 226 231, 1996.

B. Epshtein and S. Ullman. “Hierarchical features for object classifica-

tion.” In ICCV, 2005.

J. Fiser and R.N. Aslin. “Unsupervised statistical learning of higher-
order spatial structures from visual scenes.” Psychological Science,
6:499-504, 2001.

93

[FAO5]

[FHO3]

[FJ03]

[FLO7]

[GLCO1]

[Hel25]

[HK02]

[HOT06]

[JGO6]

[JKR09]

[Joal

[LGROY]

[MBPOS]

[Mil56]

[MNI]

J. Fiser and R.N. Aslin. “Encoding multi-element scenes: Statistical
learning of visual feature hierarchies.” Journal of Experimental Psy-
chology: General, 134:521-537, 2005.

L. Feigenson and J. Halberda. “Infants chunk object arrays into sets of
individuals.” Cognition, 91:173-190, 2003.

B. J. Frey and N. Jojic. “Transformation-Invariant Clustering and Di-
mensionality Reduction Using the EM Algorithm.” IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI), 25(1), 2003.

S. Fidler and A. Leonardis. “Towards Scalable Representation of Object
Categories: Learning a Hierarchy of Parts.” In CVPR, 2007.

F. Gobet, P.C.R. Lane, S. Croker, P.C.H. Cheng, G. Jones, 1. Oliver,
and J. M. Pine. “Chunking mechanisms in human learning.” Trends in
Cognitive Sciences, 5:236-243, 2001.

H. von Helmholtz. Treatise on physiological optics. Optical Society of
America, Washington, DC, 1925.

B. Haasdonk and D. Keysers. “Tangent distant kernels for support
vector machines.” In ICPR, 2002.

G. E. Hinton, S. Osindero, and Y. W. Teh. “A fast learning algorithm
for deep belief nets.” Neural Computation, 18(7):1527-1554, 2006.

Y. Jin and S. Geman. “Context and hierarchy in a probablistic image
model.” In CVPR, 2006.

K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. “What is the
best multi-stage architecture for object recognition?” In ICCV, 2009.

T. Joachims. “SVM-Light package.” http://svmlight.joachims.
org.

H. Lee, R. Grosse, R. Ranganath, and A. Ng. “Convolutional deep
belief networks for scalable unsupervised learning of hierarchical repre-
sentations.” In ICML, 2009.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. “Supervised
Dictionary Learning.” In NIPS, 2008.

G.A. Miller. “The Magical Number Seven, Plus or Minus Two: Some
Limits on our Capacity for Processing Information.” Psychological Re-
view, 63:81-97, 1956.

“MNIST handwritten digits database.” http://yann.lecun.com/
exdb/mnist/.

54

[OF96]

[OFA0S]

[Peal8]

[RBLO7]

[RHBO7]

[USP]

B. A. Olshausen and D. J. Field. “Emergence of simple-cell receptive
field properties by learning a sparse code for natural images.” Nature,
381:607 — 609, 1996.

G. Orban, J. Fiser, R.N. Aslin, and M. Lengyel. “Bayesian Learn-
ing of visual chunks by human observers.” Proceedings of the National

Academy of Sciences (PNAS), 105(7):2745-2750, 2008.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference (2nd ed.). Morgan Kaufmann, San Fracisco, CA,
1988.

R. Raina, A. Battle, H. Lee, B. Packer, and A. Ng. “Self-taught learn-
ing: Transfer learning from unlabeled data.” In ICML, 2007.

M. Ranzato, F. Huang, Y. Boureau, and Y. LeCun. “Unsupervised
learning of invariant feature hierarchies with applications to object
recognition.” In CVPR, 2007.

“USPS handwritten digits database.” http://www-stat.stanford.
edu/~tibs/ElemStatLearn/.

[WSF07] Y. N. Wu, Z. Si, C. Fleming, and S.C. Zhu. “Deformable template as

[ZCT10]

[ZCY07]

active basis.” In ICCV, 2007.

L. Zhu, Y. Chen, A. Torralba, W. Freeman, and A. Yuille. “Part and
Appearance Sharing: Recursive Compositional Models for Multi-View
Multi-Object Detection.” In C'VPR, 2010.

L. Zhu, Y. Chen, and A.L. Yuille. “Unsupervised Learning of a Prob-
abilistic Grammar for Object Detection and Parsing.” In Advances in
Neural Information Processing Systems 19 (NIPS-06), 2007.

%)

