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Abstract

Low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, 

triglycerides, and total cholesterol are heritable, modifiable, risk factors for coronary artery 

disease. To identify new loci and refine known loci influencing these lipids, we examined 188,578 

individuals using genome-wide and custom genotyping arrays. We identify and annotate 157 loci 

associated with lipid levels at P < 5×10−8, including 62 loci not previously associated with lipid 

levels in humans. Using dense genotyping in individuals of European, East Asian, South Asian, 

and African ancestry, we narrow association signals in 12 loci. We find that loci associated with 

blood lipids are often associated with cardiovascular and metabolic traits including coronary artery 

disease, type 2 diabetes, blood pressure, waist-hip ratio, and body mass index. Our results 

illustrate the value of genetic data from individuals of diverse ancestries and provide insights into 

biological mechanisms regulating blood lipids to guide future genetic, biological, and therapeutic 

research.

Introduction

Blood lipids are heritable, modifiable, risk factors for coronary artery disease (CAD)1,2, a 

leading cause of death3. Human genetic studies of lipid levels can identify targets for new 

therapies for cholesterol management and prevention of heart disease, and can complement 

animal studies4,5. Studies of naturally occurring genetic variation can proceed through large-

scale association analyses focused on unrelated individuals or through investigation of 

Mendelian forms of dyslipidemia in families6. We previously identified 95 loci associated 

with blood lipids, accounting for ~10-12% of the total trait variance4 and showed that 

variants with small effects can point to pathways and therapeutic targets that enable 

clinically-important changes in blood lipids4,7.

Here, we report on studies of naturally occurring variation in 188,578 European-ancestry 

individuals and 7,898 non-European ancestry individuals. Our analyses identify 157 loci 

associated with lipid levels at P < 5×10−8, including 62 new loci. Thirty of the 62 loci do not 

include genes implicated in lipid biology by previous literature. We tested lipid-associated 

SNPs for association with mRNA expression levels, carried out pathway analyses to uncover 

relationships between loci, and compared the locations of lipid-associated SNPs with those 

of genes and other functional elements in the genome. These results provide direction for 

biological and therapeutic research into risk factors for CAD.
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Results

Novel loci associated with blood lipid levels

We examined subjects of European ancestry, including 94,595 individuals from 23 studies 
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genotyped with GWAS arrays4 and 93,982 individuals from 37 studies genotyped with the 

Metabochip array8 (Supplementary Table 1 and Supplementary Fig. 1). The Metabochip 

includes variants representing promising loci from our previous GWAS (14,886 SNPs) and 

from GWAS of other CAD risk factors and related traits (50,459 SNPs), variants from the 

1000 Genomes Project9 and focused resequencing10 efforts in 64 previously associated loci 

(28,923 SNPs), and fine-mapping variants in 181 loci associated with other traits (93,308 

SNPs). In cases where Metabochip and GWAS array data were available for the same 

individuals, we used Metabochip data to ensure key variants were directly genotyped, rather 

than imputed.

We excluded individuals known to be on lipid lowering medications and evaluated the 

additive effects of each SNP on blood lipid levels after adjusting for age and sex. Genomic 

control values11 for the initial meta-analyses were 1.10 – 1.15, low for a sample of this size, 

indicating that population stratification should have only a minor impact on our results 

(Supplementary Fig. 2). After genomic control correction, 157 loci associated with blood 

lipid levels were identified (P < 5×10−8), including 62 new loci (Tables 1A-D, Figure 1, 

Supplementary Tables 2 and 3). Loci were >1 Mb apart and nearly independent (r2 < 0.10). 

Of the 62 novel loci, 24 demonstrated the strongest evidence of association with HDL 

cholesterol, 15 with LDL cholesterol, 8 with triglyceride levels, and 15 with total cholesterol 

(Supplementary Fig. 3). Several of these loci were validated by a similar extension based on 

GLGC GWAS results 12.

The effects of newly identified loci were generally smaller than in earlier GWAS 

(Supplementary Fig. 4). For the 62 newly identified variants, trait variance explained in the 

Framingham offspring were 1.6% for HDL cholesterol, 2.1% for triglycerides, 2.4% for 

LDL cholesterol, and 2.6% for total cholesterol.

Overlap of genetic discoveries and prior knowledge

To investigate connections between our new loci and known lipid biology, we first 

catalogued genes within 100 kb of the peak associated SNPs and searched PubMed and 

OMIM for occurrences of these gene names and their aliases in the context of relevant 

keywords. After manual curation, we identified at least one strong candidate in 32 of the 62 

loci (52%) (Supplementary Table 4). For the remaining 30 loci, we found no literature 

support for the role of a nearby gene on blood lipid levels. This search highlighted genes 

whose connections to lipid metabolism have been extensively documented in mouse models 

(such as VLDLR13 and LRPAP113) and human cell lines (such as VIM14), as well as 

candidates whose connection to lipid levels is more recent, such as VEGFA. For the latter, 

recent studies of VEGFB have suggested that vascular endothelial growth factors have an 

unexpected role in the targeting of lipids to peripheral tissues15, which we corroborate by 

associating variants near VEGFA with blood triglyceride and HDL levels.

Multiple types of evidence supported several literature candidates (Supplementary Table 2). 

For example, VLDLR is categorized by Gene Ontology16 in the retinoid × nuclear receptor 

(RXR) activation pathway, which also includes genes (APOB, APOE, CYP7A1, APOA1, 

HNF1A, HNF4A) in previously implicated loci4. However, since these additional sources of 

evidence build on overlapping knowledge they are not truly independent.
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To estimate the probability of finding ≥32 literature supported candidates after automated 

search and manual review of results, we repeated our text-mining literature search using 100 

permutations of SNPs matched for allele frequency, distance to the nearest gene, and 

number of linkage disequilibrium proxies. To approximate hand-curation of the text-mining 

results, we focused on genes implicated by 3 or more publications (25 in observed data, 8.7 

on average in control SNP sets, P = 8×10−8).

Pathway analyses

We performed a gene-set enrichment analysis, using MAGENTA17, to evaluate over-

representation of biological pathways among associated loci. Across the 157 loci, 

MAGENTA identified 71 enriched pathways. These pathways included at least one gene in 

20 of our newly identified loci (Supplementary Table 5). Examples include DAGLB 

(connected to previously associated loci by genes in the triglyceride lipase activity pathway), 

INSIG2 (connected by the cholesterol and steroid metabolic process pathways), AKR1C4 

(connected by the steroid metabolic process and bile acid biosynthesis pathways), VLDLR 

(connected by the retinoic × receptor activation and lipid transport pathways, among others), 

PPARA, ABCB11, and UGT1A1 (three genes assigned to pathways implicated in activation 

of nuclear hormone receptors, which play an important role in lipid metabolism through the 

transcriptional regulation of genes in sterol metabolic pathways18). Among the 16 loci 

where literature review and pathway analysis both suggested a candidate, the predictions 

overlapped 14 times (Supplementary Table 2; by chance, we expect 6.6 overlapping 

predictions, P = 1×10−5).

Protein-protein interactions

We assessed evidence for physical interactions between proteins encoded near our 

associated SNPs using DAPPLE19. We found an excess of direct protein-protein interactions 

for genes in loci associated with LDL (10 interactions, P = 0.0002), HDL (8 interactions, P 

= 0.002), and total cholesterol (6 interactions, P = 0.017), but not for triglycerides (2 

interactions, P = 0.27) (Supplementary Fig. 5). Most of the interactions involved genes at 

known loci (such as the interaction network connecting PLTP, APOE, APOB, and LIPC) or 

highlighted the same genes as literature and pathway analyses (such as those connecting 

VLDLR, APOE, APOB, CETP, and LPL). Among novel loci, we identified a link between 

AKT1 and GSK3B. GSK3B has been shown to play a role in energy metabolism20 and its 

activity is regulated by AKT1 through phosphorylation21. Literature review also supported a 

role in blood lipid levels for these two genes.

Regulation of gene expression by associated variants

Many complex trait associated variants act through the regulation of gene expression. We 

examined whether our 62 novel variants were associated with expression levels of nearby 

genes in liver, omental fat, or subcutaneous fat. Fifteen were associated with expression of a 

nearby transcript with P < 5×10−8 (Supplementary Table 6) and, in seven, the lipid-

associated variant was in strong disequilibrium with the strongest expression-quantitative 

trait locus (eQTL) for the region (r2 > 0.8). In three of these loci, literature search also 

prioritized candidate genes. In all three, eQTL analysis and literature review identified the 
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same candidate (DAGLB, SPTLC3, and PXK, P = 0.05). For the remaining four loci (near 

RBM5, ADH5, TMEM176A, and GPR146), analysis of expression levels identified 

candidates that were not supported by literature or pathway analyses.

Coding variation

In some loci where previous coding variant association studies were inconclusive, we now 

find convincing evidence of association, demonstrating the benefits of the large sample sizes 

achievable by collaboration. For example, in the APOH locus22, our most strongly 

associated variant is rs1801689 (APOH C325G, P = 1×10−11 for LDL cholesterol). Overall, 

at 15 of the 62 new loci, there is at least one nonsynonymous variant within 100kb and in 

strong (r2>0.8) linkage disequilibrium with the index SNP (Supplementary Table 7)(18 loci 

with no restrictions on distance). This ~30% overlap between associated loci and coding 

variation is similar to that in other complex traits9. Unexpectedly, in the 11 loci where a 

candidate was suggested by literature review and by coding variation, the two coincided 

seven times (P = 0.03 compared to expected chance overlap of 3.8 times); thus, agreement 

between literature and coding variation was less significant than for eQTL and pathway 

analysis or protein-protein interactions.

Overlap between association signals and regulators of transcription in liver

Despite our efforts, 18 of the 62 new loci remain without prioritized candidate genes. The 

liver is an important hub of lipid biosynthesis and there is evidence that lipid loci might be 

associated with changes in gene regulation in liver cells23. Using ENCODE data23, we 

evaluated whether associated SNPs overlapped experimentally annotated functional 

elements identified in HepG2 cells, a commonly used model of human hepatocytes. To 

determine significance, we generated 100,000 lists of permuted SNPs, matched for minor 

allele frequency, distance to the nearest gene, and number of SNPs in r2 > 0.8 (described in 

Methods). In HepG2 cells, lipid-associated SNPs were enriched in eight of the 15 functional 

chromatin states defined by Ernst et al.24 (P < 1×10−5; Supplementary Table 8). The 

strongest enrichment was in regions with “strong enhancer activity” (3.7-fold enrichment, P 

= 2×10−25; Supplementary Table 9). In the other eight cell types examined by Ernst et al., 

no more than three functional chromatin states showed evidence for enrichment (and, when 

present, enrichment was weaker).

We proceeded to investigate the overlap between lipid loci and functional marks in HepG2 

cells in more detail (Supplementary Table 9). Notable regulatory elements showing 

significant overlap with lipid loci included histone marks associated with active regulatory 

regions (H3K27ac, P = 3×10−20; H3K9ac, P = 3×10−22), promoters (H3K4me3, P = 

2×10−15, H3K4me2, P = 8×10−12), transcribed regions (H3K36me3, P = 4×10−14), 

indicators of open chromatin (FAIRE, P = 5×10−9; DNase, P = 2×10−4), and regions that 

interact with transcription factors HNF4A (P = 6×10−10) and CEBP/B (P = 1×10−5). 

Overall, 56 of our 62 new loci contained at least one SNP that overlaps a functional mark24 

and/or chromatin state23 highlighted in Supplementary Table 9, including all but 3 of the 

loci where no candidates were suggested by literature review or analyses of pathways, 

coding variation, or gene expression (Supplementary Table 10).
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Initial fine-mapping of 65 lipid-associated loci

Previous fine-mapping of five LDL-associated lipid loci found that variants showing the 

strongest association were often substantially different in frequency and effect size from 

those identified in GWAS10. Metabochip genotypes enabled us to carry out an initial fine-

mapping analysis for 65 loci: 60 selected for fine-mapping based on our previous study4 and 

5 nominated for fine-mapping because of association to other traits.

For each of these loci, we identified the most strongly associated Metabochip variant and 

evaluated whether it (a) reached genome-wide significant evidence for association (to avoid 

chance fluctuations in regions where the signal was relatively weak) and (b) was different 

from the GWAS index SNP in terms of frequency and effect size (operationalized to r2 < 0.8 

with the GWAS index SNP). In the European samples, fine-mapping identified eight loci 

where the fine-mapping signal was clearly different from the GWAS signal (Supplementary 

Table 11). The two largest differences were at the loci near PCSK9 (top GWAS variant with 

minor allele frequency f = 0.24 and P = 9×10−24; fine-mapping variant with f = 0.03, P = 

2×10−136) and APOE (GWAS variant f = 0.20, P = 3×10−44, fine-mapping variant f = 0.07, 

P = 3×10−651), consistent with Sanna et al10. Large differences were also observed near 

LRP4 (GWAS f = 0.17, P = 8×10−14; fine-mapping f = 0.35, P = 1×10−26), IGF2R (GWAS 

f = 0.16, P = 7×10−9; fine-mapping f = 0.37, P = 2×10−13), NPC1L1 (GWAS f = 0.27, P = 

2×10−5; fine-mapping f = 0.24, P = 1×10−12), ST3GAL4 (GWAS f = 0.26, P = 2×10−6; fine-

mapping f = 0.07, P = 6×10−11), MED1 (GWAS f = 0.37, P = 3×10−5; fine-mapping f = 

0.24, P = 2×10−10), and COBLL1 (GWAS f = 0.12, P = 2×10−6; fine-mapping f = 0.11, P = 

6×10−9). Thus, although the large changes observed by Sanna et al10 after fine-mapping are 

by no means unique, they are not typical. Except for the R46L variant in PCSK9, the 

variants showing strongest association in fine-mapped loci all had minor allele frequency > .

05.

We also attempted fine-mapping in African (N=3,263), East Asian (N=1,771), and South 

Asian (N=4,901) ancestry samples. Despite comparatively small samples, ancestry-specific 

analyses identified SNPs clearly distinct from the original GWAS variant in five loci 

(Supplementary Table 11). These were: APOE, consistent with European ancestry analyses 

above; three loci where differences in linkage disequilibrium between populations enabled 

fine-mapping in African (SORT1, LDLR) or East Asian (APOA5) ancestry samples; and 

CETP, where an African-specific variant was present. For CETP, SORT1, and APOA5, 

results are consistent with other fine-mapping and functional studies7,7,25,26.

Association of lipid loci with metabolic and cardiovascular traits

To evaluate the role of the 157 loci identified here on related traits, we evaluated the most 

strongly associated SNPs for each locus in genetic studies of coronary artery disease (CAD, 

N=114,590 including 37,653 cases)27,28, type 2 diabetes (T2D, N=47,117 including 8,130 

cases)29, body mass index (BMI, N=123,865 individuals)30 and waist-hip ratio (WHR, 

N=77,167 individuals)31, systolic and diastolic blood pressure (SBP and DBP, N=69,395 

individuals)32, and fasting glucose (N=46,186 non-diabetics)33. We observed an excess of 

SNPs nominally associated (P < 0.05) with all these traits: a 5.1 fold excess for CAD (40 

nominally significant loci, P = 2×10−19), a 4.1 fold excess for BMI (32 loci, P = 1×10−11), 
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3.7 fold excesses for DBP (29 loci, P = 1×10−9), a 3.4 fold excess for WHR (27 loci, P = 

1×10−9), a 2.5 fold excess for SBP (20 loci, P = 1×10−4), a 2.3 fold excess for T2D (18 loci, 

P = 0.001), and a 2.2 fold excess for fasting glucose (17 loci, P = 3×10−3) (Supplementary 

Table 12). Interestingly, among the novel loci, we observed greater overlap with BMI, SBP, 

and DBP (9 overlapping loci each) than with CAD (8 overlapping loci). Among new loci, 

the two SNPs showing strongest association to CAD map near RBM5 (rs2013208, PHDL = 

9×10−12, PCAD = 7×10−5) and CMTM6 (rs7640978, PLDL = 1×10−8, PCAD = 4×10−4).

We tested whether the LDL-, total cholesterol- or triglyceride-increasing allele, or HDL-

decreasing allele was associated with increased risk of cardiovascular disease or related 

metabolic outcomes; the direction of effect of each locus was categorized according to the 

primary association signal at the locus, as in Tables 1A-D. We observed association with 

increased CAD risk (104/149, P = 1×10−6), SBP (96/155, P = 2.7×10−3) and WHR adjusted 

for BMI (92/154, P = 0.019). There were many instances where a single locus was 

associated with many traits. These included variants near FTO, consistent with previous 

reports34; near VEGFA (associated with triglyceride levels, CAD, T2D, SBP, and DBP), 

near SLC39A8 (associated with HDL cholesterol, BMI, SBP, and DBP), and near MIR581 

(associated with HDL cholesterol, BMI, T2D, and DBP). In some cases, like FTO, a strong 

association with BMI or another phenotype generates weaker association signals for other 

metabolic traits34. In other cases, like SORT1, a primary effect on lipid levels may mediate 

secondary association with other traits, like CAD7.

Association of individual lipids with coronary artery disease

Epidemiological studies consistently show high total cholesterol and LDL cholesterol levels 

are associated with increased risk of CAD, whereas high HDL cholesterol levels are 

associated with reduced risk of CAD35. In genetic studies, the connection between LDL 

cholesterol and CAD is clear, whereas the results for HDL cholesterol levels are more 

equivocal36-38. In our data, trait increasing alleles at the loci showing strongest association 

with LDL cholesterol (31 loci), triglycerides (30 loci), or total cholesterol (38 loci) were 

associated with increased risk of CAD (P = 2×10−12, P = 2×10−16, and P = 0.006). 

Conversely, trait decreasing alleles at loci showing the strongest association with HDL 

cholesterol (64 loci), were associated with increased CAD risk with P = 0.02. When we 

focused on loci uniquely associated with LDL cholesterol (12 loci where P > .05 for other 

lipids), triglycerides (6 loci), or HDL cholesterol (14 loci), only the LDL association 

remained significant (P = 0.03).

To better explore how associations with individual lipid levels related to CAD risk, we used 

linear regression to test whether association with lipid levels could predict impact on CAD 

risk. In this analysis, the effect on CAD of 149 lipid loci (CAD results were not available for 

8 SNPs) was correlated with LDL (Pearson r=0.74, P = 7×10−6) and triglyceride (Pearson 

r=0.46, P = 0.02) effect sizes, but not HDL effect sizes (Pearson r=−9×10−4, P = 0.99; 

Supplementary Fig. 6). Since most variants affect multiple lipid fractions (Figure 1), 

dissecting the relationship between lipid level and CAD effects requires multivariate 

analysis. In a companion manuscript, we use multivariate analysis and detailed examination 
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of triglyceride associated loci to show that increased LDL and triglyceride levels, but not 

HDL, appear causally related to CAD risk.

Evidence for additional loci, not yet reaching genome-wide significance

To evaluate evidence for loci not yet reaching genome-wide significance, we compared 

direction of effect in GWAS and Metabochip analyses of non-overlapping samples, outside 

the 157 genome-wide significant loci. Among independent variants (r2 < 0.1) with P < 0.1 in 

the GWAS-only analysis, a significant excess were concordant in direction of effect for 

HDL (62.9% in 1,847 SNPs, P < 10−16), LDL (58.6% of 1,730 SNPs, P < 10−16), 

triglyceride levels (59.1% of 1,783 SNPs, P < 10−16), and total cholesterol (61.0% of 1,904 

SNPs, P < 10−16), suggesting many additional loci to be discovered in future studies.

Discussion

Molecular understanding of the genes and pathways that modify blood lipid levels in 

humans will facilitate the design of new therapies for cardiovascular and metabolic disease. 

This understanding can be gained from studies of model organisms, in vitro experiments, 

bioinformatic analyses, and human genetic studies. Here, we demonstrate association 

between blood lipid levels and 62 new loci, bringing the total number of lipid-associated loci 

to 157 (See Tables 1A-D and Figure 1). All but one of the loci identified here include 

protein-coding genes within 100 kb of the SNP showing strongest association. While 38 of 

the 62 new loci include genes whose role in blood lipid levels is supported by literature 

review or analysis of curated pathway databases, the remainder includes only genes whose 

role on blood lipid levels has not been documented.

In total, there are 240 genes within 100 kb of one of our 62 new lipid-associated loci – 

providing a daunting challenge for future functional studies. Prioritizing on the basis of 

literature review, pathway analysis, regulation of mRNA expression levels, and protein 

altering variants suggests that 70 genes in 44 of the 62 new loci might be the focus of the 

first round of functional studies (summarized in Supplementary Table 2). While we found 

significant overlap, different sources of prioritization sometimes disagreed. This result 

suggests that truly understanding causality will be very challenging. The Supplementary 

Note includes an interpreted digest of genes highlighted by our study. Clearly, a range of 

approaches will be needed to follow-up these findings. To illustrate possibilities, consider U. 

S. Patent Application #20,090,036,394 disclosing that, in the mouse, knockout of Gpr146 

modifies blood lipid levels. Here, we show that variants near the human homologue of this 

gene, GPR146, are associated with levels of total cholesterol – providing an added incentive 

for studies of GPR146 inhibitors in humans. GPR146 encodes a G-protein coupled receptor 

– an attractive pharmaceutical target – so it is tempting to speculate that, one day, 

pharmaceutical inhibition of GPR146 may modify cholesterol levels and reduce risk of heart 

disease.

Each locus typically includes many strongly associated (and potentially causal) variants. Our 

fine-mapping results illustrate how genetic analysis of large samples and individuals of 

diverse ancestry can help focus the search for causal variants. In our fine-mapping analysis 

of 65 lipid-associated loci, we were able to separate the strongest signal in a region from the 
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prior GWAS signal in 12 instances. In three of these 12 instances, fine-mapping was enabled 

by analysis of a few thousand African or East Asian ancestry individuals, whereas in the 

remaining instances, fine-mapping was possible through examination of nearly 100,000 

European ancestry samples. A more detailed fine-mapping exercise, including imputation of 

variants from emerging very large reference panels, may help refine the location of 

additional signals.

Lipid-associated loci were strongly associated with CAD, T2D, BMI, SBP, and DBP. In 

univariate analyses, we found that impact on LDL and triglycerides all predicted association 

with CAD, but HDL did not. In a more detailed multivariate investigation, a companion 

manuscript shows that our data is consistent with the hypothesis that both LDL and 

triglycerides, but not HDL, are causally related to CAD risk. HDL, LDL, and triglycerides 

levels summarize aggregate levels of different lipid particles, each with potentially distinct 

consequences for CAD risk. We evaluated association of our loci with lipid subfractions in 

2,900 individuals from the Framingham Heart Study (Supplementary Table 13, 

Supplementary Fig. 7) and with sphingolipids, which are components of lipid membranes in 

cells, in 4,034 individuals from five samples of European ancestry39 (Supplementary Table 

14). The results suggest HDL-associated variants can have a markedly different impact on 

these sub-phenotypes. For example, among HDL loci, variants near LIPC were strongly 

associated with plasmalogen levels (P < 10−40), variants near ABCA1 were associated with 

sphingomyelin levels (P < 10−5), and variants near CETP – which show the strongest 

association with HDL cholesterol overall – were associated with neither of these. Detailed 

genetic dissection of these sub-phenotypes in larger samples, could lead to functional 

groupings of HDL-associated variants that reconcile the results of genetic studies (which 

show no clear connection between HDL cholesterol-associated variants and CAD risk) and 

epidemiologic studies (which show clear association between plasma HDL levels and CAD 

risk).

In summary, we report the largest genetic association study of blood lipid levels yet 

conducted. The large number of loci identified, the many candidate genes they contain, and 

the diverse proteins they encode generate new leads and insights into lipid biology. It is our 

hope that the next round of genetic studies will build on these results, using new sequencing, 

genotyping, and imputation technologies to examine rare loss-of-function alleles and other 

variants of clear functional impact to accelerate the translation of these leads into 

mechanistic insights and improved treatments for CAD.

Online Methods

Samples studied

We collected summary statistics for Metabochip SNPs from 45 studies. Among these, 37 

studies consisted primarily of individuals of European ancestry (see Supplementary Table 1 

and Supplementary Note for details), including both population-based studies and case-

control studies of CAD and T2D. Another 8 studies consisted primarily of individuals with 

non-European ancestry: two studies of South Asian descent, AIDHS/SDS (N=1,516) and 

PROMIS (N=3,385); two studies of East Asian descent, CLHNS (N=1,771) and TAI-CHI 

(N=7044); and five studies of recent African ancestry, MRC/UVRI GPC (N=1,687) from 
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Uganda, SEY (N=426) from the Caribbean, and FBPP (N=1,614, TG results unavailable), 

GXE (N=397), and SPT (N=838) from the United States (more details in Supplementary 

Table 1 and Supplementary Note).

Genotyping

We genotyped 196,710 genetic variants prioritized on the basis of prior GWAS for 

cardiovascular and metabolic phenotypes using the Illumina iSelect Metabochip8 

genotyping array. To design the Metabochip, we used our previous GWAS of ~100,000 

individuals4 to prioritize 5,023 SNPs for HDL cholesterol, 5,055 for LDL cholesterol, 5,056 

for triglycerides, and 938 for total cholesterol. These independent SNPs represent most loci 

with P < .005 in our original GWAS for HDL cholesterol, LDL cholesterol and triglycerides 

and with P < .0005 for total cholesterol. An additional 28,923 SNPs were selected for fine-

mapping of 65 previously identified lipid loci. The Metabochip also included 50,459 SNPs 

prioritized based on GWAS of non-lipid traits and 93,308 SNPs selected for fine-mapping of 

loci associated with non-lipid traits (5 of these loci were associated with blood lipids by the 

analyses described here).

Phenotypes

Blood lipid levels were typically measured after > 8 hours of fasting. Individuals known to 

be on lipid-lowering medication were excluded when possible. LDL cholesterol levels were 

directly measured in 10 studies (24% of total study individuals) and estimated using the 

Friedewald formula40 in the remaining studies. Trait residuals within each study cohort were 

adjusted for age, age2, and sex, and then quantile normalized. Explicit adjustments for 

population structure using principal component41 or mixed model approaches42 were carried 

out in 24 studies (35% of individuals); all studies were adjusted using genomic control prior 

to meta-analysis11. In studies ascertained on diabetes or CVD status, cases and controls were 

analyzed separately (Supplementary Table 1). All meta-analyses were limited to a single 

ancestral group (e.g. European only).

Primary statistical analysis

Individual SNP association tests were performed using linear regression with the inverse 

normal transformed trait values as the dependent variable and the expected allele count for 

each individual as the independent variable. These analyses were performed using PLINK 

(26 samples, 53% of the total number of individuals), SNPTEST (4 samples, 20% of 

individuals), EMMAX (9 samples, 14% of individuals), Merlin (4 samples, 9% of 

individuals), GENABEL (1 sample, 3% of individuals), and MMAP (1 sample, 1% of 

individuals) (Supplementary Table 1).

Meta-analysis

Meta-analysis was performed using the Stouffer method43,44, with weights proportional to 

the square root of the sample size for each sample. To correct for inflated test statistics due 

to potential population stratification, we first applied genomic control to each sample and 

then repeated the procedure with initial meta-analysis results. For GWAS samples, we used 

all available SNPs when estimating the median test statistic and inflation factor λ. For 
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Metabochip samples, we used a subset of SNPs (N = 7,168) that had P-values > 0.50 for all 

lipid traits in the original GWAS, expecting that the majority of these would not be 

associated with lipids and would behave as null variants in the Metabochip samples. Signals 

were considered to be novel if they reached a P-value < 5×10−8 in the combined GWAS and 

Metabochip meta-analysis and were >1 Mb away from the nearest previously described lipid 

locus and other novel loci. We used only European samples for the discovery of novel 

genome-wide significant loci. The non-European samples were meta-analyzed and 

examined only for fine-mapping analyses.

Quality control

To flag potentially erroneous analyses, we carried out a series of quality control steps. 

Average standard errors for association statistics from each study were plotted against study 

sample size to identify outlier studies. We inspected allele frequencies to ensure all analyses 

used the same strand assignment of alleles. We evaluated whether reported statistics and 

allelic effects were consistent with published findings for known loci. Genomic control 

values for study specific analyses were inspected, and all were <1.20. Finally, within each 

study, we excluded variants for which the minor allele was observed <7 times.

Proportion of trait variance explained

We estimated the increase in trait variance explained by novel loci in the Framingham 

cohort (N=7,132) using three models for each trait-residual: 1) lead and secondary SNPs 

from the previously published loci4 and 2) previously published lipid loci plus newly 

reported loci; and 3) newly reported loci. We regressed lipid residuals on these sets of SNPs 

using the lme kinship package in R.

Initial automated review of the published literature

An initial list of candidates within each locus was generated with Snipper (http://

csg.sph.umich.edu/boehnke/snipper/) and then subjected to manual review. For each locus, 

Snipper first generates a list of nearby genes and then checks for the co-occurrence of the 

corresponding gene names and selected search terms (“cholesterol”, “lipids”, “HDL”, 

“LDL”, or “triglycerides”) in published literature and OMIM. We supplemented this 

approach with traditional literature searches using PubMed and Google.

Generating permuted sets of non-associated SNPs

To estimate the expected chance overlap between literature searches and our loci, we 

generated lists of permuted SNPs. To generate these lists, we first identified all non-

associated lipid SNPs (P > 0.10 for any of the 4 lipid traits) and created bins based on 3 

statistics: minor allele frequency, distance to the nearest gene, and number of SNPs with r2 > 

0.8. For each index SNP, we identified 500 non lipid-associated SNPs that fell within the 

same 3 bins and randomly selected one SNP for each permuted list.

Pathway analyses

To investigate if lipid-associated variants overlapped previously annotated pathways, we 

used gene set enrichment analysis (GSEA), as implemented in MAGENTA17 using the 
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meta-analysis of all studies, including GWAS and Metabochip SNPs. Briefly, MAGENTA 

first assigns SNPs to a given gene when within 110 kb upstream or 40 kb downstream of 

transcript boundaries. The most significant SNP P-value within this interval is then adjusted 

for confounders (gene size, marker density, LD) to create a gene association score. When the 

same SNP is assigned to multiple genes, only the gene with the lowest score is kept for 

downstream analyses. Subsequently, MAGENTA attaches pathway terms to each gene using 

several annotation resources, including GO, PANTHER, Ingenuity, and KEGG. Finally, the 

genes are ranked on their gene association score, and a modified GSEA test is used to test 

the null hypothesis that all gene score ranks above a given rank cutoff are randomly 

distributed with regard to a given pathway term (and compared to multiple randomly 

sampled gene sets of identical size). We evaluated enrichment by using a rank cutoff of 5% 

of the total number of genes. A minimum of 10,000 gene set permutations were performed, 

and up to 1,000,000 permutations for GSEA P-values below 1×10−4.

We used the Disease Association Protein–Protein Link Evaluator package (DAPPLE; http://

www.broadinstitute.org/mpg/dapple/dapple.php) to examine evidence for protein-protein 

interaction networks connecting genes across different lipid loci. This analysis included the 

62 novel loci as well as the 95 previously known loci; we focus our discussion on pathways 

that included one or more genes from novel loci.

Cis-expression quantitative trait locus analysis

To determine whether lipid-associated SNPs might act as cis-regulators of nearby genes, we 

examined association with expression levels of 39,280 transcripts in 960 human liver 

samples, 741 human omental fat samples, and 609 human subcutaneous fat samples. Tissue 

samples were collected postmortem or during surgical resection from donors; tissue 

collection, DNA and RNA isolation, expression profiling, and genotyping were performed 

as described45. MACH was used to obtain imputed genotypes for ~2.6 million SNPs in the 

HapMap release 22 for each of the samples. We examined the correlation between each of 

the 62 new index SNPs and all transcripts within 500 kb of the SNP position, performing 

association analyses as previously described46.

Functional annotation of associated variants

We attempted to identify lipid-associated SNPs that fall in important regulatory domains. 

We initially created a list of all potentially causal variants by selecting index SNPs at loci 

identified in this study or in Teslovich et al4. We then selected any variant in strong linkage 

disequilibrium (r2 > 0.8 from 1000 Genomes or HapMap) with each index SNP. We 

compared the position of the index SNPs and their proxies to previously described 

functional marks23,24. To assess the expected overlap with functional marks, we created 

100,000 permuted sets of non-associated SNPs (see above) and evaluated permuted SNP 

lists for overlap with functional domains. We estimated a P-value for each functional 

domain as the proportion of permuted sets with an equal or greater number of loci 

overlapping functional domains (for large P-values). For small P-values we used a normal 

approximation to the empirical overlap distribution to estimate P-values.
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Association with lipid subfractions

Lipoprotein fractions for Women’s Genome Health Study (WGHS) samples (N = 23170) 

were measured using the LipoProtein-II assay (Liposcience Inc. Raleigh, NC) and 

Framingham Heart Study Offspring samples (N = 2900) were measured with the 

LipoProtein-I assay (Liposcience Inc. Raleigh, NC)47. Additional information on sub-

fraction measurements can be found in Supplementary Fig. 7. Log transformations were 

used for non-normalized traits. All models were adjusted for age, sex, and PCs. The genetic 

association analysis of WGHS used SNP genotypes imputed from the HapMap r22 CEU 

reference panel using MACH. 16,730 out of 23,170 WGHS participants were fasting for 8 

hours prior to blood draw (72.2%).
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Authors 

Cristen J. Willer#1,2,3,4,†, Ellen M. Schmidt#2, Sebanti Sengupta#4, Gina M. 
Peloso5,6,7, Stefan Gustafsson8,9, Stavroula Kanoni10, Andrea Ganna8,9,11, Jin 
Chen4, Martin L. Buchkovich12, Samia Mora13,14, Jacques S. Beckmann15,16, 
Jennifer L. Bragg-Gresham4, Hsing-Yi Chang17, Ayşe Demirkan18, Heleen M. Den 
Hertog19, Ron Do6, Louise A. Donnelly20, Georg B. Ehret21,22, Tõnu Esko7,23,24, 
Mary F. Feitosa25, Teresa Ferreira26, Krista Fischer23, Pierre Fontanillas7, Ross M. 
Fraser27, Daniel F. Freitag28, Deepti Gurdasani10,28, Kauko Heikkilä29, Elina 
Hyppönen30, Aaron Isaacs18,31, Anne U. Jackson4, Åsa Johansson32,33, Toby 
Johnson34,35, Marika Kaakinen36,37, Johannes Kettunen38,39, Marcus E. 
Kleber40,41, Xiaohui Li42, Jian’an Luan43, Leo-Pekka Lyytikäinen44,45, Patrik K.E. 
Magnusson11, Massimo Mangino46, Evelin Mihailov23,24, May E. Montasser47, 
Martina Müller-Nurasyid48,49,50, Ilja M. Nolte51, Jeffrey R. O’Connell47, Cameron D. 
Palmer7,52,53, Markus Perola23,38,39, Ann-Kristin Petersen48, Serena Sanna54, 
Richa Saxena55, Susan K. Service56, Sonia Shah57, Dmitry Shungin58,59,60, Carlo 
Sidore4,54,61, Ci Song8,9,11, Rona J. Strawbridge62,63, Ida Surakka38,39, Toshiko 
Tanaka64, Tanya M. Teslovich4, Gudmar Thorleifsson65, Evita G. Van den Herik19, 
Benjamin F. Voight66,67, Kelly A. Volcik68, Lindsay L. Waite69, Andrew Wong70, 
Ying Wu12, Weihua Zhang71,72, Devin Absher69, Gershim Asiki73, Inês 
Barroso10,74, Latonya F. Been75, Jennifer L. Bolton27, Lori L Bonnycastle76, Paolo 
Brambilla77, Mary S. Burnett78, Giancarlo Cesana79, Maria Dimitriou80, Alex S.F. 
Doney20, Angela Döring81,82, Paul Elliott37,83, Stephen E. Epstein78, Gudmundur 
Ingi Eyjolfsson84, Bruna Gigante85, Mark O. Goodarzi86, Harald Grallert87, Martha 
L. Gravito75, Christopher J. Groves88, Göran Hallmans89, Anna-Liisa Hartikainen90, 
Caroline Hayward91, Dena Hernandez92, Andrew A. Hicks93, Hilma Holm65, Yi-Jen 
Hung94, Thomas Illig87,95, Michelle R. Jones86, Pontiano Kaleebu73, John J.P. 
Kastelein96, Kay-Tee Khaw97, Eric Kim42, Norman Klopp87,95, Pirjo Komulainen98, 
Meena Kumari57, Claudia Langenberg43, Terho Lehtimäki44,45, Shih-Yi Lin99, Jaana 
Lindström100, Ruth J.F. Loos43,101,102,103, François Mach21, Wendy L McArdle104, 

Willer et al. Page 13

Nat Genet. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Christa Meisinger81, Braxton D. Mitchell47, Gabrielle Müller105, Ramaiah 
Nagaraja106, Narisu Narisu76, Tuomo V.M. Nieminen107,108,109, Rebecca N. 
Nsubuga73, Isleifur Olafsson110, Ken K. Ong43,70, Aarno Palotie38,111,112, Theodore 
Papamarkou10,28,113, Cristina Pomilla10,28, Anneli Pouta90,114, Daniel J. 
Rader115,116, Muredach P. Reilly115,116, Paul M. Ridker13,14, Fernando 
Rivadeneira117,118,119, Igor Rudan27, Aimo Ruokonen120, Nilesh Samani121,122, 
Hubert Scharnagl123, Janet Seeley73,124, Kaisa Silander38,39, Alena Stančáková125, 
Kathleen Stirrups10, Amy J. Swift76, Laurence Tiret126, Andre G. 
Uitterlinden117,118,119, L. Joost van Pelt127,128, Sailaja Vedantam7,52,53, Nicholas 
Wainwright10,28, Cisca Wijmenga128,129, Sarah H. Wild27, Gonneke Willemsen130, 
Tom Wilsgaard131, James F. Wilson27, Elizabeth H. Young10,28, Jing Hua Zhao43, 
Linda S. Adair132, Dominique Arveiler133, Themistocles L. Assimes134, Stefania 
Bandinelli135, Franklyn Bennett136, Murielle Bochud137, Bernhard O. Boehm138,139, 
Dorret I. Boomsma130, Ingrid B. Borecki25, Stefan R. Bornstein140, Pascal 
Bovet137,141, Michel Burnier142, Harry Campbell27, Aravinda Chakravarti22, John C. 
Chambers71,72,143, Yii-Der Ida Chen144,145, Francis S. Collins76, Richard S. 
Cooper146, John Danesh28, George Dedoussis80, Ulf de Faire85, Alan B. Feranil147, 
Jean Ferrières148, Luigi Ferrucci64, Nelson B. Freimer56,149, Christian Gieger48, Leif 
C. Groop150,151, Vilmundur Gudnason152, Ulf Gyllensten32, Anders 
Hamsten62,63,153, Tamara B. Harris154, Aroon Hingorani57, Joel N. 
Hirschhorn7,52,53, Albert Hofman117,119, G. Kees Hovingh96, Chao Agnes 
Hsiung155, Steve E. Humphries156, Steven C. Hunt157, Kristian Hveem158, Carlos 
Iribarren159, Marjo-Riitta Järvelin36,37,83,114,160, Antti Jula161, Mika Kähönen162, 
Jaakko Kaprio29,38,163, Antero Kesäniemi164, Mika Kivimaki57, Jaspal S. 
Kooner72,143,165, Peter J. Koudstaal19, Ronald M. Krauss166, Diana Kuh70, Johanna 
Kuusisto167, Kirsten O. Kyvik168,169, Markku Laakso167, Timo A. Lakka98,170, Lars 
Lind171, Cecilia M. Lindgren26, Nicholas G. Martin172, Winfried März41,123,173, Mark 
I. McCarthy26,88, Colin A. McKenzie174, Pierre Meneton175, Andres Metspalu23,24, 
Leena Moilanen176, Andrew D. Morris20, Patricia B. Munroe34,35, Inger Njølstad131, 
Nancy L. Pedersen11, Chris Power30, Peter P. Pramstaller93,177,178, Jackie F. 
Price27, Bruce M. Psaty179,180, Thomas Quertermous134, Rainer Rauramaa98,181, 
Danish Saleheen28,182,183, Veikko Salomaa184, Dharambir K. Sanghera75, Jouko 
Saramies185, Peter E.H. Schwarz140,186, Wayne H-H Sheu187, Alan R. 
Shuldiner47,188, Agneta Siegbahn8,33,171, Tim D. Spector46, Kari Stefansson65,189, 
David P. Strachan190, Bamidele O. Tayo146, Elena Tremoli191, Jaakko 
Tuomilehto100,192,193,194, Matti Uusitupa195,196, Cornelia M. van Duijn18,31, Peter 
Vollenweider197, Lars Wallentin33,171, Nicholas J. Wareham43, John B. Whitfield172, 
Bruce H.R. Wolffenbuttel128,198, Jose M. Ordovas199,200,201, Eric Boerwinkle68, 
Colin N.A. Palmer20, Unnur Thorsteinsdottir65,189, Daniel I. Chasman13,14, Jerome 
I. Rotter42, Paul W. Franks58,60,202, Samuli Ripatti10,38,39, L. Adrienne Cupples5,203, 
Manjinder S. Sandhu10,28, Stephen S. Rich204, Michael Boehnke#4, Panos 
Deloukas#10, Sekar Kathiresan#6,7,205,206, Karen L. Mohlke#12,†, Erik 
Ingelsson#8,9,26,†, Gonçalo R. Abecasis#4,†, and The Global Lipids Genetics 
Consortium

Willer et al. Page 14

Nat Genet. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Affiliations
1Department of Internal Medicine, Division of Cardiovascular Medicine, University of 
Michigan, Ann Arbor, Michigan 48109, USA 2Department of Computational 
Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, 
USA 3Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 
48109, USA 4Center for Statistical Genetics, Department of Biostatistics, University 
of Michigan, Ann Arbor, Michigan 48109, USA 5Department of Biostatistics, Boston 
University School of Public Health, Boston, Massachusetts 02118, USA 6Center for 
Human Genetic Research, Massachusetts General Hospital, Boston, 
Massachusetts 02114, USA 7Broad Institute, Program in Medical and Population 
Genetics, Cambridge, Massachusetts 02142, USA 8Department of Medical 
Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden 9Science 
for Life Laboratory, Uppsala University, Uppsala, Sweden 10Wellcome Trust Sanger 
Institute, Wellcome Trust Genome Campus, CB10 1SA, Hinxton, United Kingdom 
11Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 
Stockholm, Sweden 12Department of Genetics, University of North Carolina, Chapel 
Hill, NC 27599 USA 13Division of Preventive Medicine, Brigham and Women’s 
Hospital, 900 Commonwealth Ave., Boston MA 02215, USA 14Harvard Medical 
School, Boston MA 02115, USA 15Service of Medical Genetics, Lausanne 
University Hospital, Lausanne, Switzerland 16Department of Medical Genetics, 
University of Lausanne, Lausanne, Switzerland 17Division of Preventive Medicine 
and Health Services Research, Institute of Population Health Sciences, National 
Health Research Institutes, Zhunan, Taiwan 18Genetic Epidemiology Unit, 
Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The 
Netherlands 19Department of Neurology, Erasmus Medical Center, Rotterdam, The 
Netherlands 20Medical Research Institute, University of Dundee, Ninewells Hospital 
and Medical School. Dundee, DD1 9SY, United Kingdom 21Cardiology, Department 
of Specialities of Medicine, Geneva University Hospital, Rue Gabrielle-Perret-Gentil 
4, 1211 Geneva 14, Switzerland 22Center for Complex Disease Genomics, 
McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School 
of Medicine, Baltimore, MD 21205, USA 23Estonian Genome Center of the 
University of Tartu, Tartu, Estonia 24Institute of Molecular and Cell Biology, 
University of Tartu, Tartu, Estonia 25Department of Genetics, Washington University 
School of Medicine, USA 26Wellcome Trust Centre for Human Genetics, University 
of Oxford, Oxford, OX3 7BN, United Kingdom 27Centre for Population Health 
Sciences, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, Scotland, 
United Kingdom 28Department of Public Health and Primary Care, University of 
Cambridge, Cambridge, United Kingdom 29Hjelt Institute, Department of Public 
Health, University of Helsinki, Finland 30Centre For Paediatric Epidemiology and 
Biostatistics/MRC Centre of Epidemiology for Child Health, University College of 
London Institute of Child Health, London, United Kingdom 31Centre for Medical 
Systems Biology, Leiden, the Netherlands 32Department of Immunology, Genetics 
and Pathology, Uppsala University, Uppsala, Sweden 33Uppsala Clinical Research 
Center, Uppsala University, Uppsala, Sweden 34Genome Centre, Barts and The 

Willer et al. Page 15

Nat Genet. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



London School of Medicine and Dentistry, Queen Mary University of London, 
London, UK 35Clinical Pharmacology, NIHR Cardiovascular Biomedical Research 
Unit, William Harvey Research Institute, Barts and The London School of Medicine 
and Dentistry Queen Mary University of London, London, UK 36Biocenter Oulu, 
University of Oulu, Oulu, Finland 37Institute of Health Sciences, University of Oulu, 
Finland 38Institute for Molecular Medicine Finland FIMM, University of Helsinki, 
Finland 39Public Health Genomics Unit, National Institute for Health and Welfare, 
Helsinki, Finland 40Department of Internal Medicine II – Cardiology, University of 
Ulm Medical Centre, Ulm, Germany 41Mannheim Institute of Public Health, Social 
and Preventive Medicine, Medical Faculty of Mannheim, University of Heidelberg, 
Ludolf-Krehl-Strasse 7-11, 68167 Mannheim, Germany 42Medical Genetics Institute, 
Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA 43MRC Epidemiology 
Unit, Institute of Metabolic Science, Box 285, Addenbrooke’s Hospital, Hills Road, 
Cambridge, CB2 0QQ, United Kingdom 44Department of Clinical Chemistry, Fimlab 
Laboratories, Tampere 33520, Finland 45Department of Clinical Chemistry, 
University of Tampere School of Medicine, Tampere 33014, Finland 46Department 
of Twin Research and Genetic Epidemiology, King’s College London, London, 
United Kingdom 47Division of Endocrinology, Diabetes, and Nutrition, Department of 
Medicine, University of Maryland, School of Medicine, Baltimore, Maryland 
48Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg 
85764, Germany 49Department of Medicine I, University Hospital Grosshadern, 
Ludwig-Maximilians University, Munich, Germany 50Institute of Medical Informatics, 
Biometry and Epidemiology, Ludwig-Maximilians-University of Munich, Munich, 
Germany 51Department of Epidemiology, University of Groningen, University 
Medical Center Groningen, The Netherlands 52Division of Endocrinology, Children’s 
Hospital Boston, Massachusetts 02115, USA 53Division of Genetics, Program in 
Genomics, Children’s Hospital, Boston, Massachusetts 02115, USA 54Istituto di 
Ricerca Genetica e Biomedica, CNR, Monserrato, 09042, Italy 55Massachusetts 
General Hospital/Broad Institute, Harvard University, Cambridge, MA, USA 56Center 
for Neurobehavioral Genetics, The Semel Institute for Neuroscience and Human 
Behavior, University of California, Los Angeles, USA 57Genetic Epidemiology 
Group, Deparment of Epidemiology and Public Health, UCL, London WC1E 6BT, 
United Kingdom 58Department of Clinical Sciences, Genetic & Molecular 
Epidemiology Unit, Lund University Diabetes Center, Scania University Hosptial, 
Malmö, Sweden 59Department of Odontology, Umeå University, Umeå, Sweden 
60Department of Public Health and Primary Care, Unit of Medicine, Umeå 
University, Umeå, Sweden 61Dipartimento di Scienze Biomediche, Universita di 
Sassari, 07100 SS, Italy 62Atherosclerosis Research Unit, Department of Medicine 
Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden 
63Center for Molecular Medicine, Karolinska University Hospital, Stockholm, 
Sweden 64Clinical Research Branch, National Institute Health, Baltimore, MD, USA 
65deCODE Genetics/Amgen, 101 Reykjavik, Iceland 66Department of Genetics, 
University of Pennsylvania - School of Medicine, Philadelphia PA, 19104, USA 
67Department of Systems Pharmacology and Translational Therapeutics, University 

Willer et al. Page 16

Nat Genet. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of Pennsylvania - School of Medicine, Philadelphia PA, 19104, USA 68Human 
Genetics Center, University of Texas Health Science Center - School of Public 
Health, Houston, TX 77030, USA 69HudsonAlpha Institute for Biotechnology, 
Huntsville, AL, USA 70MRC Unit for Lifelong Health and Ageing, 33 Bedford Place, 
London, WC1B 5JU, United Kingdom 71Department of Epidemiology and 
Biostatistics, School of Public Health, Imperial College London, London, United 
Kingdom 72Ealing Hospital, Southall, Middlesex UB1 3HW, United Kingdom 73MRC/
UVRI Uganda Research Unit on AIDS, Entebbe, Uganda 74University of Cambridge 
Metabolic Research Laboratories and NIHR Cambridge Biomedical Research 
Centre, Level 4, Institute of Metabolic Science Box 289 Addenbrooke’s Hospital 
Cambridge CB2 OQQ, UK 75Department of Pediatrics, University of Oklahoma 
Health Sciences Center, Oklahoma City, OK, USA 76Genome Technology Branch, 
National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA 
77Department of Experimental Medicine, University of Milano Bicocca, Italy 
78MedStar Health Research Institute, 6525 Belcrest Road, Suite 700, Hyattsville, 
MD 20782, USA 79Research Centre on Public Health, University of Milano Bicocca, 
Italy 80Department of Dietetics-Nutrition, Harokopio University, 70 El. Venizelou Str, 
Athens, Greece 81Institute of Epidemiology I, Helmholtz Zentrum München, 
Neuherberg 85764, Germany 82Institute of Epidemiology II, Helmholtz Zentrum 
München, Neuherberg 85764, Germany 83Department of Epidemiology and 
Biostatistics, MRC Health Protection Agency (HPA) Centre for Environment and 
Health, School of Public Health, Imperial College London, UK 84The Laboratory in 
Mjodd, 108 Reykjavik, Iceland 85Division of Cardiovascular Epidemiology, Institute 
of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden 86Division of 
Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai 
Medical Center, Los Angeles, CA 90048, USA 87Research Unit of Molecular 
Epidemiology, Helmholtz Zentrum München, Neuherberg 85764, Germany 88Oxford 
Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, OX3 7LJ, 
United Kingdom 89Department of Public Health and Clinical Medicine, Nutritional 
research, Umeå University, Umeå, Sweden 90Department of Clinical Sciences/
Obstetrics and Gynecology, Oulu University Hospital, Oulu, Finland 91MRC Human 
Genetics Unit, Institute of Genetics and Molecular Medicine, Western General 
Hospital, Edinburgh, Scotland, United Kingdom 92Laboratory of Neurogenetics, 
National Institute on Aging, Bethesda, MD 20892, USA 93Center for Biomedicine, 
European Academy Bozen/Bolzano (EURAC), Bolzano, Italy - Affiliated Institute of 
the University of Lübeck, Lübeck, Germany 94Division of Endocrinology & 
Metabolism, Tri-Service General Hospital, National Defense Medical Center, Taipei, 
Taiwan 95Hannover Unified Biobank, Hannover Medical School, Hannover 30625, 
Germany 96Department of Vascular Medicine, Academic Medical Center, 
Amsterdam, The Netherlands 97Clinical Gerontology Unit, University of Cambridge, 
Cambridge, United Kingdom 98Kuopio Research Institute of Exercise Medicine, 
Kuopio, Finland 99Division of Endocrine and Metabolism, Department of Internal 
Medicine, Taichung Veterans General Hospital, School of Medicine, National Yang-
Ming University, Taipei, Taiwan 100Diabetes Prevention Unit, National Institute for 

Willer et al. Page 17

Nat Genet. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Health and Welfare, 00271 Helsinki, Finland 101The Genetics of Obesity and 
Related Metabolic Traits Program, The Icahn School of Medicine at Mount Sinai, 
New York, USA 102The Charles Bronfman Institute for Personalized Medicine, The 
Icahn School of Medicine at ount Sinai, New York, USA 103The Mindich Child Health 
and Development Institute, The Icahn School of Medicine at Mount Sinai, New York 
104School of Social and Community Medicine, University of Bristol, Oakfield House, 
Oakfield Grove, Bristol BS8 2BN, United Kingdom 105Institute for Medical 
Informatics and Biometrics, University of Dresden, Medical Faculty Carl Gustav 
Carus, Fetscherstrasse 74, 01307 Dresden, Germany 106Laboratory of Genetics, 
National Institute on Aging, Baltimore, MD21224, USA 107Department of Clinical 
Pharmacology, University of Tampere School of Medicine, Tamperew 33014, 
Finland 108Department of Internal Medicine, Päijät-Häme Central Hospital, Lahti, 
Finland 109Division of Cardiology, Helsinki University Central Hospital, Helsinki, 
Finland 110Department of Clinical Biochemistry, Landspitali University Hospital, 101 
Reykjavik, Iceland 111Department of Medical Genetics, Haartman Institute, 
University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland 
112Genetic Epidemiology Group, Wellcome Trust Sanger Institute, Hinxton, 
Cambridge, United ingdom 113Department of Statistical Sciences, University College 
of London, London, United Kingdom 114National Institute for Health and Welfare, 
Oulu, Finland 115Cardiovascular Institute, Perelman School of Medicine at the 
University of Pennsylvania, 3400 Civic Center Blvd, Building 421, Translational 
Research Center, Philadelphia, PA 19104-5158, USA 116Division of Translational 
Medicine and Human Genetics, Perelman School of Medicine at the University of 
Pennsylvania, 3400 Civic Center Blvd, Building 421, Translational Research Center, 
Philadelphia, PA 19104-5158, USA 117Department of Epidemiology, Erasmus 
University Medical Center, Rotterdam, the Netherlands 118Department of Internal 
Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands 
119Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for 
Healthy Aging NCHA), Leiden, The Netherlands 120Department of Clinical Sciences/
Clinical Chemistry, University of Oulu, Oulu, Finland 121National Institute for Health 
Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, 
Leicester LE3 9QP, UK 122Department of Cardiovascular Sciences, University of 
Leicester, Glenfield Hospital, Leicester, LE3 9QP, UK 123Clinical Institute of Medical 
and Chemical Laboratory Diagnostics, Medical University of Graz, Austria 124School 
of International Development, University of East Anglia, Norwich NR4 7TJ, United 
Kingdom 125University of Eastern Finland and Kuopio University Hospital, 70210 
Kuopio, Finland 126INSERM UMRS 937, Pierre and Marie Curie University, Paris, 
France 127Department of Laboratory Medicine, University of Groningen, University 
Medical Center Groningen, The Netherlands 128LifeLines Cohort Study, University 
of Groningen, University Medical Center Groningen, The Netherlands 
129Department of Genetics, University of Groningen, University Medical Center 
Groningen, The Netherlands 130Department of Biological Psychology, VU Univ, 
Amsterdam, The Netherlands 131Department of Community Medicine, Faculty of 
Health Sciences, University of Tromsø, Tromsø, Norway 132Department of Nutrition, 

Willer et al. Page 18

Nat Genet. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



University of North Carolina, Chapel Hill, NC, USA 133Department of Epidemiology 
and Public Health, EA 3430, University of Strasbourg, Faculty of Medicine, 
Strasbourg, France 134Department of Medicine, Stanford University School of 
Medicine, Stanford, CA, USA 135Geriatric Unit, Azienda Sanitaria Firenze (ASF), 
Florence, Italy 136Chemical Pathology, Department of Pathology, University of the 
West Indies, Mona, Kingston 7, Jamaica 137Institute of Social and Preventive 
Medicine (IUMSP), Lausanne University Hospital, Route de la Corniche 10, 1010 
Lausanne, Switzerland 138Division of Endocrinology and Diabetes, Department of 
Internal Medicine, Ulm University Medical Centre, Ulm, Germany 139Lee Kong 
Chian School of Medicine, Nanyang Technological University, Singapore 
140Department of Medicine III, University of Dresden, Medical Faculty Carl Gustav 
Carus, Fetscherstrasse 74, 01307 Dresden, Germany 141Ministry of Health, Victoria, 
Republic of Seychelles 142Service of Nephrology, Lausanne University Hospital, 
Lausanne, Switzerland 143Imperial College Healthcare NHS Trust, London, United 
Kingdom 144Division of Reproductive Endocrinology, Department of Obstetrics and 
Gynecology, Cedars-Sinai Medical Center, Los Angeles, California, USA 
145Department of Medicine, University of California Los Angeles, Los Angeles, 
California, USA 146Department of Preventive Medicine and Epidemiology, Loyola 
University Medical School, Maywood, Illinois 60153, USA 147Office of Population 
Studies Foundation, University of San Carlos, Talamban, Cebu City, Philippines 
148Department of Cardiology, Toulouse University School of Medicine, Rangueil 
Hospital, Toulouse, France 149Department of Psychiatry, University of California, 
Los Angeles, USA 150Department of Clinical Sciences, Lund University, SE-20502, 
Malmö, Sweden 151Department of Medicine, Helsinki University Hospital, FI-00029 
Helsinki, Finland 152Icelandic Heart Association, Kopavogur, Iceland 153Department 
of Cardiology, Karolinska University Hospital, Stockholm, Sweden 154Laboratory of 
Epidemiology, Demography, and Biometry, National Institute on Ageing, Bethesda, 
MD, USA 155Institute of Population Health Sciences, National Health Research 
Institutes, Zhunan, Taiwan 156Cardiovascular Genetics, BHF Laboratories, Institute 
Cardiovascular Science, University College London, London, United Kingdom 
157Cardiovascular Genetics, University of Utah School of Medicine, Salt Lake City, 
UT, USA 158HUNT Research Centre, Department of Public Health and General 
Practice, Norwegian University of Science and Technology, Levanger, Norway 
159Kaiser Permanente, Division of Research, Oakland, CA, USA 160Unit of Primary 
Care, Oulu University Hospital, Oulu, Finland 161Department of Chronic Disease 
Prevention, National Institute for Health and Welfare, Turku, Finland 162Department 
of Clinical Physiology, University of Tampere School of Medicine, Tampere 33014, 
Finland 163Department of Mental Health and Substance Abuse Services, National 
Institute for Health and Welfare, Helsinki, Finland 164Institute of Clinical Medicine, 
Department of Medicine, University of Oulu and Clinical Research Center, Oulu 
University Hospital, Oulu, Finland 165National Heart & Lung Institute, Imperial 
College London, Hammersmith Hospital, London, United Kingdom 166Children’s 
Hospital Oakland Research Institute, 5700 Martin Luther King Junior Way, Oakland, 
CA 94609, USA 167Department of Medicine, University of Eastern Finland and 

Willer et al. Page 19

Nat Genet. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Kuopio University Hospital, 70210 Kuopio, Finland 168Institute of Regional Health 
Services Research, University of Southern Denmark, Odense, Denmark 169Odense 
Patient data Explorative Network (OPEN), Odense University Hospital, Odense, 
Denmark 170Institute of Biomedicine/Physiology, University of Eastern Finland, 
Kuopio Campus, Finland 171Department of Medical Sciences, Uppsala University, 
Uppsala, Sweden 172Queensland Institute of Medical Research, Locked Bag 2000, 
Royal Brisbane Hospital, Queensland 4029, Australia 173Synlab Academy, Synlab 
Services GmbH,Gottlieb-Daimler-Straße 25, 68165 Mannheim, Germany 174Tropical 
Metabolism Research Unit, Tropical Medicine Research Institute, University of the 
West Indies, Mona, Kingston 7, Jamaica 175U872 Institut National de la Santé et de 
la Recherche Médicale, Centre de Recherche des Cordeliers, 75006 Paris, France 
176Department of Medicine, Kuopio University Hospital, Kuopio, Finland 
177Department of Neurology, General Central Hospital, Bolzano, Italy 178Department 
of Neurology, University of Lübeck, Lübeck, Germany 179Cardiovascular Health 
Research Unit, Departments of Medicine, Epidemiology, and Health Services, 
University of Washington, Seattle, WA, USA 180Group Health Research Institute, 
Group Health Cooperative, Seattle, WA, USA 181Department of Clinical Physiology 
and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland 182Center for 
Non-Communicable Diseases, Karachi, Pakistan 183Department of Medicine, 
University of Pennsylvania, USA 184Unit of Chronic Disease Epidemiology and 
Prevention, National Institute for Health and Welfare, Helsinki, Finland 185South 
Karelia Central Hospital, Lappeenranta, Finland 186Paul Langerhans Institute 
Dresden, German Center for Diabetes Research (DZD), Dresden, Germany 
187Division of Endocrine and Metabolism, Department of Internal Medicine, 
Taichung Veterans General Hospital, Taichung, Taiwan 188Geriatric Research and 
Education Clinical Center, Veterans Administration Medical Center, Baltimore, 
Maryland 189Faculty of Medicine, University of Iceland, 101 Reykjavík, Iceland 
190Division of Population Health Sciences and Education, St George’s, University of 
London, Cranmer Terrace, London SW17 0RE, United Kingdom 191Department of 
Pharmacological Sciences, University of Milan, Monzino Cardiology Center, IRCCS, 
Milan, Italy 192Centre for Vascular Prevention, Danube-University Krems, 3500 
Krems, Austria 193King Abdulaziz University, Faculty of Medicine, Jeddah 21589, 
Saudi Arabia 194Red RECAVA Grupo RD06/0014/0015, Hospital Universitario La 
Paz, 28046 195Institute of Public Health and Clinical Nutrition, University of Eastern 
Finland, Finland 196Research Unit, Kuopio University Hospital, Kuopio, Finland 
197Department of Medicine, Lausanne University Hospital, Switzerland 
198Department of Endocrinology, University of Groningen, University Medical Center 
Groningen, The Netherlands 199Department of Cardiovascular Epidemiology and 
Population Genetics, National Center for rdiovascular Investigation, Madrid, Spain 
200IMDEA-Alimentacion, Madrid, Spain 201Nutrition and Genomics Laboratory, Jean 
Mayer-USDA Human Nutrition Research Center on Aging at Tufts University, 
Boston, MA, USA 202Department of Nutrition, Harvard School of Public Health, 
Boston, MA, USA 203Framingham Heart Study, Framingham, MA, USA 204Center for 
Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA 

Willer et al. Page 20

Nat Genet. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



205Cardiovascular Research Center, Massachusetts General Hospital, Boston, 
Massachusetts 02114, USA 206Department of Medicine, Harvard Medical School, 
Boston, Massachusetts 02115, USA

ACKNOWLEDGEMENTS

We especially thank the >196,000 volunteers who participated in our study. Detailed acknowledgement of funding 
sources is provided in the supplementary online material.

REFERENCES

1. Kannel WB, Dawber TR, Kagan A, Revotskie N, Stokes J 3rd. Factors of risk in the development of 
coronary heart disease--six year follow-up experience. The Framingham Study. Annals of Internal 
Medicine. 1961; 55:33–50. [PubMed: 13751193] 

2. Castelli WP. Cholesterol and lipids in the risk of coronary artery disease--the Framingham Heart 
Study. Canadian Journal of Cardiology. 1988; 4(Suppl A):5A–10A. [PubMed: 3282627] 

3. Lloyd-Jones D, et al. Heart disease and stroke statistics--2010 update: a report from the American 
Heart Association. Circulation. 2010; 121:e46–e215. [PubMed: 20019324] 

4. Teslovich TM, et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature. 
2010; 466:707–13. [PubMed: 20686565] 

5. Barter PJ, Rye KA. Cholesteryl ester transfer protein (CETP) inhibition as a strategy to reduce 
cardiovascular isk. Journal of Lipid Research. 2012

6. Rahalkar AR, Hegele RA. Monogenic pediatric dyslipidemias: classification, genetics and clinical 
spectrum. Molecular Genetics and Metabolism. 2008; 93:282–94. [PubMed: 18023224] 

7. Musunuru K, et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. 
Nature. 2010; 466:714–9. [PubMed: 20686566] 

8. Voight BF, et al. The Metabochip, a Custom Genotyping Array for Genetic Studies of Metabolic, 
Cardiovascular, nd Anthropometric Traits. PLoS Genetics. 2012 (in press). 

9. The 1000 Genomes Project. A map of human genome variation from population scale sequencing. 
Nature. 2010; 467

10. Sanna S, et al. Fine mapping of five loci associated with low-density lipoprotein cholesterol detects 
variants that double the explained heritability. PLoS Genet. 2011; 7:e1002198. [PubMed: 
21829380] 

11. Devlin B, Roeder K. Genomic control for association studies. Biometrics. 1999; 55:997–1004. 
[PubMed: 11315092] 

12. Asselbergs FW, et al. Large-scale gene-centric meta-analysis across 32 studies identifies multiple 
lipid loci. Am J Hum Genet. 2012; 91:823–38. [PubMed: 23063622] 

13. Welch CL, et al. Genetic regulation of cholesterol homeostasis: chromosomal organization of 
candidate genes. Journal of Lipid Research. 1996; 37:1406–21. [PubMed: 8827514] 

14. Sarria AJ, Panini SR, Evans RM. A functional role for vimentin intermediate filaments in the 
metabolism of lipoprotein-derived cholesterol in human SW-13 cells. Journal of Biological 
Chemistry. 1992; 267:19455–63. [PubMed: 1527066] 

15. Hagberg CE, et al. Vascular endothelial growth factor B controls endothelial fatty acid uptake. 
Nature. 2010; 464:917–21. [PubMed: 20228789] 

16. Ashburner M, et al. Gene ontology: tool for the unification of biology. The Gene Ontology 
Consortium. Nature Genetics. 2000; 25:25–9. [PubMed: 10802651] 

17. Segre AV, Groop L, Mootha VK, Daly MJ, Altshuler D. Common inherited variation in 
mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. 
PLoS Genet. 2010; 6

18. Fitzgerald ML, Moore KJ, Freeman MW. Nuclear hormone receptors and cholesterol trafficking: 
the orphans find a new home. J Mol Med (Berl). 2002; 80:271–81. [PubMed: 12021839] 

Willer et al. Page 21

Nat Genet. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



19. Rossin EJ, et al. Proteins encoded in genomic regions associated with immune-mediated disease 
physically interact and suggest underlying biology. PLoS Genet. 2011; 7:e1001273. [PubMed: 
21249183] 

20. Plyte SE, Hughes K, Nikolakaki E, Pulverer BJ, Woodgett JR. Glycogen synthase kinase-3: 
functions in oncogenesis and development. Biochimica et Biophysica Acta. 1992; 1114:147–62. 
[PubMed: 1333807] 

21. Toker A, Cantley LC. Signalling through the lipid products of phosphoinositide-3-OH kinase. 
Nature. 1997; 387:673–6. [PubMed: 9192891] 

22. Kaprio J, Ferrell RE, Kottke BA, Kamboh MI, Sing CF. Effects of polymorphisms in 
apolipoproteins E, A-IV, and H on quantitative traits related to risk for cardiovascular disease. 
Arteriosclerosis and Thrombosis. 1991; 11:1330–48. [PubMed: 1911720] 

23. Ernst J, et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature. 
2011; 473:43–9. [PubMed: 21441907] 

24. The ENCODE Project Consortium. A user’s guide to the encyclopedia of DNA elements 
(ENCODE). PLoS Biol. 2011; 9:e1001046. [PubMed: 21526222] 

25. Buyske S, et al. Evaluation of the metabochip genotyping array in African Americans and 
implications for fine mapping of GWAS-identified loci: the PAGE study. PLoS ONE. 2012; 
7:e35651. [PubMed: 22539988] 

26. Palmen J, et al. The functional interaction on in vitro gene expression of APOA5 SNPs, defining 
haplotype APOA52, and their paradoxical association with plasma triglyceride but not plasma 
apoAV levels. Biochimica et Biophysica Acta. 2008; 1782:447–52. [PubMed: 18395529] 

27. Schunkert H, et al. Large-scale association analysis identifies 13 new susceptibility loci for 
coronary artery disease. Nature Genetics. 2011; 43:333–8. [PubMed: 21378990] 

28. The Coronary Artery Disease (C4D) Consortium. A genome-wide association study in Europeans 
and South Asians identifies five new loci for coronary artery disease. Nature Genetics. 2011; 
43:339–44. [PubMed: 21378988] 

29. Voight BF, et al. Twelve type 2 diabetes susceptibility loci identified through large-scale 
association analysis. Nature Genetics. 2010; 42:579–89. [PubMed: 20581827] 

30. Speliotes EK, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with 
body mass ndex. Nature Genetics. 2010; 42:937–48. [PubMed: 20935630] 

31. Heid IM, et al. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals 
sexual dimorphism in the genetic basis of fat distribution. Nature Genetics. 2010; 42:949–60. 
[PubMed: 20935629] 

32. Ehret GB, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular 
disease risk. Nature. 2011; 478:103–9. [PubMed: 21909115] 

33. Dupuis J, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on 
type 2 diabetes risk. Nature Genetics. 2010; 42:105–16. [PubMed: 20081858] 

34. Freathy RM, et al. Common variation in the FTO gene alters diabetes-related metabolic traits to the 
extent expected given its effect on BMI. Diabetes. 2008; 57:1419–26. [PubMed: 18346983] 

35. Clarke R, et al. Cholesterol fractions and apolipoproteins as risk factors for heart disease mortality 
in older men. Archives of Internal Medicine. 2007; 167:1373–8. [PubMed: 17620530] 

36. Willer CJ, et al. Newly identified loci that influence lipid concentrations and risk of coronary 
artery disease. Nature Genetics. 2008; 40:161–9. [PubMed: 18193043] 

37. Voight BF, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian 
randomisation study. Lancet. 2012

38. Frikke-Schmidt R, et al. Association of loss-of-function mutations in the ABCA1 gene with high-
density lipoprotein cholesterol levels and risk of ischemic heart disease. JAMA. 2008; 299:2524–
32. [PubMed: 18523221] 

39. Demirkan A, et al. Genome-wide association study identifies novel loci associated with circulating 
phospho- and sphingolipid concentrations. PLoS Genet. 2012; 8:e1002490. [PubMed: 22359512] 

40. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density 
lipoprotein holesterol in plasma, without use of the preparative ultracentrifuge. Clinical Chemistry. 
1972; 18:499–502. [PubMed: 4337382] 

Willer et al. Page 22

Nat Genet. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



41. Price AL, et al. Principal components analysis corrects for stratification in genome-wide 
association studies. Nature Genetics. 2006; 38:904–9. [PubMed: 16862161] 

42. Kang HM, et al. Variance component model to account for sample structure in genome-wide 
association studies. Nature Genetics. 2010; 42:348–54. [PubMed: 20208533] 

43. Stouffer, SA.; Suchman, EA.; DeVinney, LC.; Star, SA.; Williams, RMJ. Adjustment During 
Army Life. Princeton University Press.; Princeton, NJ.: 1949. 

44. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide 
association scans. Bioinformatics. 2010; 26:2190–1. [PubMed: 20616382] 

45. Keating BJ, et al. Concept, design and implementation of a cardiovascular gene-centric 50 k SNP 
array for large-scale genomic association studies. PLoS ONE. 2008; 3:e3583. [PubMed: 
18974833] 

46. Schadt EE, et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol. 
2008; 6:e107. [PubMed: 18462017] 

47. Chasman DI, et al. Forty-three loci associated with plasma lipoprotein size, concentration, and 
cholesterol content in genome-wide analysis. PLoS Genet. 2009; 5:e1000730. [PubMed: 
19936222] 

Willer et al. Page 23

Nat Genet. Author manuscript; available in PMC 2014 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 1. Overlap between loci associated with different lipid traits
This Venn Diagram illustrates the number of loci that show association with multiple lipid 

traits. The number of loci primarily associated with only one trait is listed in parentheses 

after the trait name and the locus name is listed below in italics. Loci that show association 

with two or more traits are shown in the appropriate section.
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