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Designing an All-Flash Lustre File System for the
2020 NERSC Perlmutter System
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National Energy Research Scientific Computing Center

Lawrence Berkeley National Laboratory
{glock, klozinskiy, lgerhardt, rcheema, dhazen, njwright}@lbl.gov

Abstract—New experimental and AI-driven workloads are
moving into the realm of extreme-scale HPC systems at the same
time that high-performance flash is becoming cost-effective to
deploy at scale. This confluence poses a number of new technical
and economic challenges and opportunities in designing the next
generation of HPC storage and I/O subsystems to achieve the
right balance of bandwidth, latency, endurance, and cost. In
this paper, we present the quantitative approach to requirements
definition that resulted in the 30 PB all-flash Lustre file system
that will be deployed with NERSC’s upcoming Perlmutter system
in 2020. By integrating analysis of current workloads and
projections of future performance and throughput, we were
able to constrain many critical design space parameters and
quantitatively demonstrate that Perlmutter will not only deliver
high performance, but effectively balance cost with capacity,
endurance, and modern features in Lustre.

I. INTRODUCTION

Historically, the most demanding I/O workloads in high-
performance computing (HPC) have come from modeling
and simulation applications checkpointing and restarting their
internal state [1]. As a result, a tremendous amount of research
and development has been carried out to develop file sys-
tems [2] and I/O middleware [3], [4] that specifically optimize
for these checkpoint-restart I/O patterns. These research efforts
have resulted in applications being able to extract tremendous
aggregate I/O bandwidth from large quantities of storage
media based on magnetic disks, with the largest all-disk
deployments surpassing 1 TB/sec of performance [5].

Two major factors are shifting this conventional wisdom of
I/O performance requirements in HPC though. The emergence
of applying artificial intelligence (AI) at scale is showing
promise as a completely new means to extract new insights
from huge bodies of scientific data [6], [7]. Concurrently, there
has been an explosion of high resolution detectors available to
experimental and observational scientific communities [8], [9]
which can produce scientific data at unprecedented rates [10],
[11]. These workloads do not simply perform I/O to save
and load the state of their calculation synchronously; rather,
they are often marked by having to process volumes of data
that far exceed the amount of memory available on their
processing elements. Furthermore, the amount of computations
they perform are often dictated by the contents of the data they
are processing and cannot be determined a priori. As a result,
the I/O patterns of these emerging workloads differ from those

of traditional checkpoint-restart and do not perform optimally
on today’s production, disk-based parallel file systems.

Fortunately, the cost of flash-based solid-state disks (SSDs)
has reached a point where it is now cost-effective to integrate
flash into large-scale HPC systems to work around many
of the limitations intrinsic to disk-based high-performance
storage systems [12]–[14]. The current state of the art is to
integrate flash as a burst buffer which logically resides between
user applications and lower-performing disk-based parallel file
systems. Burst buffers have already been shown to benefit
experimental and observational data analysis in a multitude
of science domains including high-energy physics, astronomy,
bioinformatics, and climate [6], [8], [15]–[17]. However such
burst buffers often enable high performance by compromising
data reliability. For example, virtually all systems that utilize
node-local flash provide no pretense of data protection in the
form of parity or replication, so if a job’s compute node fails,
it is generally assumed that the contents stored on that node
are permanently lost. Similarly, Cray’s DataWarp burst buffer
eschews parity protection on writes to deliver the maximum
number of I/O operations per second (IOPS) to applications.
This tradeoff makes burst buffers valuable for storing very
active data for hours to days but never as the sole copy of a
valuable dataset.

This decision to favor performance over resilience results in
an usability challenge that remains unresolved. It is ultimately
the responsibility of users to track the tier (flash or disk) in
which their most up-to-date data resides. This incentivizes
a return to a single high-performance storage tier, and the
dropping cost of SSDs [18] are expected to once again give
rise to a single, high-performance storage tier that has the
performance of a burst buffer but the capacity of a traditional
disk-based parallel file system [19], [20].

In 2020, the National Energy Research Scientific Computing
Center (NERSC) will be deploying the Perlmutter HPC system
which has been specifically designed to address the needs
of emerging data-driven workloads in addition to traditional
modeling and simulation. A foundation of Perlmutter’s data
processing capabilities will be its 30 PB, all-flash Lustre file
system. Unlike previous deployments of flash in HPC sys-
tems [12], [21], [22] that have co-deployed high-performance
flash with high-capacity disk, the Perlmutter file system will
use flash exclusively for both performance and capacity. As
such, it is critical that it deliver extreme bandwidth, extreme



data and metadata IOPS, high resilience, and high capacity
while maintaining cost-effectiveness.

In practice, balancing performance, capacity, resilience, and
cost requires a system architecture driven by several goals:

• The capacity of the file system must be “just enough”
for the aggregate workload to ensure that flash, which is
still expensive on a cost-capacity basis, is not over- or
underprovisioned for capacity

• The SSD media must be of sufficient endurance to meet
the service requirements of the workload without being
overprovisioned for unrealistically high endurance levels,
as this adds to overall cost

• All available performance features for low latency I/O
with Lustre must be effectively provisioned for and usable
by the workload

Meeting these goals requires a quantitative understanding of
the I/O workload that will run on the target storage system to
ensure that the most critical portions of the system architecture
receive the most investment.

In this work, we present a series of analytical methods by
which the requirements of a future all-flash file system can be
quantitatively defined. We then use telemetric data collected
from a reference production storage system to inform the
minimum and maximum values required to achieve an optimal
balance of capacity and value on a future all-flash parallel file
system. However, we do not address I/O performance in this
work because we expect that the absolute throughput of first-
generation all-flash parallel file systems will be limited by
software, not flash media, when they are initially deployed. It
follows that the absolute performance of these systems will
steadily increase with successive software improvements over
the service lives of these all-flash file systems, making perfor-
mance prediction difficult and highly dependent on software
architecture, not system architecture.

II. METHODS

The goal of this work is to define models through which
the design space surrounding several key dimensions of paral-
lel file system architecture can be quantified. These models
project the requirements of a notional future parallel file
system by combining data from an existing reference parallel
file system with parameters that describe the future system.
For simplicity, we refer to the model inputs as coming from
the reference system, and the model outputs as describing
the requirements for a new system. To illustrate the efficacy
of these models, we then apply data collected from the I/O
subsystem of Cori, a Cray XC-40 system deployed at NERSC,
to derive the requirements for a notional all-flash Lustre file
system that will be deployed with Perlmutter, NERSC’s next-
generation system.

A. Reference System

The reference system is Cori, a Cray XC-40 system com-
prised of 9,688 compute nodes with Intel Xeon Phi 7250
processors and 2,388 compute nodes with Intel Xeon E5-2698
v3 processors. Cori’s I/O subsystem has two tiers: a disk-based

Lustre file system and an all-flash DataWarp burst buffer. The
precise configurations of these two storage tiers are described
in Table I.

We rely on the Lustre Monitoring Tool (LMT) [23] to
quantify the I/O requirements imposed on the reference file
system by NERSC’s production workload. LMT reports the
total number of bytes read and written to each Lustre object
storage target (OST) since the time each object storage server
(OSS) was last rebooted on a five-second interval. We use the
pytokio archival service [24] to persist this LMT data over
the entire service life of Cori, allowing us to calculate the
total number of bytes read and written to the file system over
any arbitrary time interval. To understand how the file system’s
fullness increases, we run the standard Lustre lfs df command
every five minutes to archive a consistent view each OST’s
fullness.

To characterize the utilization of the burst buffer tier on
Cori, we use the Intel Data Center SSD Tool [25] to collect
device-level data including the total bytes read and written to
each SSD by the host DataWarp server and the total bytes read
and written to the underlying NAND. The device-level read
and write activity from the host is a close approximation of
the aggregate user workload because user I/O is simply striped
across devices without additional parity in DataWarp. We do
expect the host writes to be slightly overstated due to the added
device-level I/O caused by internal file system activity such as
superblock updates, but we expect this effect to be minimal
relative to volume of data written by user applications. Com-
paring the host- and NAND-level I/O volumes also allows
us to explicitly calculate the aggregate write amplification
factor (WAF = NAND bytes written/host bytes written) of
each SSD over its service life.

We obtain the distribution of file and inode sizes from
a MySQL database populated using the Robinhood policy
engine [26] version 3.1.4. This database contains the results
of scanning the Lustre namespace from a Lustre client and
inserting records that catalog the POSIX metadata fields
intrinsic to each inode. For the purposes of this study, we
extract the inode type and inode size for each record from this
Robinhood database’s ENTRIES table. For each type of inode,
we then build histograms of inode sizes with exponentially
increasing bins such that bin i contains the number of inodes
with size S such that 2i−1 < S ≤ 2i.

B. New System

Although the precise architecture of the new system, Perl-
mutter, was not defined at the time of writing, the models
developed in this work are not designed to produce exact
architectures and are therefore only dependent on high-level
target capabilities. For the purposes of this work, it is sufficient
to state that the Perlmutter system will have between 3× and
4× the capability of the reference system, Cori. Its overall
scientific workload is expected to be similar to that of the
reference system in terms of job mix, although the precise
mechanisms by which jobs achieve high computational perfor-
mance will be different by virtue of Perlmutter’s substantial



TABLE I
DESCRIPTION OF REFERENCE SYSTEM

Tier (File System) Capacity Peak Bandwidth # Data Servers # Drives
Burst Buffer (DataWarp) 1.84 PB 1,740 GB/s 288 1,152

Scratch (Lustre) 30.5 PB 717 GB/s 248 10,168

GPU capability. NERSC also anticipates a new workload
component coming from the need to perform large-scale anal-
ysis of experimental and observational scientific data. Given
that the reference system’s workload is largely dominated by
traditional modeling and simulation workloads, the effects that
these new analysis workloads will have on the overall I/O
requirements of Perlmutter are not well understood.

III. FILE SYSTEM CAPACITY

To determine the minimum required capacity, Cnew, for the
storage subsystem of a new HPC system, we use a simple
growth model that uses empirical measurements from the
reference HPC system’s compute and storage subsystems. This
model is expressed as

Cnew = SSI ·
(
λpurge

PF

)
·
(
∂C ref

∂t

)
(1)

where
1) SSI is the Sustained System Improvement [27], a metric

incorporating both performance and throughput improve-
ment of the new system relative to the reference system

2) (λpurge/PF) encapsulates the numerical description of the
anticipated data retention policy of the new file system

3)
(
∂Cref

/∂t
)

is daily growth rate observed on the reference
file system

We use SSI to account for the fact that a system with a
higher capability or throughput will be able to consume and
generate data at a proportionally higher rate. For example, a
workflow that can execute 3× faster on the new system will
be able to produce three times as much useful output in a fixed
amount of time relative to the reference system assuming no
other changes.

The (λpurge/PF) term represents a data management policy
whose terms can be interpreted in several different ways.
λpurge is a measure of time that reflects either the periodicity
of purge cycles or the time after which files are eligible to
be purged. PF is the fraction of total file system capacity
to be reclaimed after each purge or the fraction fullness of
the file system above which files become eligible for purging.
These two terms provide enough flexibility to capture the most
common approaches to purging. For example, files not touched
in more than λpurge days will be purged if doing so will aid
in driving down file system fullness below (100× PF)%. As
with any numerical expression of a data retention policy, it
cannot capture the effects of ill-intentioned users who touch
files to make them ineligible for purge.

The rate at which the reference file system grows,
(
∂Cref

/∂t
)
,

is the most challenging term to calculate rigorously. In prac-
tice, the growth rate of file systems is a function of many vari-
ables including user diversity (some scientific workflows must
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Fig. 1. Distribution of daily growth of Cori’s scratch file system.

retain more data than others [28]), time of year (conference
deadlines and allocation expiration dates are often preceded
by high utilization), and system age (improvements to system
stability and usability encourage longer-term data retention).
As such, correctly parameterizing

(
∂Cref

/∂t
)

requires institu-
tional knowledge of both the technological and sociological
factors intrinsic to the reference system.

To determine
(
∂Cref

/∂t
)

for our reference system, we first
define the daily growth for day d as the difference between
the capacity used on day d and d − 1. We further constrain
this daily growth metric by stating that it is undefined for days
when there was a net reduction in file system fullness. In doing
so, we minimize the effects of center-wide policies on daily
growth by disregarding days during which significant amounts
of user data were being purged.

To avoid biasing our analysis with the low growth rates
often experienced during the earlier months of a system’s
service life, we also define an arbitrary cutoff date before
which all daily growth measurements are discarded. For this
study, we chose the cutoff to be exactly two years before the
day on which the daily growth data were collected for this
study to ensure that we captured the growth contributions of
a broad range of projects that run at NERSC. In addition,
our choice to align the sample period with a calendar year
ensures that we capture the full range of sociological effects
(such as conference deadlines) that may cause users to behave
differently over the course of their year-long allocations.

Figure 1 shows the resulting distribution of this daily growth
metric and reflects a median growth of 104 TB/day and a
mean daily growth of 133 TB/day. The long tail of this
distribution indicates that there are periods throughout the
year when significant amounts of data are either generated
within or imported to NERSC, and these outlying days should
not be ignored when projecting future requirements. As a
result, we choose to use the mean daily growth rather than the



median as the basis for our projected capacity requirements
for Perlmutter and define

(
∂Cref

/∂t
)
= 133 TB/day.

We define the new system’s data retention policy such that
data older than 28 days is subject to purge, and each purge
interval aims to remove or migrate 50% of the total file
system capacity. Furthermore, the SSI for our new system
is anticipated be between 3× and 4× that of the reference
system. Given this range of anticipated SSI, Equation 1 gives
the minimum required usable capacity Cnew as being between
22 PB and 30 PB.

Although this is a wide range, Equation 1 provides a
means to understand how tradeoffs can be made between user
convenience (via a more generous data retention policy) and
usable capacity. Similarly, the flexibility of the SSI metric
also defines how changes to system capability, throughput, and
application optimizations will affect storage system capacity
requirements. Thus, it is possible to decide where in this range
the target storage system capacity should be based on how a
facility weighs each of these factors given a fixed budget.

IV. DRIVE ENDURANCE

The flash cells within SSDs can be rewritten a finite number
of times before they are no longer able to reliably store data,
and as a result, SSDs are only warranted for a finite number
of drive writes per day (DWPD) over their service life. Since
HPC file systems have historically been subject to write-
intensive workloads [29], [30], the endurance requirements of
SSDs in HPC environments have been a cause of concern. To
date, most large-scale flash deployments in HPC have resorted
to using extreme-endurance SSDs (5-10 DWPD for a five-year
period) to ensure that the SSDs do not fail before the end of
the overall system’s service life [12], [14].

This comes at a steep cost, though; for example, the Trinity
supercomputer at Los Alamos National Laboratory employs
a burst buffer comprised of drives configured to endure 10
DWPD instead of the factory default of 3 DWPD [14]. This is
achieved by reserving 20% of each SSD’s usable capacity for
wear leveling, reducing the usable capacity of each SSD card
from 4 TB to 3.2 TB. If this extreme level of endurance is not
truly required though, reducing the drives’ endurance from 10
DWPD to 3 DWPD would provide an additional 25% usable
capacity at no added cost. To determine the optimal balance of
cost and endurance for HPC workloads, we use an analytical
model (Equation 2) that uses file system-level load data and
sources of write amplification to demonstrate that 1 DWPD is
sufficient for the anticipated Perlmutter workload.

DWPDnew = SSI · FSWPDref ·
(
D + P

D

)
·WAF (2)

where

1) SSI is the sustained system improvement as defined in
Section III

2) FSWPDref is the reference file system’s total write volume
expressed in units of file system writes per day
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Fig. 2. Distribution of SSD WAFs on the Cori Burst buffer after approxi-
mately 3.4 years in service (top) and total lifetime write volumes, normalized
to formatted drive capacity, for the WAF distribution (bottom)

3) D and P are the number of data and parity blocks,
respectively, over which data are striped in the new
system

4) WAF is the write amplification factor that results from
factors intrinsic to the application workload

Because this model is independent of file system capacity,
it can be applied to a new system of arbitrary size using
data from a reference system of any size as long as the input
parameters remain representative.

A. Parity and write amplification

The D and P parameters are required to account for the
fact that a single user write is accompanied by additional
parity blocks when written to the physical media. Similarly,
WAF is required to account for the fact that writes that are
smaller than a full RAID stripe require the RAID subsystem
to (1) read the stripe blocks that will be modified, (2) make
the modification to those blocks, (3) recalculate parity on P
blocks, and (4) write a minimum of P +1 blocks back to the
underlying media. This read-modify-write penalty is a function
of the anticipated workload; if all applications buffer their
writes such that only full-stripe writes are issued to the SSDs,
this term is effectively 1.0. Alternatively, if 1,000 bytes are
synchronously written to the file system one byte at a time,
the effective write amplification factor (WAF) due to RAID
would be 1000× the RAID block size.

We do not directly monitor I/O transfer sizes on Cori’s
Lustre file system which prevents us from quantifying WAF
for the reference system’s workload. However, such transfer
size distributions have been published for other large-scale
Lustre file systems [29], [31], and the majority of transfers are
either 4 KiB (the minimum Lustre transfer size) or 1 MiB (the
maximum RPC size) as a result of Lustre’s effective client-
side write-back caching. Given that 4 KiB is the most frequent
access size for SSDs and the size for which such devices are
optimized [32], we do not anticipate an abnormally high WAF.
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Furthermore, we can estimate the upper bound for WAF
using actual WAF measurements taken from the reference
system’s burst buffer. As shown in Figure 2, the NERSC burst
buffer workload results in WAFs ranging from 1.35 to 10.15,
and the median and 95th percentile are WAF50 = 2.68 and
WAF95 = 3.17, respectively. Although the drives showing
extremely high WAFs (> 5) are cause for concern, these
outliers are actually a result of drives that see extremely low
use. Because SSDs must periodically rewrite pages internally
regardless of if data is written to them from the host, there is
a constant internal write load on SSDs which can become
dominant in the presence of very light host write loads.
In the case of Figure 2, all SSDs with WAF > 5 belong
to a development partition of the burst buffer which is not
accessible to production jobs.

B. Anticipated write load

The FSWPD parameter can be derived directly from a
reference storage system by either direct measurement from
file system telemetry or indirectly from device-level counters.
We chose to define this parameter using data measured at the
Lustre file system level since it is an unambiguous reflection
of the user workload that excludes the effects of device-level
buffering or amplification specific to the RAID implementation
that resides between Lustre and the block devices.

Figure 3 shows the distribution of daily write workloads on
the reference file system over a period of two years measured
using LMT. As with the growth rates presented in Section III,
there is a long tail of days that experience abnormally high
write volumes which reflect the use of the file system as a
data processing capability and should not be discarded. We
therefore choose to use the mean, not median, FSWPD value
of 0.024 FSWPD.

C. Endurance requirements

Because the SSI and WAF terms in Equation 2 have been
defined as ranges, we apply Equation 2 to calculate the upper
and lower bounds for the required drive endurance. We choose
optimistic values of SSI, P/D, and WAF to determine the
minimum required DWPD (DWPDmin) and pessimistic values
to determine DWPDmax:

DWPDmin = 3.0 ·
(
12

10

)
· 2.68 · 0.024 = 0.23

DWPDmax = 4.0 ·
(
10

8

)
· 3.17 · 0.024 = 0.38

(3)

From this, it becomes very clear that extreme-endurance
SSDs are unnecessary for HPC workloads that resemble those
of the reference system, and even 1 DWPD leaves significant
headroom for increased wear from new workloads. Further-
more, advances in SSD controller technology are anticipated
to reduce the overall WAF in the coming generation of SSDs
and further reduce the need for high-endurance drives. For
example, the Streams directive defined in the NVMe 1.3
standard [33] has been shown to reduce the WAF induced
by mixed HPC workloads significantly [34].

Finally, an additional practical consideration when using
Equation 2 to forecast the needs of a new storage system is
the effect of increasing drive capacities. The bit density of
NAND continually increasing [18], and as a result, the absolute
number of bytes that comprises a single drive write per day
is also increasing. Thus, using larger drives in a new storage
system comes with the added benefit of increasing the absolute
endurance of the aggregate file system and yields Equation 4.

DWPDnew = DWPDref ·
(

cref

cnew

)
(4)

where DWPDref is given as defined in Equation 2, and cref

and cnew are the per-drive capacities of the reference and
new systems, respectively. Of course, this effectively trades
performance for endurance; since per-SSD performance does
not scale with per-SSD capacity, using fewer but larger drives
results in less aggregate performance overall. Whether this
tradeoff is appropriate is dependent on the workload, file
system performance efficiency, OSS node architecture, and
other factors beyond the scope of this discussion.

V. METADATA CONFIGURATION

Lustre’s Data-on-MDT (DOM) feature allows the first S0

bytes of every file to be stored on the same storage devices as
their file metadata. This introduces several major benefits for
small-file access:

1) Lock traffic is reduced since data and metadata are
colocated

2) File size can be determined without sending RPCs to
OSSes

3) Small file I/O interferes much less with large-file I/O on
OSTs

However, DOM adds additional complexity to system design
because MDT capacity must now account for both the capacity
required to store inodes and the capacity required to store
small files’ contents. The precise definition of what constitutes
a “small” file is also site-configurable, meaning that system
architects must define both the required MDT capacity, CMDT,
and the threshold for storing small files exclusively on the
MDT, S0.
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i ) on NERSC’s Cori file system in January 2019.

Thus, we define a model for the required MDT capacity as
the sum of the capacity required by DOM to store the first S0

bytes of every file (CDOM) and the capacity required to store
inodes (C inode) in Equation 5.

CMDT = CDOM + C inode (5)

The required MDT capacity for a new system is invariably
a function of the expected file size distribution on that new
system. It is not sufficient to parameterize such a model on the
average file size alone because file size distributions on HPC
systems are almost always skewed towards small files [30],
[35], [36], and small changes to the mean file size could
represent a significant change to where the optimal DOM size
threshold should be. As shown in Figure 4a, this is true of
the reference system where 95% of the files comprise only
5% of the capacity used. As a result, both CDOM and C inode

are a function of the probability distribution of file size, P file
i ,

shown in Figure 4a.

A. MDT capacity required by DOM

To calculate CDOM, we first convert the probability distri-
bution of file sizes P file

i into a mass distribution of data M data
i

for the new file system using Equation 6.

M data
i = P file

i · Cnew (6)

Because P file
i is expressed as a discrete histogram rather

than a density function, Equation 6 requires that we assume
all files in each bin i have an average mass that lies between
the minimum and maximum size of the bin, Si,min and Si,max.
For example, if the bin bounded by (1024 bytes, 2048 bytes]
contains 512 files, we can only say that the total mass lies
between 512.5 KiB (if all 512 files are of size Si,min = 1025
bytes) and 1 MiB (if all 512 files are of size Si,max = 2048
bytes). Thus, M data

i is actually a set of mass distributions that
result from assuming different average file sizes for each bin

when applying Equation 6. Hereafter, we acknowledge this by
referring to the set of mass distributions as M data

i . We use this
set of distributions to attribute uncertainty to all subsequent
calculations derived from M data

i and explicitly calculate
• M data,min

i which assumes all files in i have size Si,min
• M data,max

i which assumes all files in i have size Si,max

• M data,avg
i = 1/2 · (M data,min

i +M data,max
i )

From M data
i , we can then estimate file count distributions

of the new file system, Nfile
i , using Equation 7.

Nfile
i = M data

i /Si (7)

Nfile
i is a set of distributions due to the dependence of

Equation 7 on M data
i and Si, both of which are themselves

sets of distributions. Thus, as with M data
i , we carry forward

the minimum, maximum, and average file count distribution
using Equation 8.

Nfile,min
i =M data,min

i /Smax
i

Nfile,max
i =M data,max

i /Smin
i

Nfile,avg
i =M data,avg

i /Savg
i

(8)

With an estimate of the number of files and their sizes
for the new file system, we can now calculate the range of
capacities required for DOM, CDOM, with Equation 9.

CDOM =

Si≤S0∑
i

(
Nfile
i · Si

)
+

Si>S0∑
i

(
Nfile
i · S0

)
(9)

Equation 9 expresses the required MDT capacity for DOM
in two components: (1) the mass of small files whose entire
contents fit within the DOM threshold S0 and (2) the mass of
large files whose first stripe is stored using DOM. Thus, this
gives us a way to determine the capacity required for DOM
as a function of the DOM threshold S0 that carries forward
ranges of uncertainty intrinsic to our dependence on sets of
discrete distributions.

B. MDT capacity required for inodes

The MDT capacity required to store inodes, C inode, follows a
similar approach. By default, Lustre reserves 4 KiB of MDT
capacity for every inode, nominally making the process of
calculating the inode capacity requirement quite simple. How-
ever, there are some cases where inodes can be significantly
larger than 4 KiB as a result of, for example, directories
containing millions of files. Figure 5 shows the probability
distribution of non-file inodes’ sizes on the reference system
and demonstrates this phenomenon. In the most extreme case,
a single directory inode is nearly 1 GiB in size as a result of
it containing over eight million child inodes.

To ensure that such extreme requirements are not lost
when calculating the MDT inode capacity requirements, we
explicitly calculate the inode size distribution for every inode
type (directories, symbolic links, etc.) based on the file size
distributions Nfile

i derived from Equation 7. Equation 10
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Fig. 5. Probability distribution of inode sizes on NERSC’s Cori file system
in January 2019. This diagram does not show block or character device inode
types because none were present at the time of data collection. Break in y
scale intended to contrast small numbers of large directory inodes with the
predominant 4 KiB inode size.

demonstrates this derivation for the directory size distribution;
the process is the same for all non-file inode types.

N dir
i = Nfile

i ·
N ref,dir
i

N ref,file
i

(10)

The inode size distribution reported by Robinhood can be
misleading as a result of the difference between an inode’s
apparent size (as returned by stat(2)) and its block con-
sumption. To ensure that inodes of small apparent size do
not underrepresent the true inode capacity requirements, we
assume that each inode whose apparent size is less than 4
KiB actually requires a full 4 KiB block. Thus, we calculate
the total mass of these inodes using Equation 11.

C inode =
∑
i

max (Si, 4096) ·
∑
j

N j
i

 (11)

This equation gives the total mass of all bins i for all inodes
of type j with the constraint that all inodes must consume at
least one block and therefore be at least 4 KiB in size.

Although N ref,j
i was extracted using Robinhood for this

work, the identical analysis can be done using a reference
system that is not Lustre. For example, N ref,j

i can also be
generated using IBM Spectrum Scale’s Information Lifecycle
Management policy manager or a simple parallel find tool. The
only major practical consideration is that N ref,file must often
be treated separately from the rest of the inode types since file
size, not the file inode size, are reported by stat(2).

C. Overall MDT capacity

Given Equations 9 and 11, we can now calculate total
MDT capacity requirements using Equation 5. Taking the most
conservative and optimistic values for the mass distribution
(P file
i ) and inode size distributions (N j

i and N ref,j
i ), we can

evaluate CMDT,min, CMDT,max, and CMDT,avg as a function of
the DOM threshold size S0. Figure 6 shows the result of this
model for a target capacity Cnew = 30 PB from Section III.
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Fig. 6. Required MDT capacity as a function of S0. Shaded area bounded
by the minimum and maximum estimated requirements dictated by the DOM
component and the inode capacity component of MDT capacity.

The shaded regions bound CMDT,min and CMDT,max, and the
black line is CMDT,avg, a reasonable estimate of the true
requirement. Furthermore, the components of this uncertainty
attributed to CDOM and C inode are separated.

The sigmoidal shape of CMDT’s dependence on the DOM
threshold S0 is a result of two competing factors. For very
small S0, the large number of small files simply does not
consume a large amount of DOM capacity so there are only
modest increases in CDOM in this region. For very large S0,
the great majority of files are stored entirely within the MDT
and only a small number of very large files are increasing the
CDOM requirements.

The magnitude of uncertainty is also affected by these
properties of the file size distribution. Given our definition
of C inode in Equation 11, the capacity requirements to store
inodes is independent of S0 and therefore remains constant in
x in Figure 6. However, the uncertainty contributed by CDOM

increases in proportion to the number of files entirely stored
on the MDT. Thus, the predominant uncertainty at small DOM
thresholds arises from our estimation of how many inodes will
be required on the new file system. The DOM capacity is
orders of magnitude smaller by comparison; only CDOM,max

approaches the same order of magnitude as C inode for small
S0. For large S0, the reverse is true and the dependence of
CDOM on S0 results in uncertainty increasing proportionally
while the relative magnitude of C inode becomes vanishingly
small. For very large S0, the majority of files reside entirely
on the MDT, and the effects of increasing S0 results in minimal
increases in CMDT overall.

The region between the two extremes of small and large
DOM thresholds leaves considerable room for optimization
though. For example, doubling the MDT capacity from
512 TiB to 1 PiB allows a fourfold increase in S0. The cost-
per-bit for an MDT is typically higher than that for an OST
due to different parity configuration (e.g., 5+5 parity on an
MDT vs. 8+2 on an OST), but this increased cost comes with
better IOPS performance.



If one assumes that CDOM is proportional to cost and S0

is proportional to IOPS performance, Figure 6 becomes a
price-performance curve as well. In this context, the behav-
ior for S0 → Cnew suggests that the benefit of increasing
S0 above several GiB is not an optimal configuration for
price/performance. Thus, while a Lustre file system entirely
comprised of MDTs with DOM could be possible in principle,
its performance improvements would likely not justify its cost
when compared to a Lustre file system with a judiciously cho-
sen S0. Furthermore, S0 is inversely proportional to bandwidth
performance since DOM is not striped, so choosing a very
large S0 would adversely impact per-file bandwidth as well.

VI. CONCLUSION

We have presented methods by which workload data from a
reference file system can be used to determine the best balance
of cost, performance, and usability along several dimensions.
We then quantified the relationship between factors including
purge policy, growth rate, and file size distribution and design
space parameters surrounding an all-flash file system such as
data capacity, SSD endurance, and metadata configuration.
As the economics of flash continue to displace hard disk
drives from high-performance storage tiers, such analytical
methods will become increasingly important for future system
deployments.
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