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Identifying genomic data use with 
the Data Citation Explorer
Neil Byers   1,3, Charles Parker   1,3, Chris Beecroft1, T. B. K. Reddy   1, Hugh Salamon1, 
George Garrity2 & Kjiersten Fagnan   1 ✉

Increases in sequencing capacity, combined with rapid accumulation of publications and associated 
data resources, have increased the complexity of maintaining associations between literature and 
genomic data. As the volume of literature and data have exceeded the capacity of manual curation, 
automated approaches to maintaining and confirming associations among these resources have 
become necessary. Here we present the Data Citation Explorer (DCE), which discovers literature 
incorporating genomic data that was not formally cited. This service provides advantages over manual 
curation methods including consistent resource coverage, metadata enrichment, documentation of 
new use cases, and identification of conflicting metadata. The service reduces labor costs associated 
with manual review, improves the quality of genome metadata maintained by the U.S. Department of 
Energy Joint Genome Institute (JGI), and increases the number of known publications that incorporate 
its data products. The DCE facilitates an understanding of JGI impact, improves credit attribution for 
data generators, and can encourage data sharing by allowing scientists to see how reuse amplifies the 
impact of their original studies.

Introduction
The Department of Energy’s (DOE) Joint Genome Institute (JGI, jgi.doe.gov) is a national User Facility that 
provides state-of-the-art environmental genomics capabilities to the scientific community. JGI has directly sup-
ported more than 4,000 researchers and generated over 15 petabytes of data in its 25-year history. Following 
delivery to the primary investigators (PIs)and a short embargo period, data produced through JGI propos-
als is made available for public use through a variety of external and JGI-maintained systems. These include 
Integrated Microbial Genomes & Microbiomes (IMG/M)1, Phytozome2, MycoCosm3, PhycoCosm4, and the JGI 
Data Portal (data.jgi.doe.gov), as well as the National Center for Biotechnology Information’s (NCBI) Sequence 
Read Archive (SRA)5 and GenBank6 databases. This data is made public with the understanding that it may 
have impact beyond the PIs’ original intended uses. A wider appreciation of this concept has led in recent years 
to greater community emphasis on the importance not just of initial publication and the findings of original 
data generators, but also of the downstream reuse of public scientific data. Many efforts are underway to make 
public scientific data more Findable, Accessible, Interoperable, and Reusable (FAIR)7, in order to encourage and 
facilitate downstream impact.

Motivation: Understanding institutional and individual impact.  Organizations providing services 
or products to a specific community can benefit from a better understanding of their impact within that com-
munity. This understanding is essential for directing service improvements that can benefit the organization and 
the community it serves. JGI thus has strong motivations for capturing citations of its products. Doing so enables 
the organization to better serve its users by identifying which data and thematic areas are heavily cited as well as 
those that are underutilized. This can inform researchers as to which topics may be ripe for innovative analysis 
and uncover ways in which older data can be reused. Citation capture can also direct improvements in opera-
tional efficiency and inform policy decisions. Knowing how specific workflows and product offerings contribute 
to downstream publications facilitates resource allocation for activities that have the greatest scientific impact.

A more complete understanding of data use is essential for appreciating the extent to which the activities of 
JGI users align with its policies, initiatives, and strategic goals. JGI also has an interest in identifying research-
ers, regions, institutions, or specific research fields that make heavy use of its products but with which it has 
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little direct engagement or towards which it has not yet made concerted outreach efforts. Extending searches 
to include data citations in patents and other intellectual property provides a window into potential commer-
cialization of JGI products and can demonstrate contributions to economic growth and innovation. Building a 
comprehensive picture of product utilization across science and industry demonstrates to key stakeholders (i.e., 
taxpayers, elected officials, and the scientific community) that funds granted represent a worthwhile investment 
with compounding returns over time.

Many organizations, including nonprofit entities like Research Data Alliance8 and government entities like 
NSF, NIH, and DOE9, have long advocated for more transparent links among data producers and data con-
sumers. By building connections between citations of JGI data and the datasets themselves, JGI can attribute 
credit to the primary investigators and JGI personnel who contributed to the creation of a given dataset. Doing 
so preserves the provenance of an individual’s work and demonstrates their impact on downstream research. 
Systematically preserving contributor relationships and roles can inform funders, reviewers, and institutional 
evaluators of significant contributions that are currently missed when using traditional metrics such as the 
h-index10 as indicators of research productivity.

New metrics can account for deficiencies in existing methods for research evaluation that rely heavily on 
publication authorship, the standards for which are uneven at best11,12. For example, an individual’s overall cita-
tion count or h-index may not be high, or their inclusion in authorship lists may not be extensive, but their 
contributions to high-value, frequently utilized data may be significant (i.e., workflow managers and person-
nel responsible for sample processing). A more granular methodology of research evaluation can also benefit 
researchers with publications that may not see heavy citation activity, but whose overall contributions as data 
producers have significant impact across the community. Adopting a contributor evaluation model based on 
data citations (for example, the “data-index” proposed by Hood et al.13) thus offers improvements in equity and 
transparency over more traditional metrics grounded in the authorship of scientific publications.

The Problem: Too much literature, too much data.  Through anecdotal evidence, the U.S. Department 
of Energy Joint Genome Institute (JGI) recognizes that a significant body of literature exists that incorporates JGI 
data products but that does not include formal data citations that attribute credit to either JGI or the individual 
contributors who produced the data. ‘Formal data citations’ refer in this work to structured, machine-resolvable 
references that adhere to recent recommendations and are added to the bibliography of a given publication14,15. 
While a full discussion of community citation practices in the biosciences is out of scope for this work, prelim-
inary works in the earth16, social17, and biomedical sciences18 have begun to explore the extent to which formal 
data citations fail to represent the full scope of data usage. Other recent domain-agnostic studies found that 
fewer than 10% of articles describing data usage included a formal data citation19,20. Because the most current 
recommendations for formal data citations do not accommodate for all means by which data is referenced in the 
literature, the term ‘citation’ is used here to refer to the broader set of all means by which researchers refer to data 
leveraged in their studies. According to this usage, the inclusion of a domain-specific identifier in the body text 
of a publication, for example, would fall under the umbrella of ‘citation’ along with more formal bibliographic 
references. A recent study mapping full-text mentions of genomic data identifiers by articles in Europe PubMed 
Central indicates the extent to which these types of citations occur in the literature21.

Publications that cite data informally or implicitly are difficult for JGI to identify for two reasons. First, 
as these data are hosted by JGI as well as the US National Institutes for Health (NIH) National Center for 
Biological Information (NCBI), researchers frequently cite NCBI5,6 and other external identifiers (e.g., Human 
Oral Microbiome Database, Human Microbiome Project) for a given dataset rather than JGI identifiers. The 
relationship between these external metadata and JGI data to which they refer are often complex and difficult 
to traverse. Second, the context within individual publications in which citations of JGI-linked identifiers occur 
can often be ambiguous or left unindexed by full-text search tools. For example, a JGI-linked identifier could be 
mistaken for some other identifier by naíve text matching, or could be buried within the supplemental materials 
of a publication beyond the reach of most searches.

With the rates at which new literature is published and the scale of data production by JGI, it is not feasible 
for humans to identify all citations of JGI data without automated assistance. Publications associated with the 
field of “Genetics”’ published from 2011 to 2023 were found to number between 206,974 and 693,491 using 
research area or MeSH term queries in Web of Science (Clarivate), PubMed (National Library of Medicine)22, 
Dimensions (Digital Science)23,24, and SciVal (Elsevier). Though growth in the yearly volume of Genetics publi-
cations during this time has slowed in recent years, all four sources show steady increases throughout much of 
this period (Fig. 1). During the same period, the yearly JGI output of raw sequence data increased from just over 
30,000 gigabases per year to over 700,000 gigabases per year (Fig. 2).

Positive identification of literature citing JGI products is a labor-intensive process when performed man-
ually. This manual process relies on an individual’s expert knowledge within a specific field, which may have 
specialized literature, subject language terminology, and data resources (see Lafia et al.17 for an example from the 
social sciences). This process often involves repetitive searches across numerous sources using distinct queries 
intended to capture a limited set of JGI products. The timeliness, scope, comprehensiveness, and repeatability 
of the manual search process is limited by the availability of skilled data curators. Consistency and accuracy 
of manually compiled citation data varies not only among those performing the searches but also individually 
over time. The accuracy of even well-trained curators may decline over the course of a single work day. Thus, 
at present, verification and validation of highly accurate citation data requires a duplication of effort among 
multiple reviewers in order to identify and correct errors. Even with redundant human reviewers, this form of 
precise manual tracking of information sources is impractical if not impossible when branching paths are dis-
covered through multiple online resources. Nonetheless, manual literature searches are important for collecting 
initial data and verifying citations, but there are many repetitive components of this process that are amenable 
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to automation. The DCE automates those repetitive tasks, freeing skilled personnel to focus their attention on 
tasks that resist automation.
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Fig. 1  Yearly genetics-associated publications from 2011-2023 in Dimensions (a), Web of Science (b), SciVal 
(c), and PubMed (d). The net increases in yearly publications were as follows: Dimensions, 66.4% (693,491 total 
publications). Web of Science, 18.65% (371,079 total publications). SciVal, 31.24% (642,528 total publications), 
PubMed, 1.48% (206,974 total publications). The research area or MeSH terms used to generate each 
publication set were “Genetics" (PubMed, SciVal, Dimensions) and “Genetics & Heredity" (Web of Science).
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Fig. 2  Yearly sequencing production at the DOE Joint Genome Institute (JGI). Note that the fiscal year begins on 
October 1st of the preceding calendar year. The decrease in FY20 sequencing output was due to the COVID-19  
pandemic.
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An automated solution: The Data Citation Explorer.  The overarching goal of the DCE is to systemat-
ically and reproducibly identify literature that relies on data stored in JGI repositories but that does not formally 
cite said data. The system was designed to encapsulate the expertise of data curators into the business logic of a 
web service. Using a selected subset of metadata fields from JGI genome projects as input, this web service can 
consistently apply curatorial methods to incrementally discover and traverse additional resources and metadata 
that are directly associated with a specific genome. Starting with a limited set of validated genome metadata stored 
in JGI systems, the service automatically performs an exhaustive search of targeted literature and online resources 
to discover any uses of that associated data. The service provides users with an audit trail that provides a precise 
explanation of how each additional resource was discovered. In testing, the DCE has been shown to uncover mul-
tiple paths to new information about a genome. The service can also re-process genomes at any time to discover 
new uses and citations, whether or not the data was formally cited. Briefly, the process occurs in two phases: 

•	 Crawl genomic data repositories to accumulate new metadata that has been produced in downstream 
resources

•	 Search for in-text occurrences of unique identifiers in publicly available literature.

Results
During the initial trial of the DCE, 238,994 metadata records from the JGI Archive and Metadata Organizer 
(JAMO) were fed into the system. This resulted in hits linking 30,641 publications to 78,104 JAMO records. 
These publications were automatically identified by the DCE via full-text searches in publicly available sources 
like PubMed Central (see Methods). From this larger set, 998 audit trails linking 576 unique publications to 282 
individual JAMO records were sampled and manually evaluated. Evaluation was accomplished by checking the 
nature of the hits in the citing publication as well as by verifying the feasibility of relationship between keys in 
the larger audit trail. Briefly, audit trails refer to multi-step linkages established between publications and data 
that are determined by the DCE. Stratified random sampling of the larger full set of results was used to select a 
more manageable set for manual evaluation (refer to the Methods section for a full description of the sampling 
process). Only 10 of the 998 audit trails accounting for 10 out of 576 publications led to irrelevant results (false 
positives). Examples of true and false positive hits can be seen in Figs. 3 and 4. From the perspective of individ-
ual publications, the precision value for connections between publications and JAMO records in this sample was 
0.983 (Table 1).

Briefly, manual searches using the proprietary Dimensions database were used to investigate the extent to 
which keys in our sample would generate hits using a larger corpus of full-text article content than is avail-
able through public sources like those maintained by NCBI. Of the 489 keys used for full-text searches in 
Dimensions, 341 (69.7%) resulted in hits. The total number of individual publications returned was 1,027, sub-
stantially greater than that returned through NCBI (Fig. 5). The precision value for individual publications 
returned via Dimensions was evaluated using the same methods as with the initial sample and was determined 
to be 0.991. Combining these results with those from public indexing sources, the test set of keys generated 
hits on 1,234 unique publications (Table 1). Over half of these were only identifiable through the proprietary 
Dimensions database.

Unique JAMO Record
Tsukamurella

paurometabola
ID: 594d60b07ded5e4e5bbd6af7

(Source Key)

‘646564587’

JGI IMG Taxon ID

‘Gc01341’

GOLD Project ID
(Legacy)

‘CP001966’

NCBI Nucleotide
Accession

Nouioui,
et al. (2007),

-
PMC6113628

30186281

PMC ID
PubMed ID

‘SAMN00002597’

NCBI BioSample
Accession

(Target Key)

“Emended description of Tsukamurella 
paurometabola...its approximate size 

4.48 Mbp, its GenBank deposit 
SAMN00002597.”

Fig. 3  Example of an audit trail returning a relevant publication. The target key refers unambiguously to the 
data in the original JAMO record.
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Though precision values are often used in concert with recall and F-scores to determine the efficacy of 
retrieval systems, the latter two metrics were unobtainable in this context. The wide range of means used to 
indicate data usage and the inexactitude that characterizes many of these means25 implies that one cannot con-
fidently gather the entire set of articles citing or using a given dataset. There is simply too much variation for 
each dataset to be fully anticipated. As a result, the variable that is used as the denominator when calculating 
recall (all results relevant to the original query), which is itself used to calculate F-scores, cannot be determined. 
However, in this instance precision remains a useful evaluation metric in itself because it allows one to gauge the 
relevance of those results that are returned by a system.

Discussion
Corpus expansion and context analysis.  Comparing results between the two publication data sources 
indicates the degree to which access to a larger corpus of full-text literature could increase the number of hits 
returned by the Data Citation Explorer’s search feature, particularly for disciplines not indexed by PubMed 
or PubMed Central. As all of the 207 publications returned by searching NCBI sources and not returned by 
Dimensions were later found to be indexed by Dimensions, it is likely that the differences in results returned by 

Unique JAMO Record
alpha proteobacterium

SCGC AAA280-B11
ID: 529016ec067c013e2b05fdaa

‘Gi21891’

GOLD Project ID
(Source Key)

Etges,
et al. (2016),

-
PMC5243788

28116058

PMC ID
PubMed ID

“Dmoj_GI21891 and Dmoj_GI13378 
were also overexpressed in 

agria-reared flies...”

Unique JAMO Record
Escherichia coli D7

ID: 58d413727ded5e7a2afc1175

‘CP010150’

NCBI Nucleotide
Accession

(Source Key)

Persson
et al. (2012),

-
PMC4236003

22796240

PMC ID
PubMed ID

“Supported by the Intramural Re-
search Program of the National

Cancer Institute... grant Z01 
CP010150-12.”

a

b

Fig. 4  Examples of audit trails returning irrelevant publications. The error in example (a) results from a 
namespace collision with a grant number, while the error in example (b) results from a namespace collision 
between a GOLD Project ID and a FlyBase gene identifier. Some namespace collisions could only be resolved by 
retrieving and parsing full GenBank records, which degrades performance but improves accuracy.

Indexer
Unique 
Keys

Total 
Publications

Relevant 
Publications

Irrelevant 
Publications Precision

Public 489 576 566 10 .983

Dimensions 489 1,027 1,018 9 .991

Both 489 1,234 1,218 16 .987

Table 1.  Manual evaluation results. The ‘Public’ row includes sampled results using just what the DCE returned 
via searches in public sources. The ‘Dimensions’ row indicates results returned by manually using the keys that 
generated hits in the ‘Public’ row to search Dimensions full-text articles. The ‘Both’ row combines all unique 
publications from each of the other two rows. Precision values are calculated using the values in the ‘Relevant 
Publications’ and ‘Total Publications’ Columns.
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each were due to variations in search functionalities and full-text document indexing between the two providers. 
Investigation of these differences is beyond the scope of this work but represents an opportunity for future work. 
In addition to expanding the body of literature available to the DCE, further exploration of strategies for parsing 
non-standard supplemental material files included with scientific articles may increase this number still further. 
Internally, JGI can improve the comprehensiveness and quality of citable metadata indexed by JAMO for any 
given dataset to account for a wider range of possible citation methods.

Though the results of this evaluation indicate high levels of reliability, the system currently does not fea-
ture means for distinguishing the significance of one positively identified citation from another. Previous work 
has shown the possibility of applying natural language processing (NLP) techniques to the textual context sur-
rounding individual citations26,27. Similar techniques could be applied to evaluate DCE results beyond a simple 
relevance assessment. Furthermore, a rigorous investigation of the relative frequencies of ‘informal’ and ‘formal’ 
citations of data in the genomics field could provide another avenue for future work.

Generalization.  Expanding the service model embodied by the DCE to other disciplines (e.g., physics, earth 
sciences) is the next goal for future development and collaboration. Generalization of the service for use by other 
public data resources could maximize its impact and greatly improve wider knowledge of how public data is 
being used and by whom, supporting a Data Ecosystem that encourages connections among cross-organizational 
resources. Admittedly, the DCE was designed with biosciences literature and metadata in mind, a field that is 
dominated by relatively unique identifier strings. Other fields (i.e. the social sciences) in which plain-language 
mentions of dataset names are more prevalent could require additional NLP-based features to ensure relevance 
of search results17,27. While these results validate the conceptual underpinnings of the service’s architecture, much 
work remains to maximize the usefulness of the DCE’s service model to users beyond JGI and the biosciences 
field.

Accessibility and collaboration.  Much development work remains to be done to determine how best to 
make the results accessible to our user community. The citations and audit paths are back-propagated into the 
JAMO database, which could serve as the integration point for making this data available via the JGI Data Portal 
(Fig. 6) for a more user-friendly interface.

Some examples of potentially desirable features could include research-facilitating search tools for the 
Joint Genome Institute and associated DOE organizations like the National Microbiome Data Collaborative 
(NMDC)28 and the Systems Biology Knowledgebase (KBase)29. Generally available reports could describe who 
is using the work products produced by a given researcher and provide public-facing views that increase the 
visibility of JGI work products. From a user’s perspective, such features can illustrate previous use cases (or lack 
thereof) of any dataset of interest. The lessons learned from this project could be applied in other organizations 
that have an interest in mining highly focused genomic literature.

FAIRness.  The metadata and literature connections established by the DCE enable JGI to more equitably 
attribute credit to individual contributors for downstream outcomes of individual work products, though the 
specific metrics and methodology for doing so remain undetermined. Automated and standardized means for 
determining the extent of the service’s contributions to the findability, accessibility, interoperability, and reusa-
bility (FAIR) of public genomic data, similar to the framework developed by Wilkinson et al.30, would allow for 
continuous reassessment of the DCE for potential future updates.

Methods
JGI source data: JAMO.  The data source for the DCE is the JGI Archive and Metadata Organizer (JAMO), 
which is JGI’s primary data management system. It manages most of the data assets the organization produces 
and caches associated metadata from the other data support systems, for example the Genomes On-Line Database 
(GOLD)31. JAMO also archives data to several geographically dispersed high-performance tape systems, manages 

Fig. 5  Comparison of publication results returned through the Data Citation Explorer using two distinct 
publication indexes and a sample of 282 JAMO records. The precision value for both sets of results was over 0.98.
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the restore and purge policies of files on spinning disk, provides publish/subscribe services to internal pipelines, 
and creates a single connection point for all internal data systems to communicate with each other with regard to 
metadata services.

Metadata in JAMO are organized by JGI sequencing product/pipeline and file type, each of which has a 
defined dictionary of required and optional metadata. There are over 3,000 distinct metadata fields in JAMO 
across approximately 400 product, pipeline, and file types. The metadata in JAMO can be broken down into 
several classes: operational data, project and proposal information, genomic classifications, data ownership, data 
usability, internally produced public identifiers, and external public identifiers. Data provenance is also captured 
in the operational and project metadata.

The DCE pilot project focused on the metadata likely to be present in publications: NCBI GenBank 
Accessions, NCBI BioProject and BioSample Accessions, references to the NCBI taxonomy (from GOLD), IMG 
Taxon Object IDs (from JGI’s Integrated Microbial Genomes & Microbiomes system), SRA IDs (from NCBI’s 
Sequence Read Archive), and contact information (from JGI’s proposal system). After evaluation and testing, 
the initial production run of the DCE included 1.7 million selected JAMO records. These records were those 
that either were published at NCBI’s SRA or were downloaded by two or more distinct non-JGI users from JGI 
systems between February 22, 2019 and August 30, 2022.

Citation discovery process.  The citation discovery process runs in two phases: a metadata collection phase 
and a citation search phase (Fig. 7). The metadata collection phase crawls genomic data repositories to accu-
mulate new metadata that has been produced in downstream resources. This phase starts with an initial meta-
data registry of selected fields from JGI’s JAMO database, then incrementally adds newly discovered metadata 
to the registry by crawling other data repositories via unique identifiers (e.g., genome assemblies, sequence data, 
sequence reads, bioprojects, biosamples) while respecting identifier hierarchies and cardinality. Specifically, the 
DCE avoids traversal of accession relations that have one-to-many cardinality (e.g., BioProject to BioSample) 
that could result in connections to non-targeted datasets. This process continues iteratively until no additional 
resources are discovered. As a new accession is discovered, its source is stored with the accession in a relational 
database in a form that preserves the graph representation of the DCE’s traversal through all discovered resources. 
The resulting graph may be used for evaluating the correctness of the system. Note that while some classes of 
identifier are ambiguous, these cases are generally mitigated by the addition of identifier namespaces or prefixes 
that are respected by the relational database schema and associated business logic (Fig. 8). Although this ambigu-
ity issue is not completely solved for protein identifiers and grant numbers (Fig. 4), it is partially addressed with 
special handling of some document sections (i.e., “front matter" and “back matter" in the NLM XML schema), 

Fig. 6  A mockup of how data citations discovered by the DCE might be presented to a user via the JGI Data 
Portal.
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and by retrieving and parsing full GenBank records to confirm or negate matching strings. This issue remains an 
area of active development.

In the second phase of the process, the DCE searches the Open Access (OA) literature for occurrences of any 
of the collected identifiers that identify the project of interest. Similar to methods employed recently to explore 
full-text hits on identifiers by articles in Europe PubMed Central21, the DCE gathers a portion of its search 

J A M O

DATABASE

SNAPSHOTS

EXTERNAL

DATABASES

SCIENTIFIC LITERATURE

JGI Identifier External Identifier PublicationEntities

1a

1b

2

1a: Traverse Local Snapshots 1b: Traverse External Databases 2: Identify Citing PublicationsData Flow

Citation Discovery
Process

Fig. 7  The citation discovery process for an individual JAMO record (the target genome) happens in two 
phases: (1) crawl genomic data repositories to accumulate new metadata that has been produced in downstream 
resources, and (2) search for occurrences of unique identifiers in publicly available literature.

Fig. 8  A sample audit trail for a set of connected genomic data resources as they are stored in the underlying 
namespace-aware relational database, retrieved as a set of triples via a SQL view, and reconstructed as a directed, 
acyclic graph. These audit trails support the validation of discovered citations. A depth-first traversal of the 
graph can identify all known paths between any two identifiers in the audit trail, as well as the shortest path 
between any two identifiers.
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results using pattern matching on the content of articles indexed by PubMed Central. Additional results were 
added via full-text pattern searches for known accession formats on a locally compiled corpus of OA taxonomic 
literature for prokaryotes (see below). Further, any full-text content discovered is downloaded and processed in a 
similar method to the taxonomic corpus. The results of each search are added to the metadata registry and stored 
in the database. At this point, the citation discovery process is complete (Figs. 9 and 10). Please refer to the DCE 
source data32 for all materials used to create the full knowledge graph, including descriptions of the JAMO fields 
used to source initial metadata.

Evaluation procedures.  In order to evaluate the system’s performance prior to large-scale production 
batches, an initial trial was performed by processing 238,994 JAMO metadata records with the Data Citation 
Explorer. The major goal of the evaluation process was to determine the extent to which in-text citations returned 
by the DCE truly referenced the data represented by each JAMO record. Records were selected if they represented 
genomic data downloaded by external users of JGI’s Genome Portal33 four or more times between the dates of 
February 22, 2019 and May 31, 2020. These dates span the period between when internal file request information 
became available and the start of the DCE trial. These metadata records describe publicly available genomic 
data that was produced by JGI or uploaded to its systems between January 2009 and May 2020. Of these 238,994 
records, approximately 78,104 were linked to publications during the initial DCE trial. 30,641 unique publications 
were retrieved in this step.

As manual evaluation of connections between tens of thousands of records and publications would be impos-
sible, a subset of records with linked publications from the initial test run was selected. The subset was produced 
via stratified random sampling to avoid overrepresenting JGI projects and data that have disproportionately high 
numbers of associated records. This would ensure that a diverse set of citations was available for evaluation. The 
stratified sample consisted of three groups of 100 records from larger, mutually-exclusive sets distinguished by 
particular characteristics of interest: 

•	 All records for data that were associated with a NCBI BioProject ID in the GOLD system. Because GOLD 
indexes genome announcement publications using a semi-manual system that predates the DCE34, these 
records and their pre-existing publication linkages could be used in the future for comparative purposes. 
Total records: 5,729

•	 All records generated from JGI-sequenced data that were not registered at NCBI. The inclusion of this group 
would determine whether the DCE could find citations where external metadata IDs were limited or non-ex-
istent in the JAMO records. Total records: 10,868

•	 All JAMO records generated from sequence data that were not produced by JGI, primarily gene annota-
tions and similar data from external sources uploaded to JGI’s IMG/M system. The goal for this group was 

Unique JAMO Record
JGI and External identifiers

JGI Identifier

External Identifier

Publication

Sample Knowledge Graph

Fig. 9  High-level depiction of a DCE knowledge graph as it branches out from a single JAMO record. Some 
data citations are connected via a single identifier, but others have more complex paths, often branching 
or forming redundant connections to publications. In this simplified image, for example, the highlighted 
branching path indicates that two separate JGI-external identifiers are both linked via a common JGI-internal 
identifier. One of these links to a publication, while the other does not.
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similar to Group 2 with the added benefit of determining whether or not the DCE would reject citations from 
upstream data sources (i.e., publications from the original sequence data). Total records: 61,507

Of the 300 sampled records, 18 could not be evaluated because of a technical error that prevented the audit 
trails from resolving. Though the bug causing this error was fixed prior to deployment, it was decided at this 
point to leave these records out and proceed with the evaluation. The 282 remaining records in the resulting 
sample were linked to 576 unique publications via 998 audit trails by the DCE (Fig. 11).

Following sample generation, the validity of each audit trail between a JAMO record and a publication was 
evaluated manually (see Data Availability statement for evaluation files). An audit trail was considered “valid" 
only if the following conditions are met: 

•	 The key tied directly to or found within a target publication is an actual data identifier and not a false positive
•	 The key tied directly to or found within a target publication unambiguously refers to the JGI data entity rep-

resented by the source JAMO record.

Only results of ‘valid’ audit trails would be considered relevant in the later precision calculations.
The initial proof of concept for the Data Citation Explorer included searches over a core full-text corpus com-

posed of the primary taxonomic literature of prokaryotes (primarily the International Journal of Systematic and 
Evolutionary Microbiology from 2005 through 2018 and Standards in Genomic Sciences v1-9). The corpus was 
expanded prior to the initial evaluation to include literature searches in two publicly available indexing services, 
NCBI’s PubMed and PubMed Central.

To understand how the Data Citation Explorer performs with access to a larger corpus of publications, 
search results from the original corpus were compared with results from Digital Science’s Dimensions platform. 
Dimensions was used because it is at the time of this writing the only subscription service that provides full-text 
search functionality. This sets the service apart from tools like Web of Science or Scopus, which only index arti-
cles at the citation level. Because the DCE attempts to identify informal citations that are not indexed as formal 
references, the citation-level metadata provided by these other services do not provide an adequate point of 
comparison. This step was accomplished manually using Dimensions’ public search interface to run individual 
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Fig. 10  Sample audit trail for a single path to a publication that relies on a genome of interest (see inset). In this 
example, a JGI-internal identifier from the source JAMO record links to another JGI-internal identifier from 
a second resource. This second identifier, in turn, is linked through an external NCBI identifier to the citing 
publication, represented here by a PubMed Central identifier. The source and target resource from which each 
accession is discovered is stored as a triple, providing a traceable path that can explain how each resource was 
discovered. This is an important improvement over manual searches, as tracking the source of each individual 
metadata entry would be burdensome and error-prone for a human data curator. Note that a linkage to a 
separate external NCBI identifier forms a branch of this audit trail but does not link to any publications. These 
identifiers are also stored, as additional connections may be discovered at a later time.
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full-text searches for each of the 489 unique keys that led to hits in public sources from the initial sample (see 
Lafia et al.17 for a similar use case). The process returned hits for a total of 1,027 publications.

Data availability
Materials used for manual evaluation of DCE results as well as all source data for the initial trial run can be 
found at the following Zenodo repository: https://doi.org/10.5281/zenodo.13830817. Genomic metadata can be 
found at the Genomes OnLine Database (gold.jgi.doe.gov), the JGI Genome Portal (genome.jgi.doe.gov), the 
JGI Data Portal (data.jgi.doe.gov), Integrated Microbial Genomes & Microbiomes (img.jgi.doe.gov), Phytozome 
(phytozome.jgi.doe.gov), PhycoCosm (phycocosm.jgi.doe.gov), MyCosm (mycocosm.jgi.doe.gov), GenBank 
(ncbi.nlm.nih.gov/genbank), and the Sequence Read Archive (ncbi.nlm.nih.gov/sra). Publication data can be 
found at PubMed (pubmed.ncbi.nlm.nih.gov) and PubMed Central (www.ncbi.nlm.nih.gov/pmc). Additionally, 
the analyses include results returned via searches over proprietary full-text data contained within the Dimensions 
database (app.dimensions.ai) that was not directly accessed and cannot be exposed publicly.

Code availability
The source code for the Data Citation Explorer is hosted in a GitLab repository at https://code.jgi.doe.gov/
data-citation-explorer/. The authors will assist with any reasonable replication attempts for two years following 
publication. At the time of submission, JGI’s hosted Data Citation Explorer web application is on a private 
network, but is planned to be made publicly accessible at https://dce.jgi.doe.gov.
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