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! Membrane!proteins!are!receiving!an!increase!in!attention!due!to!their!rolls!in!cell!

signaling!and!recognition.!In!particular,!they!are!prime!targets!for!drug!design!efforts.!

Computational!prediction!of!binding!affinity!provides!a!useful!prescreening!and!ranking!

tool!for!rational!drug!design,!which!may!be!attained!using!binding!free!energy!calculations.!

Implicit!solvent!based!methodologies!provide!efficient!means!of!performing!such!

computations.!While!generalized!implicit!membrane!solvation!has!been!mainly!supported!

under!Generalized!Born!based!methodologies,!which!seek!to!approximate!full!PoissonK

Boltzmann!based!computations,!extension!of!numerical!PoissonKBoltzmann!solvers!has!

occurred!only!relatively!recently.!Incorporation!of!implicit!membrane!models!into!the!MMK

PBSA!framework!in!AMBER!under!the!PBSA!module!required!extension!of!existing!

accelerated!linear!solvers!to!allow!support!of!periodic!boundary!conditions.!Finally,!the!

MMKPBSA!implicit!membrane!methodology!was!demonstrated!using!the!human!purinergic!

platelet!receptor!(P2Y12R),!for!which!structural!and!experimental!binding!data!was!

recently!released!to!the!protein!data!bank.!This!included!detailed!examination!of!relevant!

parameters,!such!as!choice!of!nonKpolar!solvation!term!and!selection!of!appropriate!



!

!

xiii 

protein!and!membrane!dielectric.!MultiKtrajectory!methodology!was!also!investigated!

briefly.!
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INTRODUCTION:*Biological*Applications*of*Classical*

Electrostatics*Methods*

 

Introduction*

Long-range electrostatic interactions are of crucial importance to proper understanding 

and modeling of biomolecular structure and function.1 Although quantum mechanical approaches 

provide the most detailed and accurate description of molecular structure and function, there are 

many cases where classical electrostatics modeling is shown to be highly effective. Such models 

are widely employed in applications involving highly charged biomolecules,2 which are often far 

too large and / or require time scales too long to be amenable to full quantum mechanical 

approaches. 

A key factor to be considered when modeling a biological system is the effect of solvent 

molecules. Most biomolecules exist and function in aqueous environments. Indeed, even 

membrane-bound proteins experience at least some contact with surrounding water molecules. 

Interactions between biomolecules and their surrounding environment play a vital role in the 

behavior of biomolecular systems, so that models and simulations must include relevant solute-

solvent interactions.  

Solvent-solute interactions are included either explicitly (i.e. by modeling each individual 

molecule) or implicitly (by attempting to replicate their average effect). In explicit solvent 

models, electrostatic interactions over all explicitly represented atoms are treated in a pair-wise 
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fashion using Coulomb’s law. In such cases, a large amount of computational time is often 

devoted to model the interactions of individual atoms of the water molecules. These solvent 

molecules often greatly outnumber the solute molecules atoms, particularly if one needs to model 

a relatively large or dilute system. In such cases, periodic boundary conditions are often 

employed to mimic a bulk water box surrounding a solute molecule. Such setups are particularly 

attractive as they are conducive to the Ewald summation technique which allows for efficient 

computation of electrostatic forces and energies.3 

Poisson@Boltzmann*Based*Implicit*Solvent*Methods**

In most studies of biomolecules, it is the solute and not the solvent that is of interest. 

Thus, it often seems wasteful to devote large portions of computational time simulating water 

explicitly. Implicit solvation methods attempt to approximate the relevant interactions between 

solute and solvent so as to alleviate the resources spent upon modeling its effects. Although this 

approach is less accurate due to the loss of the fine-grained details of individual solute-solvent 

interactions, implicit models are quite useful in many biological applications. Most approaches 

are either based on statistical mechanics considerations or parameterized to replicate empirical 

results. Thus they not only reduce the number of particles to be simulated but also alleviate the 

need for long simulation trajectories that are required under explicit solvent models to reproduce 

statistical averaging of physical properties as observed experimentally.  

A key component to a class of the most widely used implicit solvation methods is the 

Poisson-Boltzmann (PB) equation, which is employed to model solvent-induced electrostatic 

properties. The water is modeled as a region of high dielectric while the solute is modeled as a 
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region of low dielectric according to Poisson’s equation.4 The solvation energy thus becomes a 

mean force potential, which is averaged over all the solvent degrees of freedom.5  

In many biological systems, salt ions are also present in addition to the solute. Their inclusion is 

necessary to properly model relevant solvent effects. The PB equation models the salt ions as 

mobile charge densities, which obey a Boltzmann distribution at equilibrium. Integrating this 

into Poisson’s equation yields: ( )04 4 exp /i i i B
i
ez c ez k Tε φ πρ π φ∇⋅ ∇ = − − −∑  (1), where ε  is the 

dielectric constant, 0ρ  is the solute charge density, e  is the unit charge, iz  is the valence of ion 

type i  , ic  is the number density of ion type i , Bk  is the Boltzmann constant and T  is absolute 

temperature. This is a non-linear elliptical partial differential equation in three dimensions. Its 

complexity is such that solutions of all but the simplest systems require sophisticated numerical 

solution methods. Fortunately, in many instances, it is possible to simplify this equation 

somewhat. 

In cases where both the ionic strength and solvent potential are low,6 and when 

symmetric electrolytes are considered, the PB equation can be linearize 2
04 vε φ πρ ε κ φ∇⋅ ∇ = − +  

(2), where,
2

2 8

v B

e I
k T
πκ
ε

=  and 
B

ezC
k T

= . Here v denotes the solvent; I  represents the ionic strength 

of the solution, and is computed as 2I z c= . 

Even in its linearized form, use of the PB equation requires numerical solution methods. 

Thus, simpler methods were developed for approximating continuum electrostatic solvation 

models such as the induced multipole model,7 analytical continuum methods,8 dielectric 

screening model9 and the Generalized Born (GB) model.10 Although an in-depth discussion of 
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each model is beyond the scope of this paper, it is worth noting that the GB model has become 

one of the primary methods of choice for incorporating implicit solvation into dynamics 

simulations.11 

The solution of the PB equation (eq. (1)) that one arrives at is dependent upon how the 

underlying model is set up. Solute charge modeling, spatial boundary conditions, solute-solvent 

interface description, and dielectric determination are just some of the many issues that can be 

considered when optimizing a PB-based implicit solvation model. Some of these issues are to be 

discussed in greater depth in the Force Field section below. 

Point charge models are widely used as representations for atomic charge densities, 0ρ  in 

eq. (1). While this choice simplifies the initial setup of solute charge density descriptions, the 

singularities introduced by use of the delta function for 0ρ  result in complications when 

subsequently pursuing numerical solutions to the PB equation.12 Regularization of eq. (1) can 

remediate this difficulty. Some common regularization strategies are: to decompose the solution 

as regular singular components then focus numerical solutions upon the regular component,13 to 

introduce an additional harmonic term into a Green’s function of the point charge model,14 or the 

use of a matched interface boundary approach.15 While analytical computation of the singular 

component requires significant effort, it allows for improved convergence and saves additional 

computing time during reaction energy calculations.13  

Eq (1) cannot be solved directly in an infinite space so that either spatial boundary conditions are 

enforced or the portion of the infinite space exterior to the grid is handled specially.14 Although 

there are a few options for implementing spatial boundary conditions, the most common choice 

is to mimic a free space solution. This requires leaving adequate spacing between the solute and 



 5 

the sides of the computational box and applying a fixed charge or potential along the spatial 

boundary. Doing so exactly requires computing the solution at each point along the boundary, 

which becomes infeasible for complex systems. The Debye-Hückel equation provides a popular 

alternative approximation:
( )

( )
exp1

1
i i iBC

is i i

Q R r
R r

κ
φ

ε κ
− −⎡ ⎤⎣ ⎦=
+∑

 
(3), where 

i
∑ sums over all atoms, 

iQ  is the the ith atom’s charge, ir  is its radius, and iR  is the distance between the ith atom and 

grid center. Eq. (3) is the solution to the linear PB equation for a single spherical low dielectric 

region surrounded by a high dielectric region with mobile ions. This approximation holds well 

wherever the linearized PB holds, but it is not guaranteed to be applicable when using the non-

linear PB equation.16  

Extension*of*PB*Solvent*Models*to*Implicit*Membranes**

Recently membrane proteins have received increasing attention in modeling and 

simulation studies. Their roles as cell receptors and transmembrane channels make them good 

candidates for drug targets. Unfortunately, membrane proteins are notoriously difficult to study 

via crystallization, often requiring specialized detergent agents. Even then, the process in 

crystallization and resolution of integral membrane protein structure is usually slow, tedious, and 

difficult. Thus resources for membrane protein structure data are much more sparse while the 

number of known soluble proteins seems to grow continuously. Furthermore, study of the action 

of proteins in their native environment is also complicated by the presence of the membrane, 

particularly if the region of interest resides within the membrane. Nevertheless, modeling and 

simulation of membrane-bound biomolecular systems has received great attention. Indeed, the 

difficulties associated with experimental study of membrane proteins are a major impetus for the 



 6 

development of useful computational methodologies in order to supplement experimental 

research efforts. 

Since protein structure and function is extremely sensitive to the surrounding 

environment, proper inclusion of a membrane is necessary to ensure accuracy when membrane 

proteins are being studied. Application of rationale design methodologies to membrane proteins 

requires adaptation of free energy calculation methods in order to include modeling of membrane 

environments. Here again, one chooses to either model all of the atoms or molecules in the 

membrane explicitly, or resort to an implicit model.  

Inclusion of a membrane explicitly naturally suffers from many of the same issues as 

explicit water, such as the need for averaging over long trajectories or ensembles. In addition, 

there are also new challenges to be addressed such as the need to implement surface tension to 

ensure proper modeling of the membrane’s physical properties when employing explicit models.  

The PB methodologies discussed above can also be used to provide an implicit membrane 

model for study of membrane proteins. As in explicit water models, one loses the fine-grained 

details of membrane-to-solute interactions. However, an implicit approach can provide a 

reasonable approximation in many cases and alleviates the need to run extensive simulations to 

ensure converged statistical averaging. Thus, there has been a great deal of effort to extend PB-

based implicit solvation methodologies to include a membrane region. While much of this effort 

has been directed toward adaptation of Generalized Born methodologies17, 18,19,20,21 there have also 

been notable advances in implementing implicit membrane models under the full PB framework 

as well.22 The inclusion of an implicit membrane region adds additional challenges and 

parameters to be considered depending on the choice of solvation model / method. 
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  As with implicit water solvation methods, the Generalized Born method has received 

much attention due to its amenability toward simulations and relative ease of computation. When 

implementing a membrane under such methods, it is necessary to account for the location of 

atoms relative to the membrane, since the properties of the membrane do not necessarily match 

those of either the solvent or the solute.17, 20-21, 23  

In the case of numerical PB solutions that employ a mesh or grid, the implicit membrane 

can be implemented as an additional solvent region with relative ease,22 although there are 

certainly additional considerations. Typically a relatively low dielectric is used to mimic the 

membrane’s hydrophobic core region.24 Selection of dielectric constant (or dielectric constant 

profile) and location of the dielectric boundary between water and membrane can, of course, 

have a significant impact. Selection of these values depends upon the properties being studied, as 

well as, the nature of the system being studied.24a The effect of the membrane’s presence upon 

the mobile ion distribution modeled in the PB equation must also be considered. Since ions are 

rarely found within the interiors of biological membranes, the mobile ion term is generally 

excluded from the membrane region as well. Again, this is generally easy to implement within 

mesh or grid based approaches. Thus, with respect to electrostatic calculations, the membrane 

region (or more accurately, its hydrophobic core region) has properties very similar to those of 

the solute region: i.e. low dielectric constant and lack of mobile electrolyte ions. In the simplest 

case, it can be viewed as an extension of the solute region. However, a unique dielectric is most 

commonly desired. In either case, inhomogeneity is introduced into the dielectric profile along 

the spatial boundaries. Efficient and accurate computation of periodic solutions to the PB 

equation is apparently not a trivial matter and is to be discussed further in the numerical solvers 

section.  
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Visualization*and*Structural*Analyses*of*Biomolecules*

A direct benefit of the PB models is that the electrostatic potential profile becomes 

available for visualization after the PB equation is solved. Molecular graphics programs have 

seen a boom over the last decade and there are now a myriad of options available for 

visualization and even editing of molecular data. Although a complete review is beyond the 

scope of this article, a brief review of some of the more well known and widely used programs is 

in order. In particular, focus will be on those with capabilities commonly used for visualization 

of electrostatic potentials. 

Coloring the molecular surface by visualization tools, such as VMD,25 GRASP,26 

CHIMERA,27 and PyMOL,28 according to the solution to the PB equation provides us with 

insight of the electrostatic properties of biomolecules for structural analysis.29 The PBSA module 

of the AMBER package30 was recently extended to allow output of the electrostatic potential 

distribution generated as solutions to the PB equation using the DX volumetric data format. This 

allows the potential to be easily visualized under programs such as VMD and CHIMERA. 

Further, when a level set based molecular surface description is employed,31 the same DX format 

can be used to output the corresponding Solvent Accessible Surface. This can also be visualized 

in VMD as an appropriate isosurface. APBS also offers a range of options for visualization of 

electrostatic potentials, including export of electrostatic profiles using volumetric data file 

formats. The makers of APBS also provide a web service, PDB2PQR,32 to facilitate setup and 

calculations for proteins. The service allows visualization via an interface to JMOL, a popular 

online visualization applet. Moreover, APBS provides a program to allow interactive setup of 

implicit membrane calculations. Finally, the PBEQ solver also provides a web-based graphical 
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user interface to read biomolecular structures, solve the PB equation, and interactively visualize 

the electrostatic potential.33  

One useful application of molecular surface visualization is identification of solute voids 

and channels. The presence of such interior voids is apparently an important feature with respect 

to protein stability, folding, and function.34 As such processes are often difficult to examine 

experimentally, computational simulation and 3D modeling and visualization can be quite useful. 

Visualization of the electrostatic potential along the surface of such voids can provide useful 

insights. Electrostatic potential can have a bearing on the hydrophobicity of a molecular surface, 

thus the presence of an isolated void or cavity does not necessarily indicate the presence of 

trapped water. Additionally, with respect to modeling of implicit solvents, such trapped water is 

likely to exhibit more limited mobility than bulk water and the corresponding effective dielectric 

constant can thus be expected to be lower than the dielectric constant of the bulk solvent. The 

presence of trapped water can have an important bearing on the chemical environment of 

associated side chains. For instance, as mentioned in the discussion on application of PB to pKa 

determinations, the presence of water has been shown to have a stabilizing effect on ionizable 

side chains in their protonated or deprotonated states.35 

Automating the location of internal voids and channels when using the common Richard 

or van der Waals model is, apparently, not a trivial matter. Several programs and algorithms have 

been investigated in the past for use with such molecular surface definitions.15, 36 Level set based 

molecular surface descriptions, such as the marching front propagation approach37 or the spline 

based density model31 used in the PBSA module of the AMBER package, simplifies this process. 

Level set methods treat the molecular surface as an isosurface (usually the zero-isosurface) of a 
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volumetric function. This same volumetric data can be used to allow search like algorithms to 

detect solute voids that are disjoint from the surrounding solvent.37 

Another very useful and practical application of 3D visualization is in the investigation of 

membrane channel or gating proteins. Such proteins often contain a solvent filled channel region. 

If an implicit membrane model is to be used in computing electrostatics, it is first necessary to 

ensure that the channel region is retained as a solvent region rather than converted to a 

membrane region. Thus, a means of excluding the membrane dielectric from the channel region 

is required.  

The AMBER38 and APBS39 packages accomplish this by allowing definition of a 

cylindrical region from which the membrane is excluded. Using this method, visualization of the 

protein prior to running the electrostatic calculations is useful in order to locate and properly 

model the channel region. The APBS Membrane22c package provides a separate graphical 

interface for this process, allowing the user to define a cylindrical region from which the 

membrane is excluded. The PBSA module of the AMBER package, which was recently 

extended to allow for membrane protein computations, provides a similar exclusion region 

definition. Location of the needed region is accomplished by exporting the molecular surface. 

This surface is obtained from a preliminary calculation using water-only implicit solvation to 

capture the molecular surface model, followed by visual inspection of the molecular surface 

using a 3D visualization program such as VMD. The DelPhi22a package can accomplish this 

process in a similar manner since it allows for inclusion of various user defined geometric 

regions with varying dielectric constants, i.e. the user can define a cylindrical or conical region 



 11 

with a dielectric constant matching that of the solvent and position it to envelope the channel 

region. Here again, preliminary visualization is needed to define the exclusion region properly. 

Once the channel region and any cavity regions have been defined, the electrostatic 

potential distribution can be computed and mapped onto the corresponding surface or surfaces to 

allow visualization of the surface potential. Visualization can provide useful insights into a 

protein’s function and interactions. For instance, the electrostatic surface potential has a 

significant bearing on the hydrophobicity of the surface. In the case of a membrane protein, the 

regions of the protein that lie exterior to the membrane often have a positive or negative potential, 

whereas those that lie within the membrane tend to be closer to neutral electrostatically. For 

channel proteins, the channel region often exhibits a non-neutral potential in order to facilitate 

water or ion transport, whereas the surface of the protein exposed to the membrane is more likely 

to be neutral.  Electrostatic surface potential and polarization is also important to binding and 

association since binding is stabilized or destabilized based on the electrostatic surface potentials 

at or near contact regions.  

While visualization can provide good qualitative insight even with relatively low 

resolution and precision, quantitative methods require a high degree of precision to provide 

accurate results. The precision of a solution to the PB equation is dependent upon both the choice 

of solver methodology and the choice of force field as well, these are discussed further in the 

numerical solvers and force field sections below.   
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Energetics*Analyses*of*Biomolecules**

The PB models can be applied to a number of biologically relevant situations. By 

providing a means to approximate free energies of biomolecules in solution PB implicit solvent 

models have proven useful for, among other applications, prediction of pKa values for ionizable 

groups in biomolecules,40 solvation free energies,41 binding free energies,42 and rational protein 

design.43  

The MM/PBSA algorithm employs the PB models for calculation of binding free 

energies at much lower computational cost relative to the analogous free energy perturbation or 

thermodynamic integration methods that make use of an explicit solvent model.44 Under the 

MM/PBSA method, a molecular dynamics simulation of the biomolecule is first performed to 

generate a trajectory. This trajectory’s frames serve as “snapshots” of the simulation, which are 

then processed using a PB model to estimate conformational free energies.45 This can provide 

solvation free energies when employed on a single biomolecule by subtracting the vacuum free 

energies (no implicit solvent, or ions) from the solvated free energies (implicit water and mobile 

ions). If one is able to safely assume that no significant structural changes occur upon binding,44 

then this same method can also provide binding free energy estimates using a single trajectory by 

subtracting the free energies of the free ligand and receptor portions from the free energy of the 

complex. Brown et al. adapted MM/PBSA methods to a high-throughput work flow and 

observed a drastic savings in computational expense of up to two orders of magnitude under 

virtual screening applications.46  
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The PB models show great potential for aiding peptide or protein design. Marshall et al. 

presented a revised finite-difference PB method with reduced representation of protein surface so 

that the electrostatic energy becomes pairwise decomposable by side chains and compatible with 

protein design calculations.43 Kieslich et al. recently developed a computational framework 

known as Analysis of Electrostatic Similarity Of Proteins (AESOP) based on the PB 

electrostatics,47 and applied this framework to the design of mutant proteins with enhanced 

immunological activity.48 

 Electrostatic interactions computed using the PB model have been used to predict 

pKa values for ionizable functional groups in biomolecules such as proteins and nucleic acids.40 

This is accomplished using free energy calculations of the ionizable residue and its conjugate 

acid or base in water, the corresponding free energies of sidechains, and the pKa of the ionizable 

group in water.35 The PB implicit solvation model provides a means by which to estimate these 

free energies. Identification of enzyme active sites and ligand binding and catalysis studies 

benefit from such pKa prediction computations.49 Additionally the use of PB implicit solvent 

methods for improvement of pKa calculations employed under constant pH simulations has been 

investigated.50  

The native environment of membrane proteins is quite different from that of unbound 

globular proteins. The interior of cell membranes, which is predominantly composed of long 

hydrocarbon chains, is generally accepted to be quite hydrophobic. Whereas an aqueous 

environment favors exposure of polar and charged amino acid residues, there is a relatively large 

thermodynamic barrier for their insertion into the membrane interior. Conformations that limit 

contact between charged or polar residues and the membrane interior are favored. Similarly, the 
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membrane interior exhibits a much lower dielectric constant than that of water. Thus, the 

electrostatic environment also enforces a preference for uncharged and non-polar groups near the 

membrane center since polar and charged groups do not receive the same stabilizing effects 

within the membrane interior as they do in an aqueous environment. These effects have a 

significant bearing toward conformational stability and preference within the membrane. The 

effects of these properties with respect to protein structure have been illustrated via hydropathy 

plots and subsequently employed for topological predictions since before the turn of the 

millennium.51 

Early studies, which implemented membrane regions under Generalized Born 

methodology based on hydrophobicity and electrostatic considerations, have shown promise for 

the use of implicit membrane representations in MD simulation, such as correctly predicting 

insertion of non-polar helices and exclusion of polar residues.23a, 52 Energetic analysis can 

provide important information regarding how processes such as insertion, folding, and 

association are driven. Indeed, over the past decade, rising interest in modeling and simulation of 

membrane proteins has prompted GB and PB implicit solvent methods to be adapted to allow 

inclusion of membrane regions.19-21, 22b While PB models are more accurate, the GB method has 

seen greater attention with regard to such applications thus far and has been tested and employed 

for a number of biologically relevant applications with surprising success. For instance, 

computing tilt angles and orientations of transmembrane helices,52b, 53 computation of insertion 

free energies and folding for proteins and peptides.23a, 54 
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Force*Field*Considerations*

Proper parameterization of implicit models is required in order to produce useful results. 

Construction of a PB solvent model is based upon system parameters such as atomic partial 

charges and atomic radii, which are parameterized based on empirical data or theoretical 

calculations. These quantities, along with all other parameters needed for classical simulations, 

are stored in databases called force fields.  

Force fields are often constructed with particular types of systems or applications in mind. 

Because of this, transferability to other situations is not necessarily guaranteed. Force fields are a 

major topic in their own right and a detailed discussion of their design, proper application, 

derivation, and validation is beyond the scope of this review. However, since choice of force 

fields often has significant influence upon the quality of results produced with a PB solvent 

model,55 a review of relevant considerations with respect to the impact of force field choice upon 

the accuracy of applied PB models is in order. 

Ideally, implicit solvent simulations reproduce results from explicit solvent models 

and/or experimental results. Unfortunately, direct comparison and assessment of implicit solvent 

models with experiment is often limited by several factors. Entropy terms can result in 

differences in free energy results as large as 2 kcal/mol;56 particularly if the ensemble studied has 

not sufficiently converged. Additionally, non-polar and polar solvation terms are coupled, 

making it hard to discern the cause of discrepancies between implicit models and experimental 

results.55a For instance, it is common to estimate non-polar solvation terms as functions of 

solvent accessible or solvent excluded volumes.55a Yet, these same volumes are also used to 

define the boundaries between dielectric regions in the PB electrostatic model, the topology of 
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which strongly influences the electrostatic free energy. Lastly, the molecular mechanics force 

fields, being classical approximations, introduce their own errors. This is particularly relevant in 

the case of large macromolecules since parameterization is limited by the experimental results 

and/or theoretical capabilities available. For example, experimental results are only available for 

relatively small, neutral molecules while full quantum mechanics descriptions of electronic 

structure quickly become computationally intractable as system size increases. Thus PB solvent 

models are limited not only by their own inherent inaccuracies, but also those of the force fields 

with which they are employed within. Therefore, comparison of implicit solvent methods with 

explicit solvation results obtained under the same conditions is a more reasonable test. 

Both the topology of the solute-solvent interface and the function used to describe 

transitioning of the dielectric constant across this interface influence the results obtained from 

PB solvent models.57 Thus, proper optimization of cavity radii plays an important role in fine-

tuning the performances of the PB solvent models. Several sets of optimized cavity radii are 

currently available.55d, 57d, 58 Since most training sets previously used in parameterization tend to 

focus on small to mid size molecules, transferability to large molecules (usually biomolecules 

out of the training set) is often an issue. Testing of transferability for cavity radii sets against 

biomolecules outside their respective training sets does not appear to be well pursued, although it 

has been brought up by Swanson et al.57d Nevertheless, transferability of cavity radii cannot be 

taken for granted, as was illustrated in a study using the NMA dimer as a test case.55d  

Under the PB method, atomic radii is used to construct the molecular surface and / or 

volume which in turn is used to define mappings for the dielectric constant and mobile ion 

distributions. There are a number of possible methods to choose from for the construction of 

molecular surfaces from atomic radii.  
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Hard sphere surfaces are among the oldest and most well known. These include the van 

der Waal surface (VDWS), the solvent accessible surface (SAS),59 and the solvent excluded 

surface (SES).60 While hard sphere surfaces tend to be intuitive, relatively straightforward to 

implement, and can be computed fairly rapidly, there are also important drawbacks to be noted. 

For instance, VDWS often introduces potentially unphysical solvent pockets within the solute 

volume, while SAS can be used to avoid such complications. However, SAS also introduces 

enlarged atomic cavities that skew electrostatic computations. The SES can overcome these 

complications and allow PB solvent models to yield electrostatics which agrees with explicit 

solvent models.61 However, this surface is not differentiable and thus destabilizes some dynamics 

simulations.62 Finally, all hard sphere methods tend to yield surfaces with sharp cusps or edges. 

This in turn leads to sharp transitions from low dielectric to high dielectric. Such sharp 

transitions often result in artificial grid / mesh setup sensitivity when using common finite 

differencing or finite element schemes, once again reducing accuracy and convergence properties 

of electrostatic computations. Fortunately, harmonic averaging of the solute and solvent 

dielectric constants provides a means of smoothing these transitions.63 

Another recent option is to use a smoother Gaussian surface57b or a spline-based dielectric 

surface model.61 In this approach, a distance-dependent pseudo-density function is used to define 

each atomic volume. The molecular surface can then be defined as a level set of this function, i.e. 

the surface is defined as the locus of all points for which the function takes on a particular value. 

Such methods generally result in much smoother surfaces and various geometric properties, such 

as local coordinate bases and curvatures, can be computed from the level set, which can prove 

useful when applying the Immersed Interface Method (IIM) or Immersed Interface and Boundary 

(MIB) method to improve the accuracy of surface potential and force calculations as will be 
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discussed in the numerical solvers section. Furthermore, use of a level set based surface model 

has the added advantage of allowing the surface to be exported as a volumetric map over the 

same grid and format used to export the electrostatic potential. As discussed earlier, this allows it 

to be easily imported into many modern visualization software packages. The cost of computing 

this volume exclusion/density function, however, introduces a performance bottleneck. In all 

cases, these atom-centered surfaces seem to result in overestimation of solvation energies,64 

which has lead to the proposal of a modified Van Der Waals surface to improve the PB 

methods.62 

Accurate representation of solute polarization is also an important consideration. For 

instance, it has long been known that the local electrostatic environment can have an impact on 

the chemical behavior of side-chain groups, such as modulation of the pKa of ionizable residues 

(see next section). Polarizable force field approaches, such as the Drude Oscillator,65 or induced 

dipole and multipole methods such as those employed in OPLS-AA,66 CHARMM,67 

AMOEBA,68 and AMBER,69 have been receiving increased attention, particularly now that 

modern CPUs have progressed to the point that the required processing power is more readily 

available and accessible. While polarizable methods provide a much more detailed and accurate 

representation of solute electrostatic interactions, point charge representations still seem to be the 

dominant method choice due to their speed and ease of implementation.  

Under many point charge based force fields, permanent dipoles are commonly modeled 

as atomic partial charges, which are often derived from ab inito gas-phase calculations 

performed for small compounds. This provides electronic densities, which are then fitted to 

electrostatic potentials (ESP)70 to produce the needed partial charge data sets. One of the initial 

drawbacks of this method is that its results are sensitive to molecular conformations. This led to 
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the development of the restrained ESP-fit (RESP) model.71 Polarization interactions still lead to 

inaccuracies under this model, particularly since the molecular systems upon which the ab initio 

calculations are typically performed are modeled in the gas phase whereas the biomolecular 

systems to which they are being here applied exist in the condensed phase. Introduction of 

scaling factors compensates for this.72 Such approximations make good sense when 

conformational flexibility within the system of study is relatively high. However, in cases where 

polarization plays a key role, more sophisticated methods are warranted. 

In lieu of using a polarizable force field, adjustment of solute dielectric constant can be 

used to account for polarization effects. When using this approach, it is important to note that 

such approximations are not universally transferable and the value needed to provide good 

results often varies greatly depending upon application.73 For instance, in one study the 

Kirkwood-Fröhlich dielectric theory predicted a dielectric constant between 2.5 and 4 for a 

folded protein,74 but this same theory predicted a dielectric constant of 15-40 when applied to 

dipole fluctuations recorded under MD simulations due to side chain fluctuations. From these 

findings, it has been deduced that protein dielectric properties are more accurately modeled by a 

heterogeneous scheme, with relatively low dielectric in core regions where crowding limits 

conformational motility, and relatively high dielectric in regions where side chain conformations 

are more fluid-like, such as near the protein’s surface.75 Thus, for applications where polarization 

properties and interactions play the most dominant role, such as in pKa predictions, a relatively 

high dielectric constant is used,76 while applications such as binding affinity, for which non-polar 

interactions play a strong part, often seem to require a relatively low dielectric constant in order 

to obtain accurate results.77 Attempts to efficiently model protein dielectric heterogeneity via 

distance-dependent dielectric model78 or nonuniform charge scaling,79 have had some success, 
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but their results are often difficult to interpret. Alternatively, efforts were also reported to 

develop a self-consistent continuum polarizable force field with non-unity solute dielectric 

constant to represent the polarization effect in a continuum manner.80 

Numerical*Solvers*

Analytical solution of the PB equation is all but impossible, except in the case of 

extremely simplistic model systems. Therefore, once the PB model for a system has been defined, 

a numerical solver is employed to compute the solution. Currently, the major numerical methods 

that are most widely used fall into one of three broad categories.  

The first and most widely used is the finite-difference method (FDM).81 The popularity of 

the FDM owes largely to its speed and ease of implementation. The first step in the FDM is to 

define a grid, a regular cubic lattice, unto which relevant system properties shall be mapped. 

Point charge based models lend themselves readily to this method. A simple spreading function 

is often employed here to reduce sensitivity to grid spacing and orientation. The dielectric 

constant is often mapped to grid edges rather than grid points, for reasons to be discussed shortly. 

Before this can occur, however, each grid point is first assigned an occupancy value to define its 

location relative to the molecular volume / surface. Edges connecting grid points that are within 

the same region are assigned the value appropriate to that region. Edges that traverse the 

molecular surface are assigned a value based on the choice of a dielectric smoothing option and 

the relative proportions lying on each side of the interface. The governing partial differential 

equations are then discretized. In the case of the linearized PB equation, a set of linear algebraic 

equations results. As mentioned earlier, regularization schemes are often employed in order to 

reduce the error in potentials computed for grid points that are proximal to point charges. One of 
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the major drawbacks to this method is that potentials near the molecular surface are the most 

prone to error. Adaptive Cartesian grid schemes provide one route to addressing this issue.82 

Another avenue is to generate additional equations in order to enforce exact boundary conditions 

at the interface, such as in the matched interface and boundary83 method and immersed interface 

method.84 

Recent developments in the finite-difference methods have also been focused on 

membrane protein systems. This is accomplished by adding a third dielectric region, often with a 

unique, relatively low dielectric constant. Unfortunately, this introduces inhomogeneity in the 

dielectric constant and mobile ion distribution along the spatial boundary. As with explicit 

membrane models, periodic boundary or mixed boundary conditions help address this problem. 

This also alleviates the need for computing virtual charges or potentials along the boundary via 

the Debye-Huckel equation as is required to simulate free boundary conditions. However, 

depending on the numerical solver method used, introduction of periodic boundary conditions 

complicates or slows the numerical solution process in other manners. For instance, 

preconditioned solver methods that are often used to accelerate convergence,85 such as the 

incomplete Cholesky preconditioned conjugate gradient method, need to be re-derived in order 

to satisfy the periodic boundary condition.86 In the case of boundary / interfacial based 

approaches, such as the immersed interface method, the membrane region needs additional 

attention22b to account for the introduction of new interfacial boundaries.  

The second approach is the finite-element method (FEM).12, 87 Under this method, a weak 

variational approach is used to approximate the potential distribution as a superposition of basis 

functions. The resulting linear or nonlinear system for the coefficients is then solved. One of the 

major advantages to this method is that it allows an unstructured mesh to be employed, which 
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lends itself well to adaptive fitting schemes. Alternatively, a body-fitted mesh can be employed 

in order to enhance the quality of the solution near the molecular surface. The primary drawback 

of this method, however, is that constant re-meshing becomes necessary if the topology of the 

dielectric mapping changes frequently, such as when a biomolecule undergoes significant 

conformational changes during the course of a molecular dynamics simulation. This presents a 

bottleneck to solution efficiency. 

The third approach is the boundary-element method (BEM).88 In BEM, the dielectric 

boundary is discretized into a surface mesh. Onto this mesh, the Poisson or Poisson-Boltzmann 

equation is then cast in terms of either induced surface charge88a, 88d, 88g or the normal component 

of electric displacement.88b, 88c, 88e, 88f Efficient generation of the surface mesh is critical to the 

success of this method. MSMS is widely used for this reason.89 Recently, Chen et al. developed 

the TMSmesh program, which is capable of handling biomolecules consisting of more than one 

million atoms.90 A hybrid FDM / BEM91 has also been investigated. Research into improving 

speed and efficiency of BEM methods continues to be an active area, particularly with respect to 

the development of efficient, parallelizable algorithms.92 

The aforementioned methods have been incorporated into a number of mainstream PB 

programs, such as Delphi,81d, 93 UHBD,81b PBEQ,61 PBSA,81e and APBS.87a One very interesting 

and appealing twist to PB solver methods was recently proposed by Fenley et al. by employing a 

correlated Monte Carlo approach. Solution of the PB equation was achieved with CPU time 

exhibiting logarithmic scaling with respect to the number of atoms.94 Such an approach is 

particularly appealing as research pushes the envelope of system size and complexity. 
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Distributive*and*Parallel*Implementation*

The iterative methods of numerical PB solvers can be loosely grouped into two types: 

stationary methods and Krylov subspace methods. Since many stationary methods are employed 

as preconditioners for Krylov subspace methods,95 however, this is only a loose classification 

scheme. Stationary methods, such as Jacobi, successive over-relaxation, and Gauss-Seidel, are 

amenable to distributive computing environments via implementation of special ordering schema 

such as multi-coloring96 or multi-splitting approaches.97  

Adaptation of Krylov subspace methods under distributive computing environments was 

achieved via various domain decomposition98 strategies and distributive preconditioners.99 Hsieh 

et al. explored a distributive multi-block focusing technique to analyze accuracy and 

performance requirements for parallelization of numerical PB solutions for large biomolecular 

systems. A highly scalable parallel implementation of these methods has been incorporated into 

the AMBER/PBSA program.100 

Multi-grid based methods85b, 87a, 101 provide another possible alternative, along with 

seemingly related electrostatic focusing approaches in PB. Focusing techniques allow efficient 

calculation of electrostatics by adaptively scaling grid size near the solute without needing to 

waste resources on fine grid computations in distant solvent regions. Such regions are often not 

of interest and since the dielectric constant is often uniform, therein, grid size refinement has 

little impact upon accuracy. The focusing approach computes a series of finite-difference runs, 

performed with successively finer grids. Each run has boundary conditions calculated from the 

potential map of its predecessor.102 While this method can provide good improvement in 

efficiency, the memory usage for the finest grid is still a consideration. Division of fine grids into 
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multiple blocks has been investigated as a means to break the problem into pieces that can be 

managed by multiple individual computing nodes.39  

Lastly, recent developments in graph analysis / combinatorial solvers,103 shows promise 

for providing an alternative class of numerical solvers that would be highly amenable to 

distributive computing. However, these methods are apparently still maturing and their 

applications to PB methods have not yet been investigated. 

Limitations*

In the studies of comparison between the PB model and the explicit water model, water 

mediated salt-bridging is one of the major discrepancies, although overall agreement between the 

two models can be observed.104 This problem can hardly be solved unless explicit water 

molecules are present surrounding the solute in the model, and therefore the implicit/explicit 

model has received attention.105 More research work has been conducted on the effects of ion 

size and a modified Poisson-Boltzmann model has been accordingly used to include these 

effects.106  

A study by Mobley et al., on hydration behavior of polar solutes, found solvation of 

solutes exhibiting dense negative charge distribution counter-balanced by diffuse positive charge 

distribution are more energetically favored than solvation of solutes with opposite charge 

distributions due to the asymmetric distribution of charge centers in water molecules. This 

behavior cannot be captured by current implicit PB models, which exhibit a symmetrical 

response with respect to charge distribution.107 However, in cases where solvent model details 

like charge symmetry or distribution profiles need to be incorporated as, for example, when 



 25 

studying protein hydration and aggregation,108 a statistical mechanics approach such as RISM109 

may provide a viable alternative avenue for modeling solvation effects implicitly. 

Estimation of the entropy under the PB model is most often accomplished via a quasi-

harmonic analysis or normal mode analysis. Unfortunately, these methods are often unreliable,110 

difficult to converge, and / or applicable only to systems which exhibit small conformational 

changes.110-111 Moreover, when studying binding between highly polar compounds, deviations of 

the resulting estimates have been shown to be very large in some cases.112 Inclusion of a buffer 

region during normal mode analysis has been suggested to address this problem, and has shown 

some utility toward mitigating these deviations.113 An alternative solution, proposed by 

Wittayanarakul et al. is to include explicit water molecules in the PB model. This was shown to 

significantly improve the entropy estimate.114 In such cases, the MM/PBSA provides superior 

performance for analysis and comparison of the relative binding energies for a set of similar 

ligands.44  

Lastly, while PB methods have been proven useful in molecular dynamics studies of 

small organic molecules,115 such approaches often become intractable for large biomolecules. 

Indeed, the per-step simulation cost when employing FD based PB solvent models is higher than 

when explicit water is employed. This holds even with grid spacing as coarse as 1/4 Å. The 

upside, fortunately, is that implicit solvents do not require the long simulation durations needed 

under explicit solvent models, which require either a long simulation time or an ensemble of 

replicas in order to properly represent a converged average of solvent solute interactions. 

Nevertheless, the inefficiency of current PB methods, when applied to large systems, sharply 

limits its practical applications toward dynamics simulations of macromolecules. 
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*Conclusion*

Much effort has been invested to improve the accuracy and performance of the Poisson-

Boltzmann solvent models, which has been instrumental in promoting their acceptance in 

studying interesting biological problems. Despite the past successes, however, there is still much 

that needs to be done. These methods require improvement to their utility and transferability 

from the small molecular systems, upon which they were developed and validated,  to the larger 

and more complex macromolecular systems being pursued as advances in technology continue to 

push forward and provide greater computational resources to researchers. 
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Chapter!1: Numerical!Poisson5Boltzmann!Model!for!

Continuum!Membrane!Systems!

Introduction!

Energetic analyses of solvated systems are of fundamental importance in theoretical and 

computational studies of molecular biophysics. Due to the sizes of many biologically relevant 

compounds and systems, and the need for extensive sampling required to recover observable 

properties, explicit inclusion of solvent molecules can become quite demanding. 

Implicit/continuum solvation methods allow energetic calculations to be computed with far less 

computational expense by approximating discrete solvent molecules with a continuum. These 

types of methods have been routinely applied in many biomolecular applications such as 

protein-ligand binding affinity and docking pose predictions.1 

Recent interest in membrane proteins has spurred extension of continuum solvation 

treatments to incorporate membrane models.2 To implement a continuum membrane, an 

additional solvent region must be incorporated into the solvation model. Since most membranes 

are typically non-polar at the interior, energy terms that would be accounted for in an aqueous 

system by using solute volume or surface area can be adapted to include a membrane by taking 

the union of the solute and membrane regions. This manuscript focuses on the treatment of the 

electrostatic energy contributions. Electrostatic energy contributions can be accounted for by 
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treating the membrane as a region with a low dielectric constant, often close to that of the solute. 

While this approach is relatively straightforward on the surface, the solvent region now includes 

a heterogeneity that may have significant bearing on handling boundary conditions and interface 

conditions.  

The Poisson-Boltzmann equation (PBE) is the basis of electrostatic energy calculations 

for many continuum solvation methods.3 However, closed-form analytical solution is only 

possible for a few special cases, such as systems with radial symmetry. Indeed the popular 

Generalized-Born (GB) methods are derived from PBE by making specific simplifying 

assumptions to allow a closed-form approximated solution to be obtained.4 Although GB is very 

fast compared to most full numerical solution techniques, its inherent assumptions are often a 

source of debate and the methods have been shown to result in undesirable errors in some cases.5 

Furthermore, while application to heterogeneous cases (such as membrane protein systems) is 

possible, it poses significant challenges.2b, 2c, 6 In most cases the only recourse is to seek a 

numerical solution. Many methods have been proposed and investigated for this purpose. 

Finite-difference (FD) 7 methods are amongst the most popular. Despite their somewhat lower 

adaptivity compared to finite-element 8 or boundary-element methods,3e, 3h, 9 they are often 

preferred for large-scale computations due to their speed, efficiency, and ease of 

implementation.10  

Current numerical methods often assume free or zero potential boundary conditions. 

Systems with more complex setups, e.g. when a membrane region is included, may suffer from 

artifacts due to edge effects when these boundary conditions are used. The problem is 

particularly profound in the FD methods. For such systems, periodic boundaries become an 

attractive alternative. Implementation of the periodic boundary condition requires modifying the 
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algebraic equations generated for grid nodes at the FD grid edges to include terms imposing 

periodicity. An additional benefit of imposing periodicity, however, is that it eliminates the need 

for adding boundary charge distributions required for the free boundary conditions. Additionally, 

Fourier transform based solvers become an attractive option due to their innately periodic 

formulation and log-linear scaling.11 Apparently, limitation of these algorithms to use for 

constant coefficient equations prevents them from solving the general PBE with inhomogeneous 

coefficients. The augmented Immersed Interface Method (IIM) allows this limitation to be 

overcome for systems where each region has a distinct uniform dielectric constant.12 

In the following section, we first present a continuum membrane model based on the 

level set formulism and a pseudo density function approach 13. This is followed with the 

description of two periodic FD solvers, the finite volume/periodic conjugate gradient (FV/PCG) 

and augmented Immersed Interface Method/Fast Fourier Transform solver (IIM/FFT) to solve 

the PBE for the continuum membrane systems. Finally a detailed validation of the new 

continuum model and analysis of the numerical algorithms are presented. 

Method!

Membrane!Setup!

Dielectric!Model!Setup!and!Interface!Location!via!Level!Set  Continuum solvation can 

be extended to include a membrane by modeling it as an additional dielectric region. We first 

focused on the case where the membrane dielectric matches the solute’s dielectric, so that the 

membrane region is simply an extension of the solute region. This requires us to derive, define, 

and merge a membrane level set into the molecular level set originally used to generate a 
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dielectric mapping for globular proteins.13 Further modification to allow unique membrane 

dielectric constant can make use of this infrastructure, but it will be left to a future study. The 

resulting linear systems were then solved assuming the periodic boundary condition.  

!

Solute5Solvent!Level!Set!Construction!  We begin by reviewing the level set formulation for 

globular proteins. The level set is defined such that it will be positive on one side of the interface 

(solvent region in this case), negative on the other side (solute or membrane region) and zero on 

the interface. The interface is thus the locus of all points where the level set is zero. 

Earlier attempts used the “signed” distance function as the level set, which was defined as 

the distance to the unsmoothed molecular surface,13 However, the straightforward definition 

prohibits the use of higher accuracy methods, such as IIM,12, 14 which requires smooth and 

continuous level set functions. In this study a smooth and continuous density function 13 was 

used instead. In this approach, the solute-solvent level set  at a point [p] is derived from the 

sum of atomic density contributions defined by the equations:  

 φ[p]= 1− ρi[p]
i=1

natom

∑   (1.1) 

 ρi =
k ⋅di[p] di ≤ 0

fspline(di[p]) di > 0

⎧
⎨
⎪

⎩⎪
  (1.2) 

 di[p]= ri[p]− Ri   (1.3) 

where the natm is the number of atoms in our system and  is the density function for atom 

i at [p]. The density ρi[p]  is computed based upon the signed distance between [p] and the 

solvent accessible surface of the atom. Function fspline  is a splined density function as defined 

φ

ρi[p]
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and optimized in 13, and k is the constant needed to ensure the function smoothness across the 

interface. Lastly, di is the signed distance to the interfacial surface for atom i, where ri is the 

distance from atom i to [p] and Ri is the atomic cavity radius. 

!

Membrane!Level!Set  To implement a continuum membrane model, a corresponding level set 

function is needed to merge with the solute–solvent level set. The simplest membrane resembles 

a slab-like region with two planar interfaces parallel to the x-y plane. Thus the total level set 

function (considering both the solute and membrane) can be expressed as: 

 φ[p]= 1− ρm[p]− ρi[p]
i=1

natom

∑   (1.4) 

 ρm[p]=
gmemb(dm[p]) di ≤ 0
fspline(dm[p]) di > 0

⎧
⎨
⎪

⎩⎪
  (1.5) 

 

gmemb =
a ⋅dm

3 + b ⋅dm
2 + c ⋅dm + e 0 > dm > Rp
kp dm < Rp

⎧
⎨
⎪

⎩⎪

kp = a ⋅Rp
3 + b ⋅Rp

2 + c ⋅Rp + e
a = 2.108572
b = −6.108572
c = 4.527143
e = 0

  (1.6) 

 dm = zmctr − pz −m / 2   (1.7) 

Here ρm[p]  is the membrane level set density contribution at [p] and fspline  is the same as the 

spline function for atomic contributions. The function gmemb  is a monotonic, concave up, cubic 

polynomial function constructed to transition the level set to a constant value near the membrane 
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center while preserving smoothness and continuity. Coefficients a, b, and c were parameterized 

to ensure that 1) the first derivative of gmemb , with respect to dm, matched the first derivative at 

dm = 0 and 2) 0 > dm > Rp. The coefficient e must remain 0 since we want fspline[0]= gmemb[0]= 0 . 

See Figure 1.1 for an illustration of the construction of ρm[p]  and the corresponding level set 

density sum contribution starting from dm[p] . Finally, dm[p]  is the distance from [p] to the 

nearest membrane surface, where zmctr  is the z coordinate of the membrane center, pz is the z 

coordinate of [p] and m is the membrane thickness. 

!

! !

Figure!1.1:!Construction!of!Solute!and!Membrane!Level!Set!Densities! !

Illustrations+of+level+set+construction+starting+from+signed+distance+functions.+Signed+
distance+ to+ van+ der+ Waals+ surface+ is+ shown+ in+ red.+ Summation+ contribution+
computed+using+spline+and/or+polynomial+scaling+functions+is+shown+in+green.+Final+
level+ set+ function+ is+ shown+ in+ blue.+ Left:+ Diagram+ for+ solute+ level+ set+ function+
construction.+Right:+Diagram+for+membrane+level+set+function+construction!

!

!
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Inclusion!of!Channels  The simple slab-like membrane setup may cause problems if a solute 

contains pore- or channel-like region(s) that need to retain a solvent dielectric constant. To 

describe these proteins more accurately, an appropriate cylindrical region will be removed from 

the membrane region 2f. Removal of a cylindrical region could lead to sharp changes in the level 

set if not properly transitioned. Use of  in (1.5), rather than a linear function as in (1.2), 

ensures that there will not be a cusp at the membrane center. What remains is to transition the 

level set contribution smoothly at the excluded region’s surface. The membrane density is 

modified when a cylindrical region is needed, as follows: 

 ρm[p]=

fspline dm
2 [p]+ d p

2 [p]( ) dm > 0,dp < 0

fspline dm[p]( ) dm > 0,dp > 0

fspline(dp[p]) dm < 0,dp < 0

gmemb − dm[p]⋅Min dp[p],dm[p]⎡⎣ ⎤⎦( ) dm < 0,dp > 0

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

  (1.8) 

 
dp[p]= rp[p]− Rp

rp[p]= px − cx( )2 + py − cy( )2
  (1.9) 

Here dp is the signed distance to the surface of the cylindrical region, where [c] is the 

coordinates of the center of the cylindrical region. Again,  fspline and gmemb scale the signed 

distances to match a density summation approach. Distances dm[p]  and dp[p]  are defined 

from point [p] to the membrane and cylindrical region interfacial surfaces respectively. Finally 

rp[p]  is the distance to the centeral axis of the cylindrical region running along x = cx  and y = 

gmemb
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cy  membrane interior level set and the cylindrical regions level set for points residing near the 

interfacial surface interior to the membrane. See  

Figure 1.2 for an illustration of the construction of Eq. (1.9) from signed distances dm[p]  and 

dp[p]  for a model channel membrane setup on a 200×200 cross-sectional grid. 

Once the membrane level set is computed and added to the solute-solvent level set, the 

existing dielectric map setup procedure can be used to map the needed dielectric distribution on 

the FD grid.3g, 3i+ + The+ upper+ expressions+ in+ equation+ (1.8)+ represent+ the+ region+ that+ is+

assigned+ solvent+ dielectric+ constant.+ This+ includes+ the+ region+ above+ or+ below+ the+

membrane+or+within+the+cylindrical+region+(pore)+of+the+membrane.+The+top+most+equation+

is+used+for+the+region+just+above+the+cylindrical+exclusion+region+and+is+used+to+transition+

the+level+set+smoothly+as+the+distance+to+the+upper+or+lower+edge+of+the+intersection+of+the+

cylinder+ and+ membrane+ regions.+ Finally,+ the+ last+ equation+ uses+ a+ geometric+ average+ to+

provide+a+smooth+transition.+

+

+

+
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! +

Figure!1.2:!Effective!signed!distance!(Å)!and!level!set!density!distribution!cross!

sections!for!model!membrane! !

Signed+distance+and+level+set+density+distributions+on+the+cross+section+of+a+20+Å+model+
membrane+containing+a+cylindrical+exclusion+region+with+a+radius+of+6+Å.+Top:+Signed+
distance+distribution.+Bottom:+Level+set+density+distribution.+
+
!

Adaptation!of!the!Numerical!FD!Solvers!for!Periodic!Boundary!

Conditions!

Now that we have an appropriate model for the discretization for the dielectric map of 

our membrane, solvent, and solute regions, we must implement an appropriate method to solve 

the resulting systems of equations. However, unlike the globular protein model wherein 

non-uniformity in the dielectric constant was confined to the interior of our system, the 

membrane model extends the solute dielectric constant to the edges of the grid. To overcome 

potential computational artifacts, due to edge effects, a periodic boundary formulation is used 
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when a membrane model is employed. This requires adapting our solver methods from the 

isolated free-boundary formulation to a periodic boundary formulation. In this study, we first 

consider the Finite Volume / Periodic Conjugate Gradient and the Immersed Interface Method / 

FFT approaches. 

!

Periodic!Conjugate!Gradient!Solver  The existing conjugate gradient solvers, either 

unconditioned or conditioned, can be used to solve the algebraic equations from the finite 

volume discretization. This approach, reviewed in the supplemental material section, was 

initially developed for isolated systems when the free boundary condition is used. Briefly, the 

effect of the dielectric is modeled using a dielectric map, which assigns a dielectric value to each 

edge connecting a pair of grid nodes in a regular rectangular lattice. The dielectric map is then 

used to construct a series of algebraic equations based on an appropriate stencil according to the 

finite volume representation of the linearized PBE. To utilize this method under free boundary 

conditions, pseudo charges would need to be computed and mapped to the boundary of the grid. 

This is unnecessary for a periodic system. Implementation involves modifying the linear system 

by coupling grid nodes on one edge with “adjacent” nodes on the opposite edge (see equation 9 

of supplementary materials). For the unconditioned conjugate gradient method, this can be 

accomplished with a single pass over each edge node performed prior to the main pass of each 

iteration step. 

!

FFT!Solver The augmented immersed interface method,12, 14-15 briefly reviewed in the 

supplementary materials, provides an alternative to the finite volume discretization. Under this 

approach, the effect of the non-uniform dielectric constant of the system is modeled by 
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introducing an effective surface charge distribution along the interface(s) between regions with 

differing dielectric constants. This results in introduction of potential and field jump conditions. 

The field jump condition is used as an augmented variable which is converged iteratively. This 

requires solving PBE for a system with point charges, a surface charge distribution and uniform 

dielectric constant, at each step. This proves to be the most time consuming step of each 

iteration. Periodicity may be implemented by implementing periodic boundary conditions for the 

Poisson’s equation solver. However, since the system now has a uniform dielectric constant, we 

may employ a rapid ellipitical FFT based solver to accelerate this step.11 Due to the nature of the 

FFT approach, the resulting solutions will naturally be periodic without any further modification. 

The details of the development and implementation of our FFT based solver are reviewed in the 

supplementary materials. 

Computational!Details 

For the FV/PCG method, edges connecting points within a dielectric region are assigned 

to that region’s value; edges that cross an interface are assigned a value using a weighted 

harmonic average 16. For the IIM/FFT method, dielectric is modeled using surface charges and 

corresponding surface jump conditions.12 For both approaches, a level set function provides the 

means of locating the interface(s). To provide a consistent testing framework, the PBSA module 

in the AMBER 12 simulation and modeling package 17 was used to implement our methods. In 

each case, single point electrostatic energy calculations were computed. The atomic cavity radii 

were set to be the default mbondi set in the Amber package, except all hydrogen radii were set to 

be 1.0Å. A classical two-dielectric model was used to set the dielectric distribution where region 

within the solute/membrane is set to 1 and region outside is set to 80. Default options were used 
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for all parameters except those specifically noted here or in the corresponding discussion in the 

results and discussion section. All models except for the quadrapole system and Aquaporin 

C-terminal coil system were parameterized directly from their corresponding models from pdb 

entries. The quadrapole system was modeled as a single sphere of 2.0 Ångstroms and four point 

charges of zero net charge and zero net dipole moment. The Aquaporin coil system was 

constructed by excising the last 19 C-terminal residues of the Aquaporin model (1IH5). 

Biomolecular systems were implemented in a realistic membrane with a thickness of 20 

Ångstroms. In all cases except the Aquaporin systems, a simple slab-like membrane was 

sufficient. For the Aquaporin system, both a simple slab-like model and cylindrical exclusion 

pore model were tested. The pore radius was set to 6.0 Ångstroms to ensure that no solvent in the 

channel region would be overwritten. 

Results!and!Discussion!

Consistency!between!Periodic!FD!Solvers! !

The FFT solver may be used to calculate potentials for in vacuo systems without the 

augmented IIM method. This allows us to compare the FFT and PCG solvers for in vacuo 

systems directly. To ensure that both methods give consistent results, electrostatic potential 

distributions were generated for the complete Aquaporin system in vacuum. Contour plots were 

generated using the Mathematica software package and are shown in Figure 1.3. As is evident 

from the contour plots, the two methods yield equivalent electrostatic potential distribution in 

vacuum, even for the tested large complex molecule. Electrostatic energies reported for AMBER 

were also identical for both solvers (Table 1). More detailed analysis shows that discrepancy in 
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computed energies is below the corresponding tolerance set for PCG. Given their high numerical 

consistency, we next proceed to validate our numerical models in more complex dielectric 

setups. 

 

Figure!1.3:!Electrostatic!potential!distribution!(kcal/mol5e5)!of!Aquaporin!in!vacuum.!

Left: Results for the FFT solver. Right: Results for the PCG solver. Contours are taken along the 
yz plane through the center of the finite-difference grid. 
 

Quadrapole!in!a!Membrane! !

We first used a simple quadrapole system in a 2 Ångstrom low dielectric sphere as an 

initial test case for the membrane setup. The membrane region was represented as a rectangular 

slab oriented with its normal running parallel to the z axis and centered on the middle of the 

simulation box with dielectric constant equal to that of the solute (e.g. acting as an extension of 

the solute region). Cross-sectional electrostatic potential distributions for the water only and 

water + membrane systems were generated using VMD and displayed with the solute/solvent 
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boundary grid points overlaid as shown in Figure 1.4. Comparison of the left and right panels 

clearly shows that the low dielectric solute region is indeed being extended to include the 

slab-like membrane. It is also evident that the level set density method leads to smoothing out of 

what would otherwise be a sharp transition between the spherical solute and the rectangular 

membrane.  

 

Figure!1.4:!Level!Set!Cross!Sections!and!Boundary!Grid!Points!for!Quadrapole!System!

Left: System solvated in water. Right: System solvated in water and 2 Å slab-like membrane. 
Boundary grid points are overlaid as green points. For both plots, red indicates the 
solute/membrane interior region, and blue indicates the solvent region. 
! !
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Small!to!Mid5Sized!Membrane!Peptides!and!Proteins! !

To test the numerical setups for moderate-sized membrane protein systems, we first ran 

computations on the C-terminal trans-membrane alpha helix of Aquaporin. Computations were 

run for vacuum, continuum water, and continuum water + 20 Ångstrom membrane. The results 

are visualized in Figure 1.5 where molecule itself is visualized using the van der Waals surface 

with the electrostatic potential distribution mapped onto it. The boundary grid points are also 

shown to indicate the solute solvent interface. The effect of adding the high dielectric solvent is 

clearly evident when comparing the left (vacuum) and middle (water only) panels, which shows 

reduction in intensity and contrast of the color mapping. The effect of the membrane region is 

evident from comparing the right (water + membrane) panels with the middle and left panels. 

The upper and lower portions of the molecule that extend beyond the membrane exhibit 

potentials that most closely resemble the water-solvated potentials while the region interior to the 

membrane exhibits potential more closely resembling that of the vacuum potentials.  
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! !

Figure! 1.5:! Electrostatic! potential! distribution! (kcal/mol5e5)! and! boundary! grid!

points!for!the!Aquaporin!coil!system!

Top: Electrostatic potential maps only. Bottom: Electrostatic potential maps overlaid with 
boundary grid points in yellow. Left: Vacuum System. Middle: Solvated in water + 20 Å 
slab-like membrane. Right: Solvated in water only. 
 
 
 

Next we tested our models directly on membrane protein systems and ran computations 

on several proteins ranging from 19 to 200 amino acids. Electrostatic energies were computed 

using both the FV/PCG and IIM/FFT methods. Results are shown in FV/PCG and IIM/FFT 

methods Table 1.1 with columns 3 and 4 showing the reaction field energy for each system. 
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Columns 5 and 6 show the change in the reaction field energy due to the addition of the 

membrane region. We again notice that the membrane solvation yields energy values between 

the water only and vacuum cases, as would be expected from extension of the low dielectric 

solute region (for which the dielectric constant matches the vacuum dielectric). Furthermore, 

both numerical methods yield energies highly consistent with each other, with difference less 

than 1-2%, for most cases, demonstrating the consistency between the very different handlings of 

the heterogeneous dielectrics by FV/PCG and IIM/FFT methods. 
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Table 1.1: Electrostatic Potentials for Continuum Water and Water + Membrane Solvation 

for Various Systems 

System Vacuum FFT Total PCG Total FFT Rxn PCG Rxn FFT Δ PCG Δ 

Quadrapole 
Water 

-0.713 -12.914 -12.930 -12.201 -12.217 NA NA 

Quadrapole 
Water + 
Memb. 

-0.713 -4.175 -4.133 -3.461 -3.420 8.739 8.797 

Aquaporin 
C-term. Coil 
Water 

-1385.22 -1670.02 -1668.51 -284.797 -283.295 NA NA 

Aquaporin 
C-term. Coil 
Water + 
Memb. 

-1385.22 -1587.68 -1587.03 -202.456 -201.814 82.341 81.480 

Inf HAFD 
Water 

-1723.99 -2130.11 -2135.61 -406.114 -411.618 NA NA 

Inf HAFD 
Water + 
Memb. 

-1723.99 -1878.14 -1890.20 -154.143 -166.207 251.971 245.410 

Rr LHC 
Water 

-3358.85 -4084.69 -4094.11 -725.843 -735.258 NA NA 

Rr LHC 
Water + 
Memb. 

-3358.85 -4042.27 -4062.88 -683.419 -704.028 42.424 31.231 

SFV MBP 
Water 

-1235.18 -1719.84 -1722.70 -484.655 -487.521 NA NA 

SFV MBP 
Water + 
Memb. 

-1235.18 -1575.80 -1585.48 -340.616 -350.299 144.039 137.223 

OMPX Water -10584.29 -12219.19 -12270.85 -1634.91 -1686.57 NA NA 

OMPX Water 
+ Memb 

-10584.29 -11811.29 -11858.25 -1227.01 -1273.96 407.900 412.606 

Results+ for+ electrostatic+ energy+ calculations+ with+ IIM/FFT+ and+ FV/PCG+ for+ various+ systems,+ in+ kcal/mol.+
Vacuum+energies+are+shown+as+reference+in+the+first+column.+Rxn+refers+to+reaction+field+energies.+The+“FFT+
  ”+and+“PCG+   ”+columns+show+the+difference+between+the+reaction+field+energies+solvated+in+water+and+in+
water+++membrane.+All+membranes+except+ for+the+Influenza+Hemmagglutination+Fusion+Domain+(Inf+HAFD)+
and+the+Semiliki+Forest+Virus+Membrane+Binding+Peptide+(SFV+MBP)+were+centered+on+the+protein/peptide.+
For+ Inf+HAFD+and+SFV+MBP,+ the+membrane+was+offset+by+5+Å+ in+ the+negative+z+direction+to+simulate+partial+
insertion+from+the+top+of+the+membrane+rather+than+transmembrane+behavior+as+with+the+other+systems.+ +
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Aquaporin!Channel!in!Membrane! !

The new model is next tested on a typical membrane protein system, Aquaporin, whose 

transmembrane channel also offers an opportunity to test the implementation of the cylindrical 

exclusion feature. The tested Aquaporin was oriented such that its central solvent channel ran 

roughly parallel to the z axis. A grid spacing of 0.5 Ångstrom and a fill ratio of 1.125 were used 

due to its large size. Default AMBER settings were used in all other cases. Four continuum 

solvation setups were tested: in vacuum, in water, in water + membrane, and in water + 

membrane with pore. The width and placement of the pore exclusion region was chosen such 

that membrane dielectric would not be assigned to the solvent channel of the Aquaporin while 

also ensuring that the exclusion region remained within the bounds of the membrane bound 

protein region.  

Figure 1.6 demonstrates the proper implementation of the solvated membrane system 

with the transmembrane channel. The top panels (membrane with the pore exclusion region) 

show that the pore region is set to the solvent dielectric when the membrane pore exclusion 

feature is turned on; whereas the pore region is set to the solute/membrane dielectric when the 

pore exclusion feature is turned off. This indicates that the membrane pore exclusion feature 

functions as expected.   Figure 1.7 further visualizes the electrostatic potential distributions of 

the membrane protein with or without membrane, as well as, with and without pore. The addition 

of solvent (top right panel) clearly reduces the magnitude of the electrostatic potential in the 

solvent region when compared to the in vacuo run (top left panel). The addition of the slab-like 

membrane region to the solvated protein (bottom left) results in an increase in the magnitude of 

the potential within the membrane region as expected. When an excluded pore region is included 
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(bottom right), the magnitude of the potential in the pore region becomes more closely matching 

that in the protein solvated in water.  

 

Figure!1.6! :! Cross5sectional!distribution!of! level! set!density! function!and!boundary!

grid!points!for!the!Aquaporin!system+

Left:+Cross\sectional+distribution+of+the+level+set+density+function+taken+along+the+yz+plane+
through+the+center+of+the+channel.+Red+indicates+the+solute+region,+white+indicates+the+
membrane+region,+and+blue+indicates+the+solvent+region.+Right:+van+der+Waals+surface+of+the+
Aquaporin+system+overlaid+with+boundary+grid+points+in+white.+The+van+der+Waals+surface+
is+made+transparent+to+allow+viewing+of+buried+boundary+grid+points.+Top+panels:+Solvated+
in+water+++20+Å+membrane+with+a+6+Å+cylindrical+exclusion+region.+Middle+panels:+Solvated+
in+water+++20+Å+membrane.+Bottom+panels:+Solvated+in+water.+
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+ !
Figure!1.7!:!Cross5sectional!distributions!of!electrostatic!potential!(kcal/mol5e5)!for!
the!Aquaporin!system+

Top+ Left:+ Vacuum.+ Top+ right:+ Solvated+ in+ water.+ Bottom+ Left:+ Solvated+ in+ water+ ++ 20+ Å+
membrane.+ Bottom+ Right:+ Solvated+ in+ water+ ++ 20+ Å+ membrane+ and+ a+ 6+ Å+ cylindrical+
exclusion+ region.+ Contour+ plots+ are+ taken+ along+ the+ yz+ plane+ through+ the+ center+ of+ the+
channel.+

!
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!

Conclusions!and!Future!Directions!

In this study, we explored a continuum slab-like membrane model based on the density 

function strategy. The optional cylindrical exclusion region was also implemented with the 

assistance of the level set function for easily mapping of heterogeneous dielectric distributions in 

the continuum representation of the membrane systems, in order to accommodate the existence 

of transmembrane channel. To mitigate the artifacts of edge effects of the finite system sizes, the 

periodic boundary condition was also utilized. The continuous and smooth density level set 

function also allows higher-order PBE solvers to be utilized in the current setup.  

Visualization of the tested systems for the water only and water + membrane setups 

indicate that the membrane level set scheme functions properly. Comparison of reaction field 

energies between the water only and the water + membrane setups for various small to mid-sized 

peptides and proteins indicate that the addition of a membrane region lowers the magnitude of 

the reaction field energies. This is expected since the membrane is an extension of the low 

dielectric region and thus should produce results that fall somewhere between the water only and 

vacuum environments. Finally, the cylindrical exclusion feature, as illustrated in the 

visualizations for the Aquaporin system, was shown to have the desired effect of preventing the 

solute dielectric from being mapped to the channel region of the protein, which should retain the 

high solvent dielectric. The implementation was also confirmed by comparison of the 

electrostatic potential in the channel region between the simple slab-like membrane setups with 

and without the cylindrical exclusion. The magnitude of the electrostatic potential in the channel 

region more closely matches that from the water only setup. 
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The results of our continuum membrane model are encouraging; however, there are still 

many details that must be addressed before it can be routinely applied in biomembrane system 

modeling and analysis. We are actively working on implementation of unique dielectric 

constants profiles for the membrane and reformulation of the preconditioned linear PBE solvers18 

to suit the periodic boundary condition for more efficient numerical calculations of large 

biomembrane systems. In addition, the extension of the continuum membrane model, 

specifically, inclusion of charged head group distributions and incorporation of the hydrophobic 

effects, is quite interesting.19 Finally, optimization of model parameters for simulation of 

common membranes should lead to robust modeling of the membrane systems. 
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Chapter(2: Applications+of+MMPBSA+to+Membrane+Proteins+I:+

Efficient+Numerical+Solutions+of+Periodic+Poisson;Boltzmann+

Equation((

Introduction(

Electrostatic interactions play a major role in the function, structure, and dynamics of 

biomolecular systems. Modeling of these interactions in an accurate and efficient manner is thus of great 

importance and continues to be an active topic 1. Most biomolecular systems exist in an aqueous 

environment. The effect of this solvent environment upon a biomolecular system must be accounted for 

when performing computation modeling and simulation. Such effects can be treated explicitly – i.e. by 

modeling each individual solvent molecule, or they may be treated implicitly – wherein solvent 

molecules are not included explicitly but instead are represented as a continuum. In the implicit 

treatment, the Poisson-Boltzmann (PB) equation has been established as a fundamental equation for 

modeling of continuum solvent electrostatic interactions 1. 

The PB equation is a non-linear elliptical partial differential equation. Efficient and accurate 

solution for complex systems such as biomolecules is not trivial. In general, closed form solutions are 

not available and thus numerical methods are required. Incorporating the PB equation in a typical 

molecular simulation, or even using it as a post processing method to perform free energy and binding 

affinity calculations, involves computing solutions for numerous conformations. Thus, solving the 

equation and interpolating or processing the electrostatic energies, potential distributions, and so on 

must be accomplished very efficiently for it to become a useful computational model. Analytic solution 
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of the PB equation is only attainable for systems with simple, highly symmetric geometry. Biomolecular 

systems, however, often exhibit extremely complex geometries. Thus a numerical solution is required. 

The finite difference method (FDM) 2 is apparently the most widely adopted method. The FDM is quite 

intuitive and straight-forward to construct. Its computations proceed quite rapidly. FDM solvers for the 

PB equation have been implemented in several programs, such as DelPhi 2a, 2c, 2i, UHBD 2b, 2d, APBS 2e, 

2k, and in related modules of Amber 2j, 3 and CHARMM 2c, 2h. The FDM proceeds by employing a grid, 

most often uniform and rectangular, to discretize the equation, building up a set of linear equations that 

may be solved by standard linear algebra methods. A description of the molecular surface is first 

constructed and then from it, the dielectric constant is mapped onto the grid. Classical FDM’s lead to 

highly efficient solvers, such as preconditioned conjugate gradient or multi-grid algorithms, which have 

been developed to solve the equation 2b, 2j, 4. Other numerical options include boundary element method 

(BEM) 5, and the finite-element method (FEM) 6. The BEM seeks to obtain a linear system whose 

unknowns are either the induced surface charges 5a-d, 5h, 5i, 5k, 5l or the normal components of the electric 

displacement 5e-g, 5j, 5m, 5n on the boundary, providing a highly accurate description at the interface. The 

FEM 6 is based on the weak variational formulation. The electrostatic potential to be solved is 

approximated by a superposition of a set of basis functions.  

In this study, we focus on the applicability of the PB equation to membrane bound systems, 

which have recently received increasing attention in modeling and simulation studies. Indeed, their roles 

as cell receptors and transmembrane channels make them good candidates for drug targets. Since protein 

structure and function is extremely sensitive to the surrounding environment, proper inclusion of a 

membrane is necessary to ensure accuracy when membrane proteins are studied. Therefore application 

of rationale design methodologies to membrane proteins requires properly modeled membrane 

environments. The PB equation can be used to provide an implicit membrane model to study membrane 
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proteins. There has been a great deal of efforts to extend PB equation-based implicit solvent models to 

include a membrane region. While much of this effort has been directed toward adaptation of 

Generalized Born methodologies 20, 21,22,23,24 there have also been notable advances in implementing 

implicit membrane models under the full PB equation 25-27. The inclusion of an implicit membrane 

region adds additional challenges and parameters to be considered depending on the choice of solvation 

model / method. This study is limited to the widely used finite-different methods to applications in 

membrane bound systems. A weighted harmonic averaging treatment was used for the dielectric 

constant at the solute-solvent-membrane interface 7, which is essentially the first-order immerse 

interface method 8. This method was shown to converge quadratically as far as electrostatic solvation 

energies are concerned. In particular, the focus here is on applications to systems that must be modeled 

with periodic boundary conditions.  

The use of periodic boundary conditions is a common practice in modeling and simulation of 

molecular systems and has long been applied to electrostatic calculations methodologies developed for 

systems with homogenous dielectric constants. One of the main advantages in using periodic boundary 

conditions is alleviation of computational artifacts resulting from edge effects. This turns out to be an 

idea setup to extend the PB solvers to the heterogeneous membrane/water environments. Modeling of an 

implicit membrane under the PB equation is typically accomplished by the inclusion of an additional 

dielectric region into the solvent model 9. Edge effects become a pronounced concern under this model 

because the dielectric interface extends infinitely along the membrane plane. Thus the coefficients of the 

corresponding grid discretization are no longer uniform along the edges of the computational grid, 

causing difficulties in setting the widely used free boundary condition.  

Implementation of the periodic boundary condition under a conjugate gradient (CG) solver 10 is 

relatively straight forward when employing an unconditioned solver. Unfortunately, such methods may 
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require many iterations to converge 2b, 2j, 4, 10-11. Preconditioning treatments, such as the modified 

Incomplete Cholesky preconditioner 2b, 2j, 4, and multi-grid based methods 2e, 11-12 can greatly enhance 

performance 2b, 4a, 11. Adapting the preconditioner and multi-grid algorithms to allow periodic boundary 

conditions, however, is apparently much less trivial.  

In the case of the modified Incomplete Cholesky preconditioned CG method, the structure of the 

preconditioner is dependent upon the band structure of the operator matrix being conditioned. 

Unfortunately, systems with periodic boundary conditions require operator matrices with an expanded 

band structure to account for interactions between opposing boundaries. More specifically, there are two 

additional bands for each periodic dimension (one in the upper triangular portion and one in the lower 

triangular portion). In the case of an explicitly conditioned algorithm 11, such changes must be reflected 

in the preconditioner matrix as well since it is applied directly to both the operator matrix and the 

starting conditions as well. 

In the case of the geometric multi-grid method, implementation of periodic boundary conditions 

requires updating the core restriction, relaxation, and prolongation operators. Adaptation of the 

prolongation operator in particular requires special care since operator based prolongation is required to 

preserve convergence when solving the PB equation due to the presence of a spatially varying dielectric 

coefficient 11, 13. Furthermore, care must be taken to ensure consistency of the periodic boundary 

between the restriction, relaxation, and prolongation operators. 

This paper documents the implementation of the order 1 modified Incomplete Cholesky 

Conjugate Gradient (MICCG1 or ICCG) 2b, 2j, 4, 11 and geometric Multi-Grid (MG) 2e, 11-13 under the 

periodic boundary conditions as implemented in the Amber/PBSA module, along with subsequent 

optimization. The new periodic solvers were then tested on various systems to explore accuracy and 
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efficiency, and also in a realistic MMPBSA application to highlight the importance of modeling the 

heterogenous membrane/water environment in biological applications. 

Methods(

Finite(Volume(Discretization(of(the(Poisson<Boltzmann(Equation(

In most implicit solvation methods, the electrostatic energy is modeled by the Poisson-

Boltzmann (PB) equation 1a, 1c, 1e-g, 1i, 1j, 1l, 1n, 14. In its most general form, this is given by 

 ∇[ε(∇φ)]= −4πρ − 4π eiziλ exp(
−ziφ
kbT

)
i
∑

 
 (2.1) 

This relates the electrical potential φ  and dielectric constant ε  to the solute charge distribution ρ  and 

the charge distribution due to mobile solvated ions, as given by the summation in the second term on the 

right hand side. Here ci is the bulk concentration of solute ion i with effective zi, kb and T are the 

Boltzmann constant and temperature, and λ  is the Stern layer masking function which is 0 within the 

layer or 1 outside. 

For sufficiently dilute ion concentrations, the second term on the right hand side may be 

linearized to yield 

 ∇[ε(∇φ)]= −4πρ − 4π ciz
2
iλφ
kbTi

∑   (2.2) 

Due to its complexity a numerical solution is most often needed whether the full or linearized version is 

to be solved for anything but the simplest cases. Finite difference or finite volume approaches are 

commonly used for this due to their speed and relatively straight forward application 11. 

As in a standard particle mesh setup 3, 11, the first step is to overlay a regular rectangular grid 

onto the system and then map the atomic point charges onto the grid using an appropriate assignment 
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function. Next the dielectric constant is assigned to edges connecting each pair of neighboring grid 

nodes. The PB equation can then be discretized at each grid node, yielding the following operator stencil 

ε x[i, j,k]φ[i +1, j,k]+ ε x[i −1, j,k]φ[i −1, j,k]+
ε y[i, j,k]φ[i, j +1,k]+ ε y[i, j −1,k]φ[i, j −1,k]+
ε z[i, j,k]φ[i, j,k +1] + ε z[i, j,k −1]φ[i, j,k −1]

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
−

ε x[i −1, j,k]+ ε x[i, j,k]+ ε y[i, j −1,k]+
ε y[i, j,k]+ ε z[i, j,k −1]+ ε z[i, j,k]

⎛

⎝⎜
⎞

⎠⎟
φ[i, j,k])

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

+ h2λ[i, j,k]κ 2φ[i, j,k] = −4πρ[i, j,k]
h

 

 (2.3) 

Here ε x ,ε y, and ε z  represent the dielectric constants for grid edges along the x, y, and z directions 

respectively, h represents the grid spacing, and κ 2 = 4π cizi
2 / kbT

i
∑ . The last detail to consider is the 

treatment of nodes at the edge of the computational grid, since these nodes have no neighbors along at 

least one direction. This requires defining a set of rules known as the boundary conditions. 

Implementations of boundary conditions depend on the particular linear solver algorithms used to solve 

the system of linear equations.  

Matrix(Representation(of(the(Discrete(Operator(

It is useful to first discuss the existing linear system solvers, developed previously for isolated 

systems. Since all linear PB solvers are essentially solving a matrix vector equation, it is worthwhile to 

cast the problem under the framework of a matrix vector equation 

   (2.4) 

where A is a matrix representation of the PB operator stencil as defined in eqn (2.3), x is the desired 

potential solution, and b is the charge distribution of the solute. Since b is a vector representation of the 

computational grid, matrix A requires a number of entries equal to the square of the number of grid 

nodes. This quickly grows intractable as the size of the computational grid increases. Fortunately, the 

Ax = b
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matrix itself has a band-like structure that is quite sparse. Further, it never needs to be constructed or 

stored explicitly in practice when applying a solver.  

For non-periodic solvers, the terms of the A matrix that connect nodes at the edge of the grid to 

non-existent nodes were simply omitted. The most naïve variant of this leads to the zero (or conductor) 

boundary condition. This boundary condition models the computation grid as being placed in an 

infinitely large metal (with an infinitely high dielectric constant), which is a reasonable approximation 

for aqueous solution given the relatively large dielectric constant of water. A more realistic but also 

more time-consuming approach is the free boundary condition, i.e., the computation grid is modeled as 

being isolated in infinitely large dielectric medium, e.g. water. 

The periodic boundary condition, on the other hand, essentially mimics an infinite periodic 

lattice, wherein the computation grid is representative of the central cell. This is accomplished by 

treating nodes on the edge of the computation grid as if they were adjacent to corresponding nodes from 

the opposing edge or face, i.e.  

   (2.5) 

where xm, ym, zm are the maximum grid point indices in the x, y, and z dimensions respectively. For 

illustrative purposes, an operator matrix constructed for a 3x4x5 grid with uniform dielectric constant of 

1 is shown in . Upon inspection, the additional band structure required for periodic boundary conditions 

is clearly visible and these bands must be properly taken care of so that the desired periodic boundary 

condition is enforced upon the solution.  

  

φ[1, j,k]= φ[xm +1, j,k]

φ[i,1,k]= φ[i, ym +1,k]

φ[i, j,1]= φ[i, j, zm +1]
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(
Figure(2.1.(Discretized(Laplacian(Operator(for(3x4x5(Grid(

Left: Illustration of the band structure for the finite-difference discretization of the Laplacian operator 
under periodic boundary conditions. Right: Illustration of the band structure for the finite-difference 
discretization of the Laplacian operator under fixed potential boundary conditions.!

Treatment(of(Charged(Solutes(

Poisson(Equation As mentioned above, a system with the periodic boundary condition effectively 

mimics the physical case of an infinite lattice, with the computational grid being analogous to a central 

or unit cell of this lattice. For a system with non-zero net charge, a uniform neutralizing plasma must be 

used, as is standard for electrostatic calculations involving periodic ionic systems 15. This may be 

accomplished by subtracting the net charge uniformly from all grid nodes before solving the linear 

systems. 

The complication of the standard practice, in the case of periodic systems, is the unknown 

constant potential offset that is introduced. It is well known that the Poisson equation allows a family of 

solutions that only differ by a constant. When the boundary potentials are specified, the constant can 

then be uniquely determined. Unfortunately this is not possible in periodic systems. Thus the use of 

uniform plasma further complicates the issue of unknown potential offset in the solution of periodic 

Poisson systems. In particular, this poses a problem when attempting to obtain consistent results from 

different linear system solvers since it is not guaranteed that different linear system solvers lead to the 

same constant potential offset. Indeed our numerical tests show that different linear solvers do give 

different potential offsets. 
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In order to obtain consistent results among different solvers, it is necessary to impose a 

consistent potential offset to remove any possible difference caused by different numerical solvers. This 

can be easily realized by subtracting the mean potential on all grid nodes. Apparently the extra step 

incurs little additional CPU time and does not change any derivatives of the potential distribution. 

(

Poisson<Boltzmann(Equation Under physiological conditions, it is desirable to include a description 

of salt or ionic strength in the implicit solvation models. Under the PB framework, this is modeled by 

the addition of a second operator term that is itself a function of the electrostatic potential. This paper 

examines only the case where the term may be approximated by a linear function, such as the case with 

solutions containing relatively dilute (on the order of a few hundred mM) ionic concentrations in the 

weak electrostatic field.  

Physically the salt term acts as an additional charge term that in principle provides a means to 

neutralize the system. This turns out to be the case because the PB equation is satisfied when the system 

electrostatic free energy is at its minimum 16. It is apparent that the charge of the unit cell must be 

neutral for the free energy to be at its minimum at all since either positive or negative net charge leads to 

a diverging and positive free energy for the infinite periodic lattice. Note too that there is sufficient 

freedom to set the amount of charge by the salt term since we have an open system. Therefore a PB 

solver effectively looks for a solution that neutralizes the charge of the unit cell. Our numerical 

experiment shows that indeed this is the case for a large test set of nucleic acids of very different net 

charges as shown in Results and Discussion. There is, however, a final detail to consider. In cases where 

the ionic strength is very low, the PB operator approaches the Poisson operator. While such cases remain 

well posed, it is possible that some numerical solvers may experience difficulties. Testing was therefore 
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run to examine the numerical stability of all implemented periodic linear solvers over a range of salt 

concentrations as presented in Results and Discussion.  

Next, it is also worthwhile to point out that it is not necessary to reset the potential offset either, 

because the constant potential is no longer a solution of the PB equation due to the existence of the 

potential-dependent salt term. The requirement of minimum electrostatic free energy has uniquely 

determined the solution of the PB equation 16, even if the periodic boundary condition is used. Our 

numerical tests show that subtraction of the mean potential from each grid nodes does not change the 

electrostatic free energies for the tested nucleic acids when a non-zero ionic strength term is used. 

Adaptation(of(Conjugate(Gradient(Type(Solvers(to(Periodic(Boundary(

Condition(

The CG method is an iterative method for numerical solution of a matrix vector problem. CG 

attempts to effectively expand the solution in terms of mutually orthogonal components. At each step the 

solution vector is updated by adding to it, a vector orthogonal to the current solution vector, as shown in 

the following pseudo code 
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r0 = b − Ax0
p0 = r0
while(unconverged)

αk =
rTkrk
pTkApk

xk+1 = xk +αk pk
rk+1 = rk −αkApk
if (| rk+1 | / | rk |< tol)− > return(rk+1)

βk =
rTk+1rk+1
rTkrk

pk+1 = rk+1 + βk pk
k = k +1

endwhile

  (2.6) 

Updating CG for periodic boundary conditions primarily involves implementing periodicity (via 

an indexing array) when applying the matrix vector multiplication (Apk). As noted earlier, this is 

equivalent to adding a set of additional bands to the A matrix. While these additional bands in the A 

matrix pose little problem for the unconditioned CG algorithm, the more efficient modified Incomplete 

Cholesky (MIC) preconditioner 11 that was formulated for non-periodic systems must be reformulated in 

order to incorporate periodicity.  

When a preconditioner is used, the additional bands due to periodicity must be integrated into the 

preconditioning matrix as well. To do this we begin with the MIC preconditioner currently for non-

periodic systems as detailed by Wang and Luo 11 

 (M-1AM-1)(Mx) = M-1b   (2.7) 

  M= ( !D+L) !D
-1( !D+LT)   (2.8) 

where M is the preconditioning matrix,  D  is a positive diagonal matrix derived from the diagonal of A, 

and L is the lower triangular portion of A with diagonal excluded. The values in  D  are computed as 
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!d−1i = ai,i − ai−Δx,i−Δx (ai−Δx,i−Δx +αai−Δx,i−Δy +αai−Δx,i−Δy + ai−Δx,i−Δz ) ⋅ !di−Δx
−ai−Δy,i−Δy(αai−Δy,i−Δx + ai−Δy,i−Δy +αai−Δy,i−Δz ) ⋅ !di−Δy
−ai−Δz,i−Δz (αai−Δz,i−Δx +αai−Δz,i−Δy + ai−Δz,i−Δz ) ⋅ !di−Δz

 (2.9) 

This is equivalent to equation 11 in Wang and Luo 11 but with a slight notation change. Here i represents 

the 1-d sequential index of an arbitrary grid point. The off-diagonal entries along each row, therefore, 

correspond to the adjacent grid nodes along the x, y, or z direction. The values ofΔx, Δy, andΔz

represent the shifts in 1-d sequential indexing that correspond to 1 unit shifts along the x, y, and z 

dimensions, respectively. They can be derived as follows. The 1-d sequential grid index, i, 

corresponding to a 3-d spatial grid index [x,y,z] may be calculated as 

 i[x, y, z] = x + (y −1) ⋅ xm + (z −1) ⋅ xm ⋅ ym   (2.10) 

Thus the needed shifts can be computed as 

 
Δx =1
Δy = xm
Δz = xm ⋅ ym

  (2.11) 

Note also that the matrix described here by equation (2.9) represents a lower triangular matrix.  

Due to the symmetry of the A matrix, only the lower triangular portion needs to be considered in 

constructing d. The upper triangular portion is simply its transpose.  

In this notation, inclusion of the additional bands due to periodicity becomes relatively 

straightforward. Each additional band in A corresponds to a “wrapping” from one edge of the 

computational grid to the opposite side. Since we are concerned only with bands occurring in columns 

prior to a given matrix diagonal entry, only those bands corresponding to wrapping from the last node in 

a dimension to the first node along the same dimension are added. Updated equation (2.9) then yields 



 70 

 

d−1
i = ai, j − ai−Δx, j−Δx (ai−Δx, j−Δx +αai−Δx, j−Δy +αai−Δx, j−Δz

+αai−Δx, j−wx +αai−Δx, j−wy +αai−Δx, j−wz ) ⋅ di−Δx
−ai−Δy, j−Δy(αai−Δy, j−Δx + ai−Δy, j−Δy +αai−Δy, j−Δz
+αai−Δy, j−wx +αai−Δy, j−wy +αai−Δy, j−wz ) ⋅ di−Δy

−ai−Δz, j−Δz (αai−Δz, j−Δx +αai−Δz, j−Δy + ai−Δz, j−Δz
+αai−Δz, j−wx +αai−Δz, j−wy +αai−Δz, j−wz ) ⋅ di−Δz

−ai−wx, j−wx (αai−wx, j−Δx +αai−wx, j−Δy +αai−wx, j−Δz
+ai−wx, j−wx +αai−wx, j−wy +αai−wx, j−wz ) ⋅ di−wx
−ai−wy, j−wy(αai−wy, j−Δx +αai−wy, j−Δy +αai−wy, j−Δz
+αai−wy, j−wx + ai−wy, j−wy +αai−wy, j−wz ) ⋅ di−wy
−ai−wz, j−wz (αai−wz, j−Δx +αai−wz, j−Δy +αai−wz, j−Δz
+αai−wz, j−wx +αai−wz, j−wy + ai−wz, j−wz ) ⋅ di−wz

 (2.12) 

where wx, wy, and wz are the shifts in 1-d sequential indexing that correspond to wrapping from x=xm to 

x=1, y=ym to y=1, and z=zm to z=1 respectively. Computation of wx, wy, and wz will be discussed 

shortly. 

Implementation of the newly developed preconditioning algorithm poses one further 

complication. The preconditioner developed for non-periodic systems used padded arrays to store the 

coefficient matrices required. This was done to permit the use of a single inner loop over all entries of 

each array rather than using a separate loop to iterate over each spatial dimension. This setup then 

facilitated the CPU pipeline optimization. This previous approach requires extending the size of each 

array by an amount proportional to roughly twice the number of elements on the grid’s z faces, which 

corresponds to the largest 1-d sequential shift needed to describe shifting along the various 3-d grid 

dimensions.  
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In the case of a periodic system, however, grids along the z = 1 boundary must access grids at the 

z = zm boundary.  To determine how much padding is needed, the 1-d sequential shifts wx, wy, and wz 

are derived as follows 

i[x, y, z] = x + xm(y −1+ ym(z −1))
i[1, y, z] =1+ xm(y −1+ ym(z −1))

i[xm, y, z] = xm + xm(y −1+ ym(z −1))
i[x,1, z] = x + xm(ym(z −1))

i[x, ym,1] = x + xm(ym −1)
i[x, y,1] = x + xm(y −1)

i[x, y, zm ] = x + xm(y −1+ ym(zm −1))

i[xm +1, y, z] = i[1, y, z]
i[1−1, y, z] = i[xm, y, z]

⇒
i[xm +1, y, z] = i[xm − (xm −1), y, z] = i[xm, y, z]− (xm −1)
i[1−1, y, z] = i[1+ (xm −1), y, z] = i[1, y, z]+ (xm −1)

wx = xm −1

i[x, ym +1, z] = i[x,1, z]
i[x,1−1, z] = i[x, ym, z]

⇒
i[x, ym − (ym −1), z] = i[x, ym, z]− xm(ym −1)
i[x,1+ (ym −1), z] = i[x,1, z]+ xm(ym −1)

wy = xmym − xm

i[x, y, zm +1] = i[x, y,1]
i[x, y,1−1] = i[x, y, zm ]

⇒
i[x, y, zm +1] = i[x, y, zm − (zm −1)] = i[x, y, zm ]− xmym(zm −1)
i[x, y,1−1] = i[x, y,1+ (zm −1)] = i[x, y,1]+ xmym(zm −1)

wz = xmymzm − xmym

 

 (2.13) 

Thus the number of padding elements required is equal to twice xmym(zm-1). Unfortunately, this 

would nearly triple the amount of storage space required. Thus three-dimensional array was used 

instead.  
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To preserve the previous single loop structure, an indexing array was introduced to map the one-

dimensional indices into the corresponding three-dimensional indices. The extra two-grid points worth 

of padding along each dimensions would handle the needed wrapping. 

Adaptation(of(Successive(Over(Relaxation(to(Periodic(Boundary(Condition(

Successive Over Relaxation (SOR) is another method of iteratively solving a system of linear 

algebraic equations. It bears a striking resemblance to the Jacobi method (or the damped variant 

thereof), but seems to provide better convergence properties. In terms of the matrix vector formulation, 

the damped Jacobi (or SOR) may be expressed as 

  x(k+1) = (1−ω )x(k ) +ωD−1(b − Rx(k ) )   (2.14) 

where k is the kth iteration,  is a damping coefficient, D is the diagonal of A, and R is (A-D). The 

primary difference in terms of implementation is that Jacobi may be performed out of place while SOR 

and Gauss-Siedel are performed in place. A discussion of the convergence properties of Jacobi iteration 

(which extends to SOR) can be found in the textbook by Hackbusch 17. One is also much more restricted 

in choice of damping coefficient when using Jacobi, which requires a coefficient of less than unity, 

whereas SOR requires a coefficient under 2. Thus SOR may employ coefficients between values of 1 

and 2, allowing for more rapid convergence. Although convergence is not necessarily guaranteed for 

either method when considering a general matrix, it can be shown that convergence is guaranteed for 

symmetric positive-definite matrices, such as those which arise from a finite-difference or finite-volume 

discretization of the linearized PB equation. 

Like the unconditioned CG method, however, SOR still converges very slowly compared to 

conditioned or multigrid methods. However, as noted in the text by Hackbusch 17, an analysis of the 

convergence properties with respect to the spectral content of the residual shows that the Jacobi method 

(and SOR and Gauss-Seidel methods as well) is able to attenuate the short wavenumber components of 

ω
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the residual very rapidly and that the poor convergence is due to the long wavenumber components for 

which the Jacobi method converges very slowly. Thus, Jacobi (or SOR) may be conceived as a 

“smoother” of the residual for multigrid solvers 17.  

Adaptation of single grid SOR to periodic boundary conditions is relatively straightforward. 

Similar to CG, the primary difference between implementation of periodic boundary conditions versus 

fixed potential boundary conditions lies in the presence of additional band structure in the operator 

matrix, A.  As noted above, these additional bands can be implemented by making use of an indexing 

array (instead of padding working arrays as in conductor or free boundary conditions).  

Like unconditioned CG, SOR (and Jacobi) often require a very large number of iterations, and 

correspondingly, very slow to converge when compared with more advanced methods, as is shown in 

Results and Discussion. Thus SOR is best utilized as a smoother in the multi-grid methods as discussed 

below.  

Adaptation(of(Geometric(Multigrid(to(Periodic(Boundary(Condition(

The final solver method to consider is the geometric multi-grid solver. In this study, focus is 

limited to the geometric multigrid approaches as the infrastructure is already in place in Amber/PBSA as 

documented by Wang and Luo 11, but other multi-grid variants such as algebraic multigrid 11, and more 

recently, combinatorial multigrid  18 or Lean algebraic multigrid 19 may also provide viable options. 

Geometric MG functions by generating a hierarchy of successively sparser grids. In the current 

implementation, a four level V-cycle scheme, grid spacing is doubled at each successive level, and a 

total of four levels are used. Thus, the coarsest grid is smaller by a factor 512 when compared with the 

finest grid. See the paper by Wang and Luo 11 for an in-depth discussion of the original formulation of 

the geometric multi-grid method and other linear solvers, geared toward non-periodic systems.  There 

are three operations that must be performed at each level during the course of a single cycle: restriction 
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(projecting the residual of the current grid onto the next coarser grid), relaxation (smoothing of the 

residual of the current grid), and prolongation (projection of the current grid onto the next finer grid).  

The restriction operation, which interpolates values from a finer grid onto the next coarser grid, 

is carried out as a tri-linear interpolation using three-dimensional indexing. Adaptation of this operator 

for use with periodic boundary conditions simply requires use of modular arithmetic when computing 

shifts. In addition, restriction of the A matrix must be applied in a periodic fashion at the boundaries. 

Again, the existing infrastructure is easily adapted by utilization of modular arithmetic.  

The relaxation operation is carried out as several iterations of an appropriate iterative method, in 

this case, the Gauss-Siedel method, which is equivalent to a special case of SOR with a relaxation 

coefficient of unity. As mentioned in the earlier paper by Wang and Luo 11, SOR does a poor job at 

maintaining solution smoothness and would disrupt convergence. Thus Gauss-Siedel is used to smooth 

between prolongation and restriction and SOR is used only as a direct solver for the coarsest level. 

Extension of the matrix operator to allow periodic boundary conditions can be accomplished via an 

indexing array, and a separate indexing array must be generated for each level of the multi-grid 

hierarchy. 

The prolongation is the most complicated operation. In cases where the coefficients of the 

underlying partial differential equation are either spatially uniform (or at least vary smoothly and do not 

deviate by an order of magnitude or more), tri-linear interpolation would suffice 12b. Unfortunately, 

unless solving a vacuum or uniform dielectric system, this is not the case. Thus, a more complex 

prolongation operator is required. This is because the spectral content of the solution on a fine grid 

exhibits contents of high wave numbers. They cannot be expressed on a coarser grid. Consequently a 

linear interpolation of a coarse grid solution onto the fine grid introduces an artificial smoothing of the 

solution that in turn greatly disrupts convergence properties. This can be handled by using a operator-
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based prolongation 12b. The method was previously implemented 11 using the one-dimensional array 

indexing. Adapting the algorithm for use with three-dimensional indexing grid is apparently non-trivial, 

so that a padding/virtual grid approach is utilized. In this case, the current coarse grid is padded on each 

side. The corresponding periodic images are projected onto the padded edges. This padded grid can then 

be fed into the existing prolongation algorithm and treated as if it is a non-periodic system.  

MMPBSA(Calculations(

As reviewed one of the major applications of numerical PB solvers is in the prediction of 

protein-ligand binding affinities. Currently, the AMBER suite provides the MMPBSA module that 

automates the computation of binding affinity from a molecular dynamics trajectory. Addition of the 

heterogeneous membrane/water model in the numerical PB solvers clearly facilitates extension of this 

widely used method to membrane-bound receptors. The benefit of modeling the membrane implicitly for 

MMPBSA calculation was demonstrated here with recently published crystal structures and binding 

affinities for the P2Y12 human platelet receptor 20. The study analyzed the protein in complex with three 

different ligands. Additionally binding affinities for the D294N mutant in complex with the same three 

ligands were also provided. This makes P2Y12R an interesting initial candidate to demonstrate the 

effect of the membrane via the implicit PB solvent model. 

To prepare for the MMPBSA calculation, all-atom simulations of the P2Y12R receptor-ligand 

structures, both the wild type and mutant, were first conducted with the Lipid14  force field 21 following 

the protocol in Ref. 22. The membrane protein system was constructed using the web-based CHARMM 

membrane builder GUI 23. The MODELER program 24 was used to generate structures of missing loops. 

Once molecular dynamics trajectories of the six complexes were attained, the MMPBSA method was 

employed, by hand, to process 100 frames (1 ns) of each complex trajectory. The change in relative 
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binding free energies between all pairwise systems (ΔΔG) were then computed and compared with the 

measured values as discussed in Results and Discussion. 

Computational(Details(

The periodic linear PB solvers were implemented under the PBSA module of the 2015 release of 

AmberTools 25. Both a protein test set 11 and a nucleic acid test set 26 were utilized to validate the 

implementations. Charges and modified bond radii were assigned according to Cornell et. al. 27. The 

ratio of grid dimension over the solute dimension was set to a value of 2 if not specified otherwise. Grid 

spacing was set at 0.5 Å. For easy comparison, all periodic solvers were tested with grid dimensions in 

the multiples of 16 as for the geometric multi-grid solver. Water dielectric was set to a value of 80 and 

vacuum dielectric was set to 1 if not specified otherwise. The dielectric constants along solute boundary 

interpolated via weighted harmonic averaging 7. For SOR, the relaxation coefficient was set to 1.95. For 

ICCG, the relaxation coefficient was first optimized over a range of values from -1 to 1 using a short 

peptide as a test system. The possibility of non-equal coefficients for periodic and non-periodic 

relaxation coefficients for the preconditioner was investigated as well.  

Results(and(Discussion(

Validation(of(Periodic(Numerical(Solvers(

 The electrostatic energy of periodic and non-periodic systems should converge to the same value 

as the size of the system or central cell is extended toward infinity provided that the system is neutral in 

charge. This provides a means of validating the various periodic solvers by comparing the energies with 

those attained by the non-periodic solvers, which are known to function properly. Similarly, the 

deviation between the energies predicted should reduce as the distance between the boundary of the grid 

and the boundary of the solute is increased. 
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The periodic CG (PCG) solver was first evaluated with three simple model systems, each 

consisting of a low dielectric spherical cavity of 2 Angstrom imbedded with a dipole, quadrapole, or 

octapole, respectively. Testing was performed using the PBSA program 7, 11, 26 of the Amber simulation 

package 25 to verify proper convergence of energies by the periodic and conductor boundary conditions 

to those by the free boundary condition as the dimensions of the box is increased. The fill ratio of the 

solute dimension over the finite-difference grid dimension as defined by Wang and Luo 11 was used to 

control the grid dimension. The relative deviation between the periodic and free boundary conditions 

and the conductor and free boundary conditions were then plotted as a function of fill ratio on a log-log 

scale. The results are shown in . Inspection of the plot shows that the difference in computed 

electrostatic energies converges rapidly to zero as the fill ratio is increased. Specifically, the differences 

are in the order of 10-4 in the tested solvated cases when the commonly used fill ratio of 2 is used, 

indicating highly consistent energy calculations. The difference comes down slower in vacuum cases as 

expected due to the lack of solvent screening. This is also consistent with previous observations when 

comparing the vacuum electrostatic energies computed with the periodic CG solver and those with FFT 

or PME methods in the Amber simulation package 28.  
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Figure(2.2.(Differences(between(Electrostatic(Energies(by(Different(Boundary(Conditions(vs(
Fill(Ratios(

This figure illustrates the grid-dimension dependence in deviations of electrostatic energies between the 
periodic/conductor boundary condition and the free boundary condition in vacuum (upper) and in water 
(lower) for three model systems: low dielectric spherical cavities with a radius of Angstrom imbedded 
with a dipole, quadrapole, or octapole, respectively. The dipole consists of unit positive and negative 
charges located at positive and negative .5 Å from the cavity center along the x axis. The quadrapole 
consists of four unit positive and negative charges located at the vertices of a unit square in the x-y plane 
and centered at the cavity center. The octapole consists of eight unit positive and negative charges 
located at the vertices of a unit cube centered at the cavity center. The program reports the sum of the 
Coulomb and reaction field energies as a single electrostatic energy. 
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To validate the other periodic solvers, i.e. periodic SOR (PSOR), periodic incomplete cholesky 

conditioned conjugate gradient (PICCG), and periodic geometric multigrid (PMG), electrostatic energies 

for peptides and proteins of sizes ranging between ten and three hundred residues were computed and 

compared with the electrostatic energies with the PCG method. The grid dimensions and origins were 

chosen to be exactly the same across all tested solvers for each molecule to remove the discretization 

discrepancy. Implicit water solvation was implemented by setting the exterior dielectric constant to 80 

and the interior dielectric constant to 2. The relative deviations between tested solvers and the CG solver 

were plotted as a function of the grid volume as shown in . The comparison was conducted for all three 

commonly used boundary conditions, i.e. free, periodic, and conductor, respectively. Overall, relative 

deviations less than the convergence criterion used, i.e. 1 ppm, were observed for all three testing 

conditions of all tested solvers.  
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Figure(2.3.(Differences(between(Electrostatic(Energies(by(Different(Solvers(vs(Grid(Volumes(

Log-Log plots of differences in electrostatic energies by PICCG (top), PMG (middle), and PSOR 
(bottom) with respect to PCG versus computation grid volumes for the protein test set.!

(Optimization(of(Conditioning(Coefficients(for(ICCG(

The PICCG solver may be optimized by adjusting the relaxation coefficient for the 

preconditioner. This coefficient is applied to the terms of each band in the algorithm’s operator matrix 

during construction of the preconditioner. In the case of non-periodic systems, most of these bands 

contain roughly equal numbers of elements. In the case of periodic systems,  additional bands in the 

operator matrix are present due to periodic wrapping that occurs on the faces of the computation grid. 
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These bands tend to have far fewer elements than the bands associated with connectivity of interior grid 

nodes. It is therefore unclear as to whether or not the same conditioning coefficient can be used to retain 

the high performance of the preconditioner. 

To ensure optimal parameterization of the preconditioner, a series of tests were set up to examine 

the number of iterations required for convergence relative to choice of periodic and non-periodic 

relaxation coefficients. This series was constructed over a range of scaling coefficients ranging from 

positive to negative .975 in increments of .025 using a model of the c-terminal transmembrane helix of 

aquaporin (pdb ID: 1lH5). The results of this parameter scanning are shown as a contour plot in . 

Examination of the plot clearly shows that the optimal values for both periodic and non-periodic 

relaxation coefficients lie in a single basin with values nearby .90. Although further testing may be 

required to investigate possible dependence of optimal values upon system specific factors such as grid 

size, net charge, etc. The initial screening indicates that the same optimal value can be used for both 

periodic and non-periodic coefficients and is consistent with the previously reported value for the non-

periodic coefficient that was optimized with different molecules 2j.  
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Figure(2.4.(Optimization(of(Scaling(Coefficients(for(PICCG(

Contour plot of the number of iterations required for convergence of the PICCG method on a small 
model peptide system as a function of the scaling coefficients for periodic and non-periodic bands.!

Efficiency(Analysis(of(Numerical(Solvers(

In order to investigate the efficiency of the various linear solvers under different boundary 

conditions, additional timing analyses were conducted for the same set of computations used in the 

validation above.  It was observed in the paper by Wang and Luo 11 that a major portion of the time used 

when applying the non-periodic solver is spent in computing the necessary virtual charges to be applied 

along the grid boundary surfaces, as is needed when setting up the free boundary condition. Thus two 

timing metrics were examined. First, the times used by the linear solver were recorded with the 

boundary condition setup time excluded. Second, the total times from start to finish were recorded. The 

total number of iterations required by the solvers was the first metric used to compare the effectiveness 

of the conditioning used, given different boundary conditions. The number of iterations required for 

convergence for conditioned and unconditioned periodic and non-periodic algorithms are shown in . 

Inspection of  clearly shows that both periodic and non-periodic conditioned solvers require on the order 

of ten to twenty times fewer iterations than their unconditioned counterparts. It can also be seen that the 

non-periodic solvers perform slightly more efficiently than the periodic solvers in terms of number of 
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iterations required to converge. Worth noting is the scaling of the MG solver regardless of the boundary 

conditions. 

 
Figure 2.5. Solver Iteration Scaling: Log Iteration Required vs Log Grid Volume 

Log-log plots of iteration steps required to reach convergence versus total number of grid points (grid 
volume). In the case of the PMG method, “effective” iteration steps are used. This is computed as the 
sum of iteration steps at each grid level divided by the scaling factor of that grid level relative to the 
finest grid level, e.g. factors of 1, 8, 64, and 512, respectively. Top Left: PICCG, Top Right: PCG, 
Bottom Left: 4 Level V-Cycle PMG with SOR/Gauss-Siedel Relaxation, Bottom Right: PSOR. 
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The analysis presented in Figure 5 does not, however, consider the fact that a larger grid volume 

takes more time at each iteration step. Thus we further analyzed the total CPU time used by the linear 

solvers to reach convergence for the same tested systems.  illustrates relative efficiencies in terms of 

solver CPU times for all tested solvers at tested boundary conditions. From the plots on the left-hand 

side, it can clearly be seen that the periodic solvers are less efficient than the corresponding non-periodic 

solvers. The reduced efficiency is expected, however, since the periodic solvers’ operator matrices 

include roughly twice as many bands as the equivalent non-periodic solvers due to the inclusion of extra 

terms required to implement periodic boundaries. 

Despite the reduction in efficiency of the solver algorithm itself, the periodic solvers are actually 

slightly faster than the non-periodic solvers when the free boundary condition is used, as shown in , 

which plots total computation time v.s. grid size. This is evident from the plot on the left-hand side. As 

noted previously, this is most likely due to the cost to compute the virtual charges needed to implement 

the free boundary condition. Indeed, the fraction of solver time over total computation time goes down 

when the grid volume is increased as shown in . This effect is more pronounced for the more efficient 

solvers.  
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Figure(2.6.(Solver(Time(Scaling:(Log(Solver(Time(Required(vs(Log(Grid(Volume((

Log-log plots of the solver computation time versus total number of grid points (grid volume). The 
solver computation time excludes other time such as energy calculation and molecular surface 
generation. 

 

 !
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Figure 2.7. Total PB Time Scaling:  Log Computation Time vs Log Grid Volume!

Log-log plots of the total computation time required versus total number of grid points (grid volume). 
The total computation time includes all time needed for the PB calculations to finish normally, such as 
energy calculation and molecular surface generation.!

! !
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Figure(2.8.(Relative(Solver(Time(Scaling:(Log(Relative(Solver(Time(vs(Log(Grid(Volume(

Log-log plots of the fractional solver computation time versus total number of grid points (grid volume). 
The fractional solver computation time is with respect to the total computation time.!

(Numerical(Stability(in(Simulations(of(Charged(Solutes(

As was noted in the discussion of charged solutes in Methods, the addition of the linear term 

used to model ionic strength alleviates the need to pre-neutralize a PB solution systems as is necessary 

when solving the Poisson equation. This is demonstrated using a large test set of biomolecules with net 

charges of hundreds of electron charges under the physiological condition of 150mM.  plots the 

unsigned relative deviations (with respect to the solute net charges) from the charge neutrality condition 
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versus solute net charges. It is clear that the error in enforcing the charge neutrality condition is about 

~10-5, or roughly a factor of 10 larger than the convergence criterion, 1 ppm, used in the iteration.  

Lastly,  illustrates the numerical performance of all four periodic solvers with respect to the ionic 

strength ranging 25 to 1000 mM using a small charged molecule – dimethyl phosphate. Worth pointing 

out is that all solvers can achieve convergence and their electrostatic energies are all consistent with 

each other at all tested conditions. However the SOR performance degrades extremely rapidly when the 

ionic strength approaches zero. Performance degradation is not very apparent in the unconditioned CG, 

and the best behaving periodic solvers are ICCG and MG in this test case.  

 
Figure(2.9.(Charge(Neutrality(Achieved:(Log(Unsigned(Relative(Net(Charge(vs(Log(Absolute(
Net(Solute(Charge((

Log-Log plot of the unsigned relative net charge of the combined solute and mobile ion charge 
distributions versus the net solute charge for various nucleic acid systems under periodic boundary 
conditions. The relative net charge is computed with respect to the absolute solute net charge. 
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Figure( 2.10.( Dependence( of( Solver( Performance( upon( Ionic( Strength:( Log( Solver( Time( vs(
Log(Ionic(Strength((

Log-log plot of the solver computation time versus the ionic strength. Note that the solver time for 
PSOR degrades rapidly, following a seemingly exponential increase in time as the ionic strength 
approaches zero.!

Effect(of(Implicit(Membrane(in(MMPBSA(Analysis(of(P2Y12R(

To demonstrate the effectiveness of the heterogeneous membrane/water model, the same MMPBSA 

calculation was run using both the membrane/water model and the homogeneous water model under 

both free and periodic boundary conditions. The correlations between the experimental ΔΔG’s and each 

of the three different computational ΔΔG’s were analyzed. In each case only the boundary condition and 

solvent setup (homogenous water or membrane/water) were changed. Here the membrane was modeled 

as a 40-Ångstrom slab of dielectric constant of 1.0. The dielectric constant of the protein region was set 

to 4.0 to accommodate the high net charges of the systems. All other parameters were left at default 

values, including the nonpolar solvent treatment29 in the MMPBSAprotocol.  

The results of the binding free energy calculation are shown in . Upon inspection, it is clear that 

the heterogeneous membrane/water model leads to a marked improvement in the correlation between 

computed and measured ΔΔG’s. The homogenous water model yields poor correlations whether the free 
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boundary or periodic boundary was used. Thus the different correlation is not the cause of the periodic 

boundary condition that must be used in the heterogeneous membrane/water model. Of course the 

deviations from experimental values are still quite large, as is the case for most MMPBSA calculations, 

at least with the single-trajectory approach that is often applied in the literature.  

 

Figure 2.11. Effect of Implicit Solvent Modeling on Binding Affinity Calculation for P2Y12R 

Correlation plots of computed and measured relative binding free energies (ΔΔG) for P2Y12R 
complexes. 
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Given that the focus of the current study are on the development of efficient numerical PB 

solvers for MMPBSA calculations; it is informative to look into the timing data of the MMPBSA 

calculation when existing and newly developed solvers are used. Here, the PBSA jobs were rerun for 

one snapshot of the ligand-protein complex (with periodic boundaries and implicit membrane model) 

using ICCG and CG solvers in addition to the MG solver used in the above analysis. The CPU times 

were 139.04, 55.12, and 25.00 for the CG, ICCG, and MG solvers, respectively. Given that typically 

hundreds of snapshots were processed for typical MMPBSA calculations, the efficiency gain of the new 

solver is noticeable, especially when the MG method is used.  

Conclusions(and(Future(Directions(

The linear solvers currently available in the PBSA module of the Amber package, including 

SOR, modified ICCG, and geometric MG, were extended to include periodic boundary conditions. 

Accuracy testing, conducted using the previously developed and verified unconditioned CG solver 

indicated that all solvers are capable of achieving convergence and produce consistent electrostatic 

energies within the specified convergence criterion. Thorough efficiency testing was performed to 

investigate solution time scaling with respect to system sizes. As in the previous work by Wang and Luo 

11, multi-grid and conditioned conjugate gradient exhibit superior performance when compared with 

SOR and unconditioned CG. Interestingly while ICCG was shown, on average, to be the most efficient 

algorithm when applied to small to medium sized systems, scaling projections seem to indicate that MG 

would eventually outperform ICCG when applied to sufficiently large systems. 

The results of the solver timing analysis have shown that, for large systems, the fraction of time 

spent on the linear solver portion of the computation comprised successively smaller portions of the total 

time. This is an indication that future work should include optimization of the other computationally 
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intensive tasks required by PBSA, such as computation of the molecular surface and assignment of 

virtual charges. Since many of these tasks are amenable to parallelization, it may be beneficial to focus 

upon parallel implementations. Directions for future work may include adaptation to MPI, or Open-MP 

frameworks or to development of code suitable for use with GPU that can greatly accelerate 

computational time for highly parallel tasks. 

As mentioned in the introduction, a primary motivation for adaptation of current linear PB 

solvers as previously investigated by Wang and Luo11 to include periodic boundary conditions is to 

facilitate the use of heterogeneous membrane/water models for MMPBSA calculations within the 

current PBSA framework 3, 28b, 30. Previous work has already been published, providing the details for 

adapting the current level-set molecular surface 30 and formulation to allow inclusion of a planar 

membrane region and even inclusion of a cylindrical pore-like region in the case of channel or gating 

proteins 30. However, application of such methods requires use of periodic boundary conditions in order 

to mitigate introduction of edge effects induced by the presence of non-uniform dielectric mapping 

along the grid boundary. Although the unconditioned CG method, developed previously, provides a 

means of performing such computations, its relatively poor convergence properties limit its practical 

applications. Adaptation of the accelerated MG and ICCG linear solvers, as detailed here, should allow 

for competitive applications of the new membrane/water model.  

While the tested P2Y12R membrane system is by no means a fully representative sample, it 

nevertheless provides a good platform to demonstrate the utility of the heterogeneous membrane/water 

model for MMPBSA calculations. Potential avenues for further development includes the incorporation 

of implicit membrane in the classical solvent excluded molecular surface for the PB surface definition, a 

potential update of the solvent accessible volume / surface area based non-polar computation 29 for 

ligand binding that is within the membrane region, and implementation of the membrane/water model 
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under the existing MM-PBSA protocol 31 for fully automatic applications in binding free energy 

computations to the end users. Apparently more detailed analysis on the influence of various 

computational setups and parameters is in the P2Y12R system also needed for thorough assessment of 

the new MMPBSA proptocol and is left as a future development. 
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Chapter(3: Applications(of(MMPBSA(to(Membrane(Proteins(II:(

Design(and(Analysis(of(Protocol(for(Protein>Ligand(Binding(

Free(Energy(Calculation(

!

Introduction(

Membrane proteins provide a range of important functions, such as being cell receptors, 

signaling proteins, transmembrane channels, and more.  Their roles as receptors and channels 

make them particularly relevant as candidates for drug targets. Study of membrane proteins, 

however, is more complicated than globular proteins. Particularly, the presence of the membrane 

complicates structural studies, both experimentally and computationally. The presence of the 

membrane makes it more difficult to employ experimental techniques such as NMR and X-ray 

crystallography on membrane proteins. For instance, the signal from the membrane must be 

disentangled from that of the protein when using NMR and membrane proteins are notoriously 

difficult to crystallize. For computational studies, modeling of the membrane becomes an 

important consideration.  

Inclusion of solvent effects in computational studies of biological systems is quite 

important. It is relatively common knowledge that solvent-solute interactions provide the 

primary driving for producing and maintaining properly folded structures of proteins.1 Inclusion 

of solvent into a computational model or simulation can generally be classified into one of two 

different avenues, explicit and implicit solvation. In explicit solvation each atom and / or 

molecule of the solvent is modeled individually. While this is generally agreed to be the most 
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accurate method, one is often not interested in the properties of the solvent itself, but rather the 

interest is in the behavior it induces upon the solute. Unfortunately, accurately capturing 

statistically meaningful characteristics requires either sampling from ensembles of trajectories, 

or, over very long simulation times in cases where an appeal to ergodicity is valid. Implicit 

solvents provide an attractive alternative wherein the effects of the solvent are modeled as a 

continuum.1b, 1c, 2 While the fine grain details of individual solvent-solute particle interactions are 

lost, the relevant ensemble / statistically averaged effects may still be captured when a properly 

parameterized model is used. In addition, since the individual solvent molecules are no longer 

modeled directly, there will be far fewer particles to simulate. 

In the case of membrane proteins, the membrane must also be included when modeling 

solvation effects.3 In general, the molecules that make up a lipid membrane are much more 

complex than water or other small organic solvents. This increases both the computational 

expense of their inclusion as well as the amount of simulation time / replicas needed to 

accurately capture averaged / ensemble interactions. Thus, there has been much effort into 

development and testing of implicit membrane solvent models. However, just as with explicit 

solvation, inclusion of an implicit membrane complicates implementation of implicit solvent 

models. 

One of the key features to consider in implicit solvent models is the modeling of 

electrostatic interactions. This is most typically accomplished by employing the Poisson-

Boltzmann Equation (PBE).4 The solvent is modeled as a region (or regions in the case of 

membrane models) of high dielectric constant, and the solute is modeled as a region of low 

dielectric constant under the Poisson Equation. The effect of charged ions in the solvent region 

may also be included by modeling it as a mobile charge density that obeys a Boltzmann 
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distribution. In its full form, this yields a three-dimensional non-linear elliptical partial 

differential equation: 

  
  
∇⋅ε∇φ = −4πρ0 − 4π ezici exp −eziφ / kBT( )

i
∑   (3.1) 

where ε is the dielectric constant distribution, φ is the electrostatic potential distribution, ρ is the 

charge density of the solute (usually modeled as a set of discrete point charges), ci is the 

concentration of the ith solvent ion species in bulk, e is the absolute charge of an electron, zi is 

the valence for the ith ion, kB is Boltzmann’s constant, T is the temperature, and ∇ is the spatial 

gradient operator. 

In cases where ion concentration is relatively low (a few hundred millimolar or less) the 

second term on the right hand side, which corresponds to the mobile ion density distribution, 

may be reduced to a linear response term yielding:  

   ∇⋅ε∇φ = −4πρ0 + εvκ
2φ   (3.2) 

where 
2

2 8

v B

e I
k T
πκ
ε

= . Here v denotes the solvent, I  represents the ionic strength of the solution, 

and is computed as 2I z c= . This is often referred to as the linear PBE. 

Even in its simplified linear form, solution of the PBE is a non-trivial endeavor. Due to 

its complexity, there is no general closed form solution; and, with the exception of very 

simplified geometries, a numerical solution must be sought. The finite-difference method,3a, 4f, 4o, 

4p, 5 finite-element method,6 and boundary-element method7 are the commonly used numerical 

solution methods. The PBE-based solvent models have widely biological applications. For 
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example, they have been applied to prediction of pKa values for ionizable groups in 

biomolecules,8 solvation free energies,9 binding free energies,10 and protein folding and design.11  

One such exception is the case of a single point charge in a spherical dielectric cavity 

interacting with an outside charge distribution. Indeed, this case is a major part of the basis for 

the Generalized Born Equation, which is a quite popular and widely used approximation to full 

numerical solution of the PBE. While the underlying assumptions make such methods less 

accurate than numerical solution of the full PBE, there is a significant speed gain, which can be 

particularly important for applications which required repeated calculations of electrostatic 

energy, such as implicit solvent based molecular dynamics simulations.2k, 11d, 12  

In order to apply PBE or GB frameworks to implicit membrane solvent models, an 

additional solvent dielectric region must be added. The appropriate dielectric constant of the 

membrane region is generally thought to be quite low13 relative to the solvent dielectric which is 

typically set to be between 60 (mimicking spc water models) and 80 (typical for tip3p models). 

Early membrane permeation experiments,13d indicate that the dielectric constant for membranes 

varies as a function of depth. As discussed in early development of GB implicit models,13a, 13c, 14 

the interior of the membrane which contains mostly hydrophobic hydrocarbon chains, can be 

modeled as a region of very low dielectric constant, typically in the range of about 1 to 4 with a 

value of 2 seeming to be most common. Adding this region means that the dielectric constant 

exterior to the solute is no longer homogenous. Moreover, in the case of numerical PBE solvers, 

this discontinuity complicates boundary conditions since it extends to the edge of the 

computational grid. Additionally, there is some evidence to support that more than one additional 

region may be needed to properly model the dielectric profile of a lipid membrane implicitly. 

The upper layer of lipid membranes, which consists of charged and polar head groups, exhibits 
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very high dielectric constant. Various dielectric constant profiles were explored during the 

creation of GB implicit membrane models13c and it was demonstrated that a simple two dielectric 

constant model can reproduce proper electrostatic free energies relatively well by modeling the 

membrane as a slab like region with uniform dielectric constant of about 2. More accurate results 

could be attained using models with 3 or more layers, however, beyond 3 layers there did not 

appear to be any significant improvement in results.13c  

One of the major applications of implicit solvent free energy calculation is in the 

prediction of protein ligand binding affinities. The AMBER15 suite currently provides the 

capability of performing such computations for globular proteins in implicit water using either 

the GBSA or PBSA formalism via the MM_PBSA module.15 Implementation of implicit 

membrane under a PBE formalism is not new and is available under other PB packages, such as 

APBS16 and Delphi.17 With the implementation of an implicit membrane model into the PBSA 

framework,4t the implicit membrane model can be more readily interfaced with the existing 

MM_PBSA framework.15 

A complete implementation of an implicit membrane under the PBSA framework 

requires implementation of appropriate membrane to protein non-polar interaction free energy 

terms. While development of these terms is still underway, it is not expected to impact binding 

energy calculations for protein-ligand systems in which the binding pocket is sequestered away 

from the membrane in the protein interior. Thus, such systems make good candidates for testing 

of the current electrostatic free energy calculations provided by the current implementation of the 

implicit membrane model within the PBSA framework.1c, 4g, 4t  

While three-dimensional structures for globular proteins seem quite abundant, such data 

is less prevalent for membrane proteins. To conduct this study it was necessary to find a protein 
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for which experimental binding affinities and structures of the associated protein ligand 

complexes are both available. Recently, a study on the (P2Y12) receptor was released,18 which 

provides both crystal structures of the receptor bound to three different ligands, as well as 

experimental measurements of dissociation constants for the wild type and several select 

mutants. Thus, this study provides a good testing set for assessing the utility of the PBSA and 

MM_PBSA frameworks for computation of binding free energy for membrane proteins. 

Methods(

Preparation(of(P2Y12R(Complex(Models(from(Crystal(Structures(

Three separate crystal structures of P2Y12R, two complexed with agonist ligands18 (2-

methylthio-ATP (2MeSATP) and 2-methylthio-ADP (2MeSADP)) and one with the antagonist 

drug ligand (AZD), were downloaded from the protein databank.  As was noted in the 

corresponding literature,18 each of the crystal structures contained several small residue 

sequences for which no structure could be resolved.  

The program Modeller19 was used to generate homology models for residue sequences 

with missing structure data. These homology models were then merged into the crystal structures 

as follows. The molecular visualization program VMD20 was used to locally align the generated 

homology model with the corresponding regions of the crystal structure using the Mulit-SEQ21 

module. The substructures of the locally aligned homology model were then exported as 

individual coordinate files and merged into the crystal structure files. 

The ligands of each separate P2Y12R complex structure (2MeSADP, 2MeSATP, and 

AZD) were extracted to individual structure files for parameterization. The ANTECHAMBER22 

module of the AMBER molecular modeling and simulation suite23 was used to generate force 
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field parameters compatible with the AMBERff14SB force field used during subsequent 

simulation protocol.  

The first step toward obtaining force field parameters for ligand structures using 

ANTECHAMBER is parameterization of the ligand atomic point charges. ANTECHAMBER 

provides an internal quantum mechanics facility for calculation of ligand atomic point charge 

parameters. Due to the complexity of the 2MeSATP and 2MeSADP systems, however, it was 

necessary to employ external quantum mechanics software to obtain the needed parameters. The 

SPARTAN 1424 quantum mechanics, molecular modeling, and visualization package was used to 

perform the needed computations for each ligand. For the 2MeSATP and 2MeSADP ligands, the 

phosphorous and linking oxygen atoms of the phosphate groups were frozen prior to geometry 

optimization. The geometry of the AZD ligand was converged without restraints. Geometry 

optimization was performed using the ab-initio Hartree Fock model with a 6-31G* basis set. 

This basis set is consistent with the AM1-BCC25 model employed by ANTECHAMBER, which 

employs a semi-empirical AM1 basis set along with post calculation correction terms to 

approximate the point charges provided by the HF 6-31G* level of theory. The electrostatic point 

charges and optimized structures were then exported in the mol2 format for subsequent 

generation of force field parameter libraries via the PARMCHK module of ANTECHAMBER. 

Two important considerations that can greatly impact the magnitude of binding energies 

are the protonation states of side chains in the receptor (more pronounced nearby the binding 

site) and the parameterization and protonation state of the ligand. In situations where there are a 

large number of like charged ionizable side chains occupying the same geometric space within a 

protein, the electrostatic environment may differ significantly from that of bulk water. It is 

reasonable, then, to expect that this may affect the protonation state of the side chains. Structural 
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visualization shows that the two most buried lysines in the binding pocket, LYS266 and LYS66; 

and one buried aspartic acid within the membrane bound region, ASP294. These were modeled 

in their respective neutral states. Other exposed and less buried bases/acids that interact with the 

ligands/water are modeled in their default charged states. 

The parameterization of the 2MeSATP and 2MeSADP agonist ligand mimics was also 

examined. Both ATP and ADP are known to complex Mg2+ and are generally not found in fully 

ionized forms in solution at the neutral pH if not complexed with a cation. When Mg2+ is present, 

MgATP2- will typically be the most prevalent species at neutral pH.26 When not complexed with 

a suitable cation, ATP is known to act as a weak base with pKa’s of 3.93 and 7.03 for its fourth 

and third deprotonation processes, respectively.26  In either case, it is clear that the ATP ligand 

complex, whether existing in a doubly protonated or Mg complexed state, should have a net 

charge of -2 unlike the -4 net charge of an unbound and fully deprotonated ATP ion as is often 

depicted in introductory textbooks. While explicit inclusion of cations would provide the most 

accurate representation, doing so would complicate implementation under the MMPBSA 

framework. Instead, quantum mechanics optimization for the ATP molecule was run with two 

additional protons bonded to two of the three oxygens present on the terminal phosphate group. 

The net electrostatic charge of the two protons was then computed. Similarly, at neutral pH the 

monoprotonated form of ADP is most prevalent in solution, this procedure was repeated to 

model ADP with a -2 net charge. 

Preparation(of(Lipid(Membrane(System(Models(

The P2Y12 receptor is found embedded within platelet outer membranes. Proper 

modeling of its solvent environment should also include a membrane model as well. During 

simulation, this was accomplished with an explicit all-atom model, while during post processing 



 104 

binding affinity calculations, an implicit continuum model was employed. Construction of the 

explicit all-atom membrane model was accomplished using the CHARMM-membrane builder 

web server.27  Construction was guided by composition data taken from the 2005 paper by Biro 

et. al.,28 wherein phospholipid and cholesterol composition fractions were reported. The 

membrane was constructed to have POPC, POPS, and POPE in 3:2:3 ratios with a 2:5 

cholesterol to lipid ratio. Sphingomylin lipids, while notably present, could not be included, 

since their force field parameters were not yet available. Nevertheless, their absence was not 

expected to have a significant impact given the relatively short timescales being simulated. The 

aqueous phase of the P2Y12 membrane protein system was modeled using an explicit all-atom 

approach with the TIP3P model along with sufficient potassium and chloride ions to mimic a 

roughly 150 milimolar KCl concentration. This assembly setup was repeated for each of the 

three protein-ligand complexes studied.  

The constructed membrane systems were then loaded into the Leap program of the 

AMBER15 for generation of simulation force field topology and coordinate files. At this time, 

the corresponding D294N mutant structures were generated. This was accomplished by renaming 

the backbone atoms of the appropriate residue within the wild type membrane-protein structure 

file followed by deletion of the side-chain atoms. Modeling of the side-chain atoms for the 

mutant residue was accomplished automatically upon loading of the structure into the Leap 

program. Counterions were then added as necessary to neutralize any remaining net charge and 

the topology and initial coordinate files were generated. 

MD(Simulation(Protocol(

Prior to beginning molecular dynamics heating and density equilibrations, each system 

was first minimized using 500 steps of steepest descent followed by 500 steps of conjugate 
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gradient optimization. All loops containing coordinates taken directly from crystal structure data 

were held fixed. Loops containing coordinates generated from homology modeling were left 

unrestrained, along with all solvent molecules including membrane lipids, waters, and ions. 

Minimization was performed using the MPI parallelized SANDER code from the AMBER15 

suite. After minimization, systems were heated and density equilibrated. Heating was performed 

in two phases. In the first phase, systems were brought up to 100 K over 2500 time steps (5000 

ps), under the NTV condition using a Langevin thermostat with a collision frequency of 1.0 per 

ps. This was followed by heating from 100 K to 303 K over 100 ps under the NTP condition 

using anisotropic pressure scaling with the Berendsen barostat with a pressure relaxation 

constant of 2.0 ps and target pressure of 1.0 atm. The thermostat settings were left identical to the 

first heating run. In both cases, a cutoff radius of 10.0 Angstroms was used when computing 

non-bonded interactions and the restraint setup matched that of the minimization phase. Heating 

simulations were run using the MPI parallelized sander program from AMBER15.  

After initial heating was completed, it was necessary to allow the membrane density to 

equilibrate prior to beginning production runs. Density equilibration was performed over 10 

identical 500 ps NTP simulations. This setup is necessary when utilizing AMBER’s GPU 

accelerated pmemd program which does not allow for frequent updating of box size. The 

membrane density equilibration steps utilized the same barostat and thermostat settings as the 

second heating step, except that a constant temperature of 303 K was employed. As with heating 

and minimization, portions of the protein substructure containing coordinates from the crystal 

structure were held fixed. After equilibration, all restraints were removed and a 10 ns simulation 

was performed for the single trajectory method, while a total of 100 ns of simulation was 

performed for the multi-trajectory method. In order to take full advantage of the GPU accelerated 
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code, a Monte-Carlo thermostat was employed instead of the Berendsen thermostat used during 

previous simulation phases. This thermostat has the advantage of not requiring the virial to be 

calculated at each time step, a process that cannot be parallelized well.   

Binding(Free(Energy(Calculations(

Binding free energies were computed using the SANDER/PBSA module of AMBER15. 

Each of the trajectories was post processed using the ANTE-MMPBSA module in order to 

generate trajectories containing coordinates of the receptor-ligand complex, receptor only, and 

ligand only with all solvent, membrane, and ion atoms removed. The first 100 frames from each 

of these trajectories were then processed using SANDER/PBSA to compute molecular 

mechanics potential energies and solvation free energies. The energy data for all frames of the 

complex, receptor only, and ligand only were extracted and were subject to statistical analysis. 

The binding free energy is then computed as the difference between the complex free energy and 

the sum of receptor and ligand free energies as: 

 
 
△Gbinding =Gcomplex −Greceptor −Gligand   (3.3) 

Here, G represents the average free energy over the entire associated trajectory, computed as: 

 G =U +GPB +GNP   (3.4) 

Where U is the potential energy of the system computed according to the bonded and van 

der Waals terms of the simulation forcefield, GPB is the energy computed according to the 

Poisson-Boltzmann equation, and GNP is the free energy contribution from the non polar 

solvation free energy term, computed as a function of the solute surface / volume.  
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These binding free energies were then compared against the experimental results.18 The 

experimental dissociation constants, Kd, were converted to appropriate binding free energies 

using the formula: 

 ∆! = +!"#$(!!)  (3.5) 

where R is the gas constant, T is temperature, and Kd is the experimentally determined 

dissociation coefficient.  

In order to assess the utility of the various solvation model parameters, these 

computations were repeated to test various relevant computational parameters, including 

selection of solute dielectric constant, membrane versus globular solvent model, boundary 

conditions, membrane dielectric constant, and non-polar solvent model. To simplify the 

discussion of various key parameters influencing the performance of the MMPBSA binding free 

energies, a pre-screening using 10 frames was conducted by exhausting all combinations of 

parameters discussed below. Thus the scanning of each parameter was conducted by setting the 

other parameters at their optimum values. 

Implicit(Polar(Solvation(Model(

Neither the implicit membrane solvation model nor the periodic boundary condition 

options available under PBSA in AMBER have been previously tested for use in binding affinity 

applications. Two sets of tests were run to test the effect of periodic versus free boundary under 

water only implicit solvent, and implicit membrane versus water only solvent under periodic 

boundary conditions. For the latter, a dielectric constant of 1.0 was used for the membrane. A 

protein dielectric constant of 4.0 was used in both cases. 
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Implicit(Non>polar(Solvation(Model(

While electrostatic interactions play a major role in PBE-based implicit solvent models, 

various non-polar interactions, such as cavity surface tension and dispersion must also be 

accounted for. The PBSA module of AMBER currently provides two options for computing non-

polar solvation energy terms. The first method is to simply use a linear function of the solvent 

accessible surface area / volume.29 The second, more sophisticated method employs surface 

integration to decompose the non-polar contribution into separate cavity term and dispersion 

terms.30 To test the relative effectiveness of these two terms, two sets of computations were run 

using both options (inp=1 or 2) respectively with all other parameters set at optimal values.  

Protein(Dielectric(Constant(

At the neutral pH, the P2Y12R and all associated ligands except AZJ are non-neutral in 

solution. In cases of neutral receptor and ligand systems, protein dielectric is typically assigned 

to a relatively low value, such as 1 or 2. Charged systems may require a higher dielectric 

constant to be assigned to the solute in order to compensate the lack of conformational sampling 

in the typical MMPBSA calculations. Choice of protein dielectric constant has a significant 

impact upon the electrostatic energy, since a high value will tend to dampen electrostatic 

interactions. This effect is expected to be particularly noticeable for large proteins with a high net 

charge. To test the effect of protein dielectric constant upon binding prediction efficacy, a series 

of calculations was performed with protein dielectric constants of 1.0, 2.0, 4.0, 6.0, 8.0, 12.0, 

16.0, and 20.0 with all other parameters held at optimal values using the solvent excluded 

molecular surface description.  
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Membrane(Dielectric(Constant(

Modeling of an implicit membrane under the PBE framework requires implementing an 

additional solvent region. Since the interior of a lipid membrane is well known to be highly 

hydrophobic and non-polar, it is generally agreed that the interior dielectric constant can be 

assumed to be quite low. Proper modeling of the dielectric profile of implicit membranes has 

been a subject of much previous work; and varying multiple dielectric schemes have been 

suggested such as the two-, three-, or seven-dielectric models proposed in Feig et. al.3d Such 

schemes may indeed be warranted when one examines the results of FEP or PMF studies.3d, 13b In 

this study, only the simpler and relatively common two-dielectric model was considered.31 Multi-

dielectric models will be implemented and examined in a future work. The effectiveness of 

various membrane dielectric constants for the purpose of estimating binding free energies was 

tested for dielectric constants of 1, 2, 4, and 7 with all other parameters set to optimal values. 

Multi>trajectory(Method(

Thus far, the methodology employed revolves around generating a single all-atom 

trajectory for each system. The corresponding complex, receptor, and ligand trajectories were 

produced by extracting their substructure coordinates from the single all-atom trajectory. 

Inherent to this single-trajectory method is an underlying assumption that the conformational 

distributions of the ligand and receptor do not vary significantly between the bound and unbound 

states. In the case of relatively rigid ligands this may hold true for the ligand structure. Similarly 

the distribution of energetically favorable conformations of the receptor may or may not change 

upon binding depending upon the nature of the binding site. 

In the case of the P2Y12 receptor, it is known that the binding domain contains a “hinge-

like” structure that caps the binding pocket. While this structure was well defined for the crystal 
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structures of the normal Me2SADP ligand, the structure was not well resolved in the case of the 

AZJ ligand. This evidence is sufficient to hint that the conformational distribution of the bound 

and unbound receptor may vary between bound and unbound states for some ligands. Because of 

this uncertainty, a slightly more advanced methodology, involving simulations of unbound 

receptor and ligand systems, was also developed and evaluated. 

For receptor, the molecular dynamics protocol was identical to that used for the complex 

except that the ligand was removed from the crystal structure. Simulation of the ligand structures 

requires an aqueous environment. Addition of solvent molecules and ions proceeded in a manner 

consistent with the receptor and complex system setups. All simulation settings were identical 

except that 1) isotropic pressure scaling was used instead of the semi-isotropic scaling which was 

needed previously to stabilize membrane density, and 2) there was no need for the membrane 

density equilibration steps. 

In order to provide proper results, it is necessary that the receptor sample an appropriate 

portion of its unbound conformational space during simulation. Since there is no crystal structure 

for the unbound conformation it is important to ensure that the receptor has had sufficient 

simulation time to allow the needed conformational changes to occur. Computation of backbone 

RMSD provides a useful metric to assess whether or not this has occurred. Since the ligand 

binding pocket is the region that is most closely interacting with the ligand, the RMSD of 

residues lining this region was monitored. Similarly, it is possible to visually gauge conformation 

changes and flexibility from an image of overlaid frames taken from the trajectory at regular 

intervals near the end of the simulation. 
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Assessment(Metrics(

The accuracy of the computed binding affinities was assessed by calculating the RMSD 

of the calculated versus the experimental values. The Pearson correlation coefficient, Spearman 

rank correlation coefficient, the slope and associated p-value of the linear regression between 

calculated and measured values were also analyzed. These were computed for both the absolute 

binding free energies (ΔG) and relative binding free energies (ΔΔG) between different receptors 

(wild type and mutant D294N) and different ligands (Me2SATP, Me2SADP, and AZJ). These 

metrics were then used to assess the effects of computation parameters including choice of non-

polar solvation models, protein dielectric constants, and membrane dielectric constants.  

 

 

Additional(Computational(Details((

In each PBSA calculation a grid spacing of 0.5 Å was used with a grid to solute 

dimension ratio (fillratio) of 1.5. The geometric multigrid solver option was employed with a 

convergence threshold of 1.0 x 10-3 and electrostatic focusing turned off.4f, 4o, 4p, 32 Choice of 

implicit solvation model and boundary conditions were investigated in a previous paper,32 where 

it was shown that the implicit membrane model with periodic boundary conditions yielded 

improved results. Thus, the implicit membrane model (memopt1) and periodic boundary 

conditions (bcopt10) were employed for all PBSA computations on structures containing one of 

the P2Y12R structures; while implicit water (memopt0) and periodic boundary conditions 

(bcopt10) were employed for computations involving only the unbound small organic ligand 

structures.  
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The solvation system physical constants were set up as follows. The membrane is 

modeled as a solid slab of 40 Å. The water relative dielectric constant (epsout) is fixed at 80.0. 

The protein dielectric constant (epsin) of 4.0 was found to agree with experiment the best if it 

was not changed. The membrane dielectric constant (epsmem) of 1.0 was found to be the best 

value for MMPBSA calculations if it was not changed. The modeling of non-polar solvation is 

also important as discussed above and is set to be option 2 (inp2) if it was not changed. The 

water phase ionic strength (istrng) is set to be 150 mM. Weighted harmonic averaging was 

employed to assign dielectric constants for boundary grid edges to reduce grid dependence 

(smoothopt1) and charge singularity was not removed (bcopt5).4i, 4s Charges and radii were 

assigned using the same parameters as the simulation topology files.23 

Results(

In our first publication documenting our development of a MMPBSA method for 

membrane proteins,32 we demonstrated the effect of implicit membrane model versus 

homogeneous implicit water model for the P2Y12R systems presented here. Our analysis shows 

that the use of the implicit membrane model markedly improves the correlation between 

experimental and computed binding free energies over the homogenous implicit water model.32 

This clearly shows the potential utility of the implicit membrane solvent model for use in future 

MMPBSA studies of membrane proteins. In this study, we intend to develop an automated 

procedure to set up and execute required MMPBSA calculations; and also, we seek to further 

investigate the effects of various relevant parameters, particularly non-polar solvation model, 

protein dielectric constant, and membrane dielectric constant, upon the accuracy and efficacy of 

MMPBSA binding free energy calculations. 
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Non>polar(Solvent(Models(

There are currently two models available for computing non-polar solvation energy 

terms: the classical method that models the non-polar solvation free energy as a single linear 

term in proportion to the solvent accessible surface area, and the more advanced method that 

decomposes the nonpolar solvation free energy into separate (cavity and dispersion) terms. Since 

there were only two options, the dataset lends itself well to visualization and the results for both 

the raw binding energies and binding energy differences were plotted in Figure 3.2 and Figure 

3.1, respectively. Visual inspection of the regression lines, however, does not provide a great 

deal of immediately useful insight, thus metrics for the correlations were computed and compiled 

in Table 3.1. Although the changes are somewhat less pronounced than for variations in protein 

or membrane dielectric constant to be discussed below, it is quite clear that the new method 

(inp2) yields improved results in all areas except for the Spearman rank R correlation. 

Nevertheless, these results provide a good indication that inp2 yields improved utility for binding 

energy computations. 

 (
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Figure(3.1:(Binding(energy((ΔG)(correlation(for(P2Y12R(using(optimized(parameters(

(

 

Figure(3.2:(Binding(energy(difference((ΔΔG)(correlation(for(P2Y12R(using(optimized(

parameters(
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Table(3.1:(Effect(of(Non>Polar(solvation(term(model(

∆G ∆∆G
INP RMSD slope p/value R Rank5R RMSD slope p/value R Rank5R

1 83.481 91.891 0.029 0.736 0.771 21.26 53.93 0.007 0.67 0.62
2 77.594 85.436 0.025 0.754 0.771 19.52 52.71 0.004 0.69 0.57  

Table 3.1 also shows that the RMSD between experimental and computationally values 

was lowered for both absolute and relative in free energies by using a cavity dispersion 

decomposition method (inp2). With the classical method (inp1), the RMSD’s were 79.14 and 

18.89 kcal/mol, respectively, while inp2 yielded 73.22 and 17.15 kcal/mol, respectively. The 

same trend holds for the p-value of the correlation; inp1 yielded p-values of .036 and .014 while 

inp2 yielded p-values of .033 and .010. Similarly, inp1 yielded R values of .71 and .62 while 

inp2 yielded R values of .72 and .64. While these differences are relatively small, particularly 

given the relatively limited test set size, testing nevertheless consistently shows that the advanced 

cavity/dispersion method, inp2, yielded better results, consistent with our finding in globular 

protein ligand binding calculation by the MMPBSA method (manuscript in preparation). 

Protein(Dielectric(Constant(Comparison(

The most notable impact of solute dielectric constant selection is upon the RMSD, shown 

in Table 3.2 which decreases monotonically with increasing solute dielectric constant. While this 

would suggest choosing as large of a dielectric constant as possible, the correlation between 

calculated and experimental results becomes very poor as becomes evident upon examination of 

the correlation coefficients and the p-value of the slope for linear regressions. 

Examination of linear regression statistics, particularly the p-value of the slope 

coefficient, shown in Table 3.2 sheds more light on selection of an optimal solute dielectric 

constant parameter. Here, slope, like RMSD appears to decrease monotonically with increasing 
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solute dielectric constant. In this case, however, a slope of exactly 1 is the most desirable value, 

since that would correspond to the case where computed binding free energies, ΔG, and relative 

binding free energy, ΔΔG, would exactly match experimental values. Examination of the results 

reveals that there is, apparently, a systematic overestimation in binding free energies in most 

cases as is very common in most MMPBSA studies. However, care should be taken in using the 

slope too liberally as a scoring metric. It is important to also consider the probability of attaining 

the same slope if the data were actually random. This is given by the p-value. On inspection, it 

appears that a value of 4 for the protein dielectric yields optimal results. However, it is somewhat 

dangerous to use p-value alone as a scoring function. Pearson and Spearman correlation 

coefficients were also examined. For all metrics, it is again clear that a dielectric constant of 4  

yields the strongest correlation, which is consistent with the observed trend in the p-value. In 

summary a protein dielectric constant of 4 is optimal when using MMPBSA for ranking or 

scoring of the tested membrane protein-ligand binding system.  

(

Table(3.2:(Effect(of(protein(dielectric(constant(

∆G ∆∆G
EPSIN RMSD slope p0value R Rank6R RMSD slope p0value R Rank6R

1 89.365 214.062 0.038 0.699 0.886 51.09 136.15 0.014 0.62 0.58
2 84.209 138.452 0.027 0.746 0.886 31.90 88.23 0.005 0.68 0.55
4 77.594 85.436 0.025 0.754 0.771 19.52 52.71 0.004 0.69 0.57
6 74.096 62.738 0.030 0.733 0.771 14.50 37.11 0.007 0.66 0.49
8 71.904 50.064 0.035 0.712 0.600 11.70 28.77 0.012 0.63 0.50
12 69.326 35.602 0.051 0.654 0.600 8.65 19.08 0.039 0.54 0.51
16 67.829 27.724 0.068 0.605 0.543 6.98 14.40 0.075 0.47 0.49
20 66.880 22.705 0.093 0.546 0.543 6.00 11.23 0.137 0.40 0.38  
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Membrane(Dielectric(Constant(Comparison(

According to previous computational studies13b-d the lipid membranes exhibits a dielectric 

profile that varies as a function of distance from the membrane center. This value is typically 

quite low near the interior where membrane composition is primarily long hydrophobic 

hydrocarbon chains. Closer to the interface, in the region linking the hydrophilic tails to the 

hydrophilic head groups, the dielectric constant rises to a moderate value around 7.0 or so. 

Lastly, in the region composed of hydrophilic head groups, the dielectric constant is quite high, 

perhaps exceeding even that of the bulk water environment.  

 Currently, the implicit membrane model implemented in PBSA allows for only a single 

membrane region. While this may be extended with relative ease in the future, this study focuses 

on the single-dielectric protocol. In doing so, it was reasonable to examine choices ranging from 

1 to 7 as this was consistent with the range of dielectric constants suggested for the dielectric 

profile of the membrane interior.  

From examination of the data shown in Table 3.3 it is evident that the correlation 

between experimental and computation results degrades quickly as the membrane dielectric 

constant is increased. As in the protein dielectric scanning, the RMSD decreases as membrane 

dielectric increased. However, the loss of correlation, as measured by the p-value and R values, 

is much more dramatic than that in the scanning of protein dielectric. This result is somewhat 

surprising, given that the membrane region is not in direct contact with the ligand or the binding 

pocket.  

 (
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Table(3.3:(Effect(of(membrane(dielectric(constant(

∆G ∆∆G
EPSMEM RMSD slope p.value R Rank4R RMSD slope p.value R Rank4R

1 77.594 85.436 0.025 0.754 0.771 19.52 52.71 0.004 0.69 0.57
2 73.220 73.411 0.033 0.720 0.771 17.15 42.60 0.010 0.64 0.50
4 68.976 60.670 0.048 0.664 0.771 14.74 31.34 0.035 0.55 0.47
7 65.884 51.218 0.068 0.607 0.771 13.00 22.77 0.093 0.45 0.36  

It is widely known that long-range electrostatic interactions play important roles in 

protein binding interactions. Our data here further demonstrates that this remains to be the case 

for membrane proteins. Our analysis shows that a relatively low membrane dielectric should be 

used when employing MMPBSA as a ranking or scoring metric. While there seems to be a 

competing trend between the accuracy of magnitude of computed energies and the strength of 

ranking correlation, our results indicate that a low membrane dielectric constant is best since the 

correlation apparently degrades rapidly when membrane dielectric is increased. Furthermore, a 

low membrane dielectric is consistent with previous literature studies which investigated 

dielectric profiles of lipid membranes, wherein the membrane interior was shown to exhibit a 

very low dielectric.13b 

Multi>trajectory(Method(

The multi-trajectory method, unlike the single-trajectory method, requires a much longer 

simulation period in order for the computed free energies to converge. However, the exact 

simulation time required is apparently system dependent. As can be seen in Figure 3.3, it is clear 

that the conformational free energies are still not converged by the end of the 100 ns production 

run. Unlike the single-trajectory method, where exact cancelation of various bonded energy 

terms is guaranteed, the multi-trajectory method only yields convergence of such terms after 
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sufficient statistical averaging has occurred, even in cases where no significant change in protein 

or ligand conformation occurs upon binding.  

 

Figure(3.3:(Cumulative(PBSA(binding(free(energies(

 (



 120 

The data shows that additional sampling is required for the tested systems, probably due 

to ongoing conformational relaxation throughout the 100ns simulated. This hypothesis is 

motivated by discussion in the article where the original crystal structures were reported.18 It was 

noted that there was a noticeable conformational change in the one of the helices surrounding the 

binding pocket. The helix is observed to be straight in the unbound conformation. Upon bindin 

with the natural agonist ligands, the helix bends inward, toward the bound ligand. When binding 

with the antagonist drug ligand, however, the helix is forced outward instead.18   

To investigate this phenomenon, and determine whether or not the suggested 

conformational changes had indeed been completed, multi-frame overlay renderings of binding 

pocket residues were generated to allow visual inspection of the difference in conformational 

flexibility of the binding pocket and neighboring residues for the ligand-protein complex and the 

unbound receptor, as shown in Figure 3.4 (2MeSADP structures) and Figure 3.5 (AZD 

structures). While the binding pocket has not opened for the unbound receptor, as in the 

antagonist drug complex, it is clear that the snapshots for the unbound receptor show much 

greater conformational flexibility than the 2MeSADP bound complex. As expected, the 

difference is most pronounced for the hinge-like capping loop of the binding pocket and the 

helical side loop reported in the literature.  
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Figure(3.4:(Comparison(of(multi>frame(overlays(for(P2Y12R(–(4PXZ((

Showing the first frame of each .1 ns for the last 10 ns of the simulation. Left: Complexes of 
4PXZ wild type (top) and mD294N mutant (bottom) with 2MeSATP agonist ligand. Right: 
Receptors with ligand removed for wild type (top) and mD294N mutant (bottom). 
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Figure(3.5:(Comparison(of(multi>frame(overlays(for(P2Y12R(–(4NTJ((

Showing the first frame of each .1 ns for the last 10 ns of the simulation. Left: Complexes of 
4NTJ wild type (top) and mD294N mutant (bottom) with AZJ antagonist drug ligand. Right: 
Receptors with ligand removed for wild type (top) and mD294N mutant (bottom) . 
 (
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It is apparent that the helix in question (as seen on the right front of the proteins in Figure 

3.4 and Figure 3.5) had not yet returned to a straightened conformation. In the case of the wild 

type 4PXZ structure, the helix is less bent in the bound structure, indicating that the 

conformational change has not completed. In the other receptor structures, there was little to no 

change observed. Finally, an examination of the structural RMSD relative to the averaged 

structure over the last 2 ns of simulation, as shown in Figure 3.6 confirms that the structures had 

not yet reached a full equilibrium state. This is particularly pronounced for the antagonist drug 

complex and receptor structures. While this is somewhat encouraging, it is not known whether 

the required conformational changes occur on timescales readily attainable under the 

computational architectures employed in this study. Nevertheless, the intention of our analysis 

here was to show that it is important to study both energetic and structural dependent over 

simulation time to study the convergence of conformational free energies before MMPBSA can 

be applied in the multiple-trajectory set up as implemented.  
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Figure(3.6:(Structural(RMSD(plots(for(P2Y12R(production(simulations.((

 (
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Conclusions(

We have developed an automatic data processing protocol for membrane protein-ligand 

binding free energy estimation. Given the automated procedure, a detailed further investigation 

of parameters influencing the accuracy of MMPBSA results was conducted, in compliment to 

our previous study that use of an implicit membrane model can indeed yield improved 

correlation between experimental and computed binding energy differences. The automated 

procedure will facilitated future studies of membrane protein ligand binding systems. The 

reported optimization procedure also illustrates the various details that should be considered 

when selecting parameters whilst applying the MMPBSA method in studies of membrane 

protein-ligand binding systems.   

Testing of the non-polar solvent term model indicates that the surface integration method 

(inp2) yields improved results all around as compared with the simpler linear model (inp1). 

These results provide a clear-cut indication that inp2 is preferred when performing binding free 

energy calculations for membrane protein-ligand systems. 

Investigation of protein and membrane dielectric constants leads to less clear-cut results. 

In both cases, the deviation between calculated and experimental binding energies decreases as 

the dielectric constant increases. At high dielectric constants, however, the correlation also 

becomes extremely poor. In the case of the protein dielectric constant, a value of 4.0 to 6.0 is 

apparently an optimal choice with respect to the strength of the correlation achieved. Testing of 

membrane dielectric parameter did not reveal the same pattern. In this case correlation seems to 

deteriorate as dielectric constant is increased while the RMSD improves. The rate of degradation 

in correlation does appear to be somewhat more pronounced for changes in membrane dielectric 

than for changes in protein dielectric, particularly for membrane dielectric constants above 2. 
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This coincides nicely with previous literature investigations into membrane dielectric profiles, 

which indicate that the dielectric constant near the interior of lipid membranes is quite low.13b 

Currently, the implicit membrane modeling facilities in PBSA allow for a one-dielectric 

membrane model, although additional dielectrics can be implemented and will be made available 

in the future.  

References(

1. (a) Perutz, M. F., Science 1978, 201 (4362), 1187-1191; (b) Davis, M. E.; Mccammon, J. A., Chem Rev 
1990, 90 (3), 509-521; (c) Honig, B.; Nicholls, A., Science 1995, 268 (5214), 1144-1149. 
2. (a) Honig, B.; Sharp, K.; Yang, A. S., J. Phys. Chem. 1993, 97 (6), 1101-1109; (b) Beglov, D.; Roux, B., 
Journal of Chemical Physics 1996, 104 (21), 8678-8689; (c) Cramer, C. J.; Truhlar, D. G., Chemical Reviews 1999, 
99 (8), 2161-2200; (d) Bashford, D.; Case, D. A., Annual Review Of Physical Chemistry 2000, 51, 129-152; (e) 
Baker, N. A., Curr. Opin. Struct. Biol. 2005, 15 (2), 137-143; (f) Chen, J. H.; Im, W. P.; Brooks, C. L., Journal of 
the American Chemical Society 2006, 128 (11), 3728-3736; (g) Feig, M.; Chocholousova, J.; Tanizaki, S., 
Theoretical Chemistry Accounts 2006, 116 (1-3), 194-205; (h) Koehl, P., Curr. Opin. Struct. Biol. 2006, 16 (2), 142-
151; (i) Im, W.; Chen, J. H.; Brooks, C. L., Peptide Solvation and H-Bonds 2006, 72, 173-+; (j) Lu, B. Z.; Zhou, Y. 
C.; Holst, M. J.; McCammon, J. A., Communications in Computational Physics 2008, 3 (5), 973-1009; (k) Wang, J.; 
Tan, C. H.; Tan, Y. H.; Lu, Q.; Luo, R., Communications in Computational Physics 2008, 3 (5), 1010-1031; (l) 
Altman, M. D.; Bardhan, J. P.; White, J. K.; Tidor, B., Journal of Computational Chemistry 2009, 30 (1), 132-153; 
(m) Cai, Q.; Wang, J.; Hsieh, M.-J.; Ye, X.; Luo, R., Chapter Six - Poisson–Boltzmann Implicit Solvation Models. 
In Annual Reports in Computational Chemistry, Ralph, A. W., Ed. Elsevier: 2012; Vol. Volume 8, pp 149-162; (n) 
Xiao, L.; Wang, C.; Luo, R., Journal of Theoretical and Computational Chemistry 2014, 13 (03), 1430001; (o) 
Botello-Smith, W. M.; Cai, Q.; Luo, R., Journal of Theoretical and Computational Chemistry 2014, 13 (03), 
1440008. 
3. (a) Forsten, K. E.; Kozack, R. E.; Lauffenburger, D. A.; Subramaniam, S., J. Phys. Chem. 1994, 98 (21), 
5580-5586; (b) Spassov, V. Z., Yan, L., and Szalma, S. , J Phys. Chem. B 2002, 106 (8726-38); (c) Im, W., Feigh, 
M., and Brooks III, C. L. , Biophysical Journal 2003, 85, 2900-18; (d) Tanizaki, S.; Feig, M., Journal of Chemical 
Physics 2005, 122 (12); (e) Tanizaki, S.; Feig, M., Journal of Physical Chemistry B 2006, 110 (1), 548-556; (f) 
Callenberg, K. M., Choudhary, O. P., de Forest, G. L., Gohara, D. W., Baker, N. A., and Grabe, M. , PLoS One 
2010, 5 (9), 1-11. 
4. (a) Warwicker, J.; Watson, H. C., J Mol Biol 1982, 157 (4), 671-679; (b) Bashford, D.; Karplus, M., 
Biochemistry 1990, 29 (44), 10219-10225; (c) Jeancharles, A.; Nicholls, A.; Sharp, K.; Honig, B.; Tempczyk, A.; 
Hendrickson, T. F.; Still, W. C., Journal of the American Chemical Society 1991, 113 (4), 1454-1455; (d) Gilson, 
M. K., Curr. Opin. Struct. Biol. 1995, 5 (2), 216-223; (e) Edinger, S. R.; Cortis, C.; Shenkin, P. S.; Friesner, R. A., 
J. Phys. Chem. B 1997, 101 (7), 1190-1197; (f) Luo, R.; David, L.; Gilson, M. K., Journal of Computational 
Chemistry 2002, 23 (13), 1244-1253; (g) Lu, Q.; Luo, R., Journal of Chemical Physics 2003, 119 (21), 11035-
11047; (h) Tan, C.; Yang, L.; Luo, R., Journal of Physical Chemistry B 2006, 110 (37), 18680-18687; (i) Cai, Q.; 
Wang, J.; Zhao, H.-K.; Luo, R., Journal of Chemical Physics 2009, 130 (14); (j) Wang, J.; Cai, Q.; Li, Z.-L.; Zhao, 
H.-K.; Luo, R., Chemical Physics Letters 2009, 468 (4-6), 112-118; (k) Ye, X.; Cai, Q.; Yang, W.; Luo, R., 
Biophysical Journal 2009, 97 (2), 554-562; (l) Ye, X.; Wang, J.; Luo, R., Journal of Chemical Theory and 
Computation 2010, 6 (4), 1157-1169; (m) Luo, R.; Moult, J.; Gilson, M. K., Journal of Physical Chemistry B 1997, 
101 (51), 11226-11236; (n) Wang, J.; Tan, C.; Chanco, E.; Luo, R., Physical Chemistry Chemical Physics 2010, 12 
(5), 1194-1202; (o) Wang, J.; Luo, R., Journal of Computational Chemistry 2010, 31 (8), 1689-1698; (p) Cai, Q.; 
Hsieh, M.-J.; Wang, J.; Luo, R., Journal of Chemical Theory and Computation 2010, 6 (1), 203-211; (q) Hsieh, M. 
J.; Luo, R., Journal of Molecular Modeling 2011, 17 (8), 1985-1996; (r) Cai, Q.; Ye, X.; Wang, J.; Luo, R., Journal 
of Chemical Theory and Computation 2011, 7 (11), 3608-3619; (s) Wang, J.; Cai, Q.; Xiang, Y.; Luo, R., Journal of 



 127 

Chemical Theory and Computation 2012, 8 (8), 2741-2751; (t) Botello-Smith, W. M.; Liu, X.; Cai, Q.; Li, Z.; Zhao, 
H.; Luo, R., Chemical Physics Letters 2012; (u) Liu, X.; Wang, C.; Wang, J.; Li, Z.; Zhao, H.; Luo, R., Physical 
Chemistry Chemical Physics 2013; (v) Wang, C.; Wang, J.; Cai, Q.; Li, Z. L.; Zhao, H.; Luo, R., Computational and 
Theoretical Chemistry 2013, 1024, 34-44. 
5. (a) Klapper, I.; Hagstrom, R.; Fine, R.; Sharp, K.; Honig, B., Proteins Structure Function and Genetics 
1986, 1 (1), 47-59; (b) Davis, M. E.; McCammon, J. A., Journal of Computational Chemistry 1989, 10 (3), 386-391; 
(c) Nicholls, A.; Honig, B., Journal of Computational Chemistry 1991, 12 (4), 435-445; (d) Luty, B. A.; Davis, M. 
E.; McCammon, J. A., Journal of Computational Chemistry 1992, 13 (9), 1114-1118; (e) Holst, M.; Saied, F., 
Journal of Computational Chemistry 1993, 14 (1), 105-113; (f) Holst, M. J.; Saied, F., Journal of Computational 
Chemistry 1995, 16 (3), 337-364; (g) Bashford, D., Lecture Notes in Computer Science 1997, 1343, 233-240; (h) Im, 
W.; Beglov, D.; Roux, B., Comput. Phys. Commun. 1998, 111 (1-3), 59-75; (i) Rocchia, W.; Alexov, E.; Honig, B., 
J. Phys. Chem. B 2001, 105 (28), 6507-6514. 
6. (a) Cortis, C. M.; Friesner, R. A., Journal of Computational Chemistry 1997, 18 (13), 1591-1608; (b) Holst, 
M.; Baker, N.; Wang, F., Journal of Computational Chemistry 2000, 21 (15), 1319-1342; (c) Baker, N.; Holst, M.; 
Wang, F., Journal of Computational Chemistry 2000, 21 (15), 1343-1352; (d) Shestakov, A. I.; Milovich, J. L.; Noy, 
A., Journal of Colloid and Interface Science 2002, 247 (1), 62-79; (e) Chen, L.; Holst, M. J.; Xu, J. C., Siam Journal 
on Numerical Analysis 2007, 45, 2298-2320; (f) Xie, D.; Zhou, S., BIT Numerical Mathematics 2007, 47 (4), 853-
871; (g) Wang, J.; Cieplak, P.; Li, J.; Wang, J.; Cai, Q.; Hsieh, M.; Lei, H.; Luo, R.; Duan, Y., Journal of Physical 
Chemistry B 2011, 115 (12), 3100-3111; (h) Lu, B.; Holst, M. J.; McCammon, J. A.; Zhou, Y. C., J Comput Phys 
2010, 229 (19), 6979-6994; (i) Bond, S. D.; Chaudhry, J. H.; Cyr, E. C.; Olson, L. N., Journal of Computational 
Chemistry 2010, 31 (8), 1625-1635. 
7. (a) Miertus, S.; Scrocco, E.; Tomasi, J., Chemical Physics 1981, 55 (1), 117-129; (b) Hoshi, H.; Sakurai, 
M.; Inoue, Y.; Chujo, R., Journal of Chemical Physics 1987, 87 (2), 1107-1115; (c) Zauhar, R. J.; Morgan, R. S., 
Journal of Computational Chemistry 1988, 9 (2), 171-187; (d) Rashin, A. A., J. Phys. Chem. 1990, 94 (5), 1725-
1733; (e) Yoon, B. J.; Lenhoff, A. M., Journal of Computational Chemistry 1990, 11 (9), 1080-1086; (f) Juffer, A. 
H.; Botta, E. F. F.; Vankeulen, B. A. M.; Vanderploeg, A.; Berendsen, H. J. C., J Comput Phys 1991, 97 (1), 144-
171; (g) Zhou, H. X., Biophys J 1993, 65 (2), 955-963; (h) Bharadwaj, R.; Windemuth, A.; Sridharan, S.; Honig, B.; 
Nicholls, A., Journal of Computational Chemistry 1995, 16 (7), 898-913; (i) Purisima, E. O.; Nilar, S. H., Journal of 
Computational Chemistry 1995, 16 (6), 681-689; (j) Liang, J.; Subramaniam, S., Biophysical Journal 1997, 73 (4), 
1830-1841; (k) Vorobjev, Y. N.; Scheraga, H. A., Journal of Computational Chemistry 1997, 18 (4), 569-583; (l) 
Totrov, M.; Abagyan, R., Biopolymers 2001, 60 (2), 124-133; (m) Boschitsch, A. H.; Fenley, M. O.; Zhou, H. X., J. 
Phys. Chem. B 2002, 106 (10), 2741-2754; (n) Lu, B. Z.; Cheng, X. L.; Huang, J. F.; McCammon, J. A., 
Proceedings of the National Academy of Sciences of the United States of America 2006, 103 (51), 19314-19319; (o) 
Lu, B.; Cheng, X.; Huang, J.; McCammon, J. A., Journal of Chemical Theory and Computation 2009, 5 (6), 1692-
1699; (p) Bajaj, C.; Chen, S.-C.; Rand, A., Siam Journal on Scientific Computing 2011, 33 (2), 826-848. 
8. (a) Georgescu, R. E.; Alexov, E. G.; Gunner, M. R., Biophys J 2002, 83 (4), 1731-1748; (b) Nielsen, J. E.; 
McCammon, J. A., Protein Sci 2003, 12 (2), 313-326; (c) Warwicker, J., Protein Sci 2004, 13 (10), 2793-2805; (d) 
Tang, C. L.; Alexov, E.; Pyle, A. M.; Honig, B., J Mol Biol 2007, 366 (5), 1475-1496. 
9. (a) Shivakumar, D.; Deng, Y. Q.; Roux, B., J. Chem. Theory Comput. 2009, 5 (4), 919-930; (b) Nicholls, 
A.; Mobley, D. L.; Guthrie, J. P.; Chodera, J. D.; Bayly, C. I.; Cooper, M. D.; Pande, V. S., Journal of Medicinal 
Chemistry 2008, 51 (4), 769-779. 
10. (a) Swanson, J. M. J.; Henchman, R. H.; McCammon, J. A., Biophys J 2004, 86 (1), 67-74; (b) Bertonati, 
C.; Honig, B.; Alexov, E., Biophysical Journal 2007, 92 (6), 1891-1899; (c) Brice, A. R.; Dominy, B. N., J Comput 
Chem 2011, 32 (7), 1431-1440; (d) Luo, R.; Gilson, H. S. R.; Potter, M. J.; Gilson, M. K., Biophysical Journal 2001, 
80 (1), 140-148; (e) David, L.; Luo, R.; Head, M. S.; Gilson, M. K., Journal of Physical Chemistry B 1999, 103 (6), 
1031-1044. 
11. (a) Marshall, S. A.; Vizcarra, C. L.; Mayo, S. L., Protein Sci 2005, 14 (5), 1293-1304; (b) Hsieh, M. J.; 
Luo, R., Proteins-Structure Function and Bioinformatics 2004, 56 (3), 475-486; (c) Wen, E. Z.; Luo, R., Journal of 
Chemical Physics 2004, 121 (5), 2412-2421; (d) Wen, E. Z.; Hsieh, M. J.; Kollman, P. A.; Luo, R., Journal of 
Molecular Graphics & Modelling 2004, 22 (5), 415-424; (e) Lwin, T. Z.; Luo, R., Journal of Chemical Physics 
2005, 123 (19); (f) Lwin, T. Z.; Zhou, R. H.; Luo, R., Journal of Chemical Physics 2006, 124 (3); (g) Lwin, T. Z.; 
Luo, R., Protein Science 2006, 15 (11), 2642-2655; (h) Tan, Y.-H.; Luo, R., Journal of Physical Chemistry B 2008, 
112 (6), 1875-1883; (i) Tan, Y.; Luo, R., BMC Biophysics 2009, 2 (1), 5. 
12. (a) Wang, J.; Cai, Q.; Li, Z. L.; Zhao, H. K.; Luo, R., Chemical Physics Letters 2009, 468 (4-6), 112-118; 
(b) Morozov, A. V.; Kortemme, T.; Baker, D., J. Phys. Chem. B 2003, 107 (9), 2075-2090; (c) Wagoner, J.; Baker, 
N. A., Journal of Computational Chemistry 2004, 25 (13), 1623-1629. 



 128 

13. (a) Im, W.; Feig, M.; Brooks, C. L., Biophysical Journal 2003, 85, 2900-2918; (b) Nymeyer, H.; Zhou, H.-
X., Biophysical Journal 2008, 94, 1185-1193; (c) Tanizaki, S.; Feig, M., The Journal of chemical physics 2005, 122, 
124706; (d) Stern, H. A.; Feller, S. E., The Journal of Chemical Physics 2003, 118, 3401. 
14. Ulmschneider, M. B.; Ulmschneider, J. P.; Sansom, M. S.; Di Nola, A., Biophysical Journal 2007, 92 (7), 
2338-2349. 
15. (a) Srinivasan, J.; Cheatham, T. E.; Cieplak, P.; Kollman, P. A.; Case, D. A., J Am Chem Soc 1998, 120 
(37), 9401-9409; (b) Kollman, P. A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S. H.; Chong, L.; Lee, M.; Lee, T.; 
Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D. A.; Cheatham, T. E., Accounts Chem Res 
2000, 33 (12), 889-897; (c) Gohlke, H.; Case, D. A., Journal of Computational Chemistry 2004, 25 (2), 238-250; (d) 
Yang, T. Y.; Wu, J. C.; Yan, C. L.; Wang, Y. F.; Luo, R.; Gonzales, M. B.; Dalby, K. N.; Ren, P. Y., Proteins-
Structure Function and Bioinformatics 2011, 79 (6), 1940-1951; (e) Miller III, B. R.; McGee Jr, T. D.; Swails, J. M.; 
Homeyer, N.; Gohlke, H.; Roitberg, A. E., J. Chem. Theory Comput. 2012, 8 (9), 3314-3321; (f) Miller, B. R.; 
McGee, T. D.; Swails, J. M.; Homeyer, N.; Gohlke, H.; Roitberg, A. E., J Chem Theory Comput 2012, 8 (9), 3314-
3321. 
16. Callenberg, K. M.; Choudhary, O. P.; de Forest, G. L.; Gohara, D. W.; Baker, N. A.; Grabe, M., Plos One 
2010, 5 (9). 
17. (a) Li, C.; Li, L.; Zhang, J.; Alexov, E., Journal of Computational Chemistry 2012, 33 (24), 1960-1966; (b) 
Li, L.; Li, C.; Sarkar, S.; Zhang, J.; Witham, S.; Zhang, Z.; Wang, L.; Smith, N.; Petukh, M.; Alexov, E., BMC 
biophysics 2012, 5 (1), 9. 
18. Zhang, K.; Zhang, J.; Gao, Z.-G.; Zhang, D.; Zhu, L.; Han, G. W.; Moss, S. M.; Paoletta, S.; Kiselev, E.; 
Lu, W., Nature 2014, 509 (7498), 115-118. 
19. Webb, B.; Sali, A., Current protocols in bioinformatics 2014, 5.6. 1-5.6. 32. 
20. Humphrey, W.; Dalke, A.; Schulten, K., Journal of Molecular Graphics & Modelling 1996, 14 (1), 33-38. 
21. Roberts, E.; Eargle, J.; Wright, D.; Luthey-Schulten, Z., BMC bioinformatics 2006, 7 (1), 382. 
22. Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A., J. Am. Chem. Soc 2001, 222, U403. 
23. Case, D. A.; Cheatham, T. E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M.; Onufriev, A.; Simmerling, C.; 
Wang, B.; Woods, R. J., Journal of Computational Chemistry 2005, 26 (16), 1668-1688. 
24. Spartan'14, Wavefunction, Inc.: Irvine, CA, 2014. 
25. Jakalian, A.; Jack, D. B.; Bayly, C. I., Journal of computational chemistry 2002, 23 (16), 1623-1641. 
26. Storer, A. C.; Cornish-Bowden, A., Biochem. J 1976, 159, 1-5. 
27. Jo, S.; Kim, T.; Im, W., Plos One 2007, 2 (9), e880. 
28. Biró, É.; Akkerman, J. W. N.; Hoek, F. J.; Gorter, G.; Pronk, L. M.; Sturk, A.; Nieuwland, R., Journal of 
Thrombosis and Haemostasis 2005, 3 (12), 2754-2763. 
29. Eisenberg, D.; McLachlan, A. D., 1986. 
30. Tan, C.; Tan, Y.-H.; Luo, R., The Journal of Physical Chemistry B 2007, 111 (42), 12263-12274. 
31. (a) Hadi-Alijanvand, H.; Rouhani, M., The Journal of Physical Chemistry B 2015, 119, 6113-6128; (b) 
Supunyabut, C.; Fuklang, S.; Sompornpisut, P., Journal of Molecular Graphics and Modelling 2015, 59, 81-91; (c) 
Eddy, M. T.; Andreas, L.; Teijido, O.; Su, Y.; Clark, L.; Noskov, S. Y.; Wagner, G.; Rostovtseva, T. K.; Griffin, R. 
G., Biochemistry 2015, 54, 994-1005. 
32. Smith, W.; Luo, R., Journal of chemical information and modeling 2015. 

 

  



 129 

CHAPTER(4:(Summary(and(Conclusion(

Continuum electrostatics modeling of solvation based on the Poisson-Boltzmann 

(PB) equation has gained wide acceptance in biomolecular applications such as energetic 

analysis and structural visualization. Recently much attention has been given to inclusion 

of implicit membrane into existing continuum Poisson-Boltzmann solvent models to 

extend their applications to membrane systems, which are important computational 

research topics due to their roles in rational drug design.  

In this dissertation, we first developed a continuum membrane model under the 

numerical PB framework for applications such as protein-ligand binding affinity and 

docking pose predictions. Both the level set method based on a revised density function 

and the classical geometric method based on the solvent excluded surface were developed 

for biomolecular applications. In both strategies, the membrane region is modeled as a 

slab region of a specified dielectric constant to model its influence in electrostatics 

calculations. 

Apparently, inclusion of an implicit membrane complicates numerical solutions of 

the underlining Poisson-Boltzmann equation due to the dielectric inhomogeneity on the 

boundary surfaces of a computation grid. This can be alleviated by the use of the periodic 

boundary condition, a common practice in electrostatic computations in particle 

simulations. The conjugate gradient and successive over-relaxation methods are relatively 

straightforward to be adapted to periodic calculations, but their convergence rates are 

quite low, limiting their applications to free energy simulations that require a large 

number of conformations to be processed. To accelerate convergence, the Incomplete 
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Cholesky preconditioning and the geometric multi-grid methods have been extended to 

incorporate periodicity for biomolecular applications. Impressive convergence behaviors 

were found as in the previous applications of these numerical methods to tested 

biomolecules and (Molecular Mechanics Poisson-Boltzmann Surface Area) MMPBSA 

calculations. This lays foundations for sophisticated models with variable dielectric 

treatments and second-order accurate modeling of solvation interactions.  

Successful application of the PB solvent models requires careful calibration of the 

solvation parameters. Extensive testing and validation is also important to ensure 

accuracy in their applications. Limitation in the continuum modeling of solvation is also a 

known issue in certain biomolecular applications. Growing interest in membrane systems 

has further spurred developmental efforts to allow inclusion of membrane in the PB 

solvent models. Despite their past successes due to careful parameterization, algorithm 

development, and parallel implementation, there is still much to be done to improve their 

transferability from the small molecular systems upon which they were developed and 

validated to complex macromolecular systems as advances in technology continue to 

push forward, providing ever greater computational resources to researchers to study 

more interesting biological systems of higher complexity. 

 




