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ABSTRACT OF THE DISSERTATION

Realtime, Decimeter Accuracy Navigation Using Sliding Window Estimator and
Autonomous Vehicle Trajectory Tracking Control

by

Sheng Zhao

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2014

Prof. Jay A. Farrell , Chairperson

This dissertation focus on achieving high accuracy navigation using low-cost

sensors and on high precision trajectory tracking control for Vertical Take-Off and Land-

ing (VTOL) Unmanned Aerial Vehicles (UAVs).

For high accuracy navigation, this dissertation presents a real-time sliding-

window estimator to tightly integrate Differential-GPS (DGPS) and inertial measure-

ment unit (IMU) to achieve reliable, high precision navigation performance in GPS-

challenged urban environments using a low-cost, single-frequency (L1) GPS receiver.

The approach is novel in that it utilizes the phase measurements, without resolving the

integer ambiguity, to improve the accuracy and the robustness of the estimation results.

Experimental results demonstrate that the performance of the proposed navigation sys-

tem is significantly better than the extended Kalman Filter (EKF) (improved by one

order of magnitude) and the novel usage of phase measurements further improves the

robustness of the estimator to the pseudorange multipath error, which could otherwise

be several meters in urban environments.

Regarding precision trajectory tracking, this dissertation presents a new com-

mand filtered backstepping technique for under-actuated VTOL UAVs. Quaternions

vi



are used to represent the attitude of the vehicle to ensure the global attitude tracking

without singularities. Since the quaternions have their own unique algebra, they cannot

be filtered by a vector-based command filter; therefore, a second-order quaternion filter

is developed to filter the quaternion and automatically compute its derivative, which de-

termines the commanded angular rate vector. A quadrotor vehicle is used as an example

to show the performance of the proposed controller.
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Chapter 1

Introduction

This dissertation focuses on the navigation and the trajectory tracking control

of autonomous vehicles. The navigation system provides the realtime, accurate estimate

of the vehicle states. The trajectory tracking system controls the vehicle such that the

vehicle follows the designed path precisely at high dynamics.

1.1 Navigation

High precision navigation is a core functionality for autonomous driving, au-

tonomous mowing robot [10], unmanned air vehicles (UAVs) [52, 62]. In many such

systems, GPS is the sensor responsible for measuring the global position of the vehicle.

With a clear view of the sky, a well-designed GPS receiver typically can achieve 3-8 me-

ter positioning accuracy with the the U.S. Global Positioning System (GPS) Standard

Positioning Service (SPS) [44]. To achieve reliable higher precision positioning, differen-

tial GPS (DGPS) is a standard approach. The user can either set up a base station on

their own [10] or utilize publicly available correction services, such as Continuously Op-

erating Reference Station (CORS) [51] and Nationwide Differential Global Positioning
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System (NDGPS) [45]. As the mobile communication networks (4G or WiFi) becomes

ubiquitous, the DGPS technique can be used in most urban environments and provides

1 to 3 meter positioning accuracy [31] using GPS pseudorange measurements. Using

carrier phase Real-Time Kinematic (RTK) techniques allows centimeter accuracy af-

ter resolving the integer ambiguities in realtime [18, 8]; however, integer resolution is

challenging for single frequency receivers [1].

However, GPS has its limitations. First, GPS is a low bandwidth sensor able

to estimate position and velocity, it cannot provide high bandwidth estimates of the full

vehicle state vector. Second, especially in urban environments, the GPS signals can be

blocked by trees and tall buildings and thus using GPS alone cannot reliably provide

accurate global positioning solutions. As an example of typical GPS coverage issues in

urban environments, the satellite availability along the campus test trajectory is shown

in Fig. 5.6. Despite these challenges, many applications require high-precision, high-

bandwidth, full-state estimates for use in urban environments, for example, advanced

driver assistance systems.

Dual frequency RTK GPS receivers are typically too expensive for low-cost/consumer-

grade robotics applications and projects. In addition, in recent years, the single fre-

quency (L1-only) GPS receivers have become readily available in the market at a very

low prices compared to dual frequency receivers. In addition, MEMS IMU’s, which

can be used to track the ego-motion, are getting much cheaper, so much so that they

can be found now in many consumer-grade devices (e.g. mobile phones). Such readily

available low-cost sensors are enabling new applications, e.g. [10]. More applications

will also become feasible as the high precision navigation solution becomes more afford-

able. This thesis focuses on the design of high precision state estimation using low-cost

single-frequency GPS receivers and MEMS IMU.
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RTK GPS positioning is a well-known mature technique [15]. However, for

low-cost, single frequency receivers, there still are many challenges. The most serious is

the inability to use the multi-frequency combinations [1, 20, 21] that greatly reduce the

size of the relevant integer searching space. Moreover, the number of measurements from

a single frequency receiver is half of that from a dual frequency receiver. Also, in urban

environments, the intermittent signal reception caused by signal blockage necessitates

frequent integer search, because every time the receiver reacquires the satellite signal,

the integer in the carrier phase measurement is different and must be estimated again.

Without the correctly resolved integer, the phase measurement does not provide absolute

range information and the position accuracy is limited to the pseudorange accuracy cited

above.

Article [61] utilized a sliding-window estimator with pseudorange measure-

ments only. In an open sky environment, it demonstrated performance superior to the

EKF. To further improve the performance, this thesis proposes a novel sliding window

Bayesian estimation method allowing use of the phase measurements without resolving

the integers. The results are demonstrated in GPS-challenged urban environments such

as that shown in Fig. 5.6.

1.2 Control

Recently, Vertical Take-Off and Landing (VTOL) Unmanned Aerial Vehicles

(UAVs) have gained tremendous interest among researchers and practitioners. In many

applications, VTOL UAVs have advantages over fixed wing UAVs due to their relatively

smaller size, capability to operate in cluttered environments and their hover capabil-
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ity. Many aerial vehicles fall into the categories of VTOL UAVs: Quadrotor, Coaxial

rotorcraft and Ducted-fan UAV.

However, the control of VTOL UAV is not straightforward because of its under-

actuated dynamics. The under-actuated dynamics require that translational motion of

VTOL UAV be determined in part by the attitude of the vehicle. Since the translational

motion of the VTOL UAV is determined by the attitude of the vehicle, the performance

of the attitude tracking loop directly affects the performance of the position tracking

loop. Euler-angles are commonly used in attitude control loop to represent the vehi-

cle’s attitude [37, 25]. However, the singularity problem of the Euler-angles prevents

the controller to have the global tracking capability. Quaternion can represent the at-

titude without any singularity and thus a global attitude tracking controller can be

implemented. In contrast to the rotation matrix representation, quaternion use fewer

parameters (4 as opposed to 9) and quaternion is commonly used in the state estimators

to represent the attitude. Hence, this thesis uses quaternion to represent the attitude.

Regardless of how attitude is represented, the vehicle position trajectory track-

ing problem through the vehicle attitude involves strong nonlinearities. In many appli-

cations [40, 25] and commercial products [2], VTOL UAV control is implemented by

linearizing the dynamics around a hover operating point and designing linear (e.g.,

PID-like) controllers to control the position and attitude of the vehicle. Such control

design approaches have good performance near the linearized point (hover stage), but

may perform poorly when the vehicle deviates away from the linearized point, which

typically happens when tracking an user-specified trajectory. The trajectory commands

considered in this thesis can take two forms: 1) position only trajectory or 2) position

and the desired yaw trajectory.

4



To improve the global VTOL tracking performance, various model-based non-

linear control methodologies can be considered. Among these nonlinear control method-

ologies, backstepping based design is widely adopted due to its systematic design and

physically intuitive approach. In the backstepping design, the derivatives of virtual

control signals are required in each design step. When the number of steps is greater

than three, like the case of VTOL UAV, the analytic derivation of the derivatives be-

comes prohibitively complicated. When quaternions are involved in the control design,

their special algebra and dynamics also complicates the design procedure. The paper

[48] designs a quaternion-based backstepping controller to track a position trajectory

and the required derivatives are computed analytically. The procedure is already very

cumbersome for position tracking only. If the trajectory contains the desired yaw angle,

all the derivatives computed in [48] need to be recomputed with respect to (w.r.t.) the

desired yaw angle which makes the already tedious procedure even worse. There are

many reasons that prevent the wide adoption of nonlinear controller in real applica-

tions, and the complexity involved in the design process is one. The command filtered

implementation of the backstepping approach [16] maintains the desirable aspects of the

backstepping method, has the same provable convergence properties, and simplifies the

implementation process.

A command filtered backstepping trajectory tracking control approach for

VTOL aircraft is presented and analyzed herein. The quaternion attitude represen-

tation requires extension of the approach represented in [16]. By exploiting the special

dynamics of quaternion, this thesis proposes a second-order quaternion filter to compute

the commanded quaternion and its angular velocity, without differentiation. The pro-

posed quaternion filter enables the command filtered backstepping design for the many

types of vehicles utilizing quaternion-based attitude representations. Moreover, with

5



the use of command filters, the flexibility of giving yaw commands in the trajectory is

realized without further complicating the design process.

1.3 Main Contributions

1. The first literature report of a high performance sliding window estimator on

tightly coupled DGPS/IMU using L1-only measurements in GPS-challenged urban

environments.

2. The first literature report of how to incorporate the phase measurement in the

sliding window estimator to achieve high precision navigation without resolving

the integer ambiguities.

3. Derive a novel 2D LIDAR aiding measurement model to aid the INS when the

vehicle is in urban environments. With LIDAR aiding, the position error in the

lateral direction of the road can be corrected even when satellites are shadowed

by the buildings.

4. Design quaternion-based command filter backstepping control for quadrotor to

achieve high trajectory tracking accuracy. To utilize the idea of command filters, a

second-order quaternion filter is proposed to automatically generate the derivative

of quaternion while respecting the uniqueness of quaternion dynamics.
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Chapter 2

Inertial Navigation System

2.1 Coordinates and Notations

The coordinates used in this thesis:

1. ECEF: It stands for Earth-Centered, Earth-Fixed Cartesian coordinate. The

center of ECEF is at the center of mass of the Earth. The z-axis is pointing towards

the north but it does not coincide exactly with the instantaneous earth rotational

axis. The x-axis intersects the sphere of the Earth at 0◦ latitude and 0◦ longitude.

This means that ECEF rotates with the earth and therefore, coordinates of a point

fixed on the surface of the earth do not change.

2. Tangent Plane: It is a local Cartesian coordinate defined by fitting a tangent

plane to the geodetic reference ellipse at a point of interest. It is also referred as

north, east, down frame or the global frame ({G} frame) in this thesis.

The notation conventions in this thesis:

1. b
aR: denotes the rotation matrix R from {a}-frame to {b}-frame.

2. av: denotes a vector v represented in {a}-frame.
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2.2 Attitude Representations

The attitude of a rigid body can be represented by rotation matrix, quaternion

and Euler angles.

2.2.1 Rotation Matrix

The rotation matrix R evolves in the special orthogonal group of degree three:

SO(3) = {R ∈ R3×3|R>R = RR> = I3, det(R) = 1} (2.1)

2.2.2 Quaternion

This section review the basics of quaternion that are useful for navigation and

control. The details of the quaternion algebra can be found in [56]. The notation

of quaternion used in this thesis follows the JPL convention, instead of the Hamilton

convention. A good reference about the discussion of the two notations is [50].

2.2.2.1 Unit Quaternion

Unit quaternion (q̄) uses four parameters to represent a rotation matrix. Such

representation is globally non-singular. Unit quaternion is evolving in the three-sphere

S3, embedded in R4, S3 = {q̄ ∈ R4 | q̄>q̄ = 1}. The quaternion is a unit quaternion if it

satisfies:

|q̄| =
√

q̄>q̄ =

√
|q|2 + q2

4 = 1 (2.2)
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where q = [q1, q2, q3]>. Usually, the unit quaternion is written as:

q̄ =

q

q4

 (2.3)

=

k̂ sin(θ/2)

cos(θ/2)

 (2.4)

In this notation, the unit vector k̂ describes the rotation axis and θ is the angle of

rotation. Note that, one attitude configuration has two quaternion representations: q̄

and −q̄. They are differed by the rotating directions around the rotation axis to reach

the target configuration.

2.2.2.2 Quaternion Algebra

We define the skew-symmetric matrix bx×c for any x ∈ R3 as

bx×c =


0 −x3 x2

x3 0 −x1

−x2 x1 0

 (2.5)

For the convenience, the skew-symmetric matrix is also denoted as S(x) in this thesis.

So for any two vectors x,y ∈ R3, the cross product can be denoted as x× y = bx×cy.

Also we have bx×c> = b−x×c.

The corresponding rotation matrix for a given quaternion is

R(q̄) = (2q2
4 − 1)I3×3 − 2q4bq×c+ 2qq> (2.6)

= I3×3 − 2q4bq×c+ 2bq×c2 (2.7)

The multiplication of two quaternions is defined as

q̄⊗ p̄ =

q4p + p4q− q× p

q4p4 − q>p

 (2.8)

9



The quaternion multiplication is distributive and associative but not commutative. The

multiplication of quaternions is analogous to the multiplication of rotation matrix, in

the same order:

R(q̄)R(p̄) = R(q̄⊗ p̄) (2.9)

The inverse of quaternion is defined as

q̄−1 =

−q

q4

 (2.10)

We define the identity quaternion as q̄o = [0 1]>. For any given quaternion q̄, we have

q̄⊗ q̄−1 = q̄−1 ⊗ q̄ =

0

1

 (2.11)

From a given vector p, we define its quaternion form as

q̄p =

p

0

 (2.12)

The transformation of a vector from frame a to frame b using quaternion is given by:

bq̄p = b
aq̄⊗ aq̄p ⊗ b

aq̄
−1 (2.13)

=

baRap

0

 (2.14)

The corresponding formula for skew-symmetric matrix bx×c is

bbx×c = b
aRbax×cbaR

>
(2.15)

2.2.2.3 Quaternion Kinematics

Here we use {G} to represent inertial frame and {B} to represent body frame.

For the angular velocity, we use ωBGB to denote the angular velocity of body frame w.r.t.

inertial frame expressed in body frame.
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The kinematic equation for rotation B
GR is:

B
GṘ = −bωBGB×cBGR (2.16)

B
G

˙̄q =
1

2
q̄ωBGB

⊗ B
Gq̄ (2.17)

=
1

2
Ω(ωBGB)IGq̄ (2.18)

=
1

2

bq×c+ q4I

−q>

ωBGB (2.19)

where

Ω(ω) =

−bω×c ω

−ω> 0


The kinematic equation for rotation G

BR is:

G
BṘ = G

BRbωBGB×c (2.20)

G
B

˙̄q =
1

2
G
Bq̄⊗ q̄−ωBGB

(2.21)

=
1

2

bq×c − q4I

q>

ωBGB (2.22)

The derivation can refer to Section 2.6.1 of [19] for the dynamics of rotation matrix and

Section 2.4 in page 16 of [56] for the dynamics of quaternion.

Let Φ =

bq×c+ q4I

−q>

, then we have Φ>Φ = I3×3. The proof will make use

of this property: bx×c2 = xx> − ‖x‖2I (see eqn. (55) in [56]).
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The attitude error is expressed in error quaternion form:

δq̄ = q̄⊗ ˆ̄q
−1

(2.23)

=

k̂ sin(δθ/2)

cos(δθ/2)

 (2.24)

'

1
2δθ

1

 (2.25)

The corresponding rotation matrix is

R(δq̄) ' I3×3 − bδθ×c (2.26)

2.2.3 Euler Angles

In air force convention, Euler angles parameterize the rotation matrix I
GR by

three rotation angles: roll(φ), pitch(θ) and yaw(ψ). However, such minimum represen-

tation of rotation suffers from the singularity problem. The Euler angles represent the

rotation I
GR that rotates the global frame to the IMU frame and are followed by the

right hand rule.
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Rz(ψ) =


cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1

 (2.27)

Ry(θ) =


cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)

 (2.28)

Rx(φ) =


1 0 0

0 cos(φ) sin(φ)

0 − sin(φ) cos(φ)

 (2.29)

Hence we have:

I
GR = Rx(φ)Ry(θ)Rz(ψ) (2.30)

2.3 Inertial Measurement Unit (IMU)

2.3.1 IMU Measurements

The IMU provides measurements of rotational velocity (ωm(t)) and specific

force (am(t)), both are expressed in IMU frame:

ωm(t) = IωGI(t) + Ibg(t) + ng(t) (2.31)

am(t) = I
GR(GaGI(t)− Gg) + Iba(t) + na(t) (2.32)

where ωGI and aGI are the angular rate and the acceleration vectors of the {I}-frame

with respect to the {G}-frame, Gg is the gravity vector in {G}-frame, Ibg(t) and Iba(t)

are time correlated sensor errors that we will refer to as biases, and ng(t) and na(t)
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represent white Gaussian measurement noise processes with power spectral densities

(PSD) Qa ( m
s
√
s
) and Qg ( rad√

s
), respectively. The IMU sampling time is denoted as ∆t.

2.3.2 IMU Biases Modeling

There are many ways of modeling the IMU biases bg and ba [47]. One way is

to model the bias as a random walk process:

ẋ = nw (2.33)

where nw is a Gaussian white noise. This thesis follows this modeling as it is simple.

But the drawback of this modeling is that the uncertainty of biases will grow unbounded

over time which is not true. Therefore, there is a better modeling which models the bias

as a first-order Gaussian Markov process:

ẋ = −λx+ w (2.34)

where λ > 0 is the time constant, β = 1
λ is the correlation time and w is a Gaussian

white noise whose PSD is Qw = σ2
w. Denote the covariance of x to be Px. Then the

differential equation of Px can be obtained by using Riccati differential equation:

Ṗx = −2λPx +Qw (2.35)

The above equation can also be derived from the state transition equation of the state

x. If the PSD of the noise is constant (Qw is constant), then the covariance Px has a

steady state which is denoted as p̄x. The p̄x is

p̄x =
Qw
2λ

(2.36)

In contrast to the random walk model, this model results in a bounded uncertainty of

the IMU biases.
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2.3.3 IMU Noise Calibration

The common approaches used to calibrate the IMU noise parameters are listed

below [47]:

1. Allen Variance (AV): uses band filter and perform in the time domain.

2. PSD: similar to AV but perform in the frequency domain.

3. Autocorrelation: first-order Gauss-Markov model.

4. Wavelet De-Noising: removes high frequency components, typically used together

with autocorrelation to analyze low frequency signal components.

2.4 Inertial Navigation System (INS)

2.4.1 State Propagation

Let x(t) ∈ Rn denote the rover state vector at time t:

x̂ =

[
I
Gq̄> Gp>I

Gv>I
Ib
>
g

Ib
>
a

]>
(2.37)

where GpI ∈ R3 and GvI ∈ R3 are the rover position and velocity represented in the

global frame, I
Gq̄ ∈ R4 is the quaternion that represents the rotation from the global

frame to the IMU body frame, and Ibg ∈ R3 and Iba ∈ R3 are the IMU gyro and

accelerometer biases represented in the IMU frame.

The dynamics of rover state are modeled as

ẋ(t) = f(x(t), ũ(t),n(t)), (2.38)
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where f : Rn × Rm 7→ Rn, ũ ∈ Rm is the vector of measured accelerations and angular

rates and n ∈ R12 is the vector of noises. The function f is

GṗI = GvI , (2.39)

Gv̇I = GaGI (2.40)

I
G

˙̄q =
1

2
Ω(IωGI)

I
Gq̄ (2.41)

I ḃg = nwg, (2.42)

I ḃa = nwa (2.43)

where GaGI and IωGI are computed from the IMU measurements as

GaGI = G
I R

(
am − I b̂a − na

)
+ Gg (2.44)

IωGI = ωm − I b̂g − ng. (2.45)

and n = [na ng nωa nωg]
> with PSD matrix Q = diag([Qa,Qg,Qωa,Qωg]).

Given a distribution for the state vector initial condition x(0) ∼ N (x̂(0),P(0)),

an Inertial Navigation System (INS) propagates an estimate of the vehicle state between

aiding measurement times as a solution of

˙̂x(t) = f(x̂(t), ũ(t),0), (2.46)

where x̂(t) denotes the estimate of x(t). In this thesis, the 4th-order Runge-Kutta

method is used for the numerical integration.

2.4.2 Error Dynamics

Due to initial condition errors, system calibration errors, and measurement

noise, a state estimation error x̃(t) = x(t) − x̂(t) develops over time. The error state
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vector x̃ is defined as

x̃ =

[
Gδθ> Gp̃>I

Gṽ>I
I b̃g
> I b̃a

>
]>

(2.47)

where the error angle vector Gδθ represents the small angle rotation from the actual

global frame {G} to the estimated global frame {Ĝ} (ĜGR = I − bGδθ×c). Hence we

have

G
I R̂ = (I− bGδθ×c)GI R (2.48)

I
GR = I

GR̂(I− bGδθ×c) (2.49)

G
I R = (I + bGδθ×c)GI R̂. (2.50)

2.4.2.1 Deriving from Continuous Domain

To be used in the estimator, the error dynamics in the discrete form is desired.

There are different ways of obtaining the discrete error dynamics. One way is starting

from eqn. (2.38). Firstly, we linearize eqn. (2.38) at the estimated state x̂ to obtain the

linearized differential equation for the INS error state in the continuous domain:

˙̃x = Fcx̃ + Gcn (2.51)

The linearization process and the matrices Fc and Gc are described in Section 11.4 in

[19]. Then, the error state dynamic in the discrete domain can be derived from the

above equation as:

x̃k+1 = Φkx̃k + ndk (2.52)
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where Φk is the discrete-time state transition matrix and Qd
k is the process noise covari-

ance matrix computed from Fc, Gc, and the PSD matrix Q:

Φk , Φ(tk+1, tk) = exp

(∫ tk+1

tk

Fc(τ)dτ

)
(2.53)

Qd
k =

∫ tk+1

tk

Φ(tk+1, τ)GcQG>c Φ>(tk+1, τ)dτ. (2.54)

Details can be found in Section 7.2.5.2 in [19].

The error covariance is propagated through time according to

Pk+1 = ΦkPkΦ
>
k + Qd

k (2.55)

2.4.2.2 Deriving from Discrete Domain

Another way to derive eqn. (2.51) is directly from discrete rover state dynamic

functions:

xk+1 = F(xk,uk,n
d
k) (2.56)

Linearizing the above equation can directly give us the error state dynamic in the discrete

domain. The details about this approach can be found in [34]. In this thesis, we follow

this approach. The Φk can be obtained in a closed form as:

Φk =



I3 03 03 Φqbg 03

Φpq I3 ∆tI3 Φpbg Φpba

Φvq 03 I3 Φvbg Φvba

03 03 03 I3 03

03 03 03 03 I3


(2.57)
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where

Φpq = −b(Gp̂k+1 − Gp̂k − Gv̂k∆t−
1

2
g∆t2)×c (2.58)

Φvq = −b(Gv̂k+1 − Gv̂k − g∆t)×c (2.59)

Φqbg = −
∫ tk+1

tk

G
Iτ R̂ dτ (2.60)

Φpbg =

∫ tk+1

tk

∫ w

tk

b(G ˙̂vτ − g)×c
∫ τ

tk

G
IsR̂ dsdτdw (2.61)

Φpba = −
∫ tk+1

tk

∫ τ

tk

G
IsR̂ dsdτ (2.62)

Φvbg =

∫ tk+1

tk

b(G ˙̂vτ − g)×c
∫ τ

tk

G
IsR̂ dsdτ (2.63)

Φvba = −
∫ tk+1

tk

G
Iτ R̂ dτ (2.64)
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Chapter 3

Navigation Aiding Sensors

3.1 Differential-GPS

Two types of measurements are provided by GPS receivers: pseudorange (code)

and carrier phase measurements. DGPS has advantages over stand-alone GPS in that

the common-mode errors (e.g., ionosphere, troposphere, satellite clock and ephemeris

errors) can be essentially removed by differencing measurements between the rover re-

ceiver and the GPS base station receiver. This step is referred as the single difference

step. It is assumed in this paper that the (single difference) DGPS approach completely

removes all common-mode errors. Receiver clock errors are not removed by DGPS. To

avoid the modeling of the receiver clock error, which would involve two additional filter

states, double differenced GPS measurements are considered.

The notation used follows several conventions:

• The overhead bar is used to denote the variable obtained from the single differenc-

ing step. For example, the single differenced pseudorange and phase measurements

are denoted by ρ̄ and φ̄, respectively.
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• The superscript c on a variable is used to denote the common satellite chosen in

the double differencing method.

3.1.0.3 Pseudorange Measurement

The double differenced pseudorange measurements for the i-th satellite vehicle

(SV) at time t can be modeled as

ρic(t) = γic(x(t)) + nicρ (t), (3.1)

where γic = γ̄i − γ̄c, γ̄i = ‖pr − pisv‖2 is the geometric distance between the vehicle

antenna position pr ∈ R3 and the i-th SV antenna position pisv ∈ R3, ρic = ρ̄i − ρ̄c, ρ̄i

is the single differenced pseudorange measurement of the i-th SV, nicρ = n̄iρ − n̄cρ, and

n̄iρ is the single differenced measurement noise. The double differenced noise standard

deviation is typically σρ ∈
√

2 · [0.1, 2.0] meter [41]. The noise n̄iρ includes the multi-

path error which can be several meters [53]. In this paper, the time correlation of the

multi-path is ignored. It could be accommodated by augmenting additional states for

each satellite. We leave that as a topic for future work.

Thus, the residual function of the double differenced code measurement can be

formed from eqn. (3.1) as:

eiρ(x(t)) = ρic(t)− γic(x(t)). (3.2)

The uncertainty of eiρ(x(t)) is assumed to be Gaussian with the variance denoted by σ2
ρ.

3.1.0.4 Carrier Phase Measurement

The double differenced phase measurement model for the i-th SV is:

λφic(t) = γic(x(t)) + λN ic(t) + nicφ (t), (3.3)
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where φic = φ̄i− φ̄c and nicφ = n̄iφ− n̄cφ, φ̄i is the single differenced phase measurement of

i-th SV, N ic is an unknown integer of the phase cycle, λ is the wavelength of the signal

(19.05 cm for L1 signal), and n̄iφ is the single differenced measurement noise. The phase

noise nicφ includes the multi-path error which has the standard deviation typically in the

centimeter range [6]. Its time correlation is not modeled in this paper.

The integer N ic is constant over time intervals when the receiver has phase lock

for both SV’s i and c. The receiver indicates this lock with a flag and lock time counter.

When the unknown integer N ic is resolved, the double differenced phase observable

measures the range with centimeter accuracy (σφ ≈
√

2 ·0.02 meter). Thus, the residual

of the double differenced phase measurement after resolving the integer can be formed

as:

eiφ(x(t)) = λ(φic −N ic)− γic(x(t)). (3.4)

The uncertainty of eiφ(x(t)) is assumed to be Gaussian with the variance denoted by σ2
φ.

3.1.1 Integer-free Phase Measurement

3.1.1.1 Motivation

For a single-frequency receiver, the integer ambiguity is difficult to resolve

reliably in realtime. Nonetheless, there are at least two reasons why we still want to use

the phase measurements, even when the integers cannot be resolved:

1. Multi-path introduces only a few centimeters of error in the phase measurement

while the code measurement can be affected by a few meters.

2. Phase measurements over a time window provide strong local kinematic constraints

on the trajectory at the centimeter accuracy even when the correct integer cannot

be resolved.
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When the correct integer cannot be resolved, typically, there are two ways of

utilizing the phase measurements:

1. The triple difference technique [11] creates an integer-free measurement: φ̃ick at tk

for i-th SV defined as:

λφ̃ick = γic(x(tk))− γick−1(x(tk−1)) + ñicφ (tk) (3.5)

where φ̃ick = φic(tk) − φic(tk−1) and ñicφ (tk) = nicφ (tk) − nicφ (tk−1). This equation

is derived by subtracting eqn. (3.3) at tk−1 from that at tk. The benefit of this

approach is that the resulting quantity φ̃ick is independent of the integer and thus

it does not require integer estimation. However, the triple difference only considers

two consecutive measurements, losing the strong time correlation between all the

phase measurements (sharing a constant integer) over a time window. Note also

that even when nicφ (t) is white, ñicφ (t) is time correlated and that the measurement

modeled in eqn. (3.5) depends on the state at two distinct times, which defies the

standard EKF model.

2. Alternatively, the integers can be treated as real variables and estimated together

with other vehicle states [3]. The major drawback of this approach is that the

integer constraint is not respected in the estimation process, resulting in informa-

tion loss. These approaches require 20 minutes for the real “integer” estimates

to converge to single integer accuracy. Moreover, this approach requires adding

all the integers into the estimator which increases the state vector size and thus

increases the computational complexity.

To fully utilize the phase measurements when the correct integers cannot be

resolved, this paper proposed a new way of using phase measurements over a CRT
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window. In the proposed framework, an integer-free phase measurement is constructed

that is independent of the integer and that correctly captures the time correlation of

phase measurements over a time window.

3.1.1.2 Phase Track

Let Ck = {tk−M+1, · · · , tk} be the set of times in the present CRT window.

Within Ck each satellite may have and lose phase lock several times. Let Tij ⊆ Ck be

the j-th set of times overwhich the i-th satellite is available and has phase lock. Fig.

3.1 illustrates an example of a phase measurement availability pattern within the CRT

window. Let Ticj ⊆ Ck be the j-th set of times overwhich the satellite pair i-c both have

continuous phase lock. Note that Ticj ∩ Ticj+1 is always an empty set. For all t ∈ Ticj ,

λφic(t) = γic(x(t)) + λN ic
j + nicφ (t), (3.6)

where N ic
j is a constant integer. Define

Ξicj = {φic(t) | t ∈ Ticj } (3.7)

which will be referred to as a phase track. The length of the phase track Ξicj is the

number of times in Ticj . Fig. 3.2 illustrates the set of times Ticj in the phase track

pattern Ξicj resulting from choosing the first SV as the common SV throughout the CRT

window.

3.1.1.3 Integer-free Measurement

To fully utilize the phase measurement without resolving the integer vector, an

integer-free measurement is constructed by adapting the technique proposed in [42].
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1

2

3

4

i‐th SV

……
5

Figure 3.1: The illustration of the phase measurement availability pattern in a CRT

window with M = 8. The y-axis is the SV ID number. The thick blue lines represents

the set Tij .

2

3

4

i‐th SV

……
5

Figure 3.2: The illustration of the phase tracks obtained by choosing the first SV as the

common SV for all time steps in the CRT window shown in Fig. 3.1. The thick blue

lines represents the set Ticj .
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Starting from eqn. (3.6), for any phase track Ξicj that has length greater than

one, stack all the double difference measurements from the phase track Ξicj to define a

vector:

λφicj = h(XTicj
) + λGic

j N
ic
j + nicφj (3.8)

where XTicj
= {x(t) | t ∈ Ticj } and

φicj =



φic(t̄1)

φic(t̄2)

...

φic(t̄l)


, h(XTicj

) =



γic(x(t̄1))

γic(x(t̄2))

...

γic(x(t̄l))


, (3.9)

Gic
j =



1

1

...

1


, nicφj =



nicφ (t̄1)

nicφ (t̄2)

...

nicφ (t̄l)


. (3.10)

The covariance of nicφj is a diagonal matrix Ric
φ . In this paper, we ignore the correlation

between satellites, so that nicφ is assumed to be uncorrelated with ndcφ for i 6= d to reduce

the computational complexity (see Remark 1).

The integer can be eliminated from the equation by the following procedure.

Select a unitary matrix Ai = [Ai
1, Ai

2] such that the columns of Ai
2 form the basis of

the left nullspace of Gic
j (i.e., Ai

2
>

Gic
j = 0). Multiplying Ai

2
>

on both sides of (3.8)

gives:

λφ̌icj = ȟ(XTicj
) + ňicφj (3.11)
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where φ̌icj = Ai
2
>
φicj , ȟ = Ai

2
>

h and ňicφj = Ai
2
>

nicφj . Thus, the integer-free phase

measurement induced residual equation is

ei
φ̌j

(X) = λφ̌j
ic − ȟ(XTicj

) (3.12)

This integer-free phase residual function is used in eqn. (4.31) to obtain improved

accuracy.

Note that eqns. (3.11–3.12) are independent of the integer. Eqn. (3.12) ex-

presses the relative kinematic constraints between vehicle poses along the trajectory.

The constraint is strong because the noise ňicφ ∼ N (0,Ai
2
>

Ric
φAi

2) has component level

standard deviations at the centimeter level with very strong cross-correlations that are

known and correctly modeled. Therefore, the optimization will correctly accommodate

the relative kinematic constraints between all the vehicle poses at the times in Ξicj . In

contrast, the triple difference technique only captures the pairwise kinematic constraint

between two consecutive vehicle poses, but neglects time correlation between subsequent

measurements.

Remark 1 Due to the double differencing procedure defined in eqn. (3.3), the double

difference noise terms nicφ (t) and ndcφ (t) are correlated with each other: E(nicφ , n
dc
φ ) = σ2

φ.

Therefore, the vectors nicφ and ndcφ concatenating these quantities are also correlated. For

computational reasons, in this paper, we neglect the correlation between nicφ and ndcφ .
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Remark 2 It is easy to see that the triple difference measurement can be obtained from

eqn. (3.11) by setting

A>2 =



−1 1 0 · · · · · · 0

0 −1 1 0 · · · 0

...
. . .

...

0 · · · · · · 0 −1 1


(3.13)

and removing the off-diagonal elements in the covariance matrix of ňicφ (effectively ig-

noring the time correlation of the phase measurements). Ignoring of time correlation in

the triple difference procedure yields a set of independent pairwise constraints instead of

allowing window length constraints.

3.1.1.4 Phase Tracks Construction

Let ScΞ denotes the union of Ξicj over all i-s and j-s in the CRT window. Let

Vk denotes the sequence of choices of common satellite vehicles for each time step in Ck.

The choice of Vk affects the structure of ScΞ. The problem of choosing the optimal set

Vk can be formulated as an optimization problem [26]:

V∗k = argmax
Vk

det

 ∑
(i,j)∈ScΞ

Λij(X)

 (3.14)

where Λij is the information matrix formed by the phase track Ξicj using eqn. (4.21).

In practice, it could be very difficult to solve the optimization problem in realtime to

determine Vk. Therefore, this section proposes an incremental approach to choose the

common SV in the CRT window.

The incremental approach is described as follows: At time tk, if Vk is available,

then the common SV at tk will remain the same, as long as that the SV is available.
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When it becomes unavailable, the SV with the highest elevation is selected as the new

common SV.

3.1.1.5 Marginalization of Integer-free Measurements

The marginalization approach of Section 4.3 can be used for the integer-free

measurements. However, direct application of the marginalization described in Section

4.3 leads to a dense prior information matrix Λα for the remaining trajectory Xr. This

leads to complications during optimization of eqn. (4.31) wherein the Jacobean cannot

be relinearized for x(tk−M+2 · · ·x(tk), see [13]. It would also eliminate the ability to

extend a phase track from Ck to Ck+1.

Therefore, after obtaining all the phase tracks in the CRT window, they are

divided into two sets: SA and SB. The set SA contains all the tracks that involve the

rover states x(tk−M+1) that is going to be marginalized out at time tk. The set SB

contains all the remaining tracks. For the phase tracks in SB, the integer-free residual

function (3.12) is used.

For the phase tracks in SA, the corresponding integers are augmented into the

vector X and estimated as real variables. Hence, the new CRT estimator state vector

is defined as:

X =

[
x(tk−M+1)> · · ·x(tk)

> | N1 · · ·Nh

]>
(3.15)

where Ns for s = 1, · · · , h are the integers corresponding to the phase tracks in SA. The

residual function for phase tracks in SA becomes:

eiφN (x(t), N ic) = λ(φic −N ic)− γic(x(t)). (3.16)

In this method the marginalization can be carried out in the same manner shown in

Section 4.3. The prior information matrix Λα remains sparse and the full information
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matrix can be maintained properly even if the phase track extends to the next CRT

window. Note that, if the length of a phase track becomes 0 after removing one state

from the CRT window, the corresponding integer will also be removed from the vector

X in the marginalization process.

3.1.2 Literature Review

3.1.2.1 GPS

It is well known that GPS carrier phase measurement can yield position ac-

curacy at the centimeter level if the integer ambiguity can be resolved [20]. Integer

ambiguity resolution is a well researched topic and there are many working solutions

available, particularly for dual-frequency GPS receivers [54, 7]. When the integer vector

is successfully resolved, an EKF is one estimation approach that could be implemented

to obtain a centimeter accuracy INS solution [18]. The drawback of such systems is the

high cost of the two-frequency receiver.

For a single-frequency GPS receiver, resolving the integer in realtime is much

harder. One alternative is triple difference techniques in which the phase measurement

is differenced between two consecutive times to eliminate the unknown integer. In [11]

using triple differencing, the authors report achieving achieve submeter accuracy after

500 seconds of stationary operation. In [10], the authors proposed an integer search and

validation method based on the technique developed in [11] for single frequency receivers.

The time required to reliably resolve the integers was not reported. In [22], the authors

utilize a modified triple difference technique in an EKF to track the relative positions

of the receivers, when starting from a perfectly known initial configuration. The global

positions are not estimated in this approach. Due to the nature of the tracking (perfect
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initial knowledge), it does not need a long time to converge to submeter accuracy. The

reported accuracy of position tracking is in the decimeter level.

Most existing realtime algorithms that attempt to resolve the integers use a sin-

gle epoch of GPS measurements. An alternative approach is to combine measurements

from multiple measurement epochs [8] to increase the measurement redundancy. The

existing multiple epoch approaches do not constrain the state vector estimates across

the multiple times. Here we present a novel algorithm wherein the IMU measurements

and system kinematics provide strong constraints on the state vector estimates across

multiple measurement times, the integers are not resolved, yet decimeter accuracy is

achieved.

The method proposed in this paper is related to, but distinct form, the triple

difference technique. Instead of differencing two consecutive measurements to eliminate

the integer and implementing an EKF, we propose a systematic method to eliminate

the integer for a time window of measurements. Our approach utilizes both GPS car-

rier phase and inertial kinematic constraints between all the vehicle poses in the win-

dow. The proposed method is optimal in that it preserves all the information from

the measurements and correctly captures the time correlation of the resulting kinematic

constraints.

3.1.2.2 GPS/IMU Integration

GPS and IMU integration has been extensively studied [18]. For sensor aided

inertial navigation system (INS), the most commonly used estimator is the extended

Kalman filter (EKF). Fusion techniques can be roughly divided into two categories:

loosely coupled and tightly coupled.
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Loosely coupled approaches use the position and velocity information com-

puted within the GPS receiver as measurements to the EKF to compute corrections

for the INS state vector. As the position and velocity measurements from the GPS re-

ceiver are computed using only GPS measurements, at least four satellites are necessary.

When the number of satellites falls below four, the GPS receiver cannot provide posi-

tion and velocity measurements; therefore, the INS error cannot be corrected. Hence

this approach will perform poorly in environments where satellite reception is poor.

Moreover, the loosely coupled approach ignores correlation between the elements of the

GPS estimated position and velocity measurement vectors, yielding sub-optimal INS

corrections.

Tightly coupled approaches use the GPS measurements (pseudorange and car-

rier phase) directly to correct the INS error. As few as one satellite can be used to

correct a subspace of the INS state if the clock is estimated (at least two satellites

are required if the clock is not estimated). The tightly coupled approach is more reli-

able than the loosely coupled approach, especially when GPS signals may be partially

blocked by the surrounding environment. As the tightly coupled approach utilizes the

GPS measurements directly, there is no information lost in sensor fusion and thus the

navigation performance is typically better than the loosely coupled approach. The ap-

proach described in this paper follows the tightly coupled approach.

3.1.2.3 Estimator

To account for the strong nonlinearities present in the navigation system, this

paper utilizes a realtime sliding window estimator to achieve better performance. Re-

lated algorithms have received significant attention in the SLAM community [12, 29,

9, 13, 27]. However, none of these papers report the performance for tightly coupled
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DGPS/IMU systems. The most closely related approach is [27]. However, this paper

use a simplified GPS model that is integrated in a loosely coupled way. Therefore, they

reported similar performance between their approach and an EKF. The approach herein

will demonstrate a significant performance improvement compared to the EKF, espe-

cially in GPS-challenged urban environments. The navigation system designed in this

paper is similar in concept to the one proposed in [9, 13]. However, [9, 13] are focused on

the Vision/IMU integration and they have not reported any tightly coupled GPS/IMU

results. To the best of our knowledge this is the first report of high performance of a

realtime sliding window tightly coupled DGPS/IMU estimation system.

3.2 LIDAR

3.2.1 LIDAR Sensor

A LIDAR sensor is an optical sensing device that uses one or more laser beams

to determine the range and azimuth angle to objects in the environment. The k−th scan

of the LIDAR at time tk returns a set of measurements where is the angle measurement

and R is the range measurement. This type of ranging sensor is based on time-of-flight

principles. The range sensors not only provide high accuracy distance measurements,

they also achieve a high angular resolution due to the very small divergence of the

emitted laser pulse. LIDAR sensors are commonly utilized as part of vehicle navigation

systems for detecting surrounding vehicles, obstacles, and roadway infrastructure such

as curbs. It can also be used as part of a vehicle localization solution, either as a single

sensor or be combined with other sensors such as GPS and Inertial Measurement Units

(IMU).
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There are different kinds of LIDAR in the market. The most common and

cheapest one is 2D LIDAR which only scan in a single plane, providing a high number

of measurements across a large field-of-view (e.g., 180 degrees). As an example, one

of the most popular 2D LIDAR sensors is the SICK LMS series. A SICK LIDAR

(LMS200) operates at distance up to 80m with an angular resolution of 0.5◦ and a range

measurement accuracy of typically ±5cm (1σ value). The distance between the sensor

and an object is calculated by measuring the time interval between an emitted laser

pulse and reception of the reflected pulse. The amplitude of the received signal is used

to determine the reflectivity of the object surface. Fig. 6.2 (a) and (b) illustrate the

SICK LMS200 LIDAR and its operating principle.

As another example of the 2D LIDAR, the HOKUYO UXM-30LN LIDAR is

a single planar range sensor designed for intelligent robots and vehicles. Its detection

range is up to 60m, and the horizontal field of view is 190◦. The range accuracy is 30mm

when the ranging distance is less than 10m, and 50mm when the ranging distance is

between 10 to 30m. The angular resolution is 0.25◦. This device is shown in Fig. 6.2

(c). As an extension of 2D LIDAR, the multi-planar LIDAR splits the laser beam into

different vertical planes in order to detect more objects. As an example, the ALASCA

XT LIDAR has aperture angle to be 3.2◦. Its distance range is up to 200 meters, and

the horizontal field-of-view is 240◦ . Fig. 6.2 (d) shows the IBEO sensor.

The most expensive LIDAR is the 3D LIDAR which can scan a full 360 degree

environment. The most popular 3D LIDAR is the Velodyne HDL-64E LIDAR and it was

specifically designed for autonomous vehicle navigation. With horizontal by vertical field

of view, 0.09 degree angular resolution, and 5-20Hz rotation rate, the Velodyne provides

surrounding 3-D environmental information with high accuracy (< 2cm resolution). The

detection range is up to 100 meter, and the latency is less than 0.05 milliseconds. Figure
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Table 3.1: Different LIDAR Comparison

2D LIDAR Multi-planar LIDAR 3D LIDAR
Sense range: Single plane Multi-plane 360 degree
Detectable feature: 2D feature 2D feature 3D feature (plane)
Cost: Low Medium High
Size: Small Small-Medium Big

6.2 (e) and (f) demonstrate the Velodyne HDL-64E LIDAR and its 3-D range data.

All these LIDAR mentioned above are capable of detecting features in the environment

hence all of them can potentially be used to aid the vehicle positioning. However, among

them, 2D LIDAR is small, lightweight and low-cost. Hence, the 2D LIDAR is selected

as the aiding sensor among these different kinds of LIDAR sensors. The comparison

among these LIDAR sensors is given in Table 3.1.

3.2.2 LIDAR Aided INS

Accurate vehicle positioning is an essential requirement for next generation

intelligent transportation systems. GNSS aided INS is a standard technique that has

been widely adopted to provide accurate vehicle position [15, 17, 14]. The drawback

of the GNSS based positioning is that when GNSS signals are shadowed (as in urban

environments), the positioning accuracy degrades at a rate determined by the IMU

quality. This rate can be rapid for MEM’s devices. Without accurate positioning,

the performance of other position-dependent vehicle applications, like lane-departure

warning and route planning are also be affected. Therefore, there is interest in sensors

other than GNSS to aid INS. Camera, LIDAR and RADAR are all potential sensors that

can improve INS performance. This paper addresses LIDAR aiding of INS to improve

vehicle positioning accuracy. In the commercial market, there are 2D planar and 3D

LIDAR’s. The 3D LIDAR is able to obtain the 3D point cloud of the surrounding
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Figure 3.3: The typical use of 2D LIDAR aiding for vehicle positioning in urban environ-

ments. The uncertainty in the longitude direction can be corrected by GPS, while the

LIDAR measurements can provide corrections in the lateral direction where the GPS

signals are blocked. Together, LIDAR and GPS can reduce estimated position uncer-

tainty to lane-level accuracy. Note, in practice, the detected line is usually broken into

multiple line segments due to occluding objects (e.g., light poles, trees).

environment, from which the 3D features can be extracted. However, the high cost of

3D LIDAR prohibits the mass deployment in personal vehicles. In contrast, the 2D

LIDAR is small and lightweight with rapidly declining cost. Hence, 2D LIDAR aiding

is the focus of this paper. The concept of LIDAR aiding, as discussed in this paper, is

illustrated in Fig. 3.3.

The use of 2D LIDAR in robot localization has been extensively investigated

by various authors [55, 4]. In some existing approaches, the robot pose is tracked either

by matching sequential LIDAR measurements or by matching the most recent LIDAR
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measurement with a 2D map. However, these approaches assume that the robot only

moves in a plane. Unfortunately, the planar motion assumption does not apply to the

vehicles driving on roads. Due to bumps, road inclination, and the loaded suspension

of the vehicle, the vehicle and sensor motion define 3D trajectories. Motion estimation

in 3D is challenging, requiring estimation of the position, velocity, attitude and sensor

calibration vectors in three dimensions.

The aiding approach taken in this thesis falls into the category of feature-based

navigation wherein the raw LIDAR data is processed to detect certain 2D shapes (e.g.,

lines) that correspond to 3D features (e.g., planes). We assume that a map of the

features is known a priori. The detected shapes are then associated with the mapped

features to form the measurement residuals. The measurement residuals are then fed

into an Extended Kalman Filter (EKF) to estimate the state of the vehicle. Since the

motion of vehicles is 3D, associating a 2D shape to a 3D feature is difficult, as it requires

the prediction of the nature of the curve of intersection between the mapped feature and

the LIDAR x-y detection plane.

The features that are commonly used in feature-based navigation are created

by the intersection of the LIDAR x-y plane with common shapes: points (e.g. corners),

arcs of ellipses (e.g. cylinder created by trees or poles) and lines (e.g. planes sides of

buildings). Since buildings are common in the urban environment, large, and unmoving,

they can be easily and reliably detected from 2D LIDAR data, this paper focuses on

planar features for LIDAR aiding.

In summary, this thesis develops a complete solution that enables the use of

2D LIDAR in aiding the 3D state estimate of a vehicle driving in the urban environ-

ment. Specifically, for the purposes of feature association, residual formation and GUI

display, this paper derives an exact closed-form prediction of the location of the line-of-
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intersection measurement in the LIDAR frame. Due to the simplicity of this formula,

feature association and residual formation can be easily solved. Moreover, being able

to display the predicted line-of-intersections in the LIDAR’s frame makes it easy to

visualize the residual and debug the code.

3.2.3 Related Work

Feature-based navigation is a very active research area [59, 36]. Cameras are

popular due to their low cost and capability to capture 3D features. For aiding purposes,

cameras are effectively treated as angle sensors. The performance of camera image

processing is not robust to the lighting conditions and is computationally intense.

Compared to cameras, LIDARs are active sensors that are significantly more

robust to lighting conditions. Each measurement returns angle, range, and reflection

intensity. Utilization of 2D LIDAR in localization has a long history in the robotics

community [43, 55]. There are two dominant ways to use LIDAR data: raw point

measurements processing [46] and high-level features processing [4]. Often, such work

restricts the motion to 2D. Recently, there is a paper using 2D LIDAR aiding IMU to

estimate the 3D state of an aggressively flying UAV for an indoor environment [5]. The

approach in [5] uses point measurements directly and relies on a 3D occupancy map

of the operating environment. This approach would be difficult to extend to outdoor

applications because the size of the 3D occupancy map grows cubically in the outdoor

environment.

The most closely related work to this paper is [23] which uses 2D LIDAR

IMU aiding to estimate the 3D position of a person walking inside a building. The

present paper differs from [23] in the formation of residuals, and residual error model

equations. In [23], they use geometric constraints to form the residuals, resulting in
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residual equations that are nonlinear to the line measurement (φ and ρ, see Section 3.2.4)

noise components. Herein, the measurement residuals are formed directly resulting in

equations that are linear in the line measurement noise components. In addition, the

residual formulation herein is more natural – the error between the measured line and

the predicted line. Hence, the measurements, predicted measurements and residuals can

be easily visualized for a GUI and for debugging.

3.2.4 LIDAR Measurement Processing

The vehicle is assumed to be operating in a known environment where certain

plane features have been previously mapped. The planes may represent, for example,

signs or sides of buildings. The map database is known a priori and stored onboard the

vehicle. For the i-th plane feature, we store two parameters: Gπi ∈ <3 and Gdi ∈ <+.

Hence, we have a library of mapped plane features, following the notation in [23] (see

Fig. 3.4):

GΠ = {Gπi,Gdi}i=1,...,Nπ .

The set

Πi = {Gx ∈ <3|Gπi · Gx = Gdi}

represents the i-th 2D-plane feature in the {G}-frame where Gπi is the unit normal

vector to the plane and Gdi is the shortest distance to the plane from the {G}-frame

origin.

The intersection, if it exists, between the LIDAR measurement plane (i.e., x-y)

and any other plane is a line (see Fig. 3.4). Such lines must be detected and tested for

association with planes in the feature library. When a detected line is associated with a
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Figure 3.4: The plane feature and LIDAR line measurement representations.

plane in the feature library, then 2D LIDAR based state correction is possible using an

appropriately formed residual between the two lines.

The k-th scan of the LIDAR at time tk returns a set of data Dk = {(θi, Ri)}Nli=1

where for the Hokuyo LIDAR, Nl = 760, θi ∈ [−π
2 ,

π
2 ] and Ri is the range measurement.

This section discusses the processing of each LIDAR data scan Dk to extract lines, to

associate extracted lines with plane features to form line measurements, to compute

the covariance of line measurements, to form the residual measurement between each

predicted and extracted line, and to aid IMU in an EKF framework.

Any line in the LIDAR x-y plane that does not pass through the origin is

uniquely defined by the shortest vector from the origin of {L}-frame to the line. The

shortest vector is represented as Lx = ρ L`, where L` = [cosφ sinφ 0]> is a unit vector

and ρ is the magnitude of Lx. Because the line-of-intersection cannot pass through the

LIDAR origin, it can be represented by two parameters: φ and ρ. Let χ = [φ ρ]>.
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In this paper, we assumes all the points in one LIDAR scan are taken simul-

taneously. This assumption is reasonable at low speeds. At higher speeds, the method

can be extended, using the IMU data, to compensate for vehicle motion.

3.2.4.1 Measurement Prediction

For various purposes (e.g., association of detected lines with mapped planar

features, measurement residual formation, and graphical display), it is useful to have

formulas to compute χ̂i = [φ̂i, ρ̂i]
>, when Πi,

Gp̂I ,
G
I R̂ and the LIDAR extrinsic

calibration parameters I
LR, IpL, are given.

The problem can be solved in an optimization framework with two constraints.

The first constraint, that the vector Lxi must be in the LIDAR x-y plane, is

LzL · Lxi = 0 (3.17)

where LzL = [0 0 1]>. The second constraint is that the end of the vector Lxi must be

on the plane Πi:

(LGRGπi) · Lxi = Ld̂i (3.18)

where Ld̂i = Gdi−Gπi · (Gp̂I +G
I R̂ IpL). The problem is to find the shortest vector Lx̂i

satisfying constraints (3.17) and (3.18):

Lx̂i = arg min
Lxi

(‖Lxi‖2) (3.19)

s.t. eqn. (3.17) and (3.18). (3.20)

The closed form solution is (see the remark)

φ̂i = arctan

(
sgn(Ld̂i)

a2

a1

)
, ρ̂i =

|Ld̂i|√
a2

1 + a2
2

(3.21)
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Predicted Line Extracted Line Point Meas. LIDAR Position 

Figure 3.5: LIDAR’s GUI showing raw measurements (purple dots), the extracted line

(red) and the predicted line (green).

where Lai = [a1 a2 a3]> and Lai = L
GRGπi. The computed variable χ̂i = [φ̂i ρ̂i]

> allows

prediction of the line-of-intersection in the LIDAR frame, which is required both for

aiding and for a LIDAR frame GUI. The LIDAR GUI is shown in Fig. 3.5.

Remark 3 This section presents a derivation of eqns. (3.21) which are a closed-form

solution to the optimization problem of eqn. (3.19).

Let a = L
GR

Gπi = [a1 a2 a3]> which satisfies ‖a‖2 = a2
1 + a2

2 + a2
3 = 1. The

solution procedes as follows:

(AA>)−1 =

 1 −a3

−a3 1


1− a2

3

. (3.22)

Then, we have

LpL = A>(AA>)−1b (3.23)

=


a1

a2

0


d̂L

a2
1 + a2

2

. (3.24)
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Therefore, we have

ρ̂ =
|d̂L|√
a2

1 + a2
2

(3.25)

φ̂ = atan

(
sgn(Ld̂)

a2

a1

)
. (3.26)

3.2.4.2 Line Fitting

This section discusses the method to obtain line measurements, represented by

χ, from Dk and how to associate mapped features to the line measurements.

The starting point is a set of 2D points Lpi = [xi yi]
>, i = 1 . . . n ex-

tracted from the k-th LIDAR data scan Dk and represented in {L}-frame that are

assumed to be associated with a line. This set of points could be found, for exam-

ple, by the Hough transform or the Split-and-Merge algorithm [43]. The LIDAR raw

data Ri and θi for the i-th point are related to the {L}-frame rectangular coordinates

by Lpi = Ri[cos θi sin θi]
>. We define the range and angle measurement noise to be

n̄ = [nR nθ]
>, and assume nR and nθ are uncorrelated zero mean Gaussian noises with

standard deviation σR and σθ respectively. The covariance of n̄ is

Pn̄ =

σ2
R 0

0 σ2
θ

 . (3.27)

If the set of points was exactly on the line χ, then they would each satisfy the

equation

0 = LN · Lpi − ρ (3.28)

which is equivalent to ᾱx+ β̄y = ρ. For our set of points {Lpi}ni=1 the distance ρ and the

unit vector LN> = [ᾱ β̄] = [cosφ sinφ] are unknown. In addition, the point locations,

are computed from the noise corrupted raw LIDAR data.
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For any hypothesized χ, due to the measurement noise n̄, the distance of each

point Lpi from the line

rli = LN · Lpi − ρ (3.29)

is a random variable. The (linearized) covariance of rli is Prli = LM̄iPn̄

(
LM̄i

)>
, where

LM̄i = LN>

cos θi −Ri sin θi

sin θi Ri cos θi

 . (3.30)

The linearized covariance is accurate when nθ is small, which is typically the case for

LIDAR applications. Under this assumption, the distribution of M̄i is accurately ap-

proximated as Gaussian. For the optimal line, the sequence rli is zero mean and white.

With the above discussions, the goal of the line fitting algorithm is to find the

line parameters χ that maximizes the likelihood function

L({rli}
n
i=1 | χ) = L(rl1 | χ) . . .L(rln | χ) (3.31)

= exp

(
−1

2

n∑
i=1

r>li P
−1
rli
rli

)
(3.32)

where we have used the fact that rli is independent of rlj for i 6= j and dropped the

constant of normalization. Because L({rli}ni=1 | χ) is a nonlinear function of χ, there

is no closed-form solution to the above problem. However, the minimum of the cost

function can be found rapidly by an iterative algorithm.

Algorithm Setup: To fit a line, we reparameterize it using [α, β] = [ᾱ, β̄]/ρ

as

αx+ βy − 1 = 0. (3.33)

This representation is appropriate for LIDAR applications because any detected line

cannot pass through the origin of the LIDAR frame (i.e., ρ 6= 0).
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Define η = [α β]>, then, from eqn. (3.29), we can form a linear estimation

problem as

Aη = b +
1

ρ
rl (3.34)

where A = [Lp1, . . . ,
Lpn]>, b = [1, . . . , 1]> and rl = [rl1 , . . . , rln ]>. The symbol

rl ∈ <n represents error in units of meters with cov(rl) = Prl = diag(Prl1 , . . . , Prln ) as

discussed in eqn. (3.30), while nL , 1
ρrl is a dimensionless quantity with cov(nL) =

PnL = 1
ρ2 Prl .

We also define a function χ = h(η) to extract the line parameter χ from η.

The function h(·) is defined as

φ = arctan

(
β

α

)
, ρ =

1

‖η‖
. (3.35)

Initialization: At the initialization, because χ is not yet available, PnL and

Pnl cannot be computed; therefore, minimization of eqn. (3.32) is not possible. Instead,

we approximate Pnl = I and minimize
∑n

i=1 r
>
li
rli using η0 that is the solution of(

A>A
)
η0 = A>b. Then we have χ0 = h(η0).

Step 1: Let the superscript k denote the k-th iteration. Use eqn. (3.30) with

χk−1 to compute PnL . Then we re-solve (3.34) as (A>P−1
nL

A)ηk = A>P−1
nL

b for ηk.

Step 2: Compute χk using χk = h(ηk).

Step 3: If
∥∥χk − χk−1

∥∥ > δc, then return to Step1; otherwise the algorithm

ends, having computed χk. The parameter δc is chosen to trade off the accuracy and

speed.

At the conclusion of the iteration, the covariance of ηk is Pη = (A>P−1
nL

A)−1.

The covariance of χk can be computed by linearizing h(·) around ηk to get χ̃ = Hη̃,
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where

H =

− β
α2+β2

α
α2+β2

− α
‖η‖3 − β

‖η‖3

 . (3.36)

Hence the linearized covariance of χk is

Pχ = HPηH
>. (3.37)

Note: In practice, this algorithm converges rapidly. With δc chosen to be 10−5,

the algorithm converges in 2 or 3 iterations.

Note: In practice, QR decomposition is used to compute ηk to improve the

computational efficiency.

Note: As the number of points n associated with the line increases, the variance

of the estimated line parameter η decreases. This can be seen from

Pη = (A>P−1
nL

A)−1 (3.38)

= ((P
−>/2
nL A)>(P

−>/2
nL A))−1 (3.39)

= (Ā
>

Ā)−1 (3.40)

= (Lp̄1
Lp̄>1 + . . .+ Lp̄n

Lp̄>n )−1. (3.41)

The diagonal elements of each Lp̄i
Lp̄>i are positive. Hence, the more points used in the

line fitting, the smaller the diagonal elements of Pη will be.

3.2.4.3 Line Merging

Several lines may be extracted from Dk. The i-th and j-th lines can be merged

if their Mahalanobis Distance passes the chi-squared test:

‖χi − χj‖2(Pχi+Pχj ) < δd (3.42)
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where the threshold δd is computed from the chi-squared distribution.

After we decide to merge the i-th and j-th line, we group the set of points

together from two lines and then go back to the line fitting step to obtain the merged

line parameters.

3.2.4.4 Feature Association

After the line merging step, the j-th line measurement will be associated to

no more than one of the mapped features to form its residual. Feature association uses

the Mahalanobis Distance: find the k-th mapped feature that minimizes ‖χj − χ̂k‖Pχj
,

where χ̂k is the predicted line-of-intersection for the k-th mapped feature computed from

eqn. (3.21). If the k-th mapped feature satisfies ‖χj − χ̂k‖Pχj
< δa, then we associate

the k-th mapped feature to the j-th line masurement. Otherwise no measurement is

associated to this feature. The threshold δa is obtained from the chi-squared distribution.

3.2.4.5 Measurement Residual Formation

To use measurements in the EKF, we define the measurement equation and

the measurement prediction as:

y = h(x,n), ŷ = h(x̂,0) (3.43)

where h(·, ·) is a nonlinear function of the current state x and measurement noise n, y

is the measurement vector and ŷ is the predicted measurement. Then the residual is

defined as r = y−ŷ. The measurement equation h(x,n) linearized around the estimated

state x̂ is

r = Hx̃ + Γn (3.44)

where x̃ = x− x̂.
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In LIDAR aiding, we use two measurements: φ and ρ. Here we define φ and

ρ to be the measurements obtained from the line extraction step. The measurement

noise is defined as n = [φ̃ ρ̃]>, and we assume n to be zero-mean, white Gaussian

with covariance matrix R , Pχ, where Pχ is given in eqn. (3.37). The measurement

equations of φ and ρ are given in eqn. (3.21), and are rewritten here for clarity:

φ = h1(x,n) = arctan

(
sgn(Ldi)

a2

a1

)
+ φ̃, (3.45)

ρ = h2(x,n) =
|Ldi|√
a2

1 + a2
2

+ ρ̃ (3.46)

where Ldi = Gdi − Gπi · (GpI + G
I RIpL), Lai = [a1 a2 a3]> and Lai = L

GRGπi. The

prediction φ̂ and ρ̂ are computed by φ̂ = h1(x̂,0) and ρ̂ = h2(x̂,0). Hence we can define

two residuals r1 and r2 to be r1 = φ− φ̂ and r2 = ρ− ρ̂. Since r1 is an angle residual, it

is normalized into [−π, π] in practice. In the following we will form the residual model

equations in the form of eqn. (3.44) for φ and ρ, respectively.

For φ, we have ∂h1(·)
∂Lai

= 1
µλ
>, where µ = a2

1+a2
2 and λ> = sgn(Ld̂i)

[
−a2 a1 0

]
.

To compute ∂Lai
∂(δθ) , we linearize Lai using the estimated state to obtain

Lai = L
GRGπi (3.47)

= L
I RI

GRGπi (3.48)

= L
I RI

GR̂(I− bδθ×c)Gπi (3.49)

= Lâi + L
I RI

GR̂bGπi×cδθ. (3.50)

The above equation yields

∂Lai
∂(δθ)

= L
I RI

GR̂bGπi×c. (3.51)
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Thus we can write

∂h1(·)
∂(δθ)

=
∂h1(·)
∂Lai

· ∂
Lai

∂(δθ)
(3.52)

=
1

µ
λ>LI RI

GR̂bGπi×c. (3.53)

Hence the linearized residual model for φ is

r1 = h>1 x̃ + φ̃ (3.54)

where h>1 =

[
01×6

∂h1(·)
∂(δθ) 01×6

]
.

For ρ, we have

∂h2(·)
∂GpI

=
1
√
µ

sgn(Ld̂i)
∂Ldi
∂GpI

+ Ldi

(
κ>

∂Lai
∂GpI

)
(3.55)

=
1
√
µ

sgn(Ld̂i)(−Gπ>i ) + Ldi(κ
> · 0) (3.56)

= −sgn(Ld̂i)
Gπ>i√
µ

(3.57)

where κ> ,
∂(1/
√
µ)

∂Lai
= −µ−

3
2

[
a1 a2 0

]
. In addition, we have

∂h2(·)
∂(δθ)

=
1
√
µ

sgn(Ld̂i)
∂Ldi
∂(δθ)

+ Ldi

(
κ>

∂Lai
∂(δθ)

)
. (3.58)

The partial ∂Lai
∂(δθ) is given in eqn. (3.51). To compute ∂Ldi

∂(δθ) , we have

Ldi = Gdi − Gπi · (Gp̂I + G
I RIpL) (3.59)

= Gdi − Gπi · Gp̂I − Gπi · (I + bδθ×c)GI R̂IpL (3.60)

= Ld̂i + Gπi · bGI R̂IpL×cδθ. (3.61)

So

∂Ldi
∂(δθ)

= Gπ>i bGI R̂IpL×c. (3.62)

Substituting eqn. (3.51) and (3.62) into eqn. (3.58) yields

∂h2(·)
∂(δθ)

= sgn(Ld̂i)
Gπ>i√
µ
bGI R̂IpL×c+ Ldi(κ

>L
I RI

GR̂bGπi×c). (3.63)
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Hence the linearized residual model of ρ is

r2 = h>2 x̃ + ρ̃ (3.64)

where h>2 =

[
∂h2(·)
∂GpI

01×3
∂h2(·)
∂(δθ) 01×6

]
.

Stacking (3.54) and (3.64) together, we obtain the residual dynamics in the

form shown in (3.44), with

H =

[
h1 h2

]>
, Γ = I (3.65)

and the residual vector r =

[
r1 r2

]>
.
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Chapter 4

Estimator Design

4.1 System Model

The estimator design in this section is based on the following two equations:

ẋ = f(x,u,n) (4.1)

y = h(x) + ny (4.2)

where eqn. (4.1) is the state transition model and eqn. (4.2) is the measurement model,

both f and h are nonlinear functions, x is the state vector, u is the control input vector,

n is the noise vector in the state transition model, y is the measurement vector and ny

is the measurement noise vector. The covariance matrix of the noise ny is R.

To implement the estimator in a computer, the linearized discrete time error

state models are required:

x̃k+1 = Φkx̃k + ndk (4.3)

rk = Hkx̃k + ny (4.4)
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where x̃ = x− x̂, rk = y− h(x̂k) is the residual vector, Φk is the error state transition

matrix and Hk is the Jacobian matrix of measurement function. The covariance matrix

of ndk is Qd
k.

Although this section focuses on the measurement model specified in eqn. (4.2),

the other two kinds of measurement models that are commonly encountered can also be

applied throughout this section:

y = h(x,xl) + ny (4.5)

y = h(X) + ny (4.6)

4.2 EKF

In EKF, there is two steps: Prediction and Correction. In prediction step, we

predict the state at the next time step x̂−k+1 by integrating ẋ = f(x,u,0) and compute

the expected state covariance using:

P−k+1 = ΦkPkΦ
>
k + Qd

k. (4.7)

In the correction step, the following equations are computed:

rk+1 = y− h(x̂−k+1,0) (4.8)

Sk+1 = Hk+1P
−
k+1H

>
k+1 + R (4.9)

Kk+1 = P−k+1H
>
k+1S

−1
k+1 (4.10)

x̂k+1 = x̂−k+1 + Kk+1rk+1 (4.11)

Pk+1 = P−k+1 −Kk+1Sk+1K
>
k+1. (4.12)
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4.3 Sliding-window Estimator

A sliding-window estimator, referred to as a Contemplative RealTime (CRT)

estimator in [61], is used to combine the GPS and IMU data. The CRT approach has

both real-time and contemplative aspects. The real-time state estimate is required for

control and planning purposes, without latency. The contemplative aspects, inspired by

recent research in the field robotics literature [9, 12, 29, 34, 13], are intended to enhance

accuracy and robustness to faulty measurements.

4.3.1 Full MAP Estimation

Let X denotes the vehicle trajectory over a time window

X =

[
x(t0)> · · ·x(tk)

>

]>
(4.13)

where x(t) denotes the vehicle state at time t.

Assume there is a prior for the first state: x(t0) ∼ N (x0,P0). The correspond-

ing residual function is

e0(x(t0)) = x(t0)− x0. (4.14)

The IMU induced constraint ei∆ between state x(ti+1) and x(ti) can be defined

as:

ei∆(x(ti+1),x(ti)) = x(ti+1)− F(x(ti),Ui). (4.15)

The uncertainty of ei∆ is assumed to be Gaussian with the covariance matrix denoted

by Qd
i .

Assume there are ns aiding sensors where the j-th sensor provides a measure-

ment yij , yj(ti) ∈ Rmj . Each sensor has a model:

yij = hj(x(ti)) + nyj (ti). (4.16)
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The covariance of nyj (ti) is Rij . The corresponding residual equation is

ejyi = yij − h(x(ti)). (4.17)

Estimation of the vehicle trajectory X̄ can be formulated as a MAP problem:

X̂ = argmax
X

{p(X,U,Y)} (4.18)

where U = {ũ(t) | t ∈ [t0, tk]} is the IMU data with a high sampling rate, Y = {yij | i =

0, · · · , k, and j = 1, · · · , ns}. The appendix shows that p(X,U,Y) can be decomposed

as

p(X̄,U,Y) = (4.19)

p(x(t0))
k−1∏
i=0

p(x(ti+1)|x(ti),Ui)
∏

(i,j)∈Y

p(yij |x(ti)),

where p(x(ti+1)|x(ti),Ui) is the distribution of the kinematic constraint that as in eqn.

(4.15), and p(yij |x(ti)) is the distribution of the measurement constraint as defined in

eqn. (4.16).

Assuming that the noise terms have Gaussian distributions, using log-likelihood,

the MAP estimation problem can be converted to an equivalent nonlinear least squares

problem:

X̂ = argmin
X

{∑
s∈S
‖es(X)‖2Rs

}
(4.20)

where es(X) is the vector residual function defined for all the information available (de-

noted by the set S). The set S contains {ei∆|i=0...k−1} defined in eqn. (4.15), {ejyi |(i,j)∈Y}

defined in (4.17) and the prior e0 defined in (4.14). The matrix Rs is the covariance

matrix and ‖·‖2Rs
denotes the squared Mahalanobis norm: ‖x‖2A = x>A−1x for positive

definite A.
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This nonlinear optimization problem can be solved iteratively (e.g., by Gauss-

Newton method). At each iteration, the residual function es(X) is linearized at the

current trajectory estimate X̂. Let

Js =
∂es
∂X

∣∣∣∣
X̂

(4.21)

Λs = J>s R−1
s Js (4.22)

ηs = J>s R−1
s es(X̂). (4.23)

The linearized normal equation is:

ΛδX = η (4.24)

where Λ =
∑

s∈S Λs is the trajectory information matrix, η =
∑

s∈S ηs is the trajec-

tory information vector. Eqn. (4.24) can be solved efficiently for δX by the Cholesky

factorization as discussed in [12]. For a long vehicle trajectory, the sparsity of Λ can be

exploited to speed up the Cholesky factorization. After solving δX, the state is corrected

by X = X + δX. The iteration repeats starting from eqn. (4.21) by re-computing Λ

and η using the new linearization point X. The iterative process is terminated when

‖η‖2 < ε, where ε > 0 is a user defined termination threshold.

Solving the full MAP problem results in the optimal estimate of the entire

vehicle trajectory. When the structure of Λ is sparse, the computation is near linear

with the length of trajectory. Otherwise if the structure of Λ is dense, the computation is

cubic with the length of trajectory. The techniques from iSAM [29] can be used to speed

up the computation by fixing the linearization point for a short period of time and re-

evaluating Λ periodically. However, iSAM requires the storage of all the measurements

over the entire trajectory and the periodic re-linearization of the entire trajectory is
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still computationally intense. The iSAM2 [28] avoids the periodic re-linearization of the

entire trajectory by performing fluid relinearization.

However, solving a full MAP problem at each sensor measurement time to

generate the realtime navigation solution is difficult due to the linear growth with time

of the computation and memory requirements. Therefore, in this paper, we use a sliding

window estimator, with computational complexity determined by the size of the window.

Throughout this paper, we name the sliding-window the CRT window and denote the

size of CRT window to be M .

4.3.2 Marginalization

At time tM−1, after solving the MAP estimation problem, the oldest state

x(t0) needs to be removed, to keep the CRT window size constant when the next state

x(tM ) is added. To correctly account for the information lost with the removed state, a

marginalization step needs to be performed.

Let X = [X>m,X
>
r ]> where Xm are the states that are going to be removed and

Xr are the states that will be retained. This marginalization process can be performed

by the following procedure [13]. Let Sm ⊂ S such that for any s ∈ Sm the residual

function es depends on Xm and for any s 6∈ Sm, es is not a function of Xm. Define

Λ̄ =
∑

s∈Sm Λs and η̄ =
∑

s∈Sm ηs. Thus, the information matrix Λ and information

vector η can be partitioned accordingly:

Λ̄ =

Λmm Λmr

Λ>mr Λrr

 (4.25)

η̄ =

ηm
ηr

 (4.26)

where Λmm and ηm correspond to the state that will be marginalized out.
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The Schur complement is employed to marginalize out Xm:

Λα = Λrr −Λ>mrΛ
−1
mmΛmr (4.27)

ηα = ηr −Λ>mrΛ
−1
mmηm (4.28)

where Λα and ηα are the trajectory information matrix and vector for Xr after marginal-

ization of Xm.

After solving the MAP problem by iterations of eqns. (4.21)–(4.24), we have

an estimate of the trajectory X̂ = [X̂
>
m, X̂

>
r ]>. The estimate X̂r can be used as the prior

for Xr for the next CRT window after sliding. Define X̂α , X̂r. The residue function

for this prior is

eα(Xr) = Xr − X̂α. (4.29)

The uncertainty of eα(Xr) is specified by the information matrix Λα. The measurement

residual projected on the state space is stored in ηα.

4.3.3 MAP Estimation in a CRT Window

For each CRT window, the vehicle trajectory X is

X =

[
x(tk−M+1)> · · ·x(tk)

>

]>
. (4.30)

The MAP estimation problem in the CRT window can be reformulated as [13]:

X̂ = argmin
X

{∑
s∈S
‖es(X)‖2Rs

− 2η>α eα(X)

}
(4.31)

where the es(X̄) is the residual function defined for all the information available in

the CRT window (denoted by S). The set S contains {ei∆|i=k−M+1...k} defined in eqn.

(4.15), {ejyi |(i,j)∈Sy} defined in (4.17) where Sy is the set of measurements available in

the window, and the prior eα is defined in (4.29).
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To analyze the performance of the CRT estimator, it is convenient to define

several variables. The cost C is defined as:

C(X) =
∑
s∈S
‖es(X)‖2Rs

− 2η>α eα(X). (4.32)

Then the cost reduction ∆Ci at each iteration can be defined as ∆Ci = C0 −Ci where

Ci for i = 0, · · · , ζ denotes the cost after the i-th iteration and ζ is the total number of

iterations.

4.3.4 Covariance Recovery

For outlier detection, the covariance matrix of the latest state x(tk) is required

and can be efficiently recovered using the methods in [29, 30].

Let the Cholesky decomposition of Λ be Λ = R>R where R is an upper

triangular matrix. Let P = Λ−1 be the covariance matrix of the trajectory and

B =

0(d−dx)×dx

Idx×dx

 (4.33)

where d = dxM is the size of Λ and dx is defined in eqn. (2.47). Hence by solving

(R>R)Pck = B (4.34)

where Pck = [P>1k, · · · ,P>kk]> contains the last fifteen columns of P, the covariance of

the latest vehicle state (Pkk) can be obtained. The solution employs the forward and

backward substitution:

R>K = B (4.35)

RP = K (4.36)
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where K can be easily obtained by solving eqn. (4.35):

K =

 0

R−>kk

 (4.37)

where Rkk is the right bottom portion of R that corresponds to the latest vehicle state.

From K, eqn. (4.36) can be solved for Pkk.

The elements in arbitrary positions of the covariance matrix P also can be

recovered by the method proposed in [30] at an extra computational cost.

4.3.5 Application to GPS/INS

For GPS/INS, the measurement equation (4.16) is redefined for pseudorange

and phase measurements in eqn. (3.1) and (3.3), and the integer-free phase measure-

ments that is going to be defined in (3.12). A typical measurement scenario is depicted

in Fig. 4.1. The red dots on the time-line represent the state at the GPS measurement

times tk. The state transition between these times is constrained by the kinematic model

of eqn. (2.46) and the IMU data U. Additional constraints are imposed by the initial

condition (x0,P0), and GPS measurements Y. The initial condition constraint is shown

above the time-line. The GPS measurement constraints (y) are depicted below the time-

line. The GPS measurements are not synchronized with the IMU measurement time.

The unaligned measurements can be addressed by interpolation, and unknown latencies

could be calibrated by the methods in [35].

A typical CRT process starts when t = tk, using all IMU and GPS measure-

ments that are available for the time interval [tk−M+1, tk]. Starting with the prior

defined in (4.29) and integrating forward through time using the IMU data and kine-

matic model provides an initial trajectory across the CRT window. Starting from this
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Figure 4.1: An illustration of measurement time line and CRT window. The red dots

represent the vehicle states at the GPS measurement times. The green lines represent

the IMU constraints between two consecutive states. At tk the CRT window is formed

and the optimization problem begins its computation. The optimization solution is not

availble until t∗ and after the solution is obtained, we propagate the state from tk to

t ≥ t∗ using all the IMU measurements.

initial trajectory, the CRT algorithm will consider all the available information to re-

liably and accurately compute the state trajectory over the CRT window using the

optimization process discussed above and fault detection methods (which are left for

future work). This CRT process ends at a time t∗ > tk, ideally providing an optimal

trajectory estimate from which the effects of sensor faults have been removed. Within

the computation time interval t ∈ [tk, t
∗], the real-time state estimate x̂(t) is maintained

by the INS using the IMU data and starting from the initial estimate of x(tk). At

t = t∗, x̂(tk) is corrected to the result of the CRT contemplative process and propagated

through time using the IMU data and eqn. (2.46) to provide an improved estimate of

x(t) at the present time. The computation time (t∗ − tk) is typically a fraction of a

second, small enough that the INS does not accumulated significant error. At some

time t ≥ t∗, the CRT window can be redefined and the process can repeat indefinitely.

For the GPS/INS case, the CRT process happens at each GPS epoch.
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4.3.6 Reliable Removal of Faulty Data

Receiver Autonomous Integrity Monitoring (RAIM, [24]) is a set of techniques

to detect, identify and remove GNSS receiver outlier measurements. Traditionally, in

the navigation community, RAIM is designed assuming only one outlier occurs and that

there is enough measurement redundancy to detect and identify the source. The pro-

posed CRT approach, which enhances the redundancy by incorporating a window of

IMU and GPS data, can be expected to enable multiple outlier detection, identification,

and removal. This outlier rejection scheme, which enhances the robustness of vehicle

GPS-INS significantly, could make critical contributions as necessary for life-safety ap-

plications. The key technique in standard RAIM is outlier detection and identification.

This section considers the detection and identification, removal procedures within the

CRT framework. Interested readers may find more details in [24].

Suppose that the MAP optimization in eqn. (4.31) finally converges to a opti-

mal estimate X∗. The generalized a-posteriori variance factor test evaluated as

σ̂2
0 =
‖r(X∗)‖22
M −N

, (4.38)

can be used to detect outlier. In this expression, M = n(1 + K) +
∑K

j=1(mj − 1) is

the total number of residuals (constraints) and N = n(K + 1) is the dimension of X.

Note that
∑K

j=1(mj − 1) is the total number of double-differenced GPS measurements.

The degrees-of-freedom (M − N) can be considered as the index of the measurement

redundancy. For conventional GNSS-only RAIM which uses one epoch measurements,

the redundancy is (mj − 4), which requires at least five satellites to be available. For

the proposed CRT framework, the measurement redundancy is M−N =
∑K

j=1(mj−1),

which indicates that it has enhanced detectability against faulty data.
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The final step of outlier detection is to test the above variance factor against

the two-tailed Chi-square test limits with respect to a significance level α,

χ2
1−α/2,M−N

M −N
≤ σ̂2

0 ≤
χ2
α/2,M−N

M −N
. (4.39)

If the test succeeds, X∗ is finalized as the smoothing result and the real-time part will

use it to reinitialize. If not, outlier identification executes by testing each residual with

the w-test. Once the source of the outlier is identified, the corresponding measurement

will be removed and the procedure continues until no additional outliers are identified.

When outlier identification completes, the outliers are removed and the MAP

optimization is formed with the cleaned-up measurement set, then the detect-identify-

remove procedure repeats.

4.4 Software Architecture Design

To meet the realtime performance requirements and facilitate the software

development, the navigation system is designed in a multi-threading framework as shown

in Fig. 4.2. Each thread is assigned a priority to ensure the high priority threads (e.g.

INS propagation thread) use the CPU first and the low priority threads (e.g. data

logging) use the CPU only when the system is idle. The system runs on Ubuntu 10.04

with a realtime kernel.

There are 3 running modes in the system: Realtime, Rerun TrueTime and

Rerun FastTime. In all three modes, the system solves the trajectory estimation problem

over a window of length M while maintaining an estimate of the current vehicle state.

The three modes differ in where they source the data from and whether they operate at

or faster than realtime.
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Figure 4.2: Software Architecture. The GPS base measurements are sent via internet

using the NTRIP protocol in the realtime mode. All the data logging is managed by

the logging manager thread which accesses the hard disk at the lowest priority. The

important run time information are sent to a separate GUI program through the GUI

interface thread at 1Hz.

• Realtime mode: In this mode, the system obtains the sensor data from the physical

sensors (the GPS base measurements are received via internet).

• Rerun modes: To enable fast algorithm verification and realtime performance

tuning and debugging, two rerun modes are designed. Both rerun modes retrieve

the sensor data from log files.

– Rerun TrueTime mode: The logged sensor data is fed into the system at

the exact same time (within the accuracy of the computer clock) relative to

the start of the program as it was in the realtime mode. This mode is ideal

for exactly reproducing the realtime running situation and/or debugging for

realtime errors.
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– Rerun FastTime mode: The logged sensor data is fed into the system im-

mediately after all the system processing is complete for the previous sensor

data. This mode is ideal for testing the algorithm on multiple datasets to

generate statistics and/or debugging as it processes each data set quickly. For

example, processing a 500sec trajectory using M = 10 takes around 40sec in

this mode.

Therefore, the same code can be re-used for different purposes with only the change of

desired running modes.

To facilitate the comparison of various estimators, the INS correction thread is

designed as a general estimator interface and can be easily replaced with any estimator,

such as the EKF or sliding-window estimator. Moreover, the multi-threaded system

architecture can also be extended to include multiple aiding sensors such as vision [59]

and Lidar [63].

4.5 Comparison of CRT with EKF

The tradeoffs of the CRT relative to the EKF are:

1. CRT has the ability to change the linearization point of the trajectory within the

CRT window. For the EKF the linearization point is the prior. Errors in the prior

if large relative to the higher order terms of the linearization can cause the EKF

to diverge.

2. In the CRT approach multiple iterations, each with relinearization, are possible

to fully address the nonlinearities in the MAP optimization. The standard EKF

performs a single iteration per measurement.
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3. With a window of sensor data, the CRT redundancy (prior, INS state transitions,

measurements for all M measurement times) is extensive allowing detailed outlier

detection. Also, since all raw data over the window is retained, fault decisions at

one time can be reconsidered at future times, as long as the data is still in the

window. The effects of a previous incorrect decision can be fully removed by the

MAP optimization process. With the standard EKF, an incorrect fault decision

can be catastrophic and the redundancy available (prior and a measurements at a

single time) is often insufficient to make confident fault decisions.

4. The computation effort of the CRT is larger than EKF, increasing with window

size and iterations.

5. The numerical stability of EKF is better than CRT because EKF inverses S which

has a small condition number while EKF inverses Λ which has a large condition

number.
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Chapter 5

Experimental Results for

Navigation

5.1 Pseudorange Only

This section uses 200Hz MEMS IMU and 1Hz Differential GPS data collected

on a vehicle. The navigation system is implemented in C++ with multi-threading and

reports the vehicle state in realtime at the IMU sampling rate. The CRT window is

chosen to be 10 sec. In this experiment, the vehicle stays stationary while pointing

north at the beginning. After about 20 seconds the vehicle accelerated north. The

trajectory of vehicle is illustrated in Fig. 5.1.

This section compares the following real-time estimators:

1. CRT using double-differenced code measurements;

2. EKF using double-differenced code measurements;

3. EKF using integer-resolved double-differenced carrier phase measurements.
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Figure 5.1: Vehicle trajectory (red). The yellow and blue markers show the start and

end points, respectively.

The definition of the state vector is the same for all cases. In addition, we post-process

the data through an off-line batch smoother for the entire trajectory using integer-

resolved double-differenced carrier phase and code measurements. This post-processed

trajectory will be considered as the ground truth to which the other three estimators

are compared to determine error statistics.

Firstly, we demonstrate the capability of the proposed estimator to initialize

yaw, without a compass. For a stationary vehicle, yaw is unobservable from GPS mea-

surements. When the vehicle accelerates, yaw becomes observable. For the EKF, the

yaw needs to be initialized close to the true value to satisfy the EKF small error as-

sumption; otherwise the EKF may diverge. For EKF implementations, yaw may be

initialized via magnetometer, or other means. The CRT estimator optimally initialize

the yaw using the data in the CRT window. Everything is done naturally within the

smoothing framework and it is also optimal with respect to the pre-defined noise model.

To demonstrate this, the initial yaw is set to have an error of 180 degrees. Fig. 5.2 shows
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Figure 5.2: Yaw estimated by the CRT at the beginning of the trajectory. The yaw is

initialized naturally as the vehicle starts to accelerate at around 20 sec.

that, when the vehicle accelerates (near t = 20s), the yaw rapidly converges toward the

correct value.

Secondly, the proposed estimator significantly improves the state estimate ac-

curacy. Fig. 5.3 and Fig. 5.4 compare the estimated trajectory error from the three

estimators mentioned above. Fig. 5.3 shows a segment of the estimated trajectories.

The trajectory of the CRT approach using double-differenced code is very near the tra-

jectory of the EKF using double-differenced integer-resolved phase. The EKF using

double-differenced code has significantly larger errors. The distribution of the norm of

the position error in the horizontal plane (north-east) is shown in Fig. 5.4. The Fig. 5.4

use the state estimate data at 1 Hz (324 data points in total for this trajectory). The

error statistics clearly show that the proposed estimator has the position estimate error

in the decimeter level, while the EKF using the same code measurements has the error

in the meter level. This large accuracy improvement is gain by leveraging a window

of measurements. The performance of the proposed estimator is already very close to
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that of the EKF using phase measurement (centimeter level). However, to achieve the

centimeter accuracy, the integer ambiguity needs to be resolved in realtime.

The performance of the CRT and EKF approaches have also been evaluated

on the following two testing trajectories:

• Test2: 600 sec driving in mostly open sky environment.

• Test3: 500 sec driving in an area where a portion of the trajectory has partial

GPS signal blockage due to trees and buildings along the road.

The statistical comparison of the position error in the north and east directions over

the entire trajectory for three testing trajectories is given in Table. 5.1. The Test1

trajectory is the one shown in Fig. 5.1. It is clear to see from the table that the CRT

approach consistently outperforms the EKF approach by keeping the position error at

the decimeter level while the EKF tends to have position errors in meters.

The proposed CRT method also improves the estimate of the other variables

in the 6DOF state vector (eqn. (2.37)). Fig. 5.5 shows the estimated accelerometer

bias from the EKF and CRT method for the Test2 trajectory. It is obvious that the

accelerometer bias estimate converges significantly faster in the CRT approach. The fast

convergence of the IMU bias estimate is the key to maintaining high precision navigation

performance.

5.2 Pseudorange and Integer-free Carrier Phase

This section presents analysis of data accumulated using a test loop around the

campus of University of California, Riverside, see Fig. 5.6. Along the test path there are
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Figure 5.4: Distribution of horizontal position error.

Table 5.1: Comparison of position error statistics. Mean and standard deviation are

denoted as µ and σ (unit is in meter). Double differenced code measurements are used

in both estimators.

Test1 Test2 Test3
North: CRT: µ = −0.016, σ = 0.18 µ = −0.174, σ = 0.27 µ = 0.003, σ = 0.31

EKF: µ = 0.162, σ = 1.69 µ = −0.097, σ = 1.08 µ = 0.040, σ = 1.10

East: CRT: µ = 0.164, σ = 0.21 µ = −0.081, σ = 0.19 µ = 0.220, σ = 0.41
EKF: µ = 0.326, σ = 1.08 µ = 0.034, σ = 0.67 µ = 0.629, σ = 1.39
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Figure 5.5: The comparison of the estimated accelerometer bias with the ±1σ bound.

The unit of bias is m/s2.

many trees and buildings as is representative of a typical urban environment. The test

path is challenging for GPS based navigation. Snapshots along the path can be found in

[58]. Fig. 5.6 uses color coding along the trajectory to indicate the number of satellite

signals received as a function of position. There are many places where only a few

satellites are available. The effect of tree cover and multipath is more difficult to discern.

Any of these effects (e.g., small number of satellites, tree cover, or multipath) can make

it extremely difficult to maintain integer lock and to resolve the correct integers.

In the experiment, the vehicle is equipped with a dual-frequency GPS receiver

and a MEMs IMU, but no form of compass. The IMU provides measurements at 200 Hz.

GPS measurements are taken at 1 Hz. All GPS measurements are used in a differential
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Figure 5.6: UCR test trajectory marked with colors to represent the number of satellites

available to the receiver along the trajectory. This is a challenging route for the GPS

based navigation, due to signal blockage by buildings and trees. There are many places

(highlighted in blue) where less than 4 satellites are available for extended durations.
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mode. This set of instruments allows a post-processing algorithm to determine the

ground truth trajectory with centimeter accuracy [58].

To initialize the CRT estimator (obtaining x0), the vehicle is assumed to be

stationary for a few seconds at the start of the experiment. The initial roll and pitch

estimate are obtained by extracting the gravity vector. The initial position estimate is

obtained from GPS-only double differenced pseudorange measurements. Yaw is com-

pletely unknown. To emphasize the ability to correct errors that are large relative to the

curvature of the nonlinearities, we intentionally initialize the yaw with the worst case

error of 180 degrees.

The CRT estimator uses the exact same data set as the ground truth post-

processing algorithm, so that we can compare the CRT estimation results with the

ground truth trajectory. The CRT estimator only uses the L1 GPS data, discarding

the L2 data. For the CRT estimator, the window size is M = 10 and the termination

threshold is ε = 10−3.

After each CRT experiment is completed, performance is analyzed by subtract-

ing the CRT state estimate at each time from the ground truth state estimate for the

same time. Analysis of this error state will demonstrate that the CRT window based

Bayesian estimation approach combining pseudorange and phase measurements rapidly

calibrates the IMU biases and IMU attitude after vehicle motion makes them observable

and mitigates the effects of code multipath. The fast, accurate, and reliable estimation

of attitude and IMU biases estimates is the key to maintaining high precision naviga-

tion performance in GPS-challenged environments because the INS uses the corrected

IMU data to integrate through GPS time-intervals when few (if any) satellite signals

are received.

73



The results of the CRT estimator using code and integer-free phase are shown

in Figs. 5.7-5.12 and 5.13. Fig. 5.7-5.12 show the INS errors (position, velocity, attitude

and IMU biases) of the CRT estimator with the reported ±3σ bounds. The estimator

starts at t = 5sec. The vehicle is stationary at the beginning with forward acceleration

starting at t ≈ 8sec. Note that the yaw error is < 1◦ by t = 10sec. The results show

that the position error for most of the time is within ±0.5m in the horizontal plane

(north and east direction), the velocity error is within ±0.1m/s and the roll and pitch

errors are within ±0.2◦ and the yaw errors are within ±1◦. The reported ±3σ bounds

also correctly reflect the uncertainty of errors. Fig. 5.13 shows the histogram of errors

(position, velocity and attitude) of the CRT estimator along the trajectory. The first

10 seconds are excluded from the histogram to prevent the presentation being skewed

by the errors in the initial state (e.g. yaw).

Fig. 5.14 displays the CRT position estimation errors in blue when only pseu-

dorange is used and in red when both pseudorange and code are used. The estimated

trajectory using the integer-free phase measurement is in general smoother than only

using the code measurements. From this comparison, we can see that the integer-free

phase measurements are able to improve the robustness of estimator to pseudorange

multi-path error and noise. This robustness derives from the kinematic constraints im-

posed by the integer-free phase measurements, which prevent the large changes in the

position estimates that could otherwise result from multi-path errors.

To gain insight into the status of the CRT estimator, several key variables are

plotted in Fig. 5.15 versus the GPS epoch counter. The figure shows the total number

of iterations ζ, the cost reduction ∆Cζ , the final cost Cζ , the final value of ‖η‖2 in the

optimization. Immediately after initialization, it takes more iterations per time step to

converge from the initial x0 to an estimate x̂ such that δx lies within the unobservable
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space. Due to the initial inaccuracy of x0, the error within the unobservable space

may still be large. For example, the yaw is still completely unknown, until the vehicle

accelerates. At this time, when the bias and attitude errors become observable, the effect

of nonlinearities can be very significant; this is demonstrated by the number of iterations

again increasing. It is the fact that the unobservable subspace changes, that allows the

attitude and bias vectors to be more accurately estimated. Note from Fig. 5.7-5.12

that yaw is accurately estimated, within 1 degree, quickly after the vehicle accelerates,

without any form of magnetometer. After the trajectory estimate becomes accurate,

the optimization needs fewer iterations to converge. The final value of ‖η‖2 is always

less than the termination threshold ε = 10−3. The vector −η is the gradient of the cost

function C(X); therefore, its final norm should be near zero when the trajectory estimate

is near any local minimum of the cost function. The fact that final cost reduction ∆Cζ

is always positive indicates that the optimization improves accuracy and does not jump

to a worse local minimum (if one exists). The final cost Cζ is also given as a reference.

In practice, the inconsistent GPS data, possibly caused by multi-path or overhead trees,

could explain the large values of Cζ as is shown near time 200 sec and 350 sec. For

example, Fig. 5.16 shows the histogram of the CRT window phase residuals (eqn.

(3.16)) after optimization converges at time 200 sec. The measurement that has the

residual error around −0.025 m is suspicious and could be removed by advanced fault

detection methods. Note that the cost in Fig.5.15 defined in eqn. (4.32) weights the

residual from Fig. 5.16 by its inverse covariance, which accounts for the large difference

in the scales of the two plots. The opportunity of removing suspicious measurements

and recomputing the trajectory estimate is an advantage of the CRT estimator. Such

methods are an interesting topic for future research.
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Figure 5.7: Position error.

The normal equation gives the solution to the relative error of about O(cε̄)

where c is the condition number of Λ and ε̄ is the machine precision (10−16 for double

precision floating point, and 10−7 for single precision floating point). The desired relative

accuracy of the solution is about 10−6 [57]. Using double precision floating point, the

condition number c is safe for c ≤ 1010. The condition number of Λ over time is given

in Fig. 5.17. For most of the time, we can obtain a solution with the relative accuracy

of 10−6.
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Figure 5.8: Velocity error.
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Figure 5.9: Attitude error.

77



0 50 100 150 200 250 300 350 400 450 500

−1

0

1
x 10−3

x 
(r

ad
/s

)

0 50 100 150 200 250 300 350 400 450 500
−1

0

1
x 10−3

y 
(r

ad
/s

)

0 50 100 150 200 250 300 350 400 450 500

−1

0

1

x 10−3

z 
(r

ad
/s

)

time (sec)

Figure 5.10: Gyro bias error.
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Figure 5.11: Accelerometer bias error.
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Figure 5.12: The number of satellites.
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Figure 5.13: Error histograms (position, velocity and attitude) for the entire trajectory

(10sec-500sec). The CRT estimator uses pseudorange and integer-free phase measure-

ments. The y-axis is the percentage.
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Figure 5.16: The histogram of the posterior CRT window phase residuals (eqn. (3.16))

at time 200sec.
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Chapter 6

Trajectory Tracking Control

6.1 System Dynamics

The rigid body dynamics of a VTOL UAV are:

ṗ = v (6.1)

v̇ =
F

m
G
BRe3 − ge3 (6.2)

B
G

˙̄q =
1

2
q̄ωBGB

⊗ B
Gq̄ (6.3)

Jω̇BGB = −ωBGB × JωBGB + τ (6.4)

where e3 = [0 0 1]>, F is the collective force, τ is the torque w.r.t. the center of gravity

of the vehicle, J is the body-referenced inertia matrix, m is the mass of the vehicle and g

the gravity constant. The definition of {G}-frame and {B}-frame is illustrated by using

the example of a quadrotor in Fig. 6.1.

In this paper, the standard backstepping controller is derived first, including

the attitude and force command extraction steps. Then command filters are designed

to generate the required virtual control signals and their derivatives required at each

step for implementation. This is done in a manner that maintains the desirable stability
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Figure 6.1: The definitions of global and body frames

properties of the command filter implementation, relative to the standard backstepping

approach, as discussed in [16].

6.2 Backstepping Control

This section derives the quaternion-based backstepping control laws for the

position trajectory tracking task. This derivation is similar to the control laws presented

in [48]. The subscript c denotes the virtual control variable. The gains Ki ∈ <3×3,

i = 1...4 are positive definite matrices.

Step 1 (Position Control)

Assume that the continuous signals pd(t) and ṗd(t) are given. The goal in this

step is to define a signal vc(t) that causes p(t) to track the desired position pd(t). The

position tracking error dynamics are

˙̃p = vc + ṽ− ṗd (6.5)

where ṽ = v− vc and p̃ = p− pd. Let the Lyapunov function be

V1 =
1

2
p̃>p̃. (6.6)
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The time derivative of V1 along solutions of eqn. (6.5) is

V̇1 = p̃>(vc + ṽ− ṗd). (6.7)

Choosing vc = −K1p̃ + ṗd, yields V̇1 = −p̃>K1p̃ + p̃>ṽ.

Step 2 (Velocity Control)

Assume that the continuous signals vc(t) and v̇c(t) are given. The goal in this

step is to define a signal µc(t) that causes v(t) to track the desired velocity vc(t). The

velocity tracking error dynamic is

˙̃v =
F

m
G
BR e3 − ge3 − v̇c = µc + µ̃− ge3 − v̇c

where µ = F
m
G
BR e3, µc is the desired value of µ, and µ̃ = µ−µc. The desired force Fc

and the desired attitude G
Bc q̄ will be determined from µc at Step 3. Let the Lyapunov

function be

V2 = V1 +
1

2
ṽ>ṽ. (6.8)

Then the time derivative of V2 is

V̇2 = V̇1 + ṽ>(µc + µ̃− ge3 − v̇c). (6.9)

Choosing

µc = −K2ṽ + ge3 + v̇c − p̃, (6.10)

yields V̇2 = −p̃>K1p̃ − ṽ>K2ṽ + ṽ>µ̃. In this paper, we assume ‖µc‖ > 0. This is

typically the case, because if µc = µ = 0, then the system is in freefall.

Step 3 (Attitude & Force Extraction)

The total applied thrust vector µ is determined by the force F and the attitude

B
Gq̄: µ(F,BGq̄) = F

m
G
BR e3. The desired value µc defined in eqn. (6.10) is implemented
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through selection of a desired force Fc and desired attitude B
Gq̄c such that µ(Fc,

B
Gq̄c) =

µc. The desired force is Fc = m ‖µc‖. Let µ̄c = µc/ ‖µc‖.

Attitude extraction is discussed below separately depending on whether the

yaw angle trajectory is or is not specified.

Case 1

When the yaw trajectory is specified, let the unit vector py be the desired yaw

direction at t and assume that py is not parallel with µc. The desired direction cosine

matrix is G
BRc = [y× µ̄c, y, µ̄c], where y = µ̄c × py [32]. Therefore, BGRc = G

BR>c , and

B
Gq̄c can be retrieved from B

GRc by using eqn. (D.15) in page 504 of [14] (see the faq).

Case 2

When the yaw trajectory is not specified, the desired attitude is not unique,

due to the freedom to choose the yaw angle. The attitude extraction in this case is

denoted as B
Gq̄c = Ξ(µc, q̄r) where we have introduced a reference {r}-frame and a

rotation q̄r , r
Gq̄ to accommodate this free variable. Define q̄m , r

Bq̄, which rotates

the {B} frame to the {r} frame. Lemma 4 is used to obtain q̄m by setting u = e3 and

v = R(q̄r)µ̄c. Then the desired quaternion is computed by B
Gq̄c = q̄−1

m ⊗ q̄r.

Lemma 4 [48] Given two unit vectors u and v with u 6= −v, the unit quaternion q̄ with

minimal rotation angle θ that satisfies R(q̄m)u = v is given by

ε =

√
1

2(1 + u>v)
S(v)u, η =

√
1 + u>v

2
(6.11)

Remark 5 The reference attitude (q̄r) could be chosen as the global frame (GGq̄), the

current vehicle attitude (BGq̄) or the current desired attitude (BGq̄c). If a design goal is

to choose the desired attitude such that the yaw rotation is minimized, then choosing
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the global frame as the reference attitude could result in unnecessary yaw rotation at

start-up. Through simulations, we find that using the current desired attitude (BGq̄c) as

the reference attitude results in smaller yaw rotation during the trajectory tracking than

using the current vehicle attitude.

Step 4 (Attitude Control)

Assume that the continuous signals Fc,
B
Gq̄c and ω̄ are available. To simplify

notation, we define q̄ , B
Gq̄ and q̄c ,

B
Gq̄c, and let ω̄ , ω̄B

c

GBc represent the rotational

velocity vector of q̄c whose dynamic is defined in eqn. (2.16). Computation of ω̄ is

discussed in Section 6.4. The goal in this step is to choose ωc to ensure the attitude of

vehicle B
Gq̄(t) tracks the desired attitude q̄c(t).

The attitude tracking error q̃ is defined as

q̃ = B
Gq̄⊗ q̄−1

c . (6.12)

Thus, using (2.9) we have

q̃ = q̄⊗ q̄−1
c and R(q̃)R(q̄c) = R(q̄). (6.13)

With this definition of attitude tracking error, the dynamic of q̃ is

˙̃q =
1

2
Φ(q̃) (ω −R(q̃)ω̄) , (6.14)

=
1

2
Φ(q̃)(ωc + ω̃ −R(q̃)ω̄), (6.15)

where ω̃ = ω−ωc and ω , ωBGB to simplify the notation. The derivation can be found

in [60].

Let the Lyapunov function be

V3 = V2 + 2(1− h̃η̃) (6.16)
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where η̃ is the scalar part of q̃, and h̃ ∈ {−1, 1} is a hybrid variable introduced in [39]

that determines the convergence point of q̃ to either [0 1]> or [0 − 1]>. The dynamics

of h̃ contain both continuous and discontinuous parts:
˙̃
h = 0, if x ∈ C

h̃+ = −h̃, if x ∈ D
(6.17)

where h̃+ denotes the discrete update of the variable, x is the system state vector, C is

the flow set and D is the jump set [38]. The flow set and the jump set will be defined

in the next control step.

The time derivative of V3 is

V̇3 = V̇ s
3 + ṽ>µ̃+ h̃ε̃>(ωc + ω̃ −R(q̃)ω̄) (6.18)

where V̇ s
3 = −p̃>K1p̃ − ṽ>K2ṽ. To proceed, we rewrite µ̃ as µ̃ = W(q̄c, q̃, Fc)ε̃ [60].

This yields

V̇3 = V̇ s
3 + ṽ>Wε̃+ h̃ε̃>(ωc + ω̃ −R(q̃)ω̄). (6.19)

Choosing

ωc = −K3h̃ε̃−W>ṽ + R(q̃)ω̄ (6.20)

and noticing that h̃2 = 1, we have

V̇3 = V̇ s
3 − ε̃>K3ε̃+ h̃ε̃>ω̃. (6.21)

Step 5 (Angular Velocity Control)

In this step, the goal is choose τ to cause the actual angular rate ω(t) track

the desired angular velocity ωc(t). We assume ωc and ω̇c are available, continuous, and

known.
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The dynamic of the angular velocity tracking error ω̃ is

J ˙̃ω = Σ(ω̃,ωc)ω̃ − S(ωc)Jω̃ + τf (ωc, ω̇c) + τ (6.22)

where

Σ(ω̃,ωc) = S(Jω̃) + S(Jωc) (6.23)

τf (ωc, ω̇c) = S(Jωc)ωc − Jω̇c. (6.24)

Note that Σ is a skew-symmetric matrix for any ω̃ and ωc.

Choosing the Lyapunov function as

V4 = V3 + ω̃>Jω̃, (6.25)

yields the time derivative of V4 as

V̇4 = V̇ s
4 + h̃ε̃>ω̃ + ω̃>(Σω̃ − S(ωc)Jω̃ + τf + τ ) (6.26)

where V̇ s
4 = V̇ s

3 − ε̃>K3ε̃. Choosing

τ = −K4ω̃ − h̃ε̃+ S(ωc)Jω̃ − τf (6.27)

and noticing that ω̃>Σω̃ = 0 yields

V̇4 = V̇ s
4 − ω̃>K4ω̃ (6.28)

which is a negative definite function of the error state. The change in V4 following a

jump in h̃ can be shown, using eqns. (6.16), (6.20) and (6.25) and the procedure on

page 2526 in [38], to be

V4(h̃+)− V4(h̃) = 4h̃(η̃ − ε̃>K>3 JG) (6.29)
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where G = ω + W>ṽ−R(q̃)ω̄. Letting Λ = η̃ − ε̃>K>3 G, then the flow and jump sets

can be defined as

C1 = {h̃Λ ≥ −δ} (6.30)

D1 = {h̃Λ ≤ −δ} (6.31)

where δ ∈ (0, 1) is a design variable that determines at what point to switch the con-

vergence point. Therefore, by Corollary 7.7 in [49], the system is asymptotically stable.

However, implementation of this control law requires computation of the various com-

mand signals and their derivatives.

6.3 Command Filtered Backstepping

The backstepping controller an signal requirements at each step are summa-

rized below.

Step Rqrd. sig. Control Law

1 pd, ṗd vc = −K1p̃ + ṗd
2 vc, v̇c µc = −K2ṽ + ge3 + v̇c − p̃
3 µc F = m ‖µc‖, q̄c = Ξ(µc, q̄c)

4 q̄c, ω̄ ωc = −K3h̃ε̃−W>ṽ + R(q̃)ω̄

5 ωc, ω̇c τ = −K4ω̃ − h̃ε̃+ S(ωc)Jω̃ − τf
In the standard backstepping approach, the variables v̇c, ω̄ and ω̇c are derived analyt-

ically. This is cumbersome as shown in [48], which only considered position tracking.

For the position and yaw tracking, the analytic derivation would become even more

cumbersome as all derivatives in [48] must re-computed to include the commanded yaw

direction. Command filters are employed herein to automate the computation.

The command filtered backstepping controller is summarized below:

1. voc = −K1p̃ + ṗd; [vc, v̇c] = CF1(voc).

2. µoc = −K2ṽ + ge3 + v̇c − p̃.
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3. Fc = m ‖µoc‖, q̄oc = Ξ(µoc , q̄c); [q̄c, ω̄] = QF (q̄oc).

4. ωoc = −K3h̃ε̃−W>ṽ + R(q̃)ω̄; [ωc, ω̇c] = CF2(ωoc ).

5. τ = −K4ω̃ − h̃ε̃+ S(ωc)Jω̃ − τf .

where QF is the quaternion command filter discussed in Section 6.4, and CF1 and CF2

are command filters defined as

ẋ1 = x2 (6.32)

ẋ2 = −ω2
n(x1 − u)− 2ξωnx2 (6.33)

where x1 and x2 are in R3 , ξ is the damping ratio, ωn is the natural frequency, u = voc

for CF1 and u = ωoc for CF2. The outputs of the filters are x1 and x2. For example, in

the case of CF1, vc(t) = x1(t), v̇c(t) = x2(t).

The analysis in [16] ensures that as ωn is increased, the tracking error per-

formance of the command filtered implementation approaches the performance of the

backstepping controller using analytically derived command derivatives. To complete

the derivation for this application, we must present a quaternion command filter and

show that it fits within the framework of [16].

6.4 Second-order Quaternion Filter

This section develops a second-order quaternion filter that takes the quaternion

q̄oc(t) as the input and produces the filtered quaternion q̄c(t) and the corresponding

angular velocity ω̄(t) as outputs. The purpose of the filter is to ensure producing ω̄(t)

without differentiation and to ensure that the error between q̄oc(t) and q̄c(t), defined as

˜̄q = q̄c ⊗ (q̄oc)
−1, (6.34)
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is small. The symbol ε̃ represents the vector part of B̂
B

˜̄q. Both q̄oc(t) and q̄c(t) are

known and available at every time instant; hence, ˜̄q and ε̃ can be computed at every

time instant.

The proposed quaternion filter is

˙̄qc =
1

2
Φ(q̄c)ω̄ (6.35)

˙̄ω = α(−k̃h̃f ε̃− ω̄) (6.36)

where h̃f is a hybrid variable as defined in (6.17), and α, k̃ ∈ R+. The form of eqn.

(6.35) is designed to maintain the unit norm property for q̄c. The form of eqn. (6.36)

is designed to cause q̄c(t) to track q̄oc(t). In this filter, the parameter α determines how

fast ω̄ tracks −k̃h̃f ε̃ and k̃ determines how fast q̄c tracks the input attitude q̄oc .

The dynamic of ˜̄q is [60]

˙̄̃q =
1

2
Φ(˜̄q)ω̃ (6.37)

where ω̃ = ω̄−R(˜̄q)ω̄o, and ω̄o is the angular rate of the q̄oc which is not available (i.e.,

unknown).

The stability of the filter is shown by considering the zero input case. Define

the Lyapunov function V = 2αk̃(1− h̃f η̃) + ω̃>ω̃, where η̃ is the scalar part of ˜̄q. Then

the time derivative of V can be computed as

V̇ = αk̃h̃f ε̃
>ω̃ + ω̃>(−αk̃h̃f ε̃− αω̄) (6.38)

= −αω̃>ω̃ ≤ 0. (6.39)

The change in V following the jump of h̃f is V (h̃+
f )−V (h̃f ) = 4αk̃h̃f η̃. By defining the

flow and jump sets of the filter to be

C2 = {h̃f η̃ ≥ −δ} and D2 = {h̃f η̃ ≤ −δ}, (6.40)
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it follows that V (h̃+
f ) − V (h̃f ) < 0. Since V̇ = 0 if only if ω̃ = 0 and {x ∈ D2 :

V (h̃+
f ) − V (h̃f ) = 0} = ∅, by Theorem 4.7 in [49] the filter is global asymptotically

stable.

Remark 6 The vector command filter of eqns. (6.32-6.33) could also be used to produce

q̄c(t) and ω̄(t) from q̄oc(t). However, that filter would not maintain the quaternion having

unit norm and would not necessarily track the input quaternion through the path of

minimal rotation. In contrast, the hybrid variable h̃f in the proposed quaternion filter

ensures the input quaternion is tracked through the path of minimal rotation. Moreover,

the state vector in the proposed quaternion filter has smaller size than the one in the

vector-based filter (7 as opposed to 8).

Remark 7 Either a normalization step or the Lie group variational integrator, see e.g.,

[33], can be used to ensure the unit norm property of the quaternion in practice.

6.5 Stability Analysis

The only difference between the proposed controller in this paper and the

controller in [16] is the involvement of the quaternion filter. Therefore, this section

shows that the quaternion filter can be written into the form of ż = ε̄F (·), which is

required to apply the singular perturbation analysis as presented in [16]. Once this is

shown, the stability of the proposed controller in this paper can be proved in an identical

manner as was done in [16].

Eqn. (6.36) can be rewritten as

˙̄ω = −αk̃(h̃f ε̃)− αω̄. (6.41)
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Comparing eqns. (6.33) and (6.41), we note that h̃f ε̃ is equivalent to (x1 − u) and ω̄ is

equivalent to x2. Hence we can let αk̃ = ω2
n and α = 2ξωn to obtain

ωn =
√
αk̃, ξ =

1

2

√
α/k̃. (6.42)

Thus, eqn. (6.41) can be written as

˙̄ω = −ω2
n(h̃f ε̃)− 2ξωnω̄. (6.43)

Letting z1 = q̄ and z2 = ω̄/ωn, we can rewrite the quaternion filter (eq. (6.35) and

(6.36)) into the form ż1

ż2

 = ωn

 [r]1
2Φ(z1)z2

−h̃f ε̃− 2ξz2


which has the desired form ż = ε̄F (z, q̄c), where ε̄ = ωn. Then, the singular perturbation

theorem can be applied as in [16] to prove the stability of the proposed controller.

6.6 Simulation Results

First, we demonstrate in Fig. 6.2 that the vector-based filter (red) may take a

non-minimum angle path while tracking the input quaternion. The vector-based filter

uses eqns. (6.32-6.33) with x1 and x2 in R4, and u = q̄oc(t) is the input quaternion. The

angular velocity is ω = 2Φ(x1)>x2 based on eqn. (2.16) using the fact that Φ>Φ = I.

The initial quaternion is set to [0 1]> and the initial angular velocity is set to 0 for both

the vector-based filter and the quaternion filter. The input quaternion is a constant

value created by letting k̂ = [0 0 1]> and θ = 240◦ in eqn. (2.4). Fig. 6.2 shows that

both filters successfully track the input quaternion, but the vector-based filter (red)

rotates counter-clockwise to reach the desired attitude while the proposed quaternion

(blue) filter rotates clockwise which is a shorter route to reach the desired attitude.
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Figure 6.2: The quaternion tracking error (η̃) and the last component of the output angu-

lar velocity (ω̂3) are shown for the vector-based filter (red) and the proposed quaternion

filter (blue).

In the second simulation, we use quadrotor as an example of a VTOL UAV to

demonstrate the performance of the proposed tracking controller. The desired trajectory

in this simulation is a position trajectory which is shown in blue in Fig. 6.3 with the

actual trajectory of the vehicle in red. The position tracking errors p−pd are plotted in

Fig. 6.4. In this figure, we compare the performance of controller by setting a different α

in the quaternion filter. We also compare the yaw rotation of the vehicle in the trajectory

tracking by running the simulation separately with using the current desired attitude

and the current vehicle attitude as the reference attitude. The comparison result given

in Fig. 6.5 shows that using the current desired attitude results in lesser yaw rotation.
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Figure 6.3: The desired trajectory (blue), and the actual trajectory of the vehicle (red).

The initial position of the vehicle is [−0.2, 0.2, 0]>.

The parameters used in the simulation are: m = 0.5kg, J = diag([0.0820; 0.0845; 0.1377]),

K1 = 2I, K2 = I, K3 = 8I, K4 = I, α = 200, k̃ = 50, δ = 10−2, and ξ = 1, ωn = 100 for

both CF1 and CF2.
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Figure 6.4: The position tracking errors (p − pd). The blue line is using α = 200 and

the red dash line is using α = 10.
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current desired attitude or the current vehicle attitude.
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Chapter 7

Conclusions and Future Work

7.1 Navigation

This thesis has proposed a novel DGPS/IMU integration approach that sig-

nificantly improves performance, compared to EKF solutions. Such performance im-

provement is especially needed in urban environments. The new algorithm performs

optimization in realtime, for all IMU and GPS measurement within a time window, to

provide a realtime state estimate at the current time. The approach leads to improved

performance for a few reasons. First, optimization over a time window provides the

capability to re-linearize the system kinematic and measurement models around the im-

proved trajectory estimate. Multiple steps of the iterative optimization converges to the

minimum of the nonlinear MAP problem. Once they become observable, this provides

the ability to estimate attitude and biases, even yaw, accurately without a magnetome-

ter. Second, the large set of measurement data provides sufficient redundancy to allow

the effects of noise to be significantly reduced in the optimization. In addition, it allows

the detection of anomalous measurements, by RAIM type techniques, so that they can

be eliminated from the measurement set. Those methods are not presented herein, but

100



will be developed and presented in future work. Third, the proposed integer-free phase

measurement is able to provide accurate local kinematic constraints, without resolving

the integers, which helps to improve the robustness to multipath errors and GPS noise,

which are common in urban environments.

In addition to presenting the improved approach, this article has presented and

analyzed data from the application of this method to a test trajectory using L1-only GPS

measurements. The experimental data analysis demonstrated several points. The CRT

navigation system is able to reliably achieve sub-meter (often decimeter) positioning

accuracy in a GPS-challenged urban environment. The CRT approach calibrates the

attitude and biases rapidly following initial acceleration, which then allows the approach

to maintain state accuracy through periods with few satellites. Use of the integer-

free phase measurements in the CRT approach yields a smoother trajectory than the

pseudorange only solution.

There are a variety of directions for future work to improve the proposed system

performance:

• Develop and demonstrate reliable methods to check the measurement residuals in

order to reject outliers.

• Develop realtime algorithms that allow correct modeling of the correlation between

satellites in the integer-free measurements. This was is ignored in this thesis. One

approach is to add the receiver clock bias into the state vector to avoid the double-

differencing, thus avoiding introducing the correlation between satellites.

• Develop CRT methods to reliably resolve the integer ambiguity to achieve centime-

ter positioning accuracy using single frequency receivers. The CRT framework has
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the potential to increase the success rate of the integer ambiguity resolving in re-

altime.

• Construct the optimal integer-free phase tracks Ξ in the CRT window to maximize

the information extracted from phase measurements.

• Test the algorithm using data from a low-cost, single-frequency receiver to evaluate

robustness to the noisy signal reception from a low-cost GPS antenna.

• Find a convenient way to monitor the status of the CRT estimator in realtime.

• Augment of states to model GNSS time correlation measurement errors per satel-

lite.

7.2 Control

This thesis presents trajectory tracking control for VTOL UAVs using the

command filtered backstepping technique. The commanded trajectory may include just

the position or position and desired yaw. Quaternions are used for attitude control,

which ensures the global attitude tracking performance. The quaternion used in this

thesis follows the modified definition, which is well recognized by the navigation and

robotics communities, to facilitate the adoption of various quaternion-based nonlinear

controllers by practitioners outside the control community in their applications. More

importantly, in the backstepping control design, command filters are used to avoid the

often prohibitively difficult analytic computation of the required command derivatives in

each step. For the quaternion filtering, a standard vector-based command filter does not

exploit the special dynamics of the quaternion, which could result in a longer route being

taken by the filter to track the desired quaternion. To address this issue, a second-order
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quaternion filter is introduced that automatically computes the derivative of quaternion

(namely the angular velocity) without differentiation, always follows the smallest angular

path, and maintains the unit norm property of the quaternion. As a benefit of using

command filters, the flexibility of giving yaw commands in the trajectory is realized

without adding extra efforts in the design process. In the future, model error, actuator

allocation, and an adaptive version of the controller can be considered. Moreover, it is a

very interesting topic to tightly integrate the proposed CRT navigation system with the

command filtered backstepping control in a real quadrotor and test the performance.
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