
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Fundamentals of Treating Interference as Noise

Permalink
https://escholarship.org/uc/item/25g1h3wk

Author
Geng, Chunhua

Publication Date
2016
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/25g1h3wk
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA,
IRVINE

Fundamentals of Treating Interference as Noise

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Electrical Engineering

by

Chunhua Geng

Dissertation Committee:
Professor Syed Jafar, Chair
Professor Hamid Jafarkhani

Professor Ender Ayanoglu

2016



c© 2016 Chunhua Geng



DEDICATION

To my parents and wife

ii



TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES vii

ACKNOWLEDGMENTS viii

CURRICULUM VITAE ix

ABSTRACT OF THE DISSERTATION x

1 Introduction 1
1.1 Capacity of Gaussian Wireless Networks . . . . . . . . . . . . . . . . . . . . 1
1.2 A Progressive Refinement Path for Capacity Characterization . . . . . . . . 3
1.3 Channel State Information at Transmitters . . . . . . . . . . . . . . . . . . . 4
1.4 Practical Interference Management Principles for Wireless Networks . . . . . 5

1.4.1 Topological Interference Management (TIM) . . . . . . . . . . . . . . 6
1.4.2 Treating Interference as Noise (TIN) . . . . . . . . . . . . . . . . . . 6

1.5 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.6 Notations and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Optimality of TIN for Interference Channels 11
2.1 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Channel Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Generalized Degrees of Freedom (GDoF) . . . . . . . . . . . . . . . . 14
2.1.3 Channel Capacity within a Constant Gap . . . . . . . . . . . . . . . 15

2.2 TIN-optimality Condition for Interference Channels . . . . . . . . . . . . . . 15
2.2.1 Achievability Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . 17
2.2.2 Converse Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . 23
2.2.3 Constant Gap Characterization . . . . . . . . . . . . . . . . . . . . . 25

2.3 Achievable TIN Region for General Interference Channels . . . . . . . . . . . 29
2.3.1 Duality of Achievable TIN Region . . . . . . . . . . . . . . . . . . . . 30
2.3.2 Convexity of Achievable TIN Region . . . . . . . . . . . . . . . . . . 30

2.4 Extension to MIMO Interference Channels . . . . . . . . . . . . . . . . . . . 31
2.4.1 MIMO Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.2 TIN-optimality Condition for MIMO Channels . . . . . . . . . . . . . 33

iii



2.4.3 Optimality of Zero-forcing and TIN for MIMO Channels . . . . . . . 38
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Optimality of TIN for General Message Sets 44
3.1 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 TIN-optimality Condition for K ×K X Channels . . . . . . . . . . . . . . . 46

3.2.1 Proof for the GDoF Result . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.2 Proof for the Constant Gap Result . . . . . . . . . . . . . . . . . . . 52

3.3 TIN-optimality Condition for General M ×N X Channels . . . . . . . . . . 54
3.3.1 Proof Sketch of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.2 Deterministic Channel Model . . . . . . . . . . . . . . . . . . . . . . 59
3.3.3 Cycle Bound Proof Based on a Deterministic Approach . . . . . . . . 63

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Optimality of TIN for Compound Networks 77
4.1 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2 TIN-optimality Condition for Compound Networks . . . . . . . . . . . . . . 80

4.2.1 Challenge Posed by the Compound Setting . . . . . . . . . . . . . . . 81
4.2.2 Polyhedral TIN for Compound Interference Channels . . . . . . . . . 82
4.2.3 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.4 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 GDoF-based Power Control for Compound Networks . . . . . . . . . . . . . 89
4.3.1 Previous Work on Power Control . . . . . . . . . . . . . . . . . . . . 90
4.3.2 Preliminaries on GDoF Based Power Control . . . . . . . . . . . . . . 91
4.3.3 Equivalence of Compound and Regular Interference Channels . . . . 92
4.3.4 Properties of Potential Graph . . . . . . . . . . . . . . . . . . . . . . 98
4.3.5 Fixed-point Power Control Algorithm . . . . . . . . . . . . . . . . . . 100
4.3.6 GDoF-optimal Power Control Algorithm . . . . . . . . . . . . . . . . 103

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5 TIN-optimal Interference Channels with Confidential Messages 108
5.1 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Results on TIN-optimal Interference Channels . . . . . . . . . . . . . . . . . 110
5.3 Extension to Channels with External Eavesdroppers . . . . . . . . . . . . . . 115
5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6 Multilevel Topological Interference Management 119
6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3 A Baseline Decomposition Approach . . . . . . . . . . . . . . . . . . . . . . 127
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7 Conclusion 134

Bibliography 137

iv



A Replacing αij < 0 with αij = 0 144

B Proof of Theorem 4.5 150

v



LIST OF FIGURES

Page

2.1 A 3-user interference channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 The potential graph Dp for the 3-user interference channel in Fig. 2.1 . . . . 21
2.3 The m-user cyclic interference channel . . . . . . . . . . . . . . . . . . . . . 24
2.4 An (M,N)K MIMO cyclic interference channel, where transmitters and re-

ceivers are equipped with M and N antennas, respectively . . . . . . . . . . 34
2.5 A 3-user (1, 2)3 SIMO interference channel where ZF and TIN achieves the

sum GDoF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 A 3× 3 X channel with 9 messages . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 A 4× 3 X channel with 12 messages . . . . . . . . . . . . . . . . . . . . . . 55
3.3 The constructed channel upper-bounding the sum capacity of the m × N

X channel, where the red links are real-valued by rotating the phase of the
received signal at the corresponding receivers. . . . . . . . . . . . . . . . . . 69

4.1 The potential graph Dp for a 2-user compound interference channel with L1 =
2 and L2 = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 A 3-user compound interference channel and its regular counterpart . . . . . 94
4.3 The transmit power updates for a 3-user interference channel . . . . . . . . . 104

6.1 The received signal at Receiver 1, where the length of the vector represents
the received power of the carried symbol. . . . . . . . . . . . . . . . . . . . 126

6.2 A 5-user interference channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3 One possible decomposition for the interference channel in Fig. 6.2 . . . . . . 129
6.4 The achievable scheme to achieve the symmetric GDoF value 0.3 for the in-

terference channel in Fig. 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.5 Another possible decomposition for the interference channel in Fig. 6.2 . . . 131
6.6 The achievable scheme to achieve the symmetric GDoF value 1/3 for the

interference channel in Fig. 6.2 . . . . . . . . . . . . . . . . . . . . . . . . . 132

vi



LIST OF TABLES

Page

1.1 Table of abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

vii



ACKNOWLEDGMENTS

First and foremost, I own my deepest gratitude to my advisor Professor Syed Jafar for his
omnipresent guidance and support throughout my doctoral studies. I really appreciate his
insightful and timely feedback on every vague research idea of mine. In particular, his ability
to ask the right questions has always helped me to consider problems from new perspectives.
It is a great joy to learn from him about how to conduct research. I hope that one day I
can become a devoted and inspiring researcher like him. I would also like to thank Professor
Hamid Jafarkhani and Professor Ender Ayanoglu for serving on my doctoral dissertation
committee. I am equally indebted to Professor A. Lee Swindlehurst and Professor Yaming Yu
for being my doctoral advancement committee members. I am grateful to all my committee
members for their insightful suggestions.

My gratitude extends to Hua Sun, Tiangao Gou, Amir Salman Avestimehr, Navid Nade-
rializadeh, and Ravi Tandon for collaborating and co-authoring papers with me. I would
also like to thank all my fantastic colleagues in UC Irvine for enlightening discussions and
emotional supports: Tiangao Gou, Chenwei Wang, Hamed Maleki, Hua Sun, Xiaoshi Song,
Sundar Rajan Krishnamurthy, Yingyuan Gao, Arash Gholami Davoodi, Bofeng Yuan, Gau-
rav Gupta, and Pouya Pezeshkpour. I am proud of being a part of such a wonderful group.
Thanks are also due to my friends Xiaoliang Chen, Zheng Wang, Ruobing Zhao, Feng Jiang,
Liangbin Li, and many others for all the fun times we had together in Irvine. I am also
grateful to the administrative staff of EECS department, including Susan Staebell, Amy
Pham, and Loretta Waltemeyer, for their kind help that makes my life much easier.

Finally, I would like to thank my family. The unconditional love and constant endorsement
from my parents lay a solid foundation for all of my work. Most importantly, I would like to
thank my wife Cui, who has accompanied me side by side throughout all the ups and downs
during the last five years. Without her understanding and support, I would have never been
able to pursue my goals with an absolutely open and free mind.

viii



CURRICULUM VITAE

Chunhua Geng

EDUCATION

Doctor of Philosophy in Electrical Engineering 2016
University of California, Irvine Irvine, California

Master of Science in Electronic Engineering 2010
Tsinghua University Beijing, China

Bachelor of Engineering in Communication Engineering 2007
Beijing Jiaotong University Beijing, China

ix



ABSTRACT OF THE DISSERTATION

Fundamentals of Treating Interference as Noise

By

Chunhua Geng

Doctor of Philosophy in Electrical Engineering

University of California, Irvine, 2016

Professor Syed Jafar, Chair

Treating interference as noise (TIN) when it is sufficiently weak is one of the key principles

of interference management for wireless networks. This dissertation revisits the optimality

of TIN from an information theoretic perspective. It is shown that for K-user Gaussian

interference channels, TIN achieves all points in the capacity region to within a constant

gap, if for each user, the desired signal strength is no weaker than the sum of the strengths

of the strongest interference caused by the user and the strongest interference suffered by the

user (with all signal strengths measured in dB scale). We also extend the optimality of TIN to

more general settings, including interference networks with general message sets, compound

networks and MIMO interference channels, and characterize the secure capacity region within

a constant gap for the identified TIN-optimal interference channels with secrecy constraints.

Moreover, combining TIN with interference avoidance, we formulate a joint signal space and

signal level optimization problem and propose a baseline decomposition approach.
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Chapter 1

Introduction

1.1 Capacity of Gaussian Wireless Networks

For information theorists, the channel capacity of Gaussian wireless networks is the holy

grail. For single-user point-to-point Gaussian channels, it is well known that the channel

capacity C is characterized by [1, 2]

C = B log(1 + SNR) (1.1)

where B denotes the channel bandwidth and SNR stands for the signal-to-noise ratio.

For multiuser Gaussian networks, the capacity is in general open and only known for some

special cases. For instance, for the multiple access channel (MAC), where multiple transmit-

ters intend to communicate with a common receiver, the capacity region is known [1,2]. For

its reciprocal channel, the broadcast channel (BC), where one transmitter intends to send

independent messages to multiple receivers, if the channel state information at transmitters

(CSIT) is perfect, the capacity region is fully established as well [2,3]. These two channels are
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widely used to model single cell uplink and downlink transmission, respectively, in cellular

networks.

For Gaussian channel models with both multiple transmitters and multiple receivers, such as

interference channels, the capacity is generally intractable. In Gaussian interference chan-

nels, each transmitter intends to deliver one independent message to its desired receiver.

However, due to the broadcast nature of the wireless medium, each receiver also overhears

the interfering signals from the other undesired transmitters. The interference channel can

be used to model multi-cell networks and device-to-device networks, which are the current

research frontier for the wireless community.

Although the exact capacity of Gaussian interference channels is still open in general, recent

years have seen remarkable progress in our understanding of its first order approximation

in the high SNR limit – degrees of freedom (DoF), which is spurred in part by exciting

breakthroughs such as the idea of interference alignment [4–6]. These advances provide

fascinating theoretical insights and show much promise under idealized conditions. The

connection to practical settings, however, still remains elusive. This is in part due to the

following two factors. First, because of the assumption of abundant CSIT, idealized studies

often get caught in the minutiae of channel realizations, e.g., irrational versus rational values,

which have little bearing in practice. Second, by focusing on the DoF of fully connected

networks, these studies ignore the most critical aspect of interference management in practice

– the differences of signal strengths due to path loss and fading (in short, network topology).

Indeed, the DoF metric treats every channel as essentially equally strong (i.e., every channel

is capable of carrying exactly one DoF). So the desired signal has to actively avoid every

interferer, whereas in practice each user only needs to avoid a few significant interferers

and the rest are weak enough to be ignored safely. Therefore, by trivializing the network

topology, the DoF studies of fully connected networks make the problem much harder than

it needs to be. Non-trivial solutions to this harder problem invariably rely on much more
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channel knowledge at transmitters than is available in practice. Thus, these two limiting

factors in fact re-enforce each other.

1.2 A Progressive Refinement Path for Capacity Char-

acterization

Recent research has shown that the following progressive refinement path is extremely helpful

for pursuing the capacity limit of Gaussian wireless networks:

DoF→ GDoF→ constant gap→ exact capacity

In this path, DoF serves as the starting point. To characterize the DoF of Gaussian networks,

we fix the values of channel coefficients and the local noise power at receivers, let the total

transmit power approach infinity, and solve the capacity problem in the high SNR limit. As

mentioned before, this coarse DoF metric suffers from severe limitations, i.e., it essentially

treats all non-zero channels as equally strong (i.e., each link is capable of carrying exactly

one DoF) in the high SNR limit, and thus totally ignores the strength distinctions of various

signals, which are critical for interference management in practice. To avoid the pitfalls of

DoF, the next progressive refinement goal is a more general metric – generalized degrees of

freedom (GDoF), which refines the picture by adopting a model that maintains the ratio of

signal strengths (in the dB scale) constant as the high SNR limit is approached. Therefore,

the GDoF framework allows us to explore the channel settings with both weak and strong

interference and offers insights into optimal schemes for those channels. It’s worthwhile

noting that unlike DoF, in the GDoF framework instead of fixing the channel realizations (i.e.,

the channel coefficients and noise variance are unchanged) and scaling the transmit power,

we in fact study a class of different channel realizations as SNR approaches infinity. The

3



reason these channels are studied together is because, when normalized by log(SNR), they all

have (approximately) the same capacity. Hence the GDoF characterization simultaneously

settles the capacity of all the channels in this class within a gap of o(log(SNR)). Further,

the GDoF characterization tends to be a stepping stone to capacity characterizations within

a constant gap, i.e., a gap that does not depend on channel realizations or SNR values. As

expected, our ultimate refinement goal is the exact capacity.

The state of affairs is exemplified by the evolution of the exact sum capacity of 2-user single-

input single-output (SISO) Gaussian interference channels in the so-called “noisy interference

regime” [7–9]. It is well known that the DoF of 2-user SISO Gaussian interference channel

is only equal to 1 [10], which can be trivially achieved via single-user transmission. In [11],

the authors fully characterize the GDoF region of 2-user interference channels and show that

a simple Han-Kobayashi scheme achieves the entire channel capacity region within 1 bit.

Remarkably, the authors also demonstrate that when the interference is sufficiently weak,

treating interference as noise is optimal from the GDoF perspective and the outer bounds

are derived from a non-trivial genie-aided argument. Motivated by [11], a noisy interference

regime is established in [7–9] where treating interference as noise achieves the exact sum

capacity of 2-user interference channels.

This dissertation will follow along this progressive refinement path. In the following chapters,

we will show how to characterize GDoF for certain Gaussian interference networks and how

to utilize the obtained insights to derive capacity characterizations within a constant gap.

1.3 Channel State Information at Transmitters

From the theoretical perspective, the capacity of Gaussian wireless networks is quite sensitive

to channel uncertainty at transmitters (even in the high SNR limit).1 Take the K-user

1Throughout this dissertation, we assume that channel state information at receivers (CSIR) is perfect.
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interference channel as an example. If the CSIT is perfect, the sum DoF is characterized

as K/2 in [5], which is achievable via interference alignment. However, if the CSIT is only

available to finite precision, then the sum DoF collapses to 1 [12]. In recent years, we have

seen remarkable advances in understanding the capacity limits of Gaussian wireless networks

under the idealized assumption of abundant CSIT. While this reveals ingenious ways of

exploiting the finer aspects of CSIT, it remains difficult to translate the obtained results

into practice where CSIT is rarely abundant. Recognizing this challenge, recent research has

started exploring a variety of settings with relaxed CSIT assumptions, e.g., compound CSIT

[13–15], delayed CSIT [16, 17], mixed CSIT [18, 19], alternating CSIT [20], and CSIT with

finite precision [12, 21]. Following this line of research, lots of clever schemes have emerged.

Nevertheless, much of the theoretical insights are still too fragile to be applied to practice

directly. Different from these studies, we take a complementary approach to address this

challenge. In this dissertation, we consider the practical interference management schemes

that are robust to channel uncertainty at transmitters (e.g., treating interference as noise)

and study when these simple schemes are optimal from an information theoretic perspective.

1.4 Practical Interference Management Principles for

Wireless Networks

Real-world wireless networks are mainly based upon two robust interference management

principles — 1) ignore interference that is sufficiently weak, and 2) avoid interference that

is not. In more technical terms, ignoring interference translates into treating it as noise, and

avoiding interference translates into multiple access schemes such as TDMA/FDMA/CDMA.

The intuitive appeal of these two principles lies in their robustness, and in particular, their

minimal CSIT requirements. Recent studies have explored the optimality of both principles.
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1.4.1 Topological Interference Management (TIM)

The optimality of interference avoidance has been investigated most recently by [22], as the

topological interference management (TIM) problem. With CSIT limited to a coarse knowl-

edge of network topology (which links are stronger/weaker than the effective noise floor),

TIM is essentially an index coding problem [23]. TIM subsumes within itself the multi-

ple access schemes, e.g., TDMA/FDMA/CDMA, as trivial special cases, but is in general

much more capable than these conventional approaches. Remarkably, for the class of linear

schemes, which are found to be optimal in most cases studied so far, and within which TIM

is equivalent to the index coding problem, TIM is shown to be essentially an optimal alloca-

tion of signal vector spaces based on an interference alignment perspective [24]. Variants of

the TIM problem have also been investigated, including TIM under short coherent time [25],

TIM with alternating connectivity [26,27], TIM with multiple antennas [28], and TIM with

transmitter cooperation [29].

1.4.2 Treating Interference as Noise (TIN)

From a practical perspective, treating interference as noise (TIN) is attractive due to its low

complexity and robustness to channel uncertainty. TIN involves the use of only point-to-

point channel codes, which are quite practical and near-optimal to deal with unstructured

noise. Moreover, it only requires a coarse channel knowledge of the signal to interference

and noise ratio (SINR) at transmitters, thus the overhead associated with acquiring CSIT

is minimal.

From a theoretical perspective, the optimality of TIN is also discussed extensively in previous

work. As mentioned before, in [7–9], it is shown that in the noisy interference regime,

TIN achieves the exact sum capacity of Gaussian interference channels. Then, extensions

of the noisy interference regime are obtained for multiple-input multiple-output (MIMO)
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interference channels [30], parallel interference channels [31], and 2 × 2 X channels [32].

From the GDoF perspective, it has been shown that when the interference is sufficiently

weak, TIN is optimal for 2-user (asymmetric) interference channels [11] and K-user fully

symmetric interference channels [33].

1.5 Dissertation Outline

In the rest of this dissertation, we will revisit the optimality of TIN from an information

theoretic perspective. Different from the previous work mentioned in Section 1.4.2, in this

dissertation we mainly answer the question when TIN is optimal to achieve the channel

capacity within a constant gap for various Gaussian channel models, including K-user fully

asymmetric interference channels, M ×N X channels, and compound networks. Note that

in this dissertation, unless stated otherwise, we consider SISO interference networks, where

all transmitters and receivers are equipped with one antenna. We discuss the MIMO case in

Section 2.4. The material in this dissertation is presented in part in [34–41].

In Chapter 2, for K-user fully asymmetric Gaussian interference channels, we identify a broad

condition under which TIN is optimal from the GDoF perspective and approaches the entire

channel capacity region within a constant gap. Specifically, the identified TIN-optimality

condition is “for each user the desired signal strength is no less than the sum of the strengths

of the strongest interference caused by this user and the strongest interference suffered by

this user (all values in dB scale)”. Next, we fully characterize the achievable GDoF region

via the TIN scheme (i.e., the TIN region) for interference channels with arbitrary channel

strength and establish its duality. Moreover, we extend the TIN-optimality result to MIMO

interference channels where all transmitters and receivers are equipped with the same number

of antennas. For MIMO channels where transmitters and receivers have different antenna

numbers, we demonstrate that there exist non-trivial parameter regimes where a simple

7



scheme of zero-forcing strong interference and treating the others as noise achieves the sum

GDoF value.

In Chapter 3, we extend the optimality of TIN to Gaussian interference networks with

general message sets. The main result is that for TIN-optimal interference channels identified

in Chapter 2, expanding the message set to include an independent message from each

transmitter to each receiver (i.e., the X message setting) does not increase the sum GDoF,

and operating the new channel as the original interference channel and treating interference

as noise is optimal for the sum capacity up to a constant gap. We also generalize the

optimality of TIN to X channels with arbitrary numbers of transmitters and receivers.

In Chapter 4, we generalize the optimality of TIN to Gaussian compound networks. First,

we show that for K-user compound Gaussian interference channels, if in each possible net-

work realization, the TIN-optimality condition of Chapter 2 is satisfied individually, then

TIN achieves the entire GDoF region of the whole compound setting. Next, we investigate

the power control problem for compound networks from the GDoF perspective. We demon-

strate that for an arbitrary compound interference channel, we can always find a non-trivial

counterpart regular interference channel, such that the two have the same TIN region, and

the GDoF-optimal power control problems for the two are equivalent. Note that the regular

interference channel has only one state for each receiver, which may be different from all

of the original states. Then, taking the advantage of the simplification of the compound

setting to the regular case, we develop GDoF-optimal power control schemes for compound

networks.

In Chapter 5, we investigate Gaussian interference channels with information theoretic se-

crecy constraints. We demonstrate that if the TIN-optimality condition identified in Chap-

ter 2 is satisfied, the secrecy constraints incur no penalty from the GDoF perspective, and

a scheme based on Gaussian signaling, cooperative jamming, and smart power splitting

achieves the whole secure capacity region within a constant gap.
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In Chapter 6, by combining TIN with TIM, we formulate a joint optimization problem for

signal vector space and signal power level allocations, and identify a baseline solution based

on a decomposition approach.

In Chapter 7, we summarize this dissertation.

1.6 Notations and Abbreviations

Throughout this dissertation, R+ denotes the set of non-negative real numbers. For any

positive integer Z, 〈Z〉 denotes the set {1, 2, ..., Z}, and for any real number a, (a)+ and

max{0, a} are used interchangeably. For two vectors u and v, we say that u dominates v

if u ≥ v, where ≥ denotes componentwise inequality. For a matrix A, Tr(A) stands for

its trace, |A| denotes its determinant, span(A) represents the space spanned by the column

vectors of A, and CN (0,A) represents the distribution of a complex circularly symmetric

Gaussian random vector with zero mean and covariance matrix A. In stands for an n × n

identity matrix. We also use I to denote an identity matrix if its size is clear from the

context. In addition, unless otherwise stated, all logarithms are to the base 2.

The table on the next page lists the abbreviations used in this dissertation.
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DoF Degrees of Freedom
GDoF Generalized Degrees of Freedom
SNR Signal to Noise Ratio
INR Interference to Noise Ratio
SINR Signal to Interference and Noise Ratio
CSI Channel State Information
CSIT Channel State Information at Transmitters
CSIR Channel State Information at Receivers
SISO Single Input Single Output
SIMO Single Input Multiple Output
MIMO Multiple Input Multiple Output
MAC Multiple Access Channel
BC Broadcast Channel
TIN Treating Interference as Noise
TIM Topological Interference Management
ZF Zero Forcing

Table 1.1: Table of abbreviations
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Chapter 2

Optimality of TIN for Interference

Channels

It is well known (see, e.g., [7–9]) that in Gaussian interference channels the simple TIN

scheme is information theoretically optimal when the interference is sufficiently weak. Such

results are remarkable since they provide exact capacity characterizations, which are rare in

network information theory. However, the difficulty of pursuing the exact capacity metric

manifests itself through various limitations — the results are typically limited to sum channel

capacity (as opposed to the entire channel capacity region), power control is not involved

(all transmitters use all available power), and the regime where the exact optimality of TIN

is established tends to be rather small. In contrast, in this chapter, by pursuing approximate

capacity characterizations, we identify a broad regime where TIN (with power control) is

optimal from the GDoF perspective, and within a constant gap to the whole capacity region.

This chapter is organized as follows. In Section 2.1, we present the standard channel model

of K-user Gaussian interference channels and translate it into an equivalent form which is

more conducive for GDoF studies. In Section 2.2, for K-user fully asymmetric interference
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channels, we identify a broad condition under which power control and TIN is optimal

from the GDoF perspective and approaches the entire channel capacity region within a

constant gap. We also fully characterize the achievable TIN region for interference channels

with arbitrary channel coefficients and establish its duality in Section 2.3. We extend the

optimality of TIN to MIMO interference channels in Section 2.4 and summarize this chapter

in Section 2.5.

2.1 Channel Model

Consider the following canonical model for general K-user Gaussian interference channels

Yk(t) =
K∑
i=1

h̃kiX̃i(t) + Zk(t), ∀k ∈ 〈K〉, (2.1)

where at each time index t, Yk(t) is the received signal of Receiver k, X̃i(t) is the transmitted

symbol of Transmitter i, h̃ki is the complex channel gain value between Transmitter i and

Receiver k, and Zk(t) ∼ CN (0, 1) is the additive white Gaussian noise (AWGN) at Receiver

k. All symbols are complex. Transmitter i ∈ 〈K〉 is subject to the average power constraint

E[|X̃i(t)|2] ≤ Pi.

Next, we translate the standard channel model (2.1) into an equivalent normalized form that

is more conducive for GDoF studies. Define the SNR of user i and INR of Transmitter i at

Receiver k as follows.1

SNRi , max(1, |h̃ii|2Pi), INRki , max(1, |h̃ki|2Pi), i 6= k, i, k ∈ 〈K〉. (2.2)

1It is not difficult to verify that assigning a value of 1 to SNR and INR that are less than 1, or equivalently,
assigning a value of 0 to αij that might otherwise be negative, is only a matter of convenience, and has no
impact on the GDoF or the constant gap result derived in this chapter (i.e., Theorem 2.1, 2.2 and 2.3). The
details are relegated to Appendix A.
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Following [11], for the GDoF metric, we preserve the ratios of different signal strengths in

dB scale as all SNRs approach infinity. To this end, taking P > 1 as a nominal power value,

we define

αii ,
log SNRi

logP
, αki ,

log INRki

logP
, i 6= k, i, k ∈ 〈K〉, (2.3)

implying that for each user i, SNRi = Pαii and for any two distinct users i, k, INRki = Pαki .

Now according to (2.2) and (2.3), we represent the original channel model (2.1) in the

following form

Yk(t) =
K∑
i=1

√
PαkiejθkiXi(t) + Zk(t), ∀k ∈ 〈K〉. (2.4)

In this equivalent channel model, Xi(t) = X̃i(t)/
√
Pi is the transmit symbol of Transmitter

i, and the power constraint for each transmitter is normalized to unity (i.e., E[|Xi(t)|2] ≤ 1,

∀i ∈ 〈K〉). Indeed, the transmit power in the original channel model is absorbed into the

channel coefficients.
√
Pαki and θki are the magnitude and the phase, respectively, of the

channel between Transmitter i and Receiver k, ∀i, k ∈ 〈K〉. The exponent αki is called the

channel strength level of the link between Transmitter i and Receiver k. In the rest of this

chapter, unless otherwise stated, we will consider the equivalent channel model in (2.4).

2.1.1 Channel Capacity

In K-user interference channels, Transmitter i intends to send message Wi to Receiver i.

The messages Wi are independent, ∀i ∈ 〈K〉. Denote the size of the message set of user i by

|Wi|. For codewords spanning n channel uses, the rates Ri = log |Wi|
n

, i ∈ 〈K〉, are achievable

if the probability of error at all receivers can be made arbitrarily small as n approaches

infinity. The channel capacity region C is the closure of the set of all achievable rate tuples.
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Collecting the channel strength levels and phases in the sets

α , {αki}, θ , {θki}, ∀i, k ∈ 〈K〉, (2.5)

the capacity region C is in fact a function of α, θ, and P .

2.1.2 Generalized Degrees of Freedom (GDoF)

The GDoF region of K-user interference channels in (2.4) is defined as

D ,
{

(d1, ..., dK) : di = lim
P→∞

Ri

logP
, ∀i ∈ 〈K〉, (R1, ..., RK) ∈ C

}
. (2.6)

In general, the channel capacity (GDoF) region of complex Gaussian interference channel

may depend on both the channel strength levels α, and the channel phases θ. Later our results

will show that when TIN is optimal from the GDoF perspective, the capacity (GDoF) inner

and outer bounds we derived in this chapter depend only on α. As such, our results hold

regardless of whether or not the channel phase information is available at transmitters.

Remark 2.1. As we mentioned before, it is notable that unlike DoF, the scaling with P in

the GDoF framework does not correspond to a scaling of transmit powers for a fixed channel

realization, because of the disparate power scaling exponents αij. Instead, each P value in

(2.4) defines a new channel. These channels are studied together, because when normalized by

log(P ), they all have (approximately) the same capacity. Therefore, a GDoF characterization

simultaneously settles the capacity of all the channels in this class within a gap of o(log(P )).
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2.1.3 Channel Capacity within a Constant Gap

Following the same definitions in [11] and [42], an achievable rate region is said to be within

b (b ≥ 0) bits of the capacity region if for any tuple (R1, R2, ..., RK) on the boundary of the

achievable rate region, the tuple (R1 + b, R2 + b, ..., RK + b) is outside the channel capacity

region.

2.2 TIN-optimality Condition for Interference Chan-

nels

The main result of this chapter is the following theorem.

Theorem 2.1. In a K-user interference channel, if the following condition is satisfied

αii ≥ max
j:j 6=i
{αji}+ max

k:k 6=i
{αik}, ∀i, j, k ∈ 〈K〉, (2.7)

then power control and TIN achieves the entire GDoF region. The GDoF region is the set

of all K-tuples (d1, ..., dK) satisfying

0 ≤ di ≤ αii, ∀i ∈ 〈K〉 (2.8)

m∑
j=1

dij ≤
m∑
j=1

(αijij − αij−1ij), ∀(i1, i2, ..., im) ∈ ΠK , ∀m ∈ {2, 3, ..., K}, (2.9)

where ΠK is the set of all possible cyclic sequences2 of all subsets of 〈K〉 with cardinality no

less than 2, and the modulo-m arithmetic is implicitly used on user indices, e.g., im = i0.

In words, condition (2.7) can be stated as — for each user the desired signal strength is no

2Each cyclic sequence in ΠK is essentially a cyclically ordered subset of user indices, without repetitions.
In ΠK , there exist

∑K
m=2

(
K
m

)
(m− 1)! cyclic sequences.
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less than the sum of the strengths of the strongest interference caused by this user and the

strongest interference suffered by this user (all values in dB scale). Theorem 2.1 claims that

under this condition, for K-user fully asymmetric interference channels, TIN is optimal from

the GDoF perspective. For brevity, in the rest of this dissertation, we call the condition

(2.7) the TIN-optimality condition, and refer to interference channels satisfying this TIN-

optimality condition as TIN-optimal interference channels.

Remark 2.2. Note that both the TIN-optimality condition (2.7) and the GDoF region spec-

ified by (2.8)-(2.9) display a natural duality in the sense that they are both unchanged if the

roles of the transmitters and receivers are switched, i.e., if all αij values are switched with αji

values. In other words, for the same channel strengths, if we consider the reciprocal channel

(in the same sense as a BC being the reciprocal of a MAC), then under condition (2.7), TIN

is optimal from the GDoF perspective, and the GDoF region is the same as in the original

channel.

Remark 2.3. In [34], we conjecture that condition (2.7) is also necessary for TIN to be

GDoF-optimal for K-user interference channels except for a set of channel gain values of

measure zero.

2

0:5
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0:5

1

1

1:5

0:1

0:2
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Tx1

Tx2

Rx1

Rx2

Rx3

Figure 2.1: A 3-user interference channel

Example 2.1. To help interpret the results in Theorem 2.1, we derive the GDoF region for

a 3-user interference channel where the TIN-optimality condition (2.7) is satisfied. Consider

16



the 3-user channel in Fig. 2.1. In this channel, the value on each link denotes the channel

strength level. For the case of K = 3, ΠK = {(1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)}. According

to Theorem 2.1, the GDoF region is fully characterized by

0 ≤ d1 ≤ 2

0 ≤ d2 ≤ 1

0 ≤ d3 ≤ 1.5

d1 + d2 ≤ 2.3

d1 + d3 ≤ 2.4

d2 + d3 ≤ 1.5

d1 + d2 + d3 ≤ 3.7

d1 + d2 + d3 ≤ 2.5

which is achievable via power control and TIN.

2.2.1 Achievability Proof of Theorem 2.1

We proceed to prove the achievability of Theorem 2.1 through the following steps. First,

we introduce a polyhedral version of the TIN scheme called polyhedral TIN. We illustrate

that the achievable GDoF region by polyhedral TIN (i.e., the polyhedral TIN region) is

no larger than the achievable GDoF region by the original TIN scheme (i.e., the TIN re-

gion). In fact, later our results will show that under the TIN-optimality condition (2.7), the

polyhedral TIN region is the same as the TIN region. Next, we demonstrate that the poly-

hedral TIN region can be characterized by checking the existence of a potential function for

an induced fully-connected digraph, with vertexes representing the source-destination pairs

(i.e., transmitter-receiver pairs or user pairs) in the interference channel (with an additional
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“ground” vertex) and a specific length assignment to the edges of the digraph. Finally,

we derive the characterization of the polyhedral TIN region based on the potential theo-

rem in [43], which essentially conducts Fourier-Motzkin elimination for the power allocation

variables.

We start with the original TIN scheme. Assume that Transmitter i ∈ 〈K〉 uses a transmit

power of P ri . Due to the unit power constraint in the channel model of (2.4), we have ri ≤ 0.

By treating all the incoming interference as noise, user i achieves any rate Ri such that

Ri ≤ log

(
1 +

Pαii+ri

1 +
∑

j 6=i P
αij+rj

)
(2.10)

So the achievable GDoF value of user i is given by

0 ≤ di ≤ max{0, αii + ri −max{0,max
j:j 6=i

(αij + rj)}} (2.11)

The TIN region, which is denoted by P∗, is the set of all K-tuples (d1, d2, ..., dK) for which

there exist ri’s, ri ≤ 0, i ∈ 〈K〉, such that (2.11) holds for all i ∈ 〈K〉.

Next, we introduce a polyhedral version of the TIN scheme, which is called polyhedral TIN.

Specifically, by requiring that αii + ri −max{0,maxj:j 6=i(αij + rj)} is no less than 0 for each

i, we can ignoring the first max{0, ...} term in (2.11). With this modification, the obtained

polyhedral TIN region, which is denoted by P , is the set of all K-tuples (d1, d2, ..., dK) for

which there exist ri’s, i ∈ 〈K〉, such that

ri ≤ 0, ∀i ∈ 〈K〉 (2.12)

0 ≤ di ≤ αii + ri −max{0,max
j:j 6=i

(αij + rj)}, ∀i ∈ 〈K〉 (2.13)

This region P is always a polyhedron (see Example 2.1), which is why the scheme is called

polyhedral TIN. The above modification actually puts more constraints on the power expo-
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nents ri’s besides the constraints of ri ≤ 0. It can only shrink the achievable GDoF region

of the TIN scheme. Thus in general we have P ⊆ P∗.

Example 2.2. Consider a 2-user interference channel with αij = 1, ∀i, j ∈ {1, 2}. In the

polyhedral TIN scheme, we require that

1 + r1 −max{0, 1 + r2} ≥ 0,

1 + r2 −max{0, 1 + r1} ≥ 0.

Combining with the constraints of ri ≤ 0, it is easy to verify that the valid power exponents

ri’s for polyhedral TIN satisfy r1 = r2 and r1, r2 ∈ [−1, 0], and the polyhedral TIN region P is

a single point (0,0). While in the original TIN scheme, according to (2.11), the TIN region

P∗ is the union of two line segments, i.e., P∗ = {(d1, d2) : 0 ≤ d1 ≤ 1, d2 = 0} ∪ {(d1, d2) :

d1 = 0, 0 ≤ d2 ≤ 1}. Therefore, in this example P ⊂ P∗.

Remark 2.4. As we mentioned, later our results will show that when the TIN-optimality

condition (2.7) holds, compared with the original TIN scheme, polyhedral TIN incurs no loss.

In other words, when condition (2.7) is satisfied, the TIN region P∗ is same as the polyhedral

TIN region P.

Rewriting (2.12) and (2.13), we obtain that the polyhedral TIN region P is fully characterized

by the following linear inequalities

di ≥ 0, ∀i ∈ 〈K〉 (2.14)

ri ≤ 0, ∀i ∈ 〈K〉 (2.15)

di ≤ αii + ri ⇔ ri ≥ di − αii, ∀i ∈ 〈K〉 (2.16)

di ≤ αii + ri − (αij + rj)⇔ ri − rj ≥ αij + (di − αii), ∀i, j ∈ 〈K〉, i 6= j. (2.17)

As we will show, by essentially a Fourier-Motzkin elimination of the power allocation vari-
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ables ri, i ∈ 〈K〉, the region P is fully characterized by (2.8)-(2.9). In the following, we

complete this elimination by applying the potential theorem in [43]. Towards this end, for

an arbitrary K-user interference channel, we construct a fully-connected digraph Dp = (V , E)

called the potential graph, where V and E are the sets of vertices and edges, respectively, and

V = {v1, v2, ..., vK , u}

E = E1 ∪ E2 ∪ E3

E1 = {(vi, vj) : i, j ∈ 〈K〉, i 6= j}

E2 = {(vi, u) : i ∈ 〈K〉}

E3 = {(u, vi) : i ∈ 〈K〉}

We assign a length l(e) to every edge e ∈ E as follows.

l(vi, vj) = αii − di − αij

l(vi, u) = αii − di

l(u, vi) = 0.

Note that we denote by (a, b) the edge from vertex a to vertex b. As an example, the potential

graph Dp for the 3-user interference channel in Example 2.1 is given in Fig. 2.2.

In the potential graph Dp, according to [43], a function p : V → R is called a potential if

for every two vertexes a, b ∈ V such that (a, b) ∈ E , l(a, b) ≥ p(b)− p(a). One can find that

these inequalities only depend on the difference between potential function values. Therefore,

without loss of generality, if there exists a valid potential function for the potential graph Dp,

we can make one vertex, say the vertex u, ground (i.e., let p(u) = 0). Also letting p(vi) = ri,

the potential function values should satisfy

αii − di − αij ≥ rj − ri, ∀i, j ∈ 〈K〉, i 6= j (2.18)
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Figure 2.2: The potential graph Dp for the 3-user interference channel in Fig. 2.1

αii − di ≥ −ri, ∀i ∈ 〈K〉 (2.19)

0 ≥ ri, ∀i ∈ 〈K〉. (2.20)

which exactly match (2.15)-(2.17). Therefore, for a K-user interference channel, a GDoF

tuple (d1, d2, ..., dK) ∈ RK
+ (i.e., the non-negative orthant of the K-dimensional Euclidean

space) is in the region P if and only if there exists a valid potential function for its potential

graph Dp.

Equipped with the above observation, we invoke the following theorem in [43] to complete

the characterization of the polyhedral TIN region P .

Potential Theorem (Theorem 8.2 of [43]): There exists a potential function for a digraph

D if and only if each directed circuit in D has non-negative length.

According to potential theorem, we conclude that (d1, d2, ..., dK) ∈ RK
+ is in the polyhedral

TIN region P if and only if each directed circuit in Dp has a non-negative length. Therefore,

it remains to interpret the conditions of non-negative length for the circuits in Dp. We

categorize these circuits in the following three classes:
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• Circuits in the form of (u→ vi → u), ∀i ∈ 〈K〉. For these circuits, we have

αii − di ≥ 0⇔ di ≤ αii. (2.21)

• Circuits in the form of (vi0 → vi1 → ... → vim), where i0 = im, ∀(i1, i2, ..., im) ∈

ΠK , ∀m ∈ {2, 3, ..., K} (i.e., the circuits that do not include the ground vertex u).

For these circuits, the non-negative length condition yields

m−1∑
j=0

(αijij − dij − αijij+1
) ≥ 0⇔

m−1∑
j=0

dij ≤
m−1∑
j=0

(αijij − αijij+1
) (2.22)

(a)⇔
m∑
j=1

dij ≤
m∑
j=1

(αijij − αij−1ij) (2.23)

where in (a) we reorder the terms in the right hand side and use the fact that im = i0.

• Circuits in the form of (u → vi1 → ... → vim → u), ∀(i1, i2, ..., im) ∈ ΠK , ∀m ∈

{2, 3, ..., K}. For these circuits, we get

m−1∑
j=1

(αijij − dij − αijij+1
) + (αimim − dim) ≥ 0 (2.24)

Since αimi1 ≥ 0, we have αimim − dim ≥ αimim − dim − αimi1 . Therefore, given (2.23),

the conditions for this class of circuits are redundant.

Consequently, we end up with conditions (2.21) and (2.23). Adding the non-negativity

constraint on di explictly, we obtain (2.8)-(2.9), which is in fact the polyhedral TIN region P

for interference channels with arbitrary channel strength levels. In other words, the region P

specified by (2.8)-(2.9) is always achievable through polyhedral TIN for interference channels

with arbitrary channel strength levels.
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2.2.2 Converse Proof of Theorem 2.1

To prove the converse, we first derive the following lemma.

Lemma 2.1. For K-user interference channels with channel input-output relationship in

(2.1), the capacity region is included in the set of rate tuples (R1, R2, ..., RK) such that

Ri ≤ log(1 + |h̃ii|2Pi), ∀i ∈ 〈K〉 (2.25)

m∑
j=1

Rij ≤
m∑
j=1

log

(
1 + |h̃ijij+1

|2Pij+1
+

|h̃ijij |2Pij
1 + |h̃ij−1ij |2Pij

)
,

∀(i1, i2, ..., im) ∈ ΠK , ∀m ∈ {2, 3, ..., K}, (2.26)

where the modulo-m arithmetic is implicitly used on user indices, e.g., im = i0.

Proof of Lemma 2.1: The proof mainly follows [11, 42]. First, each individual bound (2.25)

simply comes from the single user capacity bound. Next, consider the cycle bound (2.26). For

any cyclic sequence (i1, i2, ..., im) ∈ ΠK , we start with the fully connected K-user interference

channel with input-output relationship (2.1), and go through the following steps:

• Eliminate all users i ∈ 〈K〉\{i1, i2, ..., im} and their desired messages;

• Remove all the interfering links but the links from Transmitter ij to Receiver ij−1,

∀j ∈ 〈m〉.

We end up with the m-user cyclic interference channel depicted in Fig. 2.3. The above two

steps cannot hurt the rates of the remaining messages. Therefore, the sum rate of users

i ∈ {i1, i2, ..., im} in the original K-user interference channel is upper bounded by that of the

remaining m-user cyclic interference channel. Define

Sij(t) = h̃ij−1ijX̃ij(t) + Zij−1
(t), ∀j ∈ 〈m〉
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Figure 2.3: The m-user cyclic interference channel

For Receiver ij, provide Snij through a genie. From Fano’s inequality, we have

n(Rij − ε)

≤ I(Wij ;Y
n
ij
, Snij)

= h(Y n
ij
, Snij)− h(Y n

ij
, Snij |Wij)

= h(Snij) + h(Y n
ij
|Snij)− h(Snij |Wij)− h(Y n

ij
|Snij ,Wij)

= h(Snij) + h(Y n
ij
|Snij)− h(Zn

ij−1
)− h(Snij+1

)

Taking the sum of n(Rij − ε) for all j ∈ 〈m〉, we get

n

m∑
j=1

(Rij − ε) ≤
m∑
j=1

[
h(Y n

ij
|Snij)− h(Zn

ij
)
]

≤
n∑
t=1

m∑
j=1

[
h(Yij(t)|Sij(t))− h(Zij(t))

]
,
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where the last inequality follows chain rule and the fact that dropping conditioning does not

reduce entropy. Finally, using the fact that the circularly symmetric Gaussian distribution

maximizes conditional differential entropy under a given covariance constraint, we obtain

the desired outer bound (2.26). �

Equipped with Lemma 2.1, we can proceed to complete the converse of Theorem 2.1 as

follows. The individual bounds in (2.8) follow directly from (2.25).

di = lim
P→∞

Ri

logP
≤ lim

P→∞

log(1 + Pαii)

logP
= αii, ∀i ∈ 〈K〉

The cycle bounds in (2.9) follow from (2.26). For any cycle (i1, i2, ..., im) ∈ ΠK , we have

m∑
j=1

dij = lim
P→∞

∑m
j=1 Rij

logP
≤ lim

P→∞

∑m
j=1 log

(
1 + Pαij ij+1 + P

αijij

1+P
αij−1ij

)
logP

=
m∑
j=1

max{0, αijij+1
, αijij − αij−1ij} =

m∑
j=1

(αijij − αij−1ij)

where the last equality holds due to the TIN-optimality condition (2.7). This completes the

converse proof of Theorem 2.1.

Remark 2.5. In fact, Theorem 2.1 indicates that when condition (2.7) is satisfied, the

GDoF region D is the polyhedral TIN region P. As a consequence, in this regime we have

D = P = P∗. Recall that P is a convex polyhedron. This also means that when condition

(2.7) holds, time-sharing cannot help enlarge the achievable GDoF region via the TIN scheme.

2.2.3 Constant Gap Characterization

In this section, based on the insight obtained in the GDoF study, we derive a capacity

characterization within a constant gap for the TIN-optimal interference channels identified

in Theorem 2.1. The main result is given in the following theorem.
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Theorem 2.2. In a K-user interference channel, if condition (2.7) holds, then power control

and TIN achieves to within log(3K) bits of the entire capacity region at any finite SNR.

For the converse of Theorem 2.2, applying Lemma 2.1 to the equivalent channel model (2.4),

we obtain the following outer bounds.

Ri ≤ log(1 + Pαii), ∀i ∈ 〈K〉 (2.27)

m∑
j=1

Rij ≤
m∑
j=1

log

(
1 + Pαij ij+1 +

Pαij ij

1 + Pαij−1ij

)
,

∀(i1, i2, ..., im) ∈ ΠK , ∀m ∈ {2, 3, ..., K}. (2.28)

Since P > 1, it follows that

Ri ≤ log(1 + Pαii) ≤ αii logP + 1, ∀i ∈ 〈K〉, (2.29)

m∑
j=1

Rij ≤
m∑
j=1

log

(
1 + Pαij ij+1 +

Pαij ij

1 + Pαij−1ij

)
(2.30)

<
m∑
j=1

log

(
1 + Pαij ij+1 +

Pαij ij

Pαij−1ij

)
(2.31)

=
m∑
j=1

log

(
Pαij−1ij + Pαij ij+1

+αij−1ij + Pαij ij

Pαij−1ij

)
(2.32)

≤
m∑
j=1

log

(
3Pαij ij

Pαij−1ij

)
(2.33)

=
m∑
j=1

[(αijij − αij−1ij) logP + log 3], (2.34)

for all cycles (i1, i2, ..., im) ∈ ΠK , ∀m ∈ {2, 3, ..., K}.

Next, consider the achievability of Theorem 2.2. Assume that the power allocated to Trans-

mitter i ∈ 〈K〉 is P ri , where ri ≤ 0. Through the TIN scheme, user i can achieve the
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rate

Ri,TIN = log

(
1 +

P ri+αii

1 +
∑

j 6=i P
rj+αij

)
. (2.35)

From the proof of Theorem 2.1, we know that under condition (2.7), if di’s satisfy (2.8) and

(2.9), then there exist ri’s such that

ri + αii −max
j 6=i
{0, rj + αij} ≥ di, ∀i, j ∈ 〈K〉, (2.36)

ri ≤ 0, ∀i ∈ 〈K〉. (2.37)

Therefore, we have

Ri,TIN = log

(
1 +

P ri+αii

1 +
∑

j 6=i P
rj+αij

)
≥ log

(
P ri+αii

P 0 +
∑

j 6=i P
rj+αij

)
(2.38)

≥ log

(
P ri+αii

KP ri+αii−di

)
= di logP + log

(
1

K

)
. (2.39)

In other words, when di’s satisfy (2.8) and (2.9), the rates in (2.39) are always achievable by

TIN, ∀i ∈ 〈K〉. Thus it is not hard to get that the achievable rate region by TIN includes

the rate tuples (R1,TIN, R2,TIN, ..., RK,TIN) satisfying

0 ≤ Ri,TIN ≤ max

{
0, αii logP + log

(
1

K

)}
, ∀i ∈ 〈K〉, (2.40)

m∑
j=1

Rij ,TIN ≤ max

{
0,

m∑
j=1

[
(αijij − αij−1ij) logP + log

(
1

K

)]}
(2.41)

for all cycles (i1, i2, ..., im) ∈ ΠK , ∀m ∈ {2, 3, ..., K}.

With both converse and achievability, to complete the proof of Theorem 2.2, we need to

show that each of the rate constraints in (2.40) and (2.41) is within log(3K) bits of its

corresponding outer bound in (2.29) and (2.34), i.e.,

σRi < log(3K), ∀i ∈ 〈K〉, (2.42)
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σ∑m
j=1 Rij

≤ m log(3K), ∀(i1, i2, ..., im) ∈ ΠK , ∀m ∈ {2, 3, ..., K}, (2.43)

where σ(.) denotes the difference between the achievable rate in (2.40) and (2.41) and its

corresponding outer bound in (2.29) and (2.34). For σRi , ∀i ∈ 〈K〉, consider the following

two cases.

• αii logP + log
(

1
K

)
≤ 0: In this case, we obtain

σRi = αii logP + 1 ≤ logK + 1 < log(3K).

• αii logP + log
(

1
K

)
> 0: In this case, we have

σRi =

[
αii logP + 1

]
−
[
αii logP + log

(
1

K

)]
= 1 + logK < log(3K).

Similarly, for σ∑m
j=1Rij

, ∀(i1, i2, ..., im) ∈ ΠK , ∀m ∈ {2, 3, ..., K}, consider the following two

cases.

•
∑m

j=1

[
(αijij − αij−1ij) logP + log

(
1
K

)]
≤ 0: In this case, we obtain

σ∑m
j=1Rij

=
m∑
j=1

[
(αijij − αij−1ij) logP + log 3

]

≤
m∑
j=1

[log 3 + logK] = m log(3K).

•
∑m

j=1

[
(αijij − αij−1ij) logP + log

(
1
K

)]
> 0: In this case, we have

σ∑m
j=1Rij

=
m∑
j=1

[
(αijij − αij−1ij) logP + log 3

]

−
m∑
j=1

[
(αijij − αij−1ij) logP + log

(
1

K

)]
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=
m∑
j=1

[log 3 + logK] = m log(3K).

Combining the above results together, we get (2.42) and (2.43) and complete the proof of

Theorem 2.2.

2.3 Achievable TIN Region for General Interference

Channels

Based on the characterization of the polyhedral TIN region P given in Section 2.2.1, it is

not hard to further characterize the TIN region P∗ for K-user interference channels with

arbitrary channel strength levels. The main result is stated in the following theorem.

Theorem 2.3. In a K-user interference channel, the TIN region P∗ is given by

P∗ =
⋃
S⊆〈K〉

PS , (2.44)

where PS , S ⊆ 〈K〉, is defined as

PS = {(d1, d2, ..., dK) : di = 0,∀i ∈ S, 0 ≤ dj ≤ αjj,∀j ∈ Sc,
m∑
j=1

dij ≤
m∑
j=1

(αijij − αij−1ij),∀(i1, i2, ..., im) ∈ ΠSc},

and ΠSc is the set of all possible cyclic sequences of all subsets of Sc (i.e., the complement

of S in 〈K〉) with cardinality no less than 2.

In words, the TIN region P∗ is the union of 2K polyhedral TIN regions PS , each of which

corresponds to the case where the users in the set S are silent. Note that Pφ is actually

the polyhedral TIN region P . Except for the polyhedral TIN region P , all the other PS
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have zero volume in RK since in each of them the users in S always have zero GDoF value.

Therefore, the TIN region P∗ is almost the same as the polyhedral TIN region P in the sense

that the measure of the difference of these two sets is zero in RK .

2.3.1 Duality of Achievable TIN Region

From Remark 2.2, we have already known that for TIN-optimal interference channels iden-

tified in Theorem 2.1, the GDoF region (which is the polyhedral TIN region P) satisfies

duality. Theorem 2.3 demonstrates that for K-user interference channels with arbitrary

channel strengths, the TIN region P∗ satisfies duality as well. More specifically, for an arbi-

trary K-user interference channel and its reciprocal channel, where the roles of transmitters

and receivers are switched, they always have the same TIN region. This result is quite re-

markable from a theoretical perspective. In previous work, a similar duality relationship is

only established for the symmetric achievable rate [44]. Our result establishes that from the

GDoF perspective, the duality holds for the entire achievable TIN region.

2.3.2 Convexity of Achievable TIN Region

Recall that for TIN-optimal interference channels, the TIN region P∗ = P , which is always

convex without time-sharing. However, according to Theorem 2.3, the TIN region P∗ may

not be convex in general, and if time-sharing is allowed, the achievable region may become

substantially larger. In other words, Theorem 2.3 reveals that when the TIN-optimality

condition (2.7) is violated, time-sharing may help enlarge the achievable GDoF region of

TIN.

Example 2.3. Consider a 2-user interference channel with α11 = α22 = 1, α12 = α21 = 0.6.

Clearly, this channel does not satisfy the TIN-optimality condition (2.7).
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First, if both the users are active, we have the polyhedral TIN region as follows.

P∅ =
{

(d1, d2) : d1 ≥ 0, d2 ≥ 0, d1 + d2 ≤ 0.8
}
,

which is in fact the region P. Next, consider the cases in which one user is made silent and

hence has a GDoF value of 0, and the other user is active.

P{1} =
{

(d1, d2) : d1 = 0, 0 ≤ d2 ≤ 1
}

P{2} =
{

(d1, d2) : d2 = 0, 0 ≤ d1 ≤ 1
}

We also have

P{1,2} =
{

(d1, d2) : d1 = d2 = 0
}

Finally, according to Theorem 2.3, the TIN region P∗ is

P∗ = P∅ ∪ P{1} ∪ P{2} ∪ P{1,2} = P∅ ∪ P{1} ∪ P{2} (2.45)

It is easy to verify that the region P∗ is not convex. Therefore, time-sharing can help enlarge

the TIN region for this 2-user interference channel.

2.4 Extension to MIMO Interference Channels

2.4.1 MIMO Channel Model

Consider K-user MIMO interference channels with Mi and Ni antennas at Transmitter i and

Receiver i, respectively, ∀i ∈ 〈K〉. The channel input-output relationship is described by
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the following equation

Yi(t) =
K∑
j=1

√
PαijHijXj(t) + Zi(t), ∀i ∈ 〈K〉 (2.46)

Here, over channel use t, Xj(t) is the Mj×1 input signal vector of Transmitter j, Yi(t) is the

Ni×1 received signal vector at Receiver i, Hij is the constant Ni×Mj channel matrix between

Transmitter j and Receiver i, and the noise term Zi(t) ∼ CN (0, INi). We assume that the

channel input signal Xj(t) satisfies the unit average power constraint. We also assume that

the entries of the channel matrix Hij are drawn from a continuous and unitarily invariant

distribution [45] to avoid degenerate channel conditions, and the Frobenius norm of Hij is

normalized to unity (i.e., ||Hij|| = 1). The channel strength from Transmitter j to Receiver

i is characterized by
√
Pαij , where P > 1 is a nominal parameter and αij ∈ R+. Following

the notation in the SISO case, we call αij the channel strength level between Transmitter

j and Receiver i. Similar to the SISO case, the codebooks, probability of error, achievable

rate tuples (R1, ..., RK), and the capacity region C are also defined in the standard Shannon

sense. Again, the GDoF region D is defined as

D ,
{

(d1, ..., dK) : dk = lim
P→∞

Rk

logP
, ∀k ∈ 〈K〉, (R1, ..., RK) ∈ C

}
(2.47)

In the following sections of this chapter, we consider MIMO interference channel where all

transmitters are equipped with M antennas and all receivers are equipped with N antennas.

For notation brevity, we denote this channel as (M,N)K MIMO interference channel. Also,

for any K-user interference channel, the modulo-K arithmetic is implicitly used on user

indices.
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2.4.2 TIN-optimality Condition for MIMO Channels

In this section, we consider the K-user MIMO interference channels where all transmitters

and receivers are equipped with the same number of antennas M , i.e., the (M,M)K MIMO

interference channel. We establish the optimality of TIN for such MIMO channels in the

following theorem.

Theorem 2.4. In an (M,M)K MIMO interference channel, if the following condition is

satisfied

αii ≥ max
j:j 6=i
{αji}+ max

k:k 6=i
{αik}, ∀i, j, k ∈ 〈K〉, (2.48)

then power control and TIN achieves the whole GDoF region. The GDoF region is the set

of all K-tuples (d1, d2, ..., dK) satisfying

0 ≤ di ≤Mαii, ∀i ∈ 〈K〉 (2.49)

m∑
j=1

dij ≤M
m∑
j=1

(αijij − αij−1ij), ∀(i1, i2, ..., im) ∈ ΠK , ∀m ∈ {2, 3, ..., K} (2.50)

where the modulo-m arithmetic is implicitly used on user indices, e.g., im = i0.

From Theorem 2.4, one can find that for TIN-optimal Gaussian interference channels identi-

fied in Theorem 2.1, its entire GDoF region scales uniformly with spatial dimensions almost

surely. In other words, for TIN-optimal interference channels, if the number of antennas at

each node is scaled by a common constant factor, then the whole GDoF region scales by the

same factor almost surely, and the TIN scheme remains optimal from the GDoF perspec-

tive. Remarkably, the spatial scale invariance of TIN-optimal interference channels holds

even if only coarse channel strength information (but no phase information) is available at

transmitters.
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Figure 2.4: An (M,N)K MIMO cyclic interference channel, where transmitters and receivers
are equipped with M and N antennas, respectively

In the following, we proceed to prove Theorem 2.4. First, consider the converse. Again, the

individual bound (2.49) comes from the single user capacity. To get the cycle bound (2.50),

we need the following lemma.

Lemma 2.2. In an (M,N)K MIMO cyclic interference channel as shown in Fig. 2.4 where

N
2
< M < 2N , if the condition (2.48) is satisfied, then its sum GDoF is upper bounded by

dΣ ≤

 N
∑K

k=1 αkk − (2N −M)
∑K

k=1 αk−1,k, N ≤M

M
∑K

k=1 αkk − (2M −N)
∑K

k=1 αk−1,k, M < N

Proof of Lemma 2.2: Note that for the partially connected channel given in Fig. 2.4, the

condition (2.48) is reduced to

αkk ≥ αk,k+1 + αk−1,k, ∀k ∈ 〈K〉
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Define

Sk(t) =
√
Pαk−1,kHk−1,kXk(t) + Zk−1(t), ∀k ∈ 〈K〉 (2.51)

Qk(t) = E(Xk(t)X
†
k(t)), ∀k ∈ 〈K〉 (2.52)

H̄k−1,k =
√
Pαk−1,kHk−1,k, ∀k ∈ 〈K〉 (2.53)

For Receiver k ∈ 〈K〉, provide Sk(t) through a genie. From Fano’s inequality, we have

n(Rk − ε) ≤ I(Wk; Y
n
k ,S

n
k)

= h(Yn
k ,S

n
k)− h(Yn

k ,S
n
k |Wk)

= h(Snk) + h(Yn
k |Snk)− h(Snk |Wk)− h(Yn

k |Snk ,Wk)

= h(Snk) + h(Yn
k |Snk)− h(Zn

k−1)− h(Snk+1)

According to the above inequalities, the sum rate RΣ satisfies

nRΣ − nKε ≤
K∑
k=1

[
h(Yn

k |Snk)− h(Zn
k)
]

≤
n∑
t=1

K∑
k=1

[
h(Yk(t)|Sk(t))− h(Zk(t))

]
(2.54)

≤
n∑
t=1

K∑
k=1

[
h(YG

k (t)|SGk (t))− h(Zk(t))
]
, (2.55)

where the last inequality follows from Lemma 1 in [46], and the superscript G denotes that

the corresponding inputs are independent XG
i (t) ∼ CN (0,Qi(t)), ∀i ∈ 〈K〉. In the following,

we omit the time index t for notation brevity. We have

h(YG
k |SGk ) = log

∣∣πeΣYG
k |S

G
k

∣∣ (2.56)
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and

ΣYG
k |S

G
k

= E(YG
k YG†

k )− E(YG
k SG†k )E(SGk SG†k )E(SGk YG†

k ) (2.57)

= I + Pαk,k+1Hk,k+1Qk+1H
†
k,k+1 + PαkkHkkQkH

†
kk

− Pαkk+αk−1,kHkkQkH
†
k−1,k(I + Pαk−1,kHk−1,kQkH

†
k−1,k)

−1Hk−1,kQkH
†
kk (2.58)

= I + Pαk,k+1Hk,k+1Qk+1H
†
k,k+1

+ PαkkHkkQ
1
2
k

[
I−Q

1
2
k H̄†k−1,k(I + H̄k−1,kQkH̄

†
k−1,k)

−1H̄k−1,kQ
1
2
k

]
Q

1
2
kH†kk

= I + Pαk,k+1Hk,k+1Qk+1H
†
k,k+1

+ PαkkHkkQ
1
2
k

(
I + Q

1
2
k H̄†k−1,kH̄k−1,kQ

1
2
k

)−1
Q

1
2
kH†kk (2.59)

≤ I + Pαk,k+1Hk,k+1H
†
k,k+1 + PαkkHkk

(
I + Pαk−1,kH†k−1,kHk−1,k

)−1
H†kk (2.60)

where (2.59) follows from the Woodbury identity, i.e.,

(A + BCD)−1 = A−1 −A−1B(C−1 + DA−1B)−1DA−1

and (2.60) follows the proof of Lemma 1 in [46]. Next, based on similar argument used in

the proof of Theorem 1 in [45], when (2.48) is satisfied we obtain

h(YG
k |SGk ) ≤


[
Nαkk − (2N −M)αk−1,k

]
logP +O(1), N ≤M < 2N[

M(αkk − αk−1,k) + (N −M)αk,k+1

]
logP +O(1), N

2
< M < N

(2.61)

Plugging (2.61) into (2.55), we complete the proof. �

Next, similar to the SISO case, for any cyclic sequence (i1, i2, ..., im) ∈ ΠK , we start with the

fully connected K-user MIMO interference channel, and go through the following steps:

• Eliminate all the users i ∈ 〈K〉\{i1, i2, ..., im} and their desired messages;
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• Remove all the interfering links but the links from Transmitter ij to Receiver ij−1,

∀j ∈ 〈m〉.

We obtain an m-user MIMO cyclic interference channel. The above operations cannot hurt

the rates of the remaining messages. Therefore, the sum GDoF of users i ∈ {i1, i2, ..., im} in

the original K-user MIMO interference channel is upper bounded by that of the remaining

m-user MIMO cyclic interference channel. Applying Lemma 2.2 to the m-user MIMO cyclic

channel and letting M = N , we end up with the desired cycle bounds (2.50).

In the sequel, we proceed to present the achievability proof. At Transmitter k ∈ 〈K〉, for

the channel input signal Xk ∼ CN (0,Qk), let Qk = P rk
M

IM , where rk ≤ 0. At receivers, by

treating all incoming interference as noise, user k ∈ 〈K〉 achieves any rate Rk ∈ R+ such

that

Rk ≤ I(Xk; Yk) = h(Yk)− h(Yk|Xk)

= log

∣∣∣∣∣IM +
1

M

K∑
i=1

Pαki+riHkiH
†
ki

∣∣∣∣∣− log

∣∣∣∣∣IM +
1

M

K∑
i=1,i 6=k

Pαki+riHkiH
†
ki

∣∣∣∣∣+ o(logP )

According to [45,46], we get the achievable GDoF value dk ∈ R+ of user k,

dk ≤M

[
max
i∈〈K〉
{0, αki + ri} − max

i∈〈K〉\{k}
{0, αki + ri}

]
(2.62)

= M max

{
0, αkk + rk − max

i∈〈K〉\{k}
{0, αki + ri}

}
(2.63)

Then following the same achievability argument for the SISO case, we obtain that TIN

achieves the whole GDoF region that is specified by (2.49) and (2.50), and hence complete

the proof of Theorem 2.4.
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2.4.3 Optimality of Zero-forcing and TIN for MIMO Channels

In this section, we consider (M,N)K MIMO interference channels where M 6= N , and show

that in this case there exist non-trivial parameter regimes where a simple scheme of zero-

forcing strong interference and treating the others as noise achieves the sum GDoF. The

main result is the following theorem.

Theorem 2.5. In an (M,N)K MIMO interference channel where (K − 1)M ≤ N < KM ,

if for any permutation (i1, i2, ..., iK) ∈ ΠK, the following condition is satisfied,

αijij ≥ αijij+1
+ αij+1ij , ∀j ∈ 〈K〉 (2.64)

αijij+m ≥ αijij+1
+ αij+1ij+m , ∀j ∈ 〈K〉,∀m ∈ {2, ..., K − 1} (2.65)

then its sum GDoF value is given by

dΣ = M
K∑
k=1

αkk − (KM −N)
K∑
j=1

αijij+1
(2.66)

which is achievable via ZF and TIN.

Example 2.4. Consider the 3-user case of Theorem 2.5. Without loss of generality, let i1 =

1, i2 = 2 and i3 = 3. The optimality conditions (2.64) and (2.65) become α11 ≥ α12 + α21,

α13 ≥ α12 + α23, α22 ≥ α23 + α32, α21 ≥ α23 + α31, α33 ≥ α31 + α13, and α32 ≥ α31 + α12. A

3-user (1, 2)3 SIMO channel satisfying the above conditions is depicted in Fig. 2.5. According

to Theorem 2.5, ZF and TIN achieves the sum GDoF value

dΣ = (α11 + α22 + α33)− (α12 + α23 + α31) = 2.2

To obtain the above result, we first zero-force the stronger interference link (the red links

in Fig. 2.5) for each receiver, which leads to a SISO cyclic interference channel satisfying

the TIN-optimality condition (2.7). Then it is easy to verify that for the remaining cyclic
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channel the TIN scheme achieves the sum GDoF value 2.2.

Tx3

Tx1

Tx2

Rx1

Rx2

Rx3

1

0:7
0:3

0:1
0:8

0:4

0:4
1:2

0:9

Figure 2.5: A 3-user (1, 2)3 SIMO interference channel where ZF and TIN achieves the sum
GDoF

In the following, we proceed to prove Theorem 2.5. For the achievability, we invoke the

following lemma.

Lemma 2.3. In an (M,N)K MIMO cyclic interference channel as shown in Fig. 2.4 where

N
2
< M < 2N , define κ− , min{M,N} and κ+ , max{M,N}. If the following condition

holds,

αkk ≥ αk,k+1 + αk−1,k, ∀k ∈ 〈K〉 (2.67)

then the GDoF region is characterized by

0 ≤ di ≤ κ−αii (2.68)

K∑
i=1

di ≤ κ−
K∑
i=1

αii − (2κ− − κ+)
K∑
i=1

αi−1,i (2.69)

l+s−1∑
i=l

di ≤ κ−
l+s−1∑
i=l

αii − (2κ− − κ+)
l+s−1∑
i=l+1

αi−1,i, ∀l ∈ 〈K〉,∀s ∈ 〈K − 1〉 (2.70)

which is achievable by ZF and TIN.

Proof of Lemma 2.3: The converse follows from the single-user capacity bound and Lemma
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2.2. For the achievability, it is easy to verify that the naive TIN scheme is not optimal any

more. Here first consider the case where N
2
< M < N . Transmitter k ∈ 〈K〉 sends out M

data streams sk,1, ..., sk,M (intended for Receiver k) with linearly independent unit-norm

beamforming vectors vk,1, ..., vk,M and associated power allocations 1
M
P rk,1 , ..., 1

M
P rk,M ,

where rk,m ≤ 0, ∀m ∈ 〈M〉. The factor 1/M guarantees that the unit transmit power

constraint is satisfied. Set the power levels rk,1 = ... = rk,N−M = r̄k and rk,N−M+1 = ... =

rk,M = rk, ∀k ∈ 〈K〉. In the N dimensional space, Receiver k receives 2M > N data

streams. Receiver k first decodes the 2M − N desired data streams {sk,N−M+1, ..., sk,M}

by zero-forcing the 2(N −M) data streams {sk,1, ..., sk,N−M} and {sk+1,1, ..., sk+1,N−M} and

treating the remaining 2M − N interfering data streams {sk+1,N−M+1, ..., sk+1,M} as noise.

The ZF operation is possible since we have (2M − N) + 2(N −M) = N . The achievable

GDoF value d′k of the 2M −N data streams {sk,N−M+1, ..., sk,M} satisfies

0 ≤ d′k ≤ (2M −N) max
{

0, αkk + rk −max{0, αk,k+1 + rk+1}
}

After decoding the 2M −N desired data streams {sk,N−M+1, ..., sk,M}, Receiver k subtracts

them from the received signal and then decodes the remaining desired N −M data streams

{sk,1, ..., sk,N−M} by zero-forcing the M interfering data streams from Transmitter k + 1.

The achievable GDoF value of the data streams {sk,1, ..., sk,N−M} satisfies

0 ≤ d′′k ≤ (N −M)αkk

Adding d′k and d′′k together, we obtain the achievable GDoF value of user k. To complete

the achievability proof, we construct the potential graph for d′k and then apply the potential

theorem following Section 2.2.1. The details are omitted to avoid repetition. The achiev-

ability proof for N ≤ M < 2N follows similarly. The only difference is that when M > N ,

ZF precoding or beamforming at transmitters is needed. �
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To achieve the sum GDoF value in (2.66), Receiver ij first zero-forces the interfering links

from Transmitter ij+m, ∀m ∈ {2, 3, ..., K − 1}, leading to an (M,N − (K − 2)M)K MIMO

cyclic interference channel. For the remaining links, it is easy to verify that αijij ≥ αijij+1
+

αij−1ij . Applying Lemma 2.3 to the remaining cyclic channel, we complete the achievability

proof.

Next, consider the converse of Theorem 2.5, which is a a non-trivial generalization of [47].

Without loss of generality, assume that ij = j, ∀j ∈ 〈K〉. So the conditions in Theorem 2.5

become

αjj ≥ αj,j+1 + αj+1,j, ∀j ∈ 〈K〉 (2.71)

αj,j+m ≥ αj,j+1 + αj+1,j+m, ∀j ∈ 〈K〉,∀m ∈ {2, ...., K − 1} (2.72)

Let Si,A =
∑

j∈A

√
PαijHijXj + Zi, where A is a subset of user indexes, i.e., A ⊆ 〈K〉. For

Receiver 1, provide S2,〈K〉\{2} through a genie. Start with Fano’s inequality.

n(R1 − ε) ≤ I(W1; Yn
1 ,S

n
2,〈K〉\{2})

= h(Yn
1 ,S

n
2,〈K〉\{2})− h(Yn

1 ,S
n
2,〈K〉\{2}|W1)

= h(Yn
1 |Sn2,〈K〉\{2}) + h(Sn2,〈K〉\{2})− h(Sn1,〈K〉\{1},S

n
2,〈K〉\{1,2})

= h(Yn
1 |Sn2,〈K〉\{2}) + h(Sn2,〈K〉\{2})− h(Sn1,〈K〉\{1})− h(Sn2,〈K〉\{1,2}|Sn1,〈K〉\{1})

= h(Yn
1 |Sn2,〈K〉\{2}) + h(Sn2,〈K〉\{2})− h(Sn1,〈K〉\{1}) + n o(logP )

The last step holds due to N ≥ (K − 1)M and α1,1+m ≥ α2,1+m, ∀m ∈ {2, 3, ..., K − 1} (see

(2.72)). For all the other Receivers i ∈ {2, 3, ..., K}, provide Si+1,〈K〉\{i+1} through a genie

and conduct similar manipulations. Adding all the obtained terms together, we get

n(
K∑
k=1

Rk −Kε) ≤
K∑
i=1

[
h(Yn

i |Sni+1,〈K〉\{i+1}) + n o(logP )
]

(2.73)
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For each term in the right hand side of (2.73), we have

h(Yn
i |Sni+1,〈K〉\{i+1})

= h(Yn
i |Sni+1,1, ...,S

n
i+1,i,S

n
i+1,i+2, ...,S

n
i+1,K) + n o(logP ) (2.74)

≤ nh(YG
i |SGi+1,1, ...,S

G
i+1,i,S

G
i+1,i+2, ...,S

G
i+1,K) + n o(logP ) (2.75)

≤ n

(
M

K∑
j=1,j 6=i+1

(αij − αi+1,j) + [N − (K − 1)M ]αi,i+1

)
logP + n o(logP ) (2.76)

where (2.74) holds since N ≥ (K − 1)M and Receiver i + 1 has enough spatial space to

recover the signals from the other transmitters individually within bounded variance noise

distortion, (2.76) follows from the Woodbury matrix identity, the proof of Lemma 1 in [46],

the proof of Theorem 1 in [45], and the conditions (2.71)-(2.72). Combining all the above

results together, we establish the upper bound for the sum rate of all users, which leads to

the desired sum GDoF outer bound.

Remark 2.6. For (1, N)N+1 (N ≥ 2) SIMO interference channels, in [48] it has been shown

that in the fully symmetric case, ZF and TIN is always suboptimal in terms of sum GDoF.

Interestingly, Theorem 2.5 illustrates that when the (1, N)N+1 (N ≥ 2) SIMO interference

channel is asymmetric (i.e., (2.65) indicates that for each user some interfering link is much

weaker than others), under certain conditions ZF and TIN achieves the sum GDoF value.

This is also noted by [47] for the case of N=2 with cyclically symmetric channel parameters.

2.5 Summary

In this chapter, for K-user fully asymmetric interference channels, we identify a broad TIN-

optimality condition (2.7) under which power control and TIN achieves the entire GDoF

region and approaches the whole channel capacity region within a constant gap. In words,

the TIN-optimality condition is for each user, the desired signal strength is no weaker than
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the sum of the strengths of the strongest interference caused by the user and the strongest

interference suffered by the user (with all signal strengths measured in dB scale). To obtain

this result, the key is the GDoF characterization. Remarkably, the achievability (i.e., the

polyhedral TIN region) is obtained by essentially a Fourier-Motzkin elimination of the power

control variables (accomplished by applying the potential theorem in [43]). Note that this

approach is particularly useful because while the achievable rate regions of the TIN scheme

have been investigated for decades due to their obvious practical significance, the main com-

plication has been the coupling of achievable rates and the transmit powers, which requires

joint optimization over both. De-coupling the rate (GDoF) region from power allocation

variables allows direct rate optimizations, seemingly ignoring power control variables while

in fact automatically optimizing over those as well. Moreover, we fully characterize the

achievable TIN region for interference channels with arbitrary channel strengths and estab-

lish the duality of the TIN region as a byproduct. We also extend the optimality of TIN

to MIMO interference channels where all transmitters and receivers have the same number

of antennas. For MIMO networks where transmitters and receivers are with different an-

tenna numbers, we show that there exist non-trivial parameter regimes where ZF and TIN

achieves the sum GDoF value. Finally, note that due to the aforementioned Fourier-Motzkin

elimination of the power control variables in the achievability proof, it is still unclear how to

obtain the optimal power allocation for given GDoF tuples. This GDoF-based power control

problem will be discussed in Chapter 4 in details.
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Chapter 3

Optimality of TIN for General

Message Sets

In Chapter 2, we demonstrate the optimality of TIN for K-user Gaussian interference chan-

nels. In this chapter, we extend the result of Chapter 2 and explore the sum-rate optimality

of TIN when the message set is expanded to include an independent message from each

transmitter to each receiver, i.e., the X message setting [49, 50]. Related previous works on

the X setting have primarily focused on the case with 2 transmitters and 2 receivers, i.e.,

2 × 2 X channels [32, 51]. In [32], the authors characterize the sum GDoF for symmetric

X channels and identify sufficient conditions for TIN to achieve exact sum capacity in the

general asymmetric case. In [51], the authors characterize the capacity for asymmetric X

channels within a constant gap subject to an outage set. The main contribution of this chap-

ter is to show that, for the K-user TIN-optimal interference channels identified in Theorem

2.1, even if the message set is increased to the X message setting, operating as the original

interference channel and treating interference as noise at each receiver is still optimal for the

sum capacity up to a constant gap. We also extend the optimality result of TIN to general

X channels with arbitrary numbers of transmitters and receivers.

44



Chapter 3 is organized as follows. In Section 3.1, we describe the system model for X

channels. In Section 3.2 and 3.3, we demonstrate the optimality of TIN for K×K X channels

and general X channels with arbitrary numbers of transmitters and receivers, respectively.

We summarize this chapter in Section 3.4.

3.1 Channel Model

Consider the wireless channel with M transmitters and N receivers,

Yk(t) =
M∑
i=1

h̃kiX̃i(t) + Zk(t), ∀k ∈ 〈N〉 (3.1)

Similar to the K-user interference channel presented in Section 2.1, in (3.1) h̃ki is the com-

plex channel gain value from Transmitter i to Receiver k. X̃i(t), Yk(t) and Zk(t) are the

transmitted symbol of Transmitter i, the received signal of Receiver k, and the AWGN with

zero mean and unit variance seen by Receiver k, respectively, at each time index t. Again,

all the symbols are complex, and Transmitter i ∈ 〈M〉 is subject to the power constraint

E[|X̃i(t)|2] ≤ Pi.

Following similar approaches in Section 2.1, we translate the original channel model (3.1) to

the following form,

Yk(t) =
M∑
i=1

hkiXi(t) + Zk(t) =
M∑
i=1

√
PαkiejθkiXi(t) + Zk(t), ∀k ∈ 〈N〉 (3.2)

Recall that Xi(t) = X̃i(t)/
√
Pi is the normalized transmit symbol of Transmitter i, subject

to the unit power constraint.

In the K-user interference channel where M = N = K, each transmitter intends to send

one independent message to its corresponding receiver. Because in this chapter we wish
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to prove the negative result that additional messages do not add to the sum GDoF in the

TIN-optimal network identified in Theorem 2.1, the strongest result corresponds to the case

where messages from every transmitter to every receiver are included. Therefore, we will only

consider the X channel setting in the following. In the general M×N X channel, Transmitter

i intends to send messageWki to Receiver k, and theMN messages are mutually independent,

∀i ∈ 〈M〉,∀k ∈ 〈N〉. The size of the message set {Wki} is denoted by |Wki|. For codewords

spanning n channel uses, the rates Rki = log |Wki|
n

are achievable if the probability of error

of all messages can be made arbitrarily small simultaneously by choosing an appropriately

large n. The channel capacity region C is the closure of the set of all achievable rate tuples.

The sum channel capacity is defined as

CΣ,X , max

{ M∑
i=1

N∑
k=1

Rki : (R11, R12, ..., RNM) ∈ C
}

(3.3)

The GDoF region of the X channel in (3.2) is given by

D ,
{

(d11, d12, ..., dNM) : dki = lim
P→∞

Rki

logP
, ∀i ∈ 〈M〉,∀k ∈ 〈N〉,

(R11, R12, ..., RNM) ∈ C
}
, (3.4)

and its sum GDoF value is

dΣ,X , max

{ M∑
i=1

N∑
k=1

dki : (d11, d12, ..., dNM) ∈ D
}

(3.5)

3.2 TIN-optimality Condition for K ×K X Channels

The main result of this section is the following theorem.
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Theorem 3.1. In a K-user interference channel, when the following condition is satisfied,

αii ≥ max
j:j 6=i
{αji}+ max

k:k 6=i
{αik}, ∀i, j, k ∈ 〈K〉 (3.6)

then even if the message set is increased to the X channel setting, operating the new channel

as the original interference channel and treating interference as noise at each receiver still

achieves the sum GDoF. Furthermore, the same scheme is also optimal for the sum channel

capacity up to a constant gap of no more than K log[K(K + 1)] bits.

The above theorem shows that for TIN-optimal interference channels identified in Theorem

2.1, expanding message set does not increase sum GDoF. For this theorem, the achievability

argument follows directly from Chapter 2 because it is based only on operating the target

network as an interference channel and treating interference as noise. The main difficulty lies

in deriving tight information theoretical outer bounds. Recall that for interference channels,

the converse is based on reducing the channel to a cyclic network. Each such reduction

produces an outer bound and collectively these outer bounds suffice for the GDoF charac-

terization in the setting of interference channels. However, this is no longer true when the

message set is expanded. While one can similarly obtain outer bounds on the sum rates

of subsets of messages by considering all cyclic subnetworks, it is easy to verify that these

bounds do not suffice for our purpose.

Example 3.1. Consider the 3-user TIN-optimal interference channel in Example 2.1, where

each transmitter intends to send an independent message to its corresponding receiver. There

are 3 messages in this setting. It is not hard to verify that the sum GDoF value of this

interference channel is

dΣ,IC = d1 + d2 + d3 = 2.5

For this channel, we expand the message set to the X channel setting as shown in Fig. 3.1,
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Figure 3.1: A 3× 3 X channel with 9 messages

where each transmitter intends to send an independent message to each receiver. There are

totally 9 messages in this X channel. Theorem 3.1 claims that for this 3× 3 X channel, the

sum GDoF value is still

dΣ,X =
3∑
i=1

3∑
k=1

dki = 2.5

which can be achieved by setting Wki = φ (i 6= k, ∀i, k ∈ {1, 2, 3}), sending only {W11,W22,W33}

through the channel and treating interference as noise at each receiver.

3.2.1 Proof for the GDoF Result

To prove the GDoF results in Theorem 3.1, we go through the following two steps. First, we

show that when condition (3.6) is satisfied, for all individual and cycle bounds of the TIN-

optimal K-user interference channel (see Theorem 2.1), if each di (∀i ∈ 〈K〉) is replaced

by d̂i =
∑K

j=1 dij, these bounds still hold for its counterpart X channel. Next, based on

the first step, we prove that under condition (3.6), the K-user interference channel and its

counterpart X channel have the same sum GDoF. Therefore, according to Theorem 2.1, we

establish that power control and TIN achieves the sum GDoF of the K×K X channel when

condition (3.6) holds.
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Let’s start with the first step. For the individual bounds in the K-user TIN-optimal inter-

ference channel

di ≤ αii, ∀i ∈ 〈K〉, (3.7)

in its counterpart X channel, the corresponding bound comes from the MAC consisting of

all transmitters and Receiver i,

K∑
j=1

Rij ≤ log(1 +
K∑
j=1

Pαij) (3.8)

According to the condition (3.6), in the GDoF sense we obtain

d̂i =
K∑
j=1

dij ≤ αii (3.9)

For any cycle bound in the interference channel

m∑
j=1

dij ≤
m∑
j=1

(αijij − αij−1ij), ∀(i1, i2, ..., im) ∈ ΠK , ∀m ∈ {2, 3, ..., K}, (3.10)

consider the subnetwork consisting of all transmitters and Receivers {i1, i2, ..., im}. Eliminate

all other receivers and their desired messages, which does not hurt the rates of the remaining

messages. For such a K×m X channel, defineW , {Wijik},W∗ij , {Wiji1 ,Wiji2 , ...,WijiK},

W†ik , {Wi1ik ,Wi2ik , ...,Wimik}, and Wc
S ,W\WS , where ∀j ∈ 〈m〉, ∀k ∈ 〈K〉, and S is any

subset of message indices. In words, the sets W , W∗ij , and W†ik represent all the messages

delivered in this K × m X channel, all the messages intended to Receiver ij, and all the

messages coming from Transmitter ik, respectively, and Wc
S is the complement of WS in

W . For example, when j, k ∈ {1, 2} and S = {i1i1, i1i2}, then WS = {Wi1i1 ,Wi1i2} and

Wc
S = {Wi2i1 ,Wi2i2}. Modulo-m arithmetic is used on receiver indices, e.g., i0 = im. Also
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define

Sij(t) = hij−1ijXij(t) + Zij−1
(t), ∀j ∈ 〈m〉 (3.11)

For Receiver i1, provide Sni1 , Wc
i2i2
\W∗i1 through a genie. From Fano’s inequality, we have

n(
K∑
k=1

Ri1ik − ε)

≤ I(W∗i1 ;Y n
i1
, Sni1 ,W

c
i2i2
\W∗i1) (3.12)

= I(W∗i1 ;Y n
i1
, Sni1|W

c
i2i2
\W∗i1) (3.13)

= I(W∗i1 ;Sni1|W
c
i2i2
\W∗i1) + I(W∗i1 ;Y n

i1
|Sni1 ,W

c
i2i2
\W∗i1) (3.14)

= h(Sni1|W
c
i2i2
\W∗i1)− h(Sni1|W

c
i2i2

) + h(Y n
i1
|Sni1 ,W

c
i2i2
\W∗i1)− h(Y n

i1
|Sni1 ,W

c
i2i2

) (3.15)

≤ h(Sni1|W
†
i1
\Wi1i1)− h(Zn

i0
) + h(Y n

i1
|Sni1)− h(Sni2|W

†
i2
\Wi2i2) (3.16)

where (3.13) follows because all messages are mutually independent, and in (3.16) we use

the fact that dropping conditioning does not reduce entropy.

Similarly, for Receivers ij, ∀j ∈ {2, 3, ...,m− 1}, provide Snij , W
c
ij+1ij+1

\W∗ij through a genie.

We get

n(
K∑
k=1

Rijik − ε) ≤ h(Snij |W
†
ij
\Wijij)− h(Zn

ij−1
) + h(Y n

ij
|Snij)− h(Snij+1

|W†ij+1
\Wij+1ij+1

)

(3.17)

Finally, for Receiver im, we provide Snim , Wc
i1i1
\W∗im through a genie and obtain

n(
K∑
k=1

Rimik − ε) ≤ h(Snim |W
†
im
\Wimim)− h(Zn

im−1
) + h(Y n

im|S
n
im)− h(Sni1|W

†
i1
\Wi1i1) (3.18)
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Taking the sum of n(
∑K

k=1Rijik − ε) for all j ∈ 〈m〉, we have

n(
m∑
j=1

K∑
k=1

Rijik −mε) ≤
m∑
j=1

[h(Y n
ij
|Snij)− h(Zn

ij
)] (3.19)

≤
n∑
t=1

m∑
j=1

[h(Yij(t)|Sij(t))− h(Zij(t))] (3.20)

where (3.20) follows the chain rule and the fact that dropping conditioning does not reduce

entropy. Using the fact that the circularly symmetric complex Gaussian distribution max-

imizes conditional differential entropy for a given covariance constraint and the condition

(3.6), we can obtain the following desired outer bound in the GDoF sense after some simple

manipulations,

m∑
j=1

d̂ij =
m∑
j=1

K∑
k=1

dijik ≤
m∑
j=1

(αijij − αij−1ij) (3.21)

Now we proceed to the second step to prove that under condition (3.6), the K-user interfer-

ence channel and its counterpart K×K X channel have the same sum GDoF. According to

Theorem 2.1, for the K-user interference channel, under condition (3.6), to obtain its sum

GDoF value dΣ,IC , we need to solve the following linear programming (LP) problem

max
K∑
i=1

di (3.22)

s.t. 0 ≤ di ≤ αii ∀i ∈ 〈K〉 (3.23)

m∑
j=1

dij ≤
m∑
j=1

(αijij − αij−1ij), ∀(i1, i2, ..., im) ∈ ΠK , ∀m ∈ {2, 3, ..., K} (3.24)

To get the sum GDoF of its counterpart X channel dΣ,X , we need to consider a similar

LP problem. For this LP problem with the objective function
∑K

i=1 d̂i, from the first step,

we know that at least it needs to follow two similar constraints to (3.23) and (3.24), where

each di is replaced by d̂i. Thus we have dΣ,IC ≥ dΣ,X . Obviously, the sum GDoF of the
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K-user interference channel must be no larger than that of its counterpart X channel, i.e.,

dΣ,IC ≤ dΣ,X . Therefore, we establish that under condition (3.6), the K-user interference

channel and its counterpart X channel have the same sum GDoF and complete the proof.

3.2.2 Proof for the Constant Gap Result

Based on the insight obtained in the proof of the GDoF results, for TIN-optimal K ×K X

channels, we can further characterize the sum channel capacity to within a constant gap of

no larger than K log[K(K + 1)] bits. The achievability is the same as that of Theorem 2.2.

By operating the K ×K X channel as an interference channel, where Transmitter i sends

one independent message Wi to Receiver i (∀i ∈ 〈K〉), power control and TIN achieves the

rate tuples (R1,TIN, R2,TIN, ..., RK,TIN) satisfying

0 ≤ Ri,TIN ≤ max

{
0, αii logP + log(

1

K
)

}
, ∀i ∈ 〈K〉, (3.25)

m∑
j=1

Rij ,TIN ≤ max

{
0,

m∑
j=1

[(αijij − αij−1ij) logP + log(
1

K
)]

}
, (3.26)

for all cyclic sequences (i1, i2, ..., im) ∈ ΠK , ∀m ∈ {2, 3, ..., K}.

Next, consider the converse. Start with the individual bounds,

R̂i =
K∑
j=1

Rij ≤ log(1 +
K∑
j=1

Pαij) ≤ log[(K + 1)Pαii ] (3.27)

= αii logP + log(K + 1) (3.28)

For the cycle bounds, from (3.20) it is easy to obtain

m∑
j=1

R̂ij ≤
m∑
j=1

log

[
(K + 1)Pαij ij

Pαij−1ij

]
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=
m∑
j=1

[
(αijij − αij−1ij) logP + log(K + 1)

]
(3.29)

for all cyclic sequences (i1, i2, ..., im) ∈ ΠK , ∀m ∈ {2, 3, ..., K}.

Denote the difference between the achievable rate in (3.25) and the outer bound in (3.28) as

δR̂i . Compare (3.25) with (3.28). We have the following two cases.

• αii logP + log( 1
K

) > 0: In this case, we obtain

δR̂i = [αii logP + log(K + 1)]−max

{
0, αii logP + log(

1

K
)

}
= [αii logP + log(K + 1)]−

[
αii logP + log(

1

K
)

]
= log[K(K + 1)]

• αii logP + log( 1
K

) ≤ 0: In this case, we get

δR̂i = [αii logP + log(K + 1)]−max

{
0, αii logP + log(

1

K
)

}
= αii logP + log(K + 1)

≤ logK + log(K + 1)

= log[K(K + 1)]

In both cases, we have

δR̂i ≤ log[K(K + 1)], ∀i ∈ 〈K〉 (3.30)

Similarly, denote the difference between the achievable rate in (3.26) and the outer bound
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in (3.29) as δ∑m
j=1 R̂ij

. Comparing (3.26) with (3.29), we always have

δ∑m
j=1 R̂ij

≤ m log[K(K + 1)], ∀(i1, i2, ..., im) ∈ ΠK ,∀m ∈ {2, 3, ..., K} (3.31)

Therefore, we characterize the sum channel capacity to within a constant gap of no more

than K log[K(K + 1)] bits.

3.3 TIN-optimality Condition for General M × N X

Channels

While the K-user interference channel is naturally associated with a K×K X channel, the X

channel setting allows for unequal numbers of transmitters and receivers. One may wonder

whether a generalization of the TIN-optimality result is possible for M × N X channels

where M 6= N . The following theorem provides such a generalization.

Theorem 3.2. In an M ×N X channel, if there exist two permutations ΠT and ΠR for the

transmitter and receiver indices, respectively, such that

αΠRi ΠTi
≥ max

j:j 6=i
{αΠRj ΠTi

}+ max
k:k 6=i
{αΠRi ΠTk

}, ∀i ∈ 〈κ〉,∀j ∈ 〈N〉,∀k ∈ 〈M〉, (3.32)

where κ , min{M,N}, ΠT
i (ΠR

i ) denotes the i-th element in the permutation of transmitters

(receivers) ΠT (ΠR), then operating the channel as a κ-user interference channel, where

Transmitter ΠT
i intends to deliver an independent message to Receiver ΠR

i , ∀i ∈ 〈κ〉, and

treating interference as noise at each receiver achieves the sum GDoF.

Example 3.2. In the 3-user TIN-optimal interference channel in Example 2.1, add another

transmitter (i.e., Transmitter 4) as depicted in Fig. 3.2. The value on each link denotes

its channel strength level. Consider the X message setting. In this 4 × 3 X channel, the
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Figure 3.2: A 4× 3 X channel with 12 messages

number of the messages increases to 12. It’s easy to verify that the condition (3.32) holds.

According to Theorem 3.2, for this X channel and its reciprocal channel, the TIN scheme

used in Example 3.1 is optimal to achieve the sum GDoF value, which remains as 2.5.

3.3.1 Proof Sketch of Theorem 3.2

In this section, we sketch the proof for Theorem 3.2. Without loss of generality, we assume

that the two permutations ΠT and ΠR satisfying the condition (3.32) are ΠT = 〈M〉 and

ΠR = 〈N〉. In other words, the following condition is satisfied,

αii ≥ max
j:j 6=i
{αji}+ max

k:k 6=i
{αik}, ∀i ∈ 〈κ〉,∀j ∈ 〈N〉,∀k ∈ 〈M〉 (3.33)

It is not hard to verify that when M ≥ N , by defining d̂i =
∑M

j=1 dij (∀i ∈ 〈N〉) and following

the same argument as in the proof of Theorem 3.1, we can complete the proof. Therefore,

in the following we only consider the case where κ = M < N .

When κ = M < N , the key step is to show that when (3.33) is satisfied, for each individual

bound and cycle bound in the M -user interference channel consisting of transmitters 〈M〉
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and receivers 〈M〉, if each di is replaced by d̄i =
∑N

j=1 dji, the resulting bounds still hold in

the M ×N X channel. Then based on the same argument of Theorem 3.1, we can complete

the proof.

For the individual bounds, consider the degraded BC comprised of Transmitter i ∈ 〈M〉 and

all receivers, eliminating all the other transmitters and their associated messages. According

to (3.33), Receiver i is the strongest receiver, which can decode all the messages coming from

Transmitter i. Thus in the GDoF sense, we have

d̄i =
N∑
j=1

dji ≤ αii, ∀i ∈ 〈M〉 (3.34)

The challenge comes from recovering the cycle bounds in the X setting, i.e., after replacing

di with d̄i, all the cycle bounds still hold. To help understand the main idea of the proof, in

the sequel we present an intuitive proof sketch for the following cycle bound in a 2 × 4 X

channel where (3.33) is satisfied,

d̄1 + d̄2 ≤ (α11 + α22)− (α12 + α21) (3.35)

An intuitive sketch of proof for the cycle bound (3.35): In the 2× 4 X channel, assume that

α31 ≥ α41 and α42 ≥ α32. The proof for all the other cases follows similarly. Define the

message set W̃ , {Wki}, ∀i ∈ {1, 2}, ∀k ∈ {1, 2, 3, 4}. Also define

S1(t) = h21X1(t) + Z2(t)

S2(t) = h12X2(t) + Z1(t)

For Receiver 1, provide Sn1 and W21 through a genie. From Fano’s inequality, we get

n(R11 +R12 − ε)
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≤ I(W11,W12;Y n
1 , S

n
1 ,W21) (3.36)

= I(W11,W12;Y n
1 , S

n
1 |W21) (3.37)

= h(Y n
1 , S

n
1 |W21)− h(Y n

1 , S
n
1 |W21,W11,W12) (3.38)

= h(Sn1 |W21) + h(Y n
1 |Sn1 ,W21)− h(Y n

1 |W21,W11,W12)− h(Sn1 |Y n
1 ,W21,W11,W12) (3.39)

≤ h(Sn1 |W21) + h(Y n
1 |Sn1 )− h(Y n

1 |W21,W11,W12)

− h(Sn1 |Y n
1 ,W21,W11,W12,W31,W41) (3.40)

= h(Sn1 |W21) + h(Y n
1 |Sn1 )− h(Y n

1 |W21,W11,W12)

− h(Sn1 |Y n
1 ,W21,W11,W12,W31,W41, X

n
1 ) (3.41)

= h(Sn1 |W21) + h(Y n
1 |Sn1 )− h(Y n

1 |W21,W11,W12)− h(Zn
2 ) (3.42)

≤ h(Sn1 |W21) + h(Y n
1 |Sn1 )− h(Y n

3 |W̃c
{31,41})− h(Sn2 |W12)− h(Zn

2 )− n o(log(P )) (3.43)

where W̃c
{31,41} denotes the complement of {W31,W41} in W̃ , (3.37) holds since W21 is in-

dependent of W11 and W12, (3.40) follows that dropping conditioning (in the second term)

does not reduce entropy and adding conditioning (in the last term) does not increase en-

tropy, and (3.41) holds since we can reconstruct Xn
1 from W11, W21, W31 and W41. The last

inequality in (3.43) is the key step of the proof. Intuitively, it is due to the fact that out of

the α11 log(P ) bit levels of Y1 that are above the noise floor, S2 is contained in the lowest

α12 log(P ) bit levels of Y1, whereas only the top α31 log(P ) bit levels are seen by Receiver

3. Since α11 ≥ α12 + α31, these bit levels do not overlap, i.e., they can be recovered from

Y1 within a bounded entropy gap. As shown later in Section 3.3.2 and 3.3.3, this argument

becomes evident in a deterministic approach.

The following proof is straightforward. Consider the degraded BC comprised of Transmitter

1 and Receiver 3 and 4. Since α31 ≥ α41, we obtain

n(R31 +R41 − ε) ≤I(W31,W41;Y n
3 |W̃c

{31,41}) = h(Y n
3 |W̃c

{31,41})− h(Zn
3 ) (3.44)
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Adding (3.43) and (3.44) together, we have

n(R11 +R12 +R31 +R41 − 2ε) ≤ h(Sn1 |W21) + h(Y n
1 |Sn1 )− h(Sn2 |W12)− n o(log(P ))

(3.45)

Similarly, we have

n(R21 +R22 +R32 +R42 − 2ε) ≤ h(Sn2 |W12) + h(Y n
2 |Sn2 )− h(Sn1 |W21)− n o(log(P ))

(3.46)

Finally, combining (3.45) and (3.46) together, we establish the desired outer bound,

n(RΣ − 4ε) ≤ h(Y n
1 |Sn1 ) + h(Y n

2 |Sn2 )− n o(log(P ))

⇒ d̄1 + d̄2 ≤ (α11 + α22)− (α12 + α21)

In the sequel, in order to make the intuitive justification of the key step (3.43) rigorous, we

adopt a deterministic approach [32,51–56]. In Section 3.3.2, we first present a deterministic

channel model which is mainly inspired by the Avestimehr-Diggavi-Tse (ADT) linear deter-

ministic model and the truncated deterministic model in [53]. Next, we show that the sum

capacity of the original complex Gaussian X channel is upper bounded by the sum capacity

of this deterministic channel up to a constant gap. In Section 3.3.3, by upper bounding this

deterministic channel, we obtain the desired converse for the original Gaussian case. Such a

deterministic approach has been shown instrumental to provide approximate capacity char-

acterization for various Gaussian networks, e.g., 2-user interference channels [54], K-user

interference channels [55], and K ×K ×K interference networks [56].
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3.3.2 Deterministic Channel Model

In the original complex Gaussian M ×N X channel, denote

Xk(t) = XR
k (t) + jXI

k(t)

hik =
√
Pαikejθik = hRik + jhIik

The channel input-output relationship can be rewritten as

Yi(t) =
M∑
k=1

hikXk(t) + Zi(t) (3.47)

=
M∑
k=1

[(
hRikX

R
k (t)− hIikXI

k(t)
)

+ j
(
hIikX

R
k (t) + hRikX

I
k(t)

)]
+ Zi(t), ∀i ∈ 〈N〉 (3.48)

where E[|Xi(t)|2] ≤ 1 and Zi(t) ∼ CN (0, 1). To facilitate the deterministic approach, by

scaling the output, we may set

E[|Xi(t)|2] ≤ 2, Zi(t) ∼ CN (0, 2),

which does not affect the channel capacity of the Gaussian model (3.48).

In this dissertation, we consider the following deterministic model,

Ŷi(t) =
M∑
k=1

[(
bsign(X̄R

k (t))hRik

mRik∑
b=1

X̄R
k,b(t)2

−bc − bsign(X̄I
k(t))hIik

mIik∑
b=1

X̄I
k,b(t)2

−bc
)

+ j
(
bsign(X̄R

k (t))hIik

mIik∑
b=1

X̄R
k,b(t)2

−bc+ bsign(X̄I
k(t))hRik

mRik∑
b=1

X̄I
k,b(t)2

−bc
)]
, ∀i ∈ 〈N〉

(3.49)

where bxc is the truncation function which maps x to its integer part, mR
ik , blog |hRik|c,

mI
ik , blog |hIik|c, the real and imaginary parts of the input signal X̄i(t) = X̄R

i (t) + jX̄I
i (t)

both satisfy the unit peak power constraint, and X̄R
i,b(t) (X̄I

i,b(t)) is the b-th bit in the frac-
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tional part of |X̄R
i (t)| (|X̄I

i,b(t)|) in the binary expansion.1 In the following, to distinguish

the deterministic model in (3.49) from others, we call it the truncated binary-expansion de-

terministic model. The following lemma shows that the sum capacity of the Gaussian X

channel in (3.48) is upper bounded by that of the truncated binary-expansion deterministic

model in (3.49) up to a constant gap.

Lemma 3.1. The sum capacity of the complex Gaussian M×N X channel is upper bounded

by the sum capacity of its corresponding truncated binary-expansion deterministic model up

to a constant gap.

Proof of Lemma 3.1: The proof mainly follows from [54]. We start with a general complex

Gaussian M×N X channel, and convert it to the corresponding truncated binary-expansion

deterministic channel step-by-step. In each step, we show that only a loss of constant bits

is introduced. For the sake of simplicity, define W?
i , {Wi1,Wi2, ...,WiM}. The time index

t is suppressed if no confusion would be caused.

• Step 1: Average power constraint to peak power constraint. Recall that in the

original complex Gaussian channels, we scale the output and set

E[|Xi(t)|2] ≤ 2, Zi(t) ∼ CN (0, 2)

For each input Xi = XR
i + jXI

i , we truncate both the real and imaginary parts to

satisfy the peak power constraint of 1. Define the part of input XR
i that exceeds the

1We can write the real-valued signal |X̄R
i | (|X̄R

i | ≤ 1) in terms of its binary expansion as

|X̄R
i | =

∞∑
b=1

X̄R
i,b2
−b = 0.X̄R

i,1X̄
R
i,2X̄

R
i,3...
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unit peak power constraint as

X̃R
i = bXR

i c = sign(XR
i )

0∑
b=−∞

XR
i,b2
−b

and the remaining signal as

X̄R
i = XR

i − X̃R
i = sign(XR

i )
∞∑
b=1

XR
i,b2
−b

For the imaginary part of the input, we have the similar definitions for XI
i with I

replacing R. So X̄R
i and X̄I

i satisfy the unit peak power constraint. Also define

X̄i = X̄R
i + jX̄I

i (3.50)

X̃i = X̃R
i + jX̃I

i (3.51)

Let Ȳi be the channel output at Receiver i due to the truncated input X̄i, and Ỹi be

the difference between Yi and Ȳi. For Receiver i ∈ 〈N〉, we have

I(W?
i ;Y n

i ) ≤ I(W?
i ; Ȳ n

i , Ỹ
n
i ) (3.52)

= I(W?
i ; Ȳ n

i ) + I(W?
i ; Ỹ n

i |Ȳ n
i ) (3.53)

≤ I(W?
i ; Ȳ n

i ) +H(Ỹ n
i ) (3.54)

≤ I(W?
i ; Ȳ n

i ) +
M∑
k=1

H(X̃n
k ) (3.55)

≤ I(W?
i ; Ȳ n

i ) + n× constant (3.56)

where the last inequality follows from Lemma 6 in [54].

• Step 2: Truncate signals at noise level and remove noise. Recall blog |hRik|c = mR
ik
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and blog |hIik|c = mI
ik. We have

Ŷi =
M∑
k=1

[
(bsign(XR

k )hRik

mRik∑
b=1

XR
k,b2

−bc − bsign(XI
k)hIik

mIik∑
b=1

XI
k,b2

−bc)

+ j(bsign(XR
k )hIik

mIik∑
b=1

XR
k,b2

−bc+ bsign(XI
k)hRik

mRik∑
b=1

XI
k,b2

−bc)
]

(3.57)

Next, let εi be the difference between Ȳi and Ŷi, i.e.,

εi =Ȳi − Ŷi

=
M∑
k=1

{[
sign(XR

k )hRik

∞∑
b=mRik+1

XR
k,b2

−b − sign(XI
k)hIik

∞∑
b=mIik+1

XI
k,b2

−b

+ frac(sign(XR
k )hRik

mRik∑
b=1

XR
k,b2

−b)− frac(sign(XI
k)hIik

mIik∑
b=1

XI
k,b2

−b)
]

+ j
[
sign(XR

k )hIik

∞∑
b=mIik+1

XR
k,b2

−b + sign(XI
k)hRik

∞∑
b=mRik+1

XI
k,b2

−b

+ frac(sign(XR
k )hIik

mIik∑
b=1

XR
k,b2

−b) + frac(sign(XI
k)hRik

mRik∑
b=1

XI
k,b2

−b)
]}

+ Zi

=
M∑
k=1

X̂k + Zi (3.58)

where frac(x) denotes the fractional part of x. Also note

|hRik
∞∑

b=mRik+1

XR
k,b2

−b| ≤ 2m
R
ik+12−(mRik) = 2

Similarly, we have

|hIik
∞∑

b=mIik+1

XI
k,b2

−b| ≤ 2

|hIik
∞∑

b=mIik+1

XR
k,b2

−b| ≤ 2
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|hRik
∞∑

b=mRik+1

XI
k,b2

−b| ≤ 2

Finally, we obtain

I(W?
i ; Ȳ n

i )

≤ I(W?
i ; Ŷ n

i , ε
n
i ) (3.59)

= I(W?
i ; Ŷ n

i ) + I(W?
i ; εni |Ŷ n

i ) (3.60)

= I(W?
i ; Ŷ n

i ) + h(εni |Ŷ n
i )− h(εni |Ŷ n

i ,W?
i ) (3.61)

≤ I(W?
i ; Ŷ n

i ) + h(εni )− h(Zn
i ) (3.62)

= I(W?
i ; Ŷ n

i ) + I(X̂n
1 , X̂

n
2 , ..., X̂

n
M ; εni ) (3.63)

≤ I(W?
i ; Ŷ n

i ) + n× constant (3.64)

where the last inequality holds since X̂1, X̂2, ..., X̂M 7→ εi forms a complex Gaussian

MAC with a finite SNR independent of P for each transmitter [54]. �

3.3.3 Cycle Bound Proof Based on a Deterministic Approach

Define mij , b1
2

logPαijc. Note that when αii ≥ αij + αki, ∀i /∈ {j, k}, since P > 1, we have

bαii
2

logP c ≥ b(αij + αki)

2
logP c (3.65)

⇒bαii
2

logP c ≥ bαij
2

logP c+ bαki
2

logP c (3.66)

⇒mii ≥ mij +mki ∀i, j, k, i /∈ {j, k} (3.67)

In the following, in order to convey the key ingredients of the deterministic approach, we

first consider the real Gaussian 2× 4 X channel as an example, where the condition (3.33)
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is satisfied. For the 2× 4 X channel, we intend to prove the following cycle bound

d̄1 + d̄2 ≤
1

2
[(α11 + α22)− (α12 + α21)]

where the factor 1
2

is due to the fact that the Gaussian X channel is real-valued. Here still

assume that α31 ≥ α41 and α42 ≥ α32. As previously mentioned, the proof for all the other

cases follows similarly. Again, define W̃ , {Wki}, ∀i ∈ {1, 2}, ∀k ∈ {1, 2, 3, 4}.

Start with the corresponding truncated binary-expansion deterministic model. Define

Ŝ1(t) = bsign(X̄1(t))h21

m21∑
b=1

X̄1,b(t)2
−bc (3.68)

Ŝ2(t) = bsign(X̄2(t))h12

m12∑
b=1

X̄2,b(t)2
−bc (3.69)

Also define

X̄31,S(t) = sign(X̄1(t))

m31∑
b=1

X̄1,b(t)2
−b (3.70)

The channel output at Receiver 1 can be written as

Ŷ1(t) =bsign(X̄1(t))h11

m11∑
b=1

X̄1,b(t)2
−bc+ bsign(X̄2(t))h12

m12∑
b=1

X̄2,b(t)2
−bc (3.71)

=bsign(X̄1(t))h11

m31∑
b=1

X̄1,b(t)2
−bc+ bsign(X̄1(t))h11

m11∑
b=m31+1

X̄1,b(t)2
−bc+ Ŝ2(t) + Ĉ1(t)

(3.72)

= bh11X̄31,S(t)c︸ ︷︷ ︸
Ŷ1,u(t)

+ bsign(X̄1(t))h11

m11∑
b=m31+1

X̄1,b(t)2
−bc+ Ŝ2(t)︸ ︷︷ ︸

Ŷ1,l(t)

+Ĉ1(t) (3.73)

where Ĉ1(t) may take a value from {−1, 0, 1}.
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For Receiver 1, we have

n(R11 +R12 − ε)

≤ I(W11,W12; Ŷ n
1,u, Ŷ

n
1,l, Ĉ

n
1 , Ŝ

n
1 |W21) (3.74)

= H(Ŷ n
1,u, Ŷ

n
1,l, Ĉ

n
1 , Ŝ

n
1 |W21)−H(Ŷ n

1,u, Ŷ
n

1,l, Ĉ
n
1 , Ŝ

n
1 |W21,W11,W12) (3.75)

= H(Ŝn1 |W21) +H(Ŷ n
1,u, Ŷ

n
1,l, Ĉ

n
1 |Ŝn1 ,W21)−H(Ŷ n

1,u, Ŷ
n

1,l, Ĉ
n
1 |W21,W11,W12)

−H(Sn1 |Ŷ n
1,u, Ŷ

n
1,l, Ĉ

n
1 ,W21,W11,W12) (3.76)

≤ H(Ŝn1 |W21) +H(Ŷ n
1,u, Ŷ

n
1,l, Ĉ

n
1 , |Ŝn1 )−H(Ŷ n

1,u, Ŷ
n

1,l, Ĉ
n
1 , |W21,W11,W12) (3.77)

where (3.77) follows that dropping conditioning does not reduce entropy. Now consider the

last term in (3.77).

H(Ŷ n
1,u, Ŷ

n
1,l, Ĉ

n
1 |W21,W11,W12) (3.78)

= H(Ŷ n
1,u|W21,W11,W12) +H(Ŷ n

1,l, Ĉ
n
1 |Ŷ n

1,u,W21,W11,W12) (3.79)

= H(X̄n
31,S|W21,W11,W12) +H(Ŷ n

1,l, Ĉ
n
1 |Ŷ n

1,u,W21,W11,W12) (3.80)

≥ H(X̄n
31,S|W̃c

{31,41}) +H(Ŝn2 |Ŷ n
1,u,W21,W11,W12) (3.81)

= H(Ŷ n
3 |W̃c

{31,41}) +H(Ŝn2 |W12) (3.82)

where (3.80) holds since the function f : X̄31,S → Ŷ1,u is bijective when m11 ≥ m31, and

(3.82) follows that conditioning on the messages W̃c
{31,41}, the function f : X̄31,S → Ŷ3 is

bijective. Note that the equations (3.78)-(3.82) correspond to the key step (3.43) in the

intuitive proof given in Section 3.3.1.

Plugging (3.82) into (3.77), we get

n(R11 +R12 − ε) ≤ H(Ŝn1 |W21) +H(Ŷ n
1,u, Ŷ

n
1,l, Ĉ

n
1 |Ŝn1 )−H(Ŝn2 |W12)−H(Ŷ n

3 |W̃c
{31,41})

(3.83)
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Next, consider the degraded BC comprised of Transmitter 1 and Receiver 3 and 4. Since

m31 ≥ m41, we have

n(R31 +R41 − ε) ≤ I(W31,W41; Ŷ n
3 |W̃c

{31,41}) = H(Ŷ n
3 |W̃c

{31,41}) (3.84)

Combining (3.83) and (3.84), we obtain

n(R11 +R12 +R31 +R41 − 2ε) ≤ H(Ŝn1 |W21) +H(Ŷ n
1,u, Ŷ

n
1,l, Ĉ

n
1 |Ŝn1 )−H(Ŝn2 |W12) (3.85)

Similarly, considering Receiver 2 and the degraded BC comprised of Transmitter 2 and

Receivers 3 and 4, we obtain

n(R21 +R22 +R32 +R42 − 2ε) ≤ H(Ŝn2 |W12) +H(Ŷ n
2,u, Ŷ

n
2,l, Ĉ

n
2 |Ŝn2 )−H(Ŝn1 |W21) (3.86)

Adding (3.85) and (3.86) together, the sum capacity of this deterministic 2 × 4 X channel

is upper bounded by

n(RΣ,D − 4ε) ≤ H(Ŷ n
1,u, Ŷ

n
1,l, Ĉ

n
1 |Ŝn1 ) +H(Ŷ n

2,u, Ŷ
n

2,l, Ĉ
n
2 |Ŝn2 ) (3.87)

≤
n∑
t=1

[
H(Ŷ1,u(t)|Ŝ1(t)) +H(Ŷ1,l(t)|Ŝ1(t)) +H(Ĉ1(t))

+H(Ŷ2,u(t)|Ŝ2(t)) +H(Ŷ2,l(t)|Ŝ2(t)) +H(Ĉ2(t))
]

(3.88)

where the last inequality follows from the chain rule and the fact that dropping conditioning

does not reduce entropy.

For the term H(Ŷ1,u(t)|Ŝ1(t)) +H(Ŷ1,l(t)|Ŝ1(t)), we consider the following two cases.
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• m21 ≥ m31: In this case, we have

H(Ŷ1,u(t)|Ŝ1(t)) +H(Ŷ1,l(t)|Ŝ1(t)) ≤ 0 + (m11 −m21) + constant (3.89)

= (m11 −m21) + constant (3.90)

where (3.89) follows that conditioning on Ŝ1, out of the received signal Ŷ1,l, both the

signals from Transmitter 1 and 2 have at most m11 −m21 bit-levels, and the signs of

the signals and carry-overs due to the sum of two such signals can only induce a loss

of constant bits.

• m21 < m31: In this case, similarly we have

H(Ŷ1,u(t)|Ŝ1(t)) +H(Ŷ1,l(t)|Ŝ1(t)) ≤ (m31 −m21) + (m11 −m31) + constant (3.91)

= (m11 −m21) + constant (3.92)

Due to symmetry, we always have

H(Ŷ2,u(t)|Ŝ2(t)) +H(Ŷ2,l(t)|Ŝ2(t)) ≤ (m22 −m12) + constant (3.93)

Therefore, we obtain

n(RΣ,D − 4ε) ≤
n∑
t=1

[(m11 −m21) + (m22 −m12) + constant] (3.94)

According to Lemma 3.1, for the sum capacity of the original Gaussian X channel RΣ,G, we

have

RΣ,G ≤ RΣ,D + constant (3.95)

≤ (m11 −m21) + (m22 −m12) + constant (3.96)

≤ 1

2
[(α11 − α21) + (α22 − α12)] logP + constant (3.97)

67



Finally, we obtain the following desired GDoF cycle bound and complete the proof via the

deterministic approach

d̄1 + d̄2 ≤
1

2
[(α11 − α21) + (α22 − α12)]. (3.98)

Next, consider the general complex Gaussian case. The proof is similar to the above example

in the real Gaussian case. To avoid repetition, we will focus on the differences. Without loss

of generality, assume that in the complex Gaussian case, we intend to prove the following

bound

m∑
j=1

d̄j ≤
m∑
j=1

(αjj − αj−1,j) (3.99)

where m ∈ {2, 3, ...,M} and modulo-m arithmetic is used on user indices. Consider the

m × N X subnetwork consisting of all the receivers and Transmitters i ∈ 〈m〉, where all

other transmitters and their associated messages are eliminated. Define the message set

W̃ , {Wkj}, ∀j ∈ 〈m〉, ∀k ∈ 〈N〉. Also define W , {Wkj}, W∗k , {Wk1,Wk2, ...,Wkm}, and

Wj′ , {Wm+1,j,Wm+2,j, ...,WNj}, ∀j, k ∈ 〈m〉. Similarly, Wc
S denotes W\WS , where S is a

subset of message indices.

To simplify the proof, we construct the following channel as shown in Fig. 3.3, which upper

bounds the sum channel capacity of the above m×N complex Gaussian X channel:

• Step 1: Start with an m×m X channel with channel coefficients hkj, ∀k, j ∈ 〈m〉.

• Step 2: For Transmitter j ∈ 〈m〉, create another N −m virtual receivers. The virtual

receiver with index kj, ∀k ∈ {m+1,m+2, ..., N}, only connects to Transmitter j with

the channel coefficient hkj and desires the message Wkj from Transmitter j. Note that

after adding these virtual receivers, there are m×N messages in the network.
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…
 

…
 

Tx1

Tx2

Rx1

Rx2

Rxm+1;1

…
 

…
 

Rxm+1;m

RxN1

RxNm

Virtual Receivers

Txm Rxm

Figure 3.3: The constructed channel upper-bounding the sum capacity of the m × N X
channel, where the red links are real-valued by rotating the phase of the received signal at
the corresponding receivers.

• Step 3: For Receiver k ∈ 〈m〉, rotate its channel output by multiplying it with e−jθkk

to make the link from Transmitter k to Receiver k real-valued, which does not affect

the capacity of this channel. Similarly, for virtual receiver with index kj, j ∈ 〈m〉,

k ∈ {m + 1,m + 2, ..., N}, rotate its channel output by multiplying it with e−jθkj

to make its only connected link real-valued, which again does not affect the channel

capacity. Therefore, without loss of generality, we assume that in Fig. 3.3, all the links

in red are real-valued.

• Step 4: Finally, assume that the input signal Xj(t) satisfies the power constraint

E[|Xj(t)|2] ≤ 2, ∀j ∈ 〈m〉, and the AWGN at all receivers are independent and with

zero mean and variance 2.
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According to Lemma 3.1, to obtain the desired cycle bound in (3.99), we consider the trun-

cated binary-expansion deterministic model of the constructed channel in Fig. 3.3. For

Receiver j ∈ 〈m〉, the channel output can be written in the following matrix form,

Ŷj(t) =

 bsign(X̄R
j (t))hRjj

∑mRjj
b=1 X̄

R
j,b(t)2

−bc

bsign(X̄I
j (t))hRjj

∑mRjj
b=1 X̄

I
j,b(t)2

−bc


+

m∑
k=1,k 6=j

 bsign(X̄R
k (t))hRjk

∑mRjk
b=1 X̄

R
k,b(t)2

−bc − bsign(X̄I
k(t))hIjk

∑mIjk
b=1 X̄

I
k,b(t)2

−bc

bsign(X̄R
k (t))hIjk

∑mIjk
b=1 X̄

R
k,b(t)2

−bc+ bsign(X̄I
k(t))hRjk

∑mRjk
b=1 X̄

I
k,b(t)2

−bc


(3.100)

For the virtual receiver with index kj, the channel output is

Ŷkj(t) =

 bsign(X̄R
j (t))hRkj

∑mRkj
b=1 X̄

R
j,b(t)2

−bc

bsign(X̄I
j (t))hRkj

∑mRkj
b=1 X̄

I
j,b(t)2

−bc

 , ∀j ∈ 〈m〉, ∀k ∈ {m+ 1,m+ 2, ..., N}.

(3.101)

Next, for j ∈ 〈m〉, define

Ŝj(t) =

 sign(X̄R
j (t))

∑max{mRj−1,j ,m
I
j−1,j}

b=1 X̄R
j,b(t)2

−b

sign(X̄I
j (t))

∑max{mRj−1,j ,m
I
j−1,j}

b=1 X̄I
j,b(t)2

−b

 , (3.102)

Ŝ ′j(t) =

 bsign(X̄R
j (t))hRj−1,j

∑mRj−1,j

b=1 X̄R
j,b(t)2

−bc − bsign(X̄I
j (t))hIj−1,j

∑mIj−1,j

b=1 X̄I
j,b(t)2

−bc

bsign(X̄R
j (t))hIj−1,j

∑mIj−1,j

b=1 X̄R
j,b(t)2

−bc+ bsign(X̄I
j (t))hRj−1,j

∑mRj−1,j

b=1 X̄I
j,b(t)2

−bc


(3.103)

where the modulo-m arithmetic is implicitly used on the user indices. We have the following

lemma.

Lemma 3.2. f : Ŝj(t)→ Ŝ ′j(t) is bijective.
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Proof of Lemma 3.2: For notation brevity, define

X̆R ,sign(X̄R
j (t))

max{mRj−1,j ,m
I
j−1,j}∑

b=1

X̄R
j,b(t)2

−b (3.104)

X̆I ,sign(X̄I
j (t))

max{mRj−1,j ,m
I
j−1,j}∑

b=1

X̄I
j,b(t)2

−b (3.105)

S̆R , bsign(X̄R
j (t))hRj−1,j

mRj−1,j∑
b=1

X̄R
j,b(t)2

−bc︸ ︷︷ ︸
S̆R,1

−bsign(X̄I
j (t))hIj−1,j

mIj−1,j∑
b=1

X̄I
j,b(t)2

−bc︸ ︷︷ ︸
S̆R,2

(3.106)

S̆I , bsign(X̄R
j (t))hIj−1,j

mIj−1,j∑
b=1

X̄R
j,b(t)2

−bc︸ ︷︷ ︸
S̆I,1

+ bsign(X̄I
j (t))hRj−1,j

mRj−1,j∑
b=1

X̄I
j,b(t)2

−bc︸ ︷︷ ︸
S̆I,2

(3.107)

Note that (X̆R, X̆I) and (S̆R, S̆I) can be regarded as the input and output of the deterministic

channel, respectively. Apparently, given one input (X̆R, X̆I), we can only produce one output

(S̆R, S̆I).

Next, we proceed to prove the other direction by contradiction. Assume that there exist two

distinct inputs (X̆∗R, X̆
∗
I ) and (X̆∗∗R , X̆

∗∗
I ) that can generate the same output, i.e., (S̆∗R, S̆

∗
I ) =

(S̆∗∗R , S̆
∗∗
I ). In the following, without loss of generality, assume

|hRj−1,j| ≥ |hIj−1,j| ⇒ mR
j−1,j ≥ mI

j−1,j. (3.108)

First, consider the case where sign(hRj−1,j) = sign(hIj−1,j). For the term S̆R, we have the

following sub-cases.

• S̆∗R,1 = S̆∗∗R,1 and S̆∗R,2 = S̆∗∗R,2. In this case, for the term S̆I , if |hRj−1,j| > |hIj−1,j|, since

(X̆∗R, X̆
∗
I ) and (X̆∗∗R , X̆

∗∗
I ) are different, we have S̆∗I,1 = S̆∗∗I,1 and S̆∗I,2 6= S̆∗∗I,2, which

contradicts the assumption that (X̆∗R, X̆
∗
I ) and (X̆∗∗R , X̆

∗∗
I ) generate the same output;

if |hRj−1,j| = |hIj−1,j|, since (X̆∗R, X̆
∗
I ) and (X̆∗∗R , X̆

∗∗
I ) generate the same (S̆R, S̆I), we
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have (X̆∗R, X̆
∗
I ) = (X̆∗∗R , X̆

∗∗
I ), which contradicts the assumption that (X̆∗R, X̆

∗
I ) and

(X̆∗∗R , X̆
∗∗
I ) are different.

• S̆∗R,1 > S̆∗∗R,1 and S̆∗R,2 > S̆∗∗R,2. In this case, for the term S̆I , we have S̆∗I,1 ≥ S̆∗∗I,1 and

S̆∗I,2 > S̆∗∗I,2, which contradicts the assumption that (X̆∗R, X̆
∗
I ) and (X̆∗∗R , X̆

∗∗
I ) generate

the same output.

• S̆∗R,1 < S̆∗∗R,1 and S̆∗R,2 < S̆∗∗R,2. In this case, for the term S̆I , we have S̆∗I,1 ≤ S̆∗∗I,1 and

S̆∗I,2 < S̆∗∗I,2, which contradicts the assumption that (X̆∗R, X̆
∗
I ) and (X̆∗∗R , X̆

∗∗
I ) generate

the same output.

For the other case where sign(hRj−1,j) = −sign(hIij−1ij
), we can follow the same argument

above and obtain the same conclusion. �

Consider Receiver j ∈ 〈m〉 again. Its channel output can be rewritten as

Ŷj(t) =

 Ŷ R
j (t)

Ŷ I
j (t)

 (3.109)

=

 bsign(X̄R
j (t))hRjj

∑mR
j∗j

b=1 X̄R
j,b(t)2

−bc

bsign(X̄I
j (t))hRjj

∑mR
j∗j

b=1 X̄I
j,b(t)2

−bc


︸ ︷︷ ︸

Ŷj,u(t)

(3.110)

+

 bsign(X̄R
j (t))hRjj

∑mRjj
b=mR

j∗j+1
X̄R
j,b(t)2

−bc

bsign(X̄I
j (t))hRjj

∑mRjj
b=mR

j∗j+1
X̄I
j,b(t)2

−bc

 (3.111)

+
∑
k 6=j

 bsign(X̄R
k (t))hRjk

∑mRjk
b=1 X̄

R
k,b(t)2

−bc − bsign(X̄I
k(t))hIjk

∑mIjk
b=1 X̄

I
k,b(t)2

−bc

bsign(X̄R
k (t))hIjk

∑mIjk
b=1 X̄

R
k,b(t)2

−bc+ bsign(X̄I
k(t))hRjk

∑mRjk
b=1 X̄

I
k,b(t)2

−bc


(3.112)

+

 ĈR
j (t)

ĈI
j (t)


︸ ︷︷ ︸

Ĉj(t)

(3.113)
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where the virtual receiver with index j∗j is the strongest virtual receiver connected to Trans-

mitter j (i.e., |hj∗j| = maxi∈{m+1,...,N}{|hij|}), and ĈR
j (t) and ĈI

j (t) can both take values from

{−1, 0, 1}. Define

X̄R
j∗j,S(t) = sign(X̄R

j (t))

mR
j∗j∑
b=1

X̄R
j,b(t)2

−b (3.114)

X̄I
j∗j,S(t) = sign(X̄I

j (t))

mR
j∗j∑
b=1

X̄I
j,b(t)2

−b (3.115)

Also define the sum of (3.111) and (3.112) as Ŷj,l(t). Then we have

Ŷj(t) = Ŷj,u(t) + Ŷj,l(t) + Ĉj(t) (3.116)

For Receiver 1, start from Fano’s inequality.

n(
m∑
j=1

R1j − ε) (3.117)

≤ I(W∗1 ; Ŷ n
1,u, Ŷ

n
1,l, Ĉ

n
1 , Ŝ

n
1 |Wc

22\W∗1 ) (3.118)

= H(Ŷ n
1,u, Ŷ

n
1,l, Ĉ

n
1 , Ŝ

n
1 |Wc

22\W∗1 )−H(Ŷ n
1,u, Ŷ

n
1,l, Ĉ

n
1 , Ŝ

n
1 |Wc

22) (3.119)

= H(Ŝn1 |Wc
22\W∗1 ) +H(Ŷ n

1,u, Ŷ
n

1,l, Ĉ
n
1 |Ŝn1 ,Wc

22\W∗1 )−H(Ŷ n
1,u, Ŷ

n
1,l, Ĉ

n
1 |Wc

22)

−H(Ŝn1 |Ŷ n
1,u, Ŷ

n
1,l, Ĉ

n
1 ,Wc

22) (3.120)

≤ H(Ŝn1 |W21,W31, ...,Wm1) +H(Ŷ n
1,u, Ŷ

n
1,l, Ĉ

n
1 |Ŝn1 )−H(Ŷ n

1,u, Ŷ
n

1,l, Ĉ
n
1 |Wc

22) (3.121)

where the last inequality follows from the fact that dropping conditioning does not reduce

entropy. Proceed to consider the last term in (3.121),

H(Ŷ n
1,u, Ŷ

n
1,l, Ĉ

n
1 |Wc

22)

= H(Ŷ n
1,u|Wc

22) +H(Ŷ n
1,l, Ĉ

n
1 |Ŷ n

1,u,Wc
22) (3.122)

≥ H(Ŷ n
1,u|Wc

22) +H(Ŝ ′n2 |Ŷ n
1,u,Wc

22) (3.123)
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= H(X̄R n
1∗1,S, X̄

I n
1∗1,S|Wc

22) +H(Ŝn2 |Ŷ n
1,u,Wc

22) (3.124)

≥ H(Ŷ n
1∗1|W̃\W1′) +H(Ŝn2 |W12,W32, ...,Wm2) (3.125)

where (3.124) follows from Lemma 3.2, i.e., both functions f : Ŷ1,u → X̄R
1∗1,S × X̄I

1∗1,S and

f : Ŝ ′2 → Ŝ2 are bijective.

Plugging (3.125) into (3.121), we have

n(
m∑
j=1

R1j − ε) ≤H(Ŝn1 |W21,W31, ...,Wm1) +H(Ŷ n
1,u, Ŷ

n
1,l, Ĉ

n
1 |Ŝn1 )

−H(Ŝn2 |W12,W32, ...,Wm2)−H(Ŷ n
1∗1|W̃\W1′) (3.126)

Next, consider the BC comprised of Transmitter 1 and all its connected virtual receivers.

Since the virtual receiver with index 1∗1 is the strongest one that is able to decode all the

messages from Transmitter 1 (to all the connected virtual receivers), we have

n(
N∑

j=m+1

Rj1 − ε) ≤ I(W1′ ; Ŷ
n

1∗1|W̃\W1′) = H(Ŷ n
1∗1|W̃\W1′) (3.127)

Adding (3.126) and (3.127) together, we obtain

n(
m∑
j=1

R1j +
N∑

j=m+1

Rj1 − 2ε)

≤ H(Ŝn1 |W21,W31, ...,Wm1) +H(Ŷ n
1,u, Ŷ

n
1,l, Ĉ

n
1 |Ŝn1 )−H(Ŝn2 |W12,W32, ...,Wm2) (3.128)
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Similarly, for k ∈ {2, 3, ...,m− 1} we have

n(
m∑
j=1

Rkj +
N∑

j=m+1

Rjk − 2ε)

≤ H(Ŝnk |W1k, ...,Wk−1,k,Wk+1,k, ...,Wmk) +H(Ŷ n
k,u, Ŷ

n
k,l, Ĉ

n
k |Ŝnk )

−H(Ŝnk+1|W1,k+1, ...,Wk,k+1,Wk+2,k+1...,Wm,k+1)

(3.129)

From Receiver m and the degraded BC comprised of Transmitter m and all its connected

virtual receivers, we obtain

n(
m∑
j=1

Rmj +
N∑

j=m+1

Rjm − 2ε)

≤ H(Ŝnm|W1m,W2m...,Wm−1,m) +H(Ŷ n
m,u, Ŷ

n
m,l, Ĉ

n
m|Ŝnm)−H(Ŝn1 |W21,W31...,Wm1) (3.130)

Adding all the terms in (3.128), (3.129) and (3.130) together, we get

n(RΣ,D − 2mε) ≤
m∑
k=1

H(Ŷ n
k,u, Ŷ

n
k,l, Ĉ

n
k |Ŝnk ) (3.131)

≤
m∑
k=1

n∑
t=1

[H(Ŷk,u(t)|Ŝk(t)) +H(Ŷk,l(t)|Ŝk(t)) +H(Ĉk(t))] (3.132)

≤ n
m∑
k=1

[
2(mkk −mk−1,k) + constant

]
(3.133)

≤ n
m∑
k=1

[
(αkk − αk−1,k) logP + constant

]
(3.134)

where (3.133) holds since mkj − 1 ≤ max{mR
kj,m

I
kj} ≤ mkj. Finally, according to Lemma

3.1, we obtain the desired GDoF cycle bound (3.99) for the original complex Gaussian X

channel.
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3.4 Summary

In this chapter, we first show that for the K-user TIN-optimal interference channels identified

in Theorem 2.1, even if the message set is expanded to the X setting, operating as the

original interference channel and treating interference as noise at each receiver is still optimal

for the sum capacity up to a constant gap. Next, we extend the optimality of TIN to

general X channels with arbitrary numbers of transmitters and receivers. In both cases,

the achievability argument follows directly from Chapter 2 for the setting of interference

channels. The main challenge lies in deriving tight information theoretical outer bounds.

As illustrated in this chapter, to obtain desired outer bounds, the genie signal provided to

each receiver should be chosen more judiciously. Notably, to complete the generalization to

X channels where the number of receivers is larger than that of transmitters, due to the

added difficulty, we also resort to deterministic channel models [32, 51–54], where certain

combinatorial structure can be exploited to simplify the proof.
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Chapter 4

Optimality of TIN for Compound

Networks

In this chapter, we generalize the optimality of TIN to compound networks [13–15], where

each receiver is associated with a set of states (a receiver state is identified by the channel

realizations associated with that receiver). In the compound interference channel, the sets

of possible states for each receiver are globally known a-priori, however the transmitters are

unaware of the particular realization chosen from within these sets. Therefore, a reliable

coding scheme must guarantee vanishing error probability for each possible realization of

every receiver. Equivalently, the compound interference channel can be regarded as having

potentially multiple receivers for each message, which is known as the multiple groupcast

setting [24] and is of interest in its own right. Here of particular interest are compound inter-

ference channels where each possible network state individually satisfies the TIN-optimality

condition of Theorem 2.1. Is TIN still optimal for such a compound setting as a whole,

when all possible states are considered simultaneously? Moreover, the implications of the

compound setting on the achievable TIN region and GDoF-optimal power control are also

of interest and will be explored in this chapter as well.
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This chapter is organized as follows. The channel model for the compound interference

channel is presented in Section 4.1. In Section 4.2, we show that if each possible network

realization satisfies the TIN-optimality condition of Theorem 2.1, TIN achieves the entire

GDoF region of the compound setting. The TIN region is also fully characterized for general

compound interference channels in this section. In Section 4.3, we study the power control

problem for compound networks. We demonstrate that from the GDoF perspective, the

power control and TIN problems for compound and regular (where the network has only

one state) interference channels are equivalent. Remarkably, the regular counterpart might

be different from all the possible network realizations of the compound channel. Then by

taking advantage of the simplification of the compound setting to the regular case, we develop

several GDoF-based power control algorithms for compound networks. A summarization is

given in Section 4.4.

4.1 Channel Model

Consider K-user Gaussian compound interference channels. The channel coefficients associ-

ated with Receiver k ∈ 〈K〉 are denoted as a vector (h̃k1, h̃k2, ..., h̃kK), which is drawn from

a finite set Lk with cardinality Lk. Assume that the channel coefficients remain fixed during

the transmission. In addition, while the transmitters are unaware of the specific channel

realizations, knowledge of Lk is assumed to be globally available. Note that, as always, the

receivers are assumed to have perfect CSI. In this compound setting, reliable communica-

tions need to be guaranteed simultaneously for all possible channel realizations. At Receiver

k, the channel output in state lk is given by

Y
[lk]
k (t) =

K∑
i=1

h̃
[lk]
ki X̃i(t) + Z

[lk]
k (t), ∀k ∈ 〈K〉,∀lk ∈ 〈Lk〉 (4.1)
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where h̃
[lk]
ki is the channel gain value from Transmitter i to Receiver k, X̃i(t) and Z

[lk]
k (t)

are the transmitted symbol of Transmitter i and the additive white circularly symmetric

Gaussian noise with zero mean and unit variance at Receiver k, respectively, in the t-th

channel use. Similar to previous chapters, all symbols are complex, and Transmitter i ∈ 〈K〉

is subject to the average power constraint E[|X̃i(t)|2] ≤ Pi.

Again, to facilitate the GDoF studies, the standard channel model (4.1) is translated into

an equivalent normalized form following similar approaches in previous chapters. Define

α
[lk]
ki ,

log(max{1, |h̃[lk]
ki |2Pi})

logP
, ∀i, k ∈ 〈K〉,∀lk ∈ 〈Lk〉 (4.2)

where P > 1 is a nominal power value. The original channel model (4.1) is then presented

in the following form,

Y
[lk]
k (t) =

K∑
i=1

h
[lk]
ki Xi(t) + Z

[lk]
k (t) (4.3)

=
K∑
i=1

√
Pα

[lk]

ki ejθ
[lk]

ki Xi(t) + Z
[lk]
k (t), ∀k ∈ 〈K〉,∀lk ∈ 〈Lk〉 (4.4)

where Xi(t) is the normalized transmit symbol of Transmitter i, subject to the unit power

constraint (i.e., E[|Xi(t)|2] ≤ 1).

In this K-user compound interference channel, Transmitter i intends to deliver one indepen-

dent message Wi to Receiver i, ∀i ∈ 〈K〉. The size of the message set {Wi} is denoted by

|Wi|. For codewords spanning n channel uses, the rates Ri = log |Wi|
n

are achievable if all mes-

sages can be decoded simultaneously with arbitrarily small error probability as n grows to

infinity regardless of the channel realizations. The channel capacity region C is the closure of

the set of all achievable rate tuples. The GDoF region of the K-user compound interference
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channel is given by

D ,
{

(d1, d2, ..., dK) : dk = lim
P→∞

Rk

logP
, ∀k ∈ 〈K〉, (R1, R2, ..., RK) ∈ C

}
(4.5)

It is notable that the compound interference channel can be modeled in different ways. The

model used in this chapter assumes that each receiver has multiple possible states, i.e.,

(h̃k1, ..., h̃kK) ∈ Lk, ∀k ∈ 〈K〉 (4.6)

Another way is to allow for all the channel coefficients h̃ki to be jointly taken from a finite

set L, i.e.,

(h̃11, ..., h̃1K , ...., h̃K1, ..., h̃KK) ∈ L (4.7)

As illustrated in [15] (see Proposition 2 in [15]), since the receivers cannot cooperate with

each other, it turns out that the latter is equivalent to the model adopted in this chapter.

On the other hand, a less general model for the compound setting than the one adopted

here, is to assume that each channel coefficient h̃ij can take any value over its own set of

allowed values Sij independently of other channel coefficients. From the TIN perspective,

this model is rather trivial, since only a readily attainable “worst case” matters, where for

i = j, h̃ij = min{|sij| : sij ∈ Sij}, and for i 6= j, h̃ij = max{|sij| : sij ∈ Sij}.

4.2 TIN-optimality Condition for Compound Networks

In this section, we are mainly interested in the compound interference channel where each

possible state of the network individually satisfies the TIN-optimality condition of Theorem

2.1. The natural question is whether the simple TIN scheme is still optimal for such a
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compound setting when all possible states are considered simultaneously.

4.2.1 Challenge Posed by the Compound Setting

We start with an overview of what makes the optimality of TIN for compound networks

nontrivial. Denote by H the set of all the possible network realizations, PA the set of all the

valid power allocations, and D(P,H) the achievable GDoF region through the TIN scheme

for the network realization H ∈ H with power allocation P ∈ PA.

First, consider the achievability. Since in the TIN scheme the rate for each message is limited

by the minimum SINR across all states of the intended receiver, it is evident that for any

valid power allocation P ∈ PA, ∩H∈HD(P,H) is achievable. Taking the union of achievable

rates over all the valid power allocations, we obtain the following inner bound on the GDoF

region.

Inner Bound = ∪P∈PA ∩H∈H D(P,H) (4.8)

Next, consider the converse. Since the compound network satisfies the TIN-optimality con-

dition of Theorem 2.1 in each possible state, accordingly for a given network state H ∈ H

its entire GDoF region can be expressed as ∪P∈PAD(P,H). Since the GDoF region for each

state is a natural outer bound for the GDoF region of the whole compound setting, by taking

the intersection of the GDoF regions of all possible network states, we get the following outer

bound on the GDoF region.

Outer Bound = ∩H∈H ∪P∈PA D(P,H) (4.9)

Notice that while both the inner and outer bounds for the GDoF region involve union over

power allocations and intersection over network states, the inner bound is the union of
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intersections whereas the outer bound is the intersection of unions. In general, the right

hand side of (4.8) (i.e., a union of intersections) is no larger than that of (4.9) (i.e., an

intersection of unions), consistent with their roles as inner and outer bounds, respectively.1

So the main challenge in settling the optimality of TIN for compound interference channels

is to prove that the two are indeed identical in our context.

4.2.2 Polyhedral TIN for Compound Interference Channels

Similar to the regular setting in Chapter 2, polyhedral TIN plays a key role for help establish

the optimality of TIN in the compound channels. In the section, we generalize polyhedral

TIN to the compound setting.

In the K-user compound interference channel, assume that the power allocation of Trans-

mitter k ∈ 〈K〉 is P rk , where rk ≤ 0. In the TIN scheme, the achievable rate of user k is

limited by the smallest SINR across all states possible for this user. So user k achieves any

rate Rk such that

Rk ≤ min
lk∈〈Lk〉

{
log

(
1 +

P rk × Pα
[lk]

kk

1 +
∑K

j=1,j 6=k P
rj × Pα

[lk]

kj

)}
, ∀k ∈ 〈K〉 (4.10)

In the GDoF sense, we have

0 ≤ dk ≤ min
lk∈〈Lk〉

{
max{0, α[lk]

kk + rk − (max
j:j 6=k
{α[lk]

kj + rj})+}
}
, ∀k ∈ 〈K〉 (4.11)

The TIN region P∗ is the set of all GDoF tuples (d1, ..., dK) for which there exist rk’s, rk ≤ 0,

∀k ∈ 〈K〉, such that (4.11) holds for all k ∈ 〈K〉.

Similar to Chapter 2, in the compound setting we also introduce polyhedral TIN, i.e., a

1Consider an example where PA = {P1,P2}, H = {H1,H2}, D(P1,H1) = {1}, D(P1,H2) = {2},
D(P2,H1) = {2}, and D(P2,H2) = {1}. It is easy to check that the right hand sides of (4.8) and (4.9) are
φ and {1, 2}, respectively, which are not equal to each other.
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polyhedral version of the TIN scheme. By requiring minlk∈〈Lk〉
{
α

[lk]
kk + rk − (maxj:j 6=k{α[lk]

kj +

rj})+
}

to be non-negative for all users, we can ignore the first max{0, .} term in (4.11) and

obtain

0 ≤ dk ≤ min
lk∈〈Lk〉

{
α

[lk]
kk + rk − (max

j:j 6=k
{α[lk]

kj + rj})+
}
, ∀k ∈ 〈K〉 (4.12)

According to (4.12), the polyhedral TIN region P in the compound setting includes all GDoF

tuples (d1, ..., dK) for which there exist rk’s, k ∈ 〈K〉, such that

rk ≤ 0, ∀k ∈ 〈K〉

dk ≥ 0, ∀k ∈ 〈K〉

dk ≤ α
[lk]
kk + rk ⇔ rk ≥ dk − α[lk]

kk , ∀k ∈ 〈K〉, ∀lk ∈ 〈Lk〉

dk ≤ α
[lk]
kk + rk − (α

[lk]
kj + rj)⇔ rk − rj ≥ (α

[lk]
kj − α

[lk]
kk ) + dk, ∀k, j ∈ 〈K〉, k 6= j,∀lk ∈ 〈Lk〉

Similar to the regular setting, with the above modification we put more constraints on the

power exponents ri besides ri ≤ 0, which can only shrink the achievable GDoF region of the

TIN scheme. In other words, we have P ⊆ P∗.

4.2.3 Main Result

The following theorem settles the question on the optimality of TIN for compound interfer-

ence channels.

Theorem 4.1. In a K-user compound interference channel, if the following condition is

satisfied,

α
[li]
ii ≥ max

j:j 6=i
{α[lj ]

ji }+ max
k:k 6=i
{α[li]

ik }, ∀i, j, k ∈ 〈K〉,∀li ∈ 〈Li〉,∀lj ∈ 〈Lj〉 (4.13)
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then power control and TIN achieves the entire GDoF region, which is the intersection of

the GDoF regions of all the possible network realizations. Moreover, the GDoF region of the

compound channel is fully characterized by

0 ≤ di ≤ α
[li]
ii , ∀i ∈ 〈K〉,∀li ∈ 〈Li〉 (4.14)

m∑
j=1

dij ≤
m∑
j=1

(α
[lij ]

ijij
− α

[lij ]

ijij+1
), ∀(i1, i2, ..., im) ∈ ΠK ,∀m ∈ {2, 3, ..., K},∀lij ∈ 〈Lij〉 (4.15)

where the modulo-m arithmetic is implicitly used on user indices, e.g., im = i0.

The proof of Theorem 4.1 is relegated to Section 4.2.4. Theorem 4.1 demonstrates that

if in each possible network realization the channel satisfies the TIN-optimality condition

of Theorem 2.1 individually, then TIN is, indeed, GDoF-optimal for the entire compound

setting. In the above theorem, setting Lk = 1, ∀k ∈ 〈K〉, Theorem 2.1 is readily recovered

for regular interference channels. Similar to Theorem 2.1, (4.14) and (4.15) fully characterize

the polyhedral TIN region P of general compound interference channel (even if the condition

(4.13) is not satisifed), which is in fact the intersection of the polyhedral TIN regions for

all possible network states. In other words, for a general compound interference channel,

the intersection of the polyhedral TIN regions for all its potential network states is always

achievable via power control and TIN.

Based on the results in Theorem 4.1, we further obtain the TIN region P∗ for general K-

user compound interference channels. Similar to Theorem 2.3, we get that in general P∗ is

a union of 2K polyhedral TIN regions PS , each of which corresponds to the case where the

users in S (any subset of 〈K〉) are silent and thus removed from the network. Note that

for general compound interference channels, Pφ (i.e., the polyhedral TIN region for the case

where all users are active) is the same as the polyhedral TIN region P defined in Section

4.2.2, i.e., P = Pφ. When (4.13) is satisfied, the polyhedral TIN region Pφ subsumes all the

others and the TIN scheme is GDoF-optimal, i.e., D = P∗ = P .
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Remark 4.1. It is not hard to generalize the result of Theorem 4.1 to the sum GDoF

optimality of TIN for M ×N compound X channels following Chapter 3. In addition, based

on the bounding techniques given in Chapter 2 and 3, it is easy to show that under the same

condition (4.13), the TIN scheme is sufficient to achieve a constant gap to the capacity region

of K-user compound interference channels and the sum capacity of compound X channels.

4.2.4 Proof of Theorem 4.1

In the section, we present the proof of Theorem 4.1.

Start with the converse argument. Consider each possible network realization individually.

Since in each network realization, the channel satisfies the TIN-optimality condition identi-

fied in Theorem 2.1, it is easy to characterize its GDoF region. Taking the intersection of the

GDoF regions of all the possible network realizations, we obtain the desired outer bounds.

Next, consider the achievability argument. The proof is derived from a non-trivial argument

based on the potential theorem in [43], which builds upon the application of potential the-

orem in Chapter 2. We first generalize the potential graph Dp defined in Chapter 2 to the

compound setting. For an arbitary K-user compound interference channel, we construct a

fully connected digraph Dp = (V , E) with
∑

k Lk + 1 vertices, where V and E are the sets of

vertices and edges, respectively, and

V = {u} ∪
⋃

k∈〈K〉

{v[1]
k , ..., v

[Lk]
k }

E = E1 ∪ E2 ∪ E3 ∪ E4

E1 = {(v[lk]
k , v

[l′k]

k )}, ∀k ∈ 〈K〉,∀lk, l′k ∈ 〈Lk〉, lk 6= l′k

E2 = {(v[lk]
k , v

[lj ]
j )}, ∀k, j ∈ 〈K〉, k 6= j,∀lk ∈ 〈Lk〉,∀lj ∈ 〈Lj〉

E3 = {(v[lk]
k , u)}, ∀k ∈ 〈K〉,∀lk ∈ 〈Lk〉
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E4 = {(u, v[lk]
k )}, ∀k ∈ 〈K〉,∀lk ∈ 〈Lk〉

We assign a length l(e) to each edge e ∈ E as follows.

l(v
[lk]
k , v

[l′k]

k ) = 0, ∀k ∈ 〈K〉,∀lk, l′k ∈ 〈Lk〉, lk 6= l′k (4.16)

l(v
[lk]
k , v

[lj ]
j ) = (α

[lk]
kk − α

[lk]
kj )− dk, ∀k, j ∈ 〈K〉, k 6= j,∀lk ∈ 〈Lk〉,∀lj ∈ 〈Lj〉 (4.17)

l(v
[lk]
k , u) = α

[lk]
kk − dk, ∀k ∈ 〈K〉,∀lk ∈ 〈Lk〉 (4.18)

l(u, v
[lk]
k ) = 0, ∀k ∈ 〈K〉,∀lk ∈ 〈Lk〉 (4.19)

This complete digraph Dp is the potential graph for the compound interference channel,

which is a generalization for the regular case. In the potential graph Dp, denote the length

of the shortest path from the vertex u to each vertex v
[1]
k as lk,dst, ∀k ∈ 〈K〉. It is notable

that due to (4.16) the lengths of the shortest paths from u to v
[lk]
k and v

[l′k]

k (lk 6= l′k) are

always the same. In addition, according to (4.19), lk,dst ≤ 0, ∀k ∈ 〈K〉.

0 0

0

0

0v
[1]
1 v

[2]
1

v
[1]
2

u

Figure 4.1: The potential graph Dp for a 2-user compound interference channel with L1 = 2
and L2 = 1

Example 4.1. Consider a 2-user compound interference channel where L1 = 2 and L2 = 1.

Its potential graph Dp = (V , E) is depicted in Fig. 4.1. It is comprised of
∑2

k=1 Lk + 1 = 4
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vertices, black edges E1, green edges E2, red edges E3 and blue edges E4, where

V = {v[1]
1 , v

[2]
1 , v

[1]
2 , u}

E = E1 ∪ E2 ∪ E3 ∪ E4

E1 = {(v[1]
1 , v

[2]
1 ), (v

[2]
1 , v

[1]
1 )}

E2 = {(v[1]
1 , v

[1]
2 ), (v

[2]
1 , v

[1]
2 ), (v

[1]
2 , v

[1]
1 ), (v

[1]
2 , v

[2]
1 )}

E3 = {(v[1]
1 , u), (v

[2]
1 , u), (v

[1]
2 , u)}

E4 = {(u, v[1]
1 ), (u, v

[2]
1 ), (u, v

[1]
2 )}

The length l(e) for each edge e ∈ E is denoted in Fig. 4.1 as well.

Recall that for K-user compound interference channels, the polyhedral TIN region P is the

set of all GDoF tuples (d1, d2, ..., dK) for which there exist rk’s, k ∈ 〈K〉, such that

dk ≥ 0, ∀k ∈ 〈K〉 (4.20)

rk ≤ 0, ∀k ∈ 〈K〉 (4.21)

rk ≥ dk − α[lk]
kk , ∀k ∈ 〈K〉,∀lk ∈ 〈Lk〉 (4.22)

rk − rj ≥ (α
[lk]
kj − α

[lk]
kk ) + dk, ∀k, j ∈ 〈K〉, k 6= j,∀lk ∈ 〈Lk〉 (4.23)

Setting

r
[lk]
k = rk, ∀k ∈ 〈K〉,∀lk ∈ 〈Lk〉, (4.24)

it is easy to verify that the set of the above inequalities (4.20)-(4.23) is equivalent to the

following ones

dk ≥ 0, ∀k ∈ 〈K〉 (4.25)
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r
[lk]
k ≤ 0, ∀k ∈ 〈K〉,∀lk ∈ 〈Lk〉 (4.26)

r
[lk]
k − r

[l′k]

k ≤ 0, ∀k ∈ 〈K〉,∀lk, l′k ∈ 〈Lk〉, lk 6= l′k (4.27)

r
[lk]
k ≥ dk − α[lk]

kk , ∀k ∈ 〈K〉,∀lk ∈ 〈Lk〉 (4.28)

r
[lk]
k − r

[lj ]
j ≥ (α

[lk]
kj − α

[lk]
kk ) + dk, ∀k, j ∈ 〈K〉, k 6= j,∀lk ∈ 〈Lk〉,∀lj ∈ 〈Lj〉 (4.29)

Therefore, the polyhedral TIN region P is also fully specified by (4.25)-(4.29). In other

words, a GDoF tuple (d1, d2, ..., dK) ∈ RK
+ is in the polyhedral TIN region P if and only if

there exists r
[lk]
k , k ∈ 〈K〉, lk ∈ 〈Lk〉, such that (4.26)-(4.29) hold.

Now consider the potential graph Dp for the K-user compound interference channel. Similar

to the regular case, without loss of generality, if there exists a valid potential function for the

potential graph Dp, we can make the vertex u ground (i.e., p(u) = 0). Then let p(v
[lk]
k ) = r

[lk]
k ,

∀k ∈ 〈K〉, ∀lk ∈ 〈Lk〉. It is not hard to verify that the potential function values should satisfy

the inequalities (4.26) - (4.29). Therefore, in a K-user compound interference channel,

a GDoF tuple (d1, d2, ..., dK) ∈ RK
+ is in the region P if and only if there exists a valid

potential function for its potential graph Dp. Again, based on the potential theorem in [43],

we conclude that a GDoF tuple (d1, d2, ..., dK) ∈ RK
+ is in the region P if and only if the

length of each directed circuit in Dp is non-negative. We categorize all the directed circuits

of Dp into the following three classes:

• Circuits in the form of (u → v
[lk]
k → u). For these circuits, the non-negative length

condition yields

α
[lk]
kk − dk ≥ 0⇔ dk ≤ α

[lk]
kk (4.30)

• Circuits in the form (v
[li0 ]

i0
→ v

[li1 ]

i1
→ ... → v

[lim ]
im

), where i0 = im and (i1, i2, ..., im) ∈
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ΠK . For these circuits, the non-negative length condition indicates

m∑
j=1

(α
[lij ]

ijij
− α

[lij ]

ijij+1
− dij) ≥ 0⇔

m∑
j=1

dij ≤
m∑
j=1

(α
[lij ]

ijij
− α

[lij ]

ijij+1
) (4.31)

• All the other circuits. For these remaining circuits, it is not hard to check that given

(4.30) and (4.31), the inequalities derived from the non-negative length condition are

all redundant.

Consequently, we end up with (4.30)-(4.31). Explicitly adding the non-negative constraint

on di in (4.30)-(4.31), we obtain the polyhedral TIN region P , which is fully characterized

by (4.14)-(4.15) and turns out to be the intersection of the polyhedral TIN regions for all

the possible network realizations. Clearly, under condition (4.13), the polyhedral TIN region

P is matched with the derived outer bounds. Therefore, we complete the proof of Theorem

4.1.

4.3 GDoF-based Power Control for Compound Net-

works

Previous results in this dissertation have shown that under certain conditions, power control

and TIN is optimal from the GDoF perspective for various channel settings, e.g., regular

interference channels, X channels, and compound networks. However, the optimal power

control solution, i.e., the optimal power exponent ri at each transmitter for the target GDoF

tuple, is not given explicitly due to the procedure of Fourier-Motzlin elimination (which is

accomplished via the application of potential theorem). In this section, we will explore the

power control problem from the GDoF perspective for general compound channels (note

that the regular channel is only a special case of the compound setting). Compared with
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the regular setting, the compound setting in fact adds another layer of complexity on the

optimal power allocation problem, since it is not clear a-priori where the bottlenecks lie. To

identify the bottlenecks, simplify the compound network setting as much as possible, and to

allocate power optimally to achieve any desired GDoF objective function are the goals that

we pursue in this section.

4.3.1 Previous Work on Power Control

Transmit power control is of paramount importance for the TIN scheme. There is abundant

literature on the optimization of transmit power allocations. In [57, 58], Zander considers

the carrier-to-interference (C/I) balancing problem and intends to maximize the minimal

achievable C/I ratios of all users with the minimized overall power consumption. For a given

feasible SINR target, distributed power control algorithms are proposed in [59–61] to obtain

the optimal power allocation. In particular, there is much interest in joint SINR (or rate)

assignment (e.g., for sum-rate maximization) and power control problem, studied recently in

[62–65]. This joint optimization problem is quite challenging because: 1) although subclasses

solvable in polynomial time are identified, it is non-convex and NP-hard in general [64] (one

standard approach to deal with this issue is using high SINR approximations to formulate

a convex optimization problem [63]); 2) the feasible SINR region is highly coupled with

power allocations across all users in the network. There are several studies attempting to

derive the entire feasible SINR (or rate) region [66–68], and it is well-known that the feasible

SINR region is log-convex [69].2 So far the sum-rate maximization problem is only solved

in 2-user asymmetric interference channels [70, 71] and K-user fully symmetric interference

channels [72]. For the general K-user asymmetric setting, various algorithms based on

2It is notable that the feasible SINR region studied in [69] corresponds to the case where all users in
the network are active and thus attain strictly positive SINRs. In the GDoF framework, this feasible SINR
region in the log scale essentially corresponds to the polyhedral TIN region P, which is also always convex.
However, as shown in Chapter 2, in general the TIN region P∗ is not convex without time-sharing, if we
allow certain users in the network to be silent.
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geometric programming, game theory, etc. (see [73,74] and references therein), are developed.

Within the GDoF framework, most relevant are the results of Chapter 2 for fully asymmetric

K-user interference channels, where the entire TIN (GDoF) region is fully characterized. A

remarkable advantage of this GDoF approach is that using (essentially) Fourier-Motzkin

Elimination, the transmit power allocation variables are entirely eliminated and thus the

feasible GDoF region characterization and power control problem are decoupled. Therefore,

a closed-form feasible GDoF region depending only upon the effective channel gains (i.e., the

channel strength level α) is derived, with which the optimal GDoF assignment under a given

objective function (e.g., to maximize the achievable sum GDoF) is relatively easy to solve.

The only problem left is power control, i.e., how to allocate transmit powers (efficiently, since

multiple solutions may be possible in general) to achieve the target GDoF tuples.

4.3.2 Preliminaries on GDoF Based Power Control

From the GDoF perspective, we refer to the power exponent vector (r1, r2, ..., rK) as the

transmit power allocation. Also notice that without loss of generality, for the GDoF-based

power control problem we will only consider the GDoF tuples (d1, d2, ..., dK) where di > 0,

∀i ∈ 〈K〉. Apparently, if for certain user i the target GDoF value di = 0, we only need

to set ri = −∞ and then remove this user i from the network without affecting others.

Therefore, in the following, we only deal with the polyhedral TIN scheme, as the polyhedral

TIN region P includes all the GDoF tuples we are interested in. And implicitly we only need

to consider a subset of the valid power allocations for the polyhedral TIN scheme, i.e., the

power exponent vectors which guarantee the right hand side of (4.12) to be positive for all

users.

For the GDoF-based power control problem, we are primarily interested in the globally

optimal power allocation, in which to achieve the target GDoF tuple none of the users can
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lower their transmit powers. The desired globally optimal solution should be locally optimal

at first, in the sense that no single user can unilaterally lower its own transmit power and

still achieve its target GDoF value.3 Note that for one GDoF tuple, while there may exist

multiple locally optimal power allocations in general, there is only one globally optimal power

control solution, which is also the unique Pareto optimal solution as shown in [37].

4.3.3 Equivalence of Compound and Regular Interference Chan-

nels

In this section, we show how to simplify the GDoF-based power control problem for general

compound interference channels. Denote the K-user compound interference channel defined

in (4.4) as ICC . Based on ICC , we construct a counterpart K-user regular interference

channel ICR with the following input-output relationship

Yk(t) =
K∑
i=1

√
P ᾱkiejθ̄kiXi(t) + Z̄k(t), ∀k ∈ 〈K〉, (4.32)

where4

ᾱkk = min
lk∈〈Lk〉

{α[lk]
kk }, ∀k ∈ 〈K〉 (4.33)

ᾱkj = min
lk∈〈Lk〉

{α[lk]
kk } − min

lk∈〈Lk〉
{α[lk]

kk − α
[lk]
kj }, ∀k, j ∈ 〈K〉, j 6= k, (4.34)

3For example, in a 3-user interference channel, with the power allocation (r∗1 , r
∗
2 , r
∗
3), through the TIN

scheme we obtain a GDoF tuple (d∗1, d
∗
2, d
∗
3), where d∗i > 0 for i ∈ {1, 2, 3}. Then the power allocation

(r∗1 , r
∗
2 , r
∗
3) is locally optimal for the tuple (d∗1, d

∗
2, d
∗
3). Using the terminology of game theory, each locally

optimal power allocation refers to a Nash equilibrium.
4In this chapter, for a compound interference channel, we denote the channel strength level of its regular

counterpart by ᾱij to highlight the corresponding relationship between these two. In the context where this
corresponding relationship is not our focus, we still denote the channel strength level of regular interference
channels by αij for brevity.
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θ̄ki can take any value (note that the channel phases do not affect the power control results),

and Z̄k(t) ∼ CN (0, 1). We can rewrite (4.34) as follows

ᾱkk − ᾱkj = min
lk∈〈Lk〉

{α[lk]
kk − α

[lk]
kj }, ∀k, j ∈ 〈K〉, j 6= k (4.35)

Denote α
[lk]
kk −α

[lk]
kj as the power level “gain” of user k against user j under state lk, k, j ∈ 〈K〉.

From (4.33) and (4.35), one can find that for general K-user compound interference channels,

in its regular counterpart, the channel strength level of the direct link for user k is equal

to that of the weakest direct link among all states of user k in the compound channel, and

the power level gain of user k against user j (i.e., ᾱkk − ᾱkj) is equal to the minimal power

level gain of user k against user j among all states of user k in the compound setting. It

is notable that in general for user k of the original compound channel, the state with the

weakest direct link and the state with the minimal power level gain of user k against user

j are not the same. As a consequence, the regular interference channel ICR is a non-trivial

mixture of states of the compound channel ICC .

The following theorem establishes that for a K-user compound interference channel ICC and

its regular counterpart ICR, the GDoF-based power control problems are equivalent.

Theorem 4.2. The K-user compound interference channel ICC and its counterpart K-user

regular interference channel ICR have the same TIN region P∗ and the same polyhedral TIN

region P. Moreover, for any feasible GDoF tuple in P, ICC and ICR have the same set of

locally optimal power allocations.

Example 4.2. In Fig. 4.2, we show a 3-user compound interference channel (Receiver 1

has two possible states) and its counterpart 3-user regular interference channel, where the

values on each link denotes the channel strength level. According to Theorem 4.2, not only

the two channels in Fig. 4.2 have the same TIN region, but also solving the GDoF-based

power control problem for one is equivalent to solving the problem for the other. Note that in
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Figure 4.2: A 3-user compound interference channel and its regular counterpart

Fig. 4.2, the regular channel is different from either of the two possible network realizations

for the compound channel.

We first prove that ICC and ICR have the same TIN region and the same polyhedral TIN

region. In fact, there are several ways to complete the proof. First, we give an explanation

based on potential graph. From the potential graph Dp of ICC , we can construct another

complete digraph D̄p = {V̄ , Ē} with K + 1 vertices, where

V̄ = {v̄1, v̄2, ..., v̄K , u}

Ē = Ē1 ∪ Ē2 ∪ Ē3

Ē1 = {(v̄k, v̄j)}, ∀k, j ∈ 〈K〉, k 6= j

Ē2 = {(v̄k, u)}, ∀k ∈ 〈K〉

Ē3 = {(u, v̄k)}, ∀k ∈ 〈K〉

The length l(ē) of each edge ē ∈ Ē is assigned as follows,

l(v̄k, v̄j) = min
lk∈〈Lk〉

{α[lk]
kk − α

[lk]
kj } − dk, ∀k, j ∈ 〈K〉, k 6= j
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l(v̄k, u) = min
lk∈〈Lk〉

{α[lk]
kk } − dk, ∀k ∈ 〈K〉

l(u, v̄k) = 0, ∀k ∈ 〈K〉

It is easy to verify that D̄p is the potential graph of ICR. It is also not hard to check that

the length of the shortest path from the vertex v
[lk]
k to the vertex v

[lj ]
j in Dp is equal to that

of the shortest path from v̄k to v̄j in D̄p, ∀k, j ∈ 〈K〉, j 6= k. Similarly, the length of the

shortest path from u (or v
[lk]
k ) to v

[lk]
k (or u) in Dp is equal to that of the shortest path from

u (or v̄k) to v̄k (or u) in D̄p, ∀k ∈ 〈K〉. Denote the polyhedral TIN regions of ICC and ICR

as PC and PR, respectively. In ICC , for any GDoF tuple (d∗1, d
∗
2, ..., d

∗
K) ∈ PC , according

to the proof of Theorem 4.1, we have known that in the potential graph Dp, there exists

no circuit with a negative length. Then it is easy to check that for ICR, when the target

GDoF tuple is (d∗1, d
∗
2, ..., d

∗
K), all the circuits in D̄p have non-negative lengths as well. Thus,

(d∗1, d
∗
2, ..., d

∗
K) ∈ PR and PC ⊆ PR. Similarly, we have PR ⊆ PC . Therefore, we establish

that ICC and ICR have the same polyhedral TIN region. Further, it is not hard to argue

that they also have the same TIN region.

The second approach is more straightforward. To prove ICC and ICR have the same TIN

region, we only need to show that with the same power allocation r∗ = (r∗1, r
∗
2, ..., r

∗
K) in ICC

and ICR, we obtain the same GDoF tuple. In the compound channel ICC , when the power

allocation is (r∗1, r
∗
2, ..., r

∗
K), we have

d†k = min
lk∈〈Lk〉

{
α

[lk]
kk + r∗k − (max

j 6=k
{α[lk]

kj + r∗j})+
}

(4.36)

= min
lk∈〈Lk〉

{
α

[lk]
kk + r∗k −max{0,max

j 6=k
{α[lk]

kj + r∗j}}
}

(4.37)

= min
lk∈〈Lk〉

{
α

[lk]
kk + r∗k −max

j 6=k
{α[lk]

kj + r∗j , 0}
}

(4.38)

=r∗k + min
lk∈〈Lk〉

{
α

[lk]
kk −max

j 6=k
{α[lk]

kj + r∗j , 0}
}

(4.39)

=r∗k + min
lk∈〈Lk〉

{
α

[lk]
kk + min

j 6=k
{−α[lk]

kj − r
∗
j , 0}

}
(4.40)
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=r∗k + min
lk∈〈Lk〉

{
min
j 6=k
{α[lk]

kk − α
[lk]
kj − r

∗
j , α

[lk]
kk }
}

(4.41)

For user k ∈ 〈K〉 in ICC , the achievable GDoF value is

dk = min
lk∈〈Lk〉

{
max{0, α[lk]

kk + rk − (max
j:j 6=k
{α[lk]

kj + rj})+}
}

(4.42)

= max{0, d†k} (4.43)

= max

{
0, r∗k + min

lk∈〈Lk〉

{
min
j 6=k
{α[lk]

kk − α
[lk]
kj − r

∗
j , α

[lk]
kk }
}}

(4.44)

In its regular counterpart ICR, with the same power allocation (r∗1, r
∗
2, ..., r

∗
K), we obtain

d††k = ᾱkk + r∗k − (max
j 6=k
{ᾱkj + r∗j})+ (4.45)

= ᾱkk + r∗k −max
j 6=k
{ᾱkj + r∗j , 0} (4.46)

= ᾱkk + r∗k + min
j 6=k
{−ᾱkj − r∗j , 0} (4.47)

= r∗k + min
j 6=k
{ᾱkk − ᾱkj − r∗j , ᾱkk} (4.48)

= r∗k + min
j 6=k

{
min
lk∈〈Lk〉

{α[lk]
kk − α

[lk]
kj − r

∗
j}, min

lk∈〈Lk〉
{α[lk]

kk }
}

(4.49)

= r∗k + min
j 6=k

{
min
lk∈〈Lk〉

{α[lk]
kk − α

[lk]
kj − r

∗
j , α

[lk]
kk }
}

(4.50)

= r∗k + min
lk∈〈Lk〉

{
min
j 6=k
{α[lk]

kk − α
[lk]
kj − r

∗
j , α

[lk]
kk }
}

(4.51)

For user k ∈ 〈K〉 in ICR, the achievable GDoF value is

dk = max{0, d††k } (4.52)

= max

{
0, r∗k + min

lk∈〈Lk〉

{
min
j 6=k
{α[lk]

kk − α
[lk]
kj − r

∗
j , α

[lk]
kk }
}}

(4.53)

Comparing (4.44) with (4.53), we establish that ICC and ICR have the same TIN region.

Based on the above proof, we can further prove that ICC and ICR have the same poly-
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hedral TIN region. Again, denote by PC and PR the polyhedral TIN regions of ICC and

ICR, respectively. Also denote by SC and SR the sets of all valid power allocations for the

polyhedral TIN scheme of ICC and ICR, respectively. In ICC , with any power allocation

r∗ = (r∗1, r
∗
2, ..., r

∗
K) ∈ SC , the obtained GDoF value of user k ∈ 〈K〉 is d†k in (4.41) and

d†k ≥ 0. And the obtained GDoF tuple is d = {d†1, d
†
2, ..., d

†
K} ∈ PC . According to (4.41) and

(4.51), in ICR with the same power allocation r∗, for user k ∈ 〈K〉 the obtained GDoF value

is d††k = d†k ≥ 0. Thus in ICR, r∗ ∈ SR and d ∈ PR. So we obtain that PC ⊆ PR. Similarly,

we can argue that PR ⊆ PC . Therefore, PC = PR.

Finally, through contradictions we can prove that for any feasible GDoF tuple in the polyhe-

dral TIN region P , ICC and ICR have the same set of locally optimal power allocations. For

any feasible GDoF tuple d ∈ P , denote by LC and LR the sets of locally optimal solutions

of ICC and ICR, respectively. We assume that LC 6= LR. Then we have a power allocation

r such that r ∈ LC and r 6∈ LR (or r 6∈ LC and r ∈ LR), which clearly contradicts the fact

that with the same power allocation, ICC and ICR obtain the same GDoF tuple. Therefore,

we complete the proof of Theorem 4.2.

Remark 4.2. It should be noted that the compound channel and its regular counterpart are

only equivalent in terms of the achievability of the TIN scheme. It is not hard to verify that if

the compound interference channel ICC satisfies the condition (4.13), its regular counterpart

ICR is a TIN-optimal interference channel. However, the converse is not true. In [37], we

have shown that for a compound interference channel, even if its regular counterpart satis-

fies the TIN-optimality condition of Theorem 2.1, there may exist other achievable schemes

outperforming the TIN scheme in the original compound setting.
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4.3.4 Properties of Potential Graph

In this section, we explore some properties of the potential graph, which will help us develop

efficient GDoF-based power control algorithms. We present a useful lemma first.

Lemma 4.1. In a K-user compound interference channel, for any achievable GDoF tuple

(d1, d2, ..., dK) in the polyhedral TIN region P, using (l1,dst, l2,dst, ..., lK,dst) in the potential

graph Dp as the transmit power allocation and treating interference as noise at each receiver,

we obtain a GDoF tuple (d̂1, d̂2, ..., d̂K) ∈ P, which dominates (d1, d2, ..., dK), i.e., d̂k ≥ dk,

∀k ∈ 〈K〉.

Proof of Lemma 4.1: In a K-user compound interference channel, start with any achievable

GDoF tuple (d1, d2, ..., dK) ∈ P . According to the proof of Theorem 4.1, for all the achievable

GDoF tuples in P , there exist valid potential functions in the potential graph Dp, and all

the directed circuits in Dp have non-negative lengths. It is easy to verify that if in Dp each

directed circuit has a non-negative length, the length of the shortest path starting from the

ground vertex u to each vertex in Dp is a valid potential function. Specifically, we have a

valid potential function

p(v
[lk]
k ) = lk,dst ≤ 0, ∀k ∈ 〈K〉, ∀lk ∈ 〈Lk〉, (4.54)

and

p(u) = 0. (4.55)

According to the definition of potential function (i.e., for any edge (a, b) ∈ E , l(a, b) ≥

p(b)− p(a)), from (4.17), (4.18), (4.54) and (4.55) we have

dk ≤ α
[lk]
kk + lk,dst − (α

[lk]
kj + lj,dst), ∀k, j ∈ 〈K〉, k 6= j,∀lk ∈ 〈Lk〉, (4.56)
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dk ≤ α
[lk]
kk + lk,dst, ∀k ∈ 〈K〉,∀lk ∈ 〈Lk〉 (4.57)

Due to (4.56) and (4.57), we obtain

dk ≤ min
lk∈〈Lk〉

{
α

[lk]
kk + lk,dst − (max

j:j 6=k
{α[lk]

kj + lj,dst})+
}
, ∀k ∈ 〈K〉 (4.58)

Using (l1,dst, l2,dst, ..., lK,dst) as the transmit power allocation, which satisfies the unit power

constraint for each user according to (4.54), in the TIN scheme the achievable GDoF value

of user k ∈ 〈K〉 is given by

d̂k = min
lk∈〈Lk〉

{
max{0, α[lk]

kk + lk,dst − (max
j:j 6=k
{α[lk]

kj + lj,dst})+}
}

(4.59)

≥ min
lk∈〈Lk〉

{
α

[lk]
kk + lk,dst − (max

j:j 6=k
{α[lk]

kj + lj,dst})+
}

(4.60)

≥ dk (4.61)

So we complete the proof. �

As discussed before, to get the shortest path results in the potential graph Dp of the original

K-user compound channel ICC , we only need to deal with a corresponding single-source

shortest path problem in D̄p (i.e., the potential graph of the regular counterpart ICR). This

problem can be solved efficiently via the classical Bellman-Ford algorithm with complexity

O(K3). It is also well known that Bellman-Ford algorithm can detect the negative-length

circuits in a digraph with arbitrary-length edges [43]. Recall that for a K-user compound

interference channel, when the target GDoF tuple is out of the polyhedral TIN region P

(i.e., it is not achievable via the polyhedral TIN scheme), there exist negative-length circuits

in Dp and D̄p. Therefore, Bellman-Ford algorithm can also serve as the feasibility test for

the target GDoF tuples. Correspondingly, in the conventional SINR-based power control

algorithms for regular interference channels, the feasibility of SINR targets can be checked
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through centralized computations based on non-negative matrix theory [61]. How to test the

feasibility in a distributed fashion is still open.

To optimize the system performance, we are primarily interested in the Pareto optimal GDoF

tuples in the feasible GDoF region. If a GDoF tuple (d1, d2, ..., dK) is Pareto optimal for the

polyhedral TIN region P , it indicates that in P there does not exist another distinct tuple

(d̂1, d̂2, ..., d̂K) such that d̂k ≥ dk, ∀k ∈ 〈K〉. Therefore, based on Theorem 4.2 and Lemma

4.1, we obtain the following theorem straightforwardly.

Theorem 4.3. In a K-user compound interference channel ICC, for any Pareto optimal

GDoF tuple in its polyhedral TIN region P, (l1,dst, l2,dst, ..., lK,dst) in the potential graph D̄p

of its regular counterpart ICR is a locally optimal transmit power allocation.

Since in a K-user compound interference channel where condition (4.13) holds, its GDoF

region is exactly the polyhedral TIN region P , we have the following corollary.

Corollary 4.1. In a K-user compound interference channel ICC, if the condition (4.13)

is satisfied, for any Pareto optimal GDoF tuple in its GDoF region, (l1,dst, l2,dst, ..., lK,dst)

in the potential graph D̄p of its regular counterpart ICR is a locally optimal transmit power

allocation.

4.3.5 Fixed-point Power Control Algorithm

In the following, we will demonstrate how to obtain the optimal power allocation for an ar-

bitrary achievable GDoF tuple in the polyhedral TIN region P . It is notable that there exist

remarkable differences between the power control problems for target rate tuples and GDoF

tuples. For an achievable rate tuple, there only exists a unique locally optimal transmit

power vector, which is the globally optimal power control solution naturally. However, as

mentioned before, for one feasible GDoF tuple, in general there are multiple locally optimal
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power allocations. It is also well known that for any feasible target rate tuple, a celebrated

synchronous fixed-point power control algorithm developed by Foschini and Miljanic [59]

provides the globally optimal power allocation. In this section, we will show that for an

achievable GDoF tuple, through a similar GDoF-based synchronous fixed-point power con-

trol (GSFPC) algorithm, we obtain a locally optimal solution, which is not globally optimal

in general. The GSFPC algorithm for general K-user compound interference channels is

specified as follows.5

Algorithm 1 GDoF-based synchronous fixed-point power control (GSFPC)

1) Initialize: set rk(0) = lk,dst for k ∈ 〈K〉;
2) Update:

rk(n+ 1) = dk − min
lk∈〈Lk〉

{
α

[lk]
kk − (max

j:j 6=k
{α[lk]

kj + rj(n)})+
}
, k ∈ 〈K〉 (4.62)

where n indexes discrete time slots.

The following theorem demonstrates the convergence of the GSFPC algorithm.

Theorem 4.4. In a K-user compound interference channel, for any achievable GDoF tuple

in its polyhedral TIN region P, the GSFPC algorithm converges to a locally optimal transmit

power allocation. Further, if there are multiple locally optimal power allocations r∗ satisfying

r∗≤ (l1,dst, l2,dst, ..., lK,dst), denote by Rl the set of all such locally optimal solutions. Then,

r∗∗, the locally optimal power allocation obtained from the GSFPC algorithm, satisfies r∗∗ ≥

r∗, ∀r∗ ∈ Rl.

For conventional SINR-based fixed-point power control algorithms, the convergence is usually

proved through the framework of standard interference function developed in [60], which

turns out to be inapplicable to the GDoF setting. To proceed with the proof of Theorem

5Note that to solve the power control problem for compound channels, according to Theorem 4.2, we can
also apply the GSFPC algorithm to its regular counterpart.
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4.4, define r(n) = (r1(n), r2(n), ..., rK(n)), and rewrite (4.62) in the vector form

r(n+ 1) = f(r(n)) (4.63)

where f : RK → RK is the update function in the GSFPC algorithm.

We first demonstrate the convergence of the GSFPC algorithm. To this end, we go through

the following three steps:

• First, we show that {r(n)}∞n=0 is a decreasing sequence through induction. Due to

(4.58), we have

dk ≤ min
lk∈〈Lk〉

{
α

[lk]
kk + lk,dst − (max

j:j 6=k
{α[lk]

kj + lj,dst})+
}

(4.64)

⇔lk,dst ≥ dk − min
lk∈〈Lk〉

{
α

[lk]
kk − (max

j:j 6=k
{α[lk]

kj + lj,dst})+
}

(4.65)

⇔rk(0) ≥ dk − min
lk∈〈Lk〉

{
α

[lk]
kk − (max

j:j 6=k
{α[lk]

kj + rj(0)})+
}

(4.66)

Writing the above inequality in the vector form, we get

r(0) ≥ f(r(0)) = r(1) (4.67)

Next, assume r(k) ≤ r(k − 1). Since f is an increasing function, we obtain

r(k + 1) = f(r(k)) ≤ f(r(k − 1)) = r(k) (4.68)

Therefore, the sequence {r(n)}∞n=0 is decreasing.

• Second, we prove that there exists a fixed point r∗ = (r∗1, r
∗
2, ..., r

∗
K) ≤ r(0) such that

r∗ = f(r∗). It is not hard to verify that the following conditions are satisfied: (i) f is a

continuous increasing function, since the maximum/minimum of continuous functions
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is still continuous; (ii) According to (4.67), the set Sr = {r : r ≥ f(r)} is not empty;

(iii) The set Sr is bounded from below (i.e., for each power allocation r̄ ∈ Sr, its i-th

entry r̄i is bounded away from negative infinity). Therefore, according to the fixed

point theorem in [75] (Proposition 6 in [75]), we establish that for r(0) ∈ Sr, there

exists a r∗ ≤ r(0) such that r∗ = f(r∗).

• Finally, we illustrate that the sequence {r(n)}∞n=0 is bounded by induction. From the

second step, we have known that r(0) ≥ r∗. Next, assume r(k) ≥ r∗. We have

r(k + 1) = f(r(k)) ≥ f(r∗) = r∗ (4.69)

Therefore, the sequence {r(n)}∞n=0 is bounded from below by r∗.

According to the above steps, we have known that the sequence {r(n)}∞n=0 is decreasing and

bounded, thus convergent. As a fixed-point algorithm is able to estimate a fixed point if and

only if {r(n)}∞n=0 converges, and clearly the obtained fixed point solution is a locally optimal

power allocation for the target GDoF tuple, we complete the proof for the convergence of

the GSFPC algorithm.

It is also not hard to prove that the locally optimal power allocation yielded by the GSFPC

algorithm, i.e., r∗∗, satisfies r∗∗ ≥ r∗, ∀r∗ ∈ Rl. Let r∗ be any locally optimal power allocation

satisfying r∗ ≤ r(0). In the proof above, we have known that {r(n)}∞n=0 is bounded from

below by r∗. Therefore, we establish that r∗∗ = limn→∞ r(n) ≥ r∗, ∀r∗ ∈ Rl.

4.3.6 GDoF-optimal Power Control Algorithm

In this section, we show how to obtain the globally optimal power allocations for all the

feasible GDoF tuples in the polyhedral TIN region P . We start with a motivating example.
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Figure 4.3: The transmit power updates for a 3-user interference channel

Example 4.3. Consider the 3-user interference channel in Fig. 4.3. In this channel, we in-

tend to achieve the GDoF tuple (d1, d2, d3) = (0.5, 0.6, 0.7). Start with the initial power

allocation given by the shortest path result in the potential graph
(
r1(0), r2(0), r3(0)

)
=

(−0.1, 0,−0.1). It is easy to find that if all users reduce their transmit powers by the same

amount below a threshold ∆(0), we still achieve an acceptable GDoF tuple,6 where

∆(0) = min
i

{
ri(0) + αii − di

}
= 0.4, i ∈ {1, 2, 3}

Thus in the first update, each user lowers its transmit power by 0.4. The resulting transmit

power allocation becomes
(
r1(1), r2(1), r3(1)

)
= (−0.5,−0.4,−0.5), and the achieved GDoF

tuple is (1, 0.6, 0.9). At this point, user 2 cannot reduce its transmit power further while

maintaining the desired GDoF value 0.6 (if r2 < −0.4, then r2 +α22 < 0.6). The consequence

is that in the following updates, Transmitter 2 exerts fixed interference levels to Receiver 1 and

3, whose strengths are max{0, α12 + r2(1))} = 0 and max{0, α32 + r2(1)} = 0.1, respectively.

In addition, it is easy to check that the resulting power allocation after the first update is not

the desired globally optimal power allocation. So we proceed the transmit power updates. In

6In the GDoF-based power control problem, if for each user the achievable GDoF value is no less than
the target value, then this GDoF tuple is referred to as an acceptable GDoF tuple.
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the second update, the other two users (i.e., user 1 and 3) can further reduce their transmit

power simultaneously by the same amount below a threshold ∆(1) to obtain an acceptable

GDoF tuple, where

∆(1) = min
i

{
ri(1) + αii − di −max{0, αi2 + r2(1))}

}
= 0.2, i ∈ {1, 3}

After the second update, by keeping the transmit power of user 2 as −0.4 and reducing the

transmit powers of user 1 and 3 by 0.2, we obtain the power allocation
(
r1(2), r2(2), r3(2)

)
=

(−0.7,−0.4,−0.7) and its corresponding achieved GDoF tuple (1, 0.6, 0.7). Now user 3 can-

not further reduce its transmit power while maintaining the desired GDoF value 0.7. Thus

in the following update, Transmitter 3 exerts a fixed interference level to Receiver 1 with

strength max{0, α13 + r3(2)} = 0.3. To obtain an acceptable GDoF tuple, at this point only

user 1 can further lower its transmit power by an amount below the threshold

∆(2) = r1(2) + α11 − d1 −max{0, α1j + rj(2))} = 0.5, j ∈ {2, 3}

Finally, we get the power allocation
(
r1(3), r2(3), r3(3)

)
= (−1.2,−0.4,−0.7), which is in

fact the globally optimal power allocation for the target GDoF tuple (0.5, 0.6, 0.7).

For K-user interference channels, to obtain the globally optimal power allocation for an

achievable GDoF tuple (d1, d2, ..., dK) ∈ P , we develop an iterative algorithm with at most

K updates, which is called GDoF-based globally-optimal power control (GGPC) algorithm

and specified at the top of next page.

In the GGPC algorithm, we can use Bellman-Ford algorithm to calculate the lengths of the

shortest paths li,dst (i ∈ 〈K〉) in the initialize phase, which also serves as the feasibility test

for the target GDoF tuple. For the feasible GDoF tuple, we repeat the update phases until

I = φ to obtain its globally optimal power control solution. Starting from the initial power

allocation, in each update the GGPC algorithm reduces the transmit powers of certain users
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Algorithm 2 GDoF-based globally-optimal power control (GGPC)

1) Initialize: set I = 〈K〉, M = φ, and ri(0) = li,dst for i ∈ 〈K〉;
2) Update:

∆(n) = min
i

{
ri(n) + αii − di −max

m6=i
{0, αim + rm(n)}

}
, i ∈ I,m ∈M (4.70)

N = arg min
i

{
ri(n) + αii − di −max

m6=i
{0, αim + rm(n)}

}
, i ∈ I,m ∈M (4.71)

ri(n+ 1) = ri(n)−∆(n), i ∈ I (4.72)

rm(n+ 1) = rm(n), m ∈M (4.73)

I = I\N ,M =M∪N (4.74)

where n indexes discrete time slots. The update phase terminates when I = φ.

to their limits (these users also achieve the target GDoF value exactly after the update) and

still guarantees to achieve an acceptable GDoF tuple. Then these users hold their powers

fixed, which in turn exert fixed interference levels for the remaining users participating in the

following updates. These fixed interference levels will limit how much power can be further

reduced by the remaining users. The optimality of the GGPC algorithm is illustrated in the

following theorem.

Theorem 4.5. In a K-user interference channel, for any achievable GDoF tuple in its

polyhedral TIN region P, the GGPC algorithm yields the globally optimal transmit power

allocation.

The proof of Theorem 4.5 is relegated to Appendix B. Combining Theorem 4.2 with Theorem

4.5, we get the following corollary on compound interference channels.

Corollary 4.2. In a K-user compound interference channel ICC, for any achievable GDoF

tuple in its polyhedral TIN region P, applying the GGPC algorithm to its regular counterpart

ICR yields the globally optimal transmit power allocation for both ICC and ICR.
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4.4 Summary

In this chapter, we first generalize the optimality of TIN to compound interference channels.

We demonstrate that for a K-user compound Gaussian interference channel, if in each pos-

sible network state, the channel satisfies the TIN-optimality condition identified in Theorem

2.1, then its GDoF region is the intersection of the GDoF regions of all possible network

states, which is achievable via the TIN scheme. We also fully characterize the TIN region for

compound interference channels with arbitrary channel strengths. Next, the power control

problem is investigated from the GDoF perspective for compound networks. Notably, we

show that to solve the GDoF-based power control problem for a K-user compound interfer-

ence channel with arbitrary number of states for each receiver, we only need to construct

its nontrivial counterpart K-user regular interference channel, and solve the power control

problem in this new channel. Finally, for general K-user compound interference channels, we

develop several power control algorithms to obtain the optimal transmit power allocations

for feasible GDoF tuples.

Note that combining the TIN region characterization with GDoF-based power control al-

gorithms, we also solve the joint GDoF assignment and power control problem for general

K-user compound interference channels. For channels where power control and TIN is op-

timal from the GDoF perspective, this approach provides a constant gap guarantee for the

information-theoretically optimal result (e.g., the sum capacity at any finite SNR). As a

byproduct, it provides an alternative perspective to deal with the challenging joint rate as-

signment and power control problem as well. In [37, 76], some numerical results indicate

that this GDoF-based approach may attain close performance to its sophisticated SINR-

based counterpart in the finite SNR setting. This line of research is still in its infancy, and

substantial efforts are needed to evaluate the performance of GDoF-based power control

schemes for general network settings with finite SNR values.
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Chapter 5

TIN-optimal Interference Channels

with Confidential Messages

In this chapter, we study Gaussian networks with information theoretical secrecy constraints.

A canonical model is the Gaussian wiretap channel [77, 78], where the secure capacity has

been characterized as the difference between the capacities of the main and the wiretap

channels, implying that there exists a capacity penalty for ensuring the secrecy. In multi-

user settings (e.g., interference channels), since the exact capacity is in general intractable

even without secrecy constraints, much of the recent progress has come from the pursuit of

capacity approximations along the progressive refinement path presented in Chapter 1 (i.e.,

starting with the coarse DoF metric, this approach progressively targets finer metrics in the

form of GDoF, capacity within a constant gap, and ultimately the exact capacity). For

K-user interference channels with confidential messages, the secure sum DoF value has been

established in [79, 80] as K(K−1)
2K−1

. Compared with the conventional setting without secrecy

constraints (where the sum DoF value is K
2

), there is a DoF penalty as expected. Following

the progressive refinement approach, the next goals are GDoF and constant gap character-

izations. In this chapter, we will mainly consider the TIN-optimal Gaussian interference
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channels (identified in Theorem 2.1) with secrecy constraints.

This chapter is organized as follows. The system model of Gaussian interference channels

with confidential messages is described in Section 5.1. In Section 5.2, we show the main result

of this chapter, i.e., for TIN-optimal interference channels identified in Theorem 2.1, secrecy

constraints on unintended messages incur no GDoF penalty, which also leads to a secure

capacity region characterization within a constant gap. In Section 5.3, we consider interfer-

ence channels with both confidential messages and external eavesdroppers. We summarize

this chapter in Section 5.4.

5.1 Channel Model

Consider K-user complex Gaussian interference channels with confidential messages. The

channel input-output relationship is the same as that of the interference channel (2.4) in

Chapter 2, i.e.,

Yk(t) =
K∑
i=1

√
PαkiejθkiXi(t) + Zk(t), ∀k ∈ 〈K〉 (5.1)

Recall that in the K-user interference channel, Transmitter i intends to send an independent

message Wi to Receiver i, ∀i ∈ 〈K〉. For user i, the size of the message set is denoted

by |Wi|, and the rate of message Wi is defined as Ri ,
log |Wi|

n
, where n is the number of

channel uses. Receiver i decodes its desired message as Ŵi based on the channel output.

In the conventional setting without secrecy constraints (or confidential messages), the rate

tuple (R1, R2, ..., RK) is achievable if for any ε > 0, there exist n-length codes such that the

decoding error probabilities at all the receivers are no larger than ε, i.e.,

max
i

Pr
(
Wi 6= Ŵi

)
≤ ε (5.2)
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For interference channels with confidential messages, the difference is that each message Wi

is also required to be kept secret against its unintended receivers. Define WK
−i , {Wk : ∀k ∈

〈K〉\{i}}. The information theoretic secrecy constraint is given by

H(WK
−i|Y n

i ) ≥ H(WK
−i)− nε, ∀i ∈ 〈K〉 (5.3)

Essentially, secrecy requires that the channel output Y n
i is almost independent of WK

−i. In

this setting, a secure rate tuple (Rs
1, R

s
2, ..., R

s
K) is achievable if there exist n-length codes

such that both the secrecy constraint (5.3) and the decodability constraint (5.2) are satisfied.

The secure channel capacity region Cs is the closure of the set of all achievable secure rate

tuples and the secure GDoF region Ds is defined as

Ds ,
{

(ds1, d
s
2, ..., d

s
K) : dsi = lim

P→∞

Rs
i

logP
, ∀i ∈ 〈K〉, (Rs

1, R
s
2, ..., R

s
K) ∈ Cs

}
(5.4)

5.2 Results on TIN-optimal Interference Channels

To obtain the main result of this chapter, we first present a useful lemma, where an achievable

secure GDoF region is identified for Gaussian interference channels with arbitrary channel

strengths.

Lemma 5.1. In a general K-user Gaussian interference channel, all the GDoF tuples in

the polyhedral TIN region P are achievable under the secrecy constraint (5.3).

Proof of Lemma 5.1: To complete the proof, we need to invoke the following theorem.

Theorem 5.1. (Theorem 2 of [80]) In K-user interference channels with confidential mes-
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sages and one external eavesdropper, the following rate region is achievable1

Rs
i ≥ I(Vi;Yi)− max

j∈{0,〈K〉}\{i}
I(Vi;Yj|V K

−i), ∀i ∈ 〈K〉 (5.5)

where V K
−i , {Vj : ∀j ∈ 〈K〉\{i}}. The auxiliary random variables Vi are mutually indepen-

dent, and for each i, we have the following Markov chain Vi → Xi → (Y1, Y2, ..., YK).

Consider any GDoF tuple (d1, d2, ..., dK) in the polyhedral TIN region P . According to the

power control schemes in Chapter 4, we can obtain its optimal power allocation (r1, r2, ..., rK),

where ri ≤ 0, i ∈ 〈K〉. Recall that for (d1, d2, ..., dK) ∈ P , we have

di = αii + ri −max{0,max
j:j 6=i

(αij + rj)} ⇔ ri − di + αii = max{0,max
j:j 6=i

(αij + rj)} (5.6)

In the following, we show how to obtain the same GDoF tuple (d1, d2, ...., dK) under the

secrecy constraint (5.3). Let Xi = Vi + Ji, ∀i ∈ 〈K〉, where Vi ∼ CN (0, P
ri

2
) is the message-

carrying signal, Ji ∼ CN (0, P
ri−di
2

) is the random jamming signal, and Vi, Ji are independent,

∀i ∈ 〈K〉. Note that with the above power allocations, each user satisfies the unit power

constraint. The received signal of user k is given by

Yk =
K∑
i=1

√
Pαkiejθki(Vi + Ji) + Zk, ∀k ∈ 〈K〉 (5.7)

Consider the first term in the right hand side of (5.5).

I(Vi;Yi) = h(Yi)− h(Yi|Vi) (5.8)

= log

(
1 +

1
2
P ri+αii

1 + 1
2

∑
j 6=i P

rj+αij + 1
2

∑
j P

rj−dj+αij

)
(5.9)

> log

( 1
2
P ri+αii

P 0 +
∑

j 6=i P
rj+αij + 1

2
P ri−di+αii

)
(5.10)

1In Theorem 5.1, Y0 denotes the output of the external eavesdropper (see equation (5.24)). In the case
where we only consider the confidential messages, we simply remove the eavesdropper and ignore this term.
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≥ log

( 1
2
P ri+αii

P ri−di+αii + (K − 1)P ri−di+αii + 1
2
P ri−di+αii

)
(5.11)

= log

(
P ri+αii

(2K + 1)P ri−di+αii

)
(5.12)

= di logP − log(2K + 1) (5.13)

where (5.10) follows P > 1 and di ≥ 0, i ∈ 〈K〉, and (5.11) holds due to (5.6).

Next, consider the second term in the right hand side of (5.5), i.e., the secrecy penalty.

I(Vi;Yj|V K
−i) = h(Yj|V K

−i)− h(Yj|V1, V2, ..., VK) (5.14)

= log

(
1 +

1
2
P ri+αji

1 + 1
2

∑
k P

rk−dk+αjk

)
(5.15)

≤ log

(
1 +

1
2
P ri+αji

1
2
P rj−dj+αjj

)
≤ 1 (5.16)

where i, j ∈ 〈K〉, i 6= j, and (5.16) follows (5.6).

Finally, plugging (5.13) and (5.16) into (5.5), we obtain

Rs
i ≥di logP − log 2(2K + 1), ∀i ∈ 〈K〉 (5.17)

⇒ dsi ≥ lim
P→∞

di logP − log 2(2K + 1)

logP
= di, ∀i ∈ 〈K〉

which implies that (d1, d2, ..., dK) is still achievable under the secrecy constraint (5.3). �

To achieve the polyhedral TIN region P under the secrecy constraint (5.3), in the above proof

of Lemma 5.1, we adopt a Gaussian-based Cooperative Jamming (GCJ) scheme, where each

user splits its transmit signal into two parts: the first part carries the desired message

based on a Gaussian codebook, and the second part is a randomly generated Gaussian

jamming signal helping reduce the information leakage at each receiver. For each user, the

power allocation of these two parts is derived from the GDoF-optimal power control solution

presented in Chapter 4. Note that the GCJ scheme is a generalization of the Artificial Noise
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scheme for 2-user Gaussian interference channels [81].

Based on Lemma 5.1, we get the main result of this chapter.

Theorem 5.2. In a K-user Gaussian interference channel with confidential messages, if

the TIN-optimality condition (2.7) is satisfied, then the secure GDoF region is equal to the

polyhedral TIN region P and the GCJ scheme achieves the entire secure capacity region to

within a constant gap of no larger than log[6(2K + 1)] bits per user.

According to Theorem 5.2, when condition (2.7) holds, for K-user interference channels,

Ds = P = D, i.e., the secrecy constraint (5.3) does not introduce GDoF penalty. For The-

orem 5.2, in terms of GDoF, the converse follows trivially from Theorem 2.1 since adding a

confidentiality constraint cannot help, and the achievability follows from Lemma 5.1 directly.

Here we give some intuitive explanations to help interpret this result. Viewed in terms of

signal strength levels in the log scale, recall that in the TIN scheme without secrecy con-

straints, for each user the achievable GDoF value is the amount by which the desired signal

strength exceeds the interference strength, i.e., the desired signal levels that are seen above

the interference floor. Let’s call these the useful signal levels for brevity. The desired signal

levels that are received above the noise floor but below the interference floor are not useful

for communicating the desired message and are therefore left unused in the TIN scheme.

This allows receivers to decode and subtract the desired signal and then cleanly observe

the remaining interference levels that are received above the noise floor, thus compromising

confidentiality. When the secrecy constraints are enforced, the essential difference is that

now in the GCJ scheme each transmitter jams all the signal levels below the useful levels,

which were previously unused, by sending random noise at all these levels, thus raising the

noise floor at its desired receiver to match the interference floor. Therefore, all interfering

signals are hidden by the jamming noise. Further, notice that because the jamming noise

levels are always below the signal levels, and the signal levels are already below the useful

levels of all undesired receivers, the jamming signal does not hurt undesired receivers. Thus,
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the secrecy constraints are incorporated into the TIN scheme with no GDoF penalty.

Based on the insight obtained from the GDoF study, we are also able to show that the

GCJ scheme achieves the entire secure capacity region to within a constant gap for the

TIN-optimal interference channels with confidential messages. For the converse, apply the

outer bounds in Theorem 2.2 for TIN-optimal interference channels without any secrecy

constraints.

Rs
i ≤ αii logP + 1, ∀i ∈ 〈K〉 (5.18)

m∑
j=1

Rs
ij
<

m∑
j=1

[
(αijij − αij−1ij) logP + log 3

]
∀(i1,i2, ..., im) ∈ ΠK , ∀m ∈ {2, 3, ..., K} (5.19)

Next, consider the achievability. For any GDoF tuple (d1, d2, ..., dK) in the polyhedral TIN

region P , we have known that under the secrecy constraint (5.3), the rate in (5.17) is always

achievable. Then it is easy to verify that the achievable secure rate region includes the tuples

(R̄s
1, R̄

s
2, ..., R̄

s
K) ∈ R+

K satisfying

R̄s
i ≤ (αii logP − log 2(2K + 1))+ ,∀i ∈ 〈K〉 (5.20)

m∑
j=1

R̄s
ij
≤
( m∑

j=1

(αijij − αij−1ij) logP −m log 2(2K + 1)

)+

∀(i1, i2, ..., im) ∈ ΠK , ∀m ∈ {2, 3, ..., K} (5.21)

Comparing (5.18), (5.19) with (5.20), (5.21), it is not hard to get that

σRsi < log 6(2K + 1), ∀i ∈ 〈K〉 (5.22)

σ∑m
j=1R

s
ij
≤ m log 6(2K + 1), ∀(i1, i2, ..., im) ∈ ΠK ,∀m ∈ {2, 3, ..., K}, (5.23)
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where σ(.) denotes the difference between the achievable rate in (5.20) and (5.21) and its

corresponding outer bound in (5.18) and (5.19). Therefore, we complete the proof of Theorem

5.2.

Remark 5.1. Based on Lemma 5.1, the result of no GDoF penalty under the confidentiality

constraints can be extended to a class of partially connected TIN-optimal interference chan-

nels identified in [76]. Also the results in Theorem 5.2 can be generalized to TIN-optimal

K ×K X channels directly.2

Remark 5.2. Note that for the networks where TIN achieves the exact capacity, in general

there is a non-zero capacity penalty for ensuring secrecy. In [82], the authors have shown

that for the many-to-one interference channel, in the noisy interference regime where TIN

is exactly capacity optimal [7–9], the sum rate upper bound under secrecy constraints is less

than the sum rate achieved by the TIN scheme (without secrecy constraints) in some cases.

5.3 Extension to Channels with External Eavesdrop-

pers

In this section, we mainly investigate the performance of the GCJ scheme in K-user Gaussian

interference channels with confidential messages and an external eavesdropper. The channel

output of the eavesdropper is denoted by

Y0(t) =
K∑
i=1

√
Pα0iejθ0iXi(t) + Z0(t) (5.24)

where Z0(t) ∼ CN (0, 1) is the noise term at the eavesdropper. In this channel, besides

the secrecy constraint (5.3), we also require that all messages are kept secret against the

2In the K × K X message setting, the secrecy constraint is given by H(WK×K
i− |Y n

i ) ≥ H(WK×K
i− ) −

nε, ∀i ∈ 〈K〉, where WK×K
i− , {Wjk : ∀j ∈ 〈K〉\{i},∀k ∈ 〈K〉}. Recall that Wjk is the message from

Transmitter k to Receiver j.
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eavesdropper, i.e.,

H(W1,W2, ...,WK |Y n
0 ) ≥ H(W1,W2, ...,WK)− nε (5.25)

The main result of this section is the following theorem.

Theorem 5.3. In a K-user Gaussian interference channel, assume that for the GDoF tuple

(d1, d2, ..., dK) ∈ P, the optimal power allocation of the TIN scheme is (r1, r2, ..., rK). For

the same interference channel with both confidential messages and an external eavesdropper,

define

i∗ = arg max
i
{ri + α0i}, (5.26)

then the secure GDoF tuple (d1, ..., di∗−1, 0, di∗+1, ..., dK) is achievable through the GCJ scheme.

In other words, for the GCJ scheme, the GDoF loss due to the external eavesdropper is at

most the achievable secure GDoF value of one user i∗.

In the following, we proceed to prove Theorem 5.3. To ensure secrecy against the added

external eavesdropper, we still use the GCJ scheme. For user i∗, let it only generate a

random jamming signal, i.e., Xi∗ = Ji∗ , where Ji∗ ∼ CN (0, P
ri∗

2
). For user i 6= i∗, still let

Xi = Vi+Ji, where Vi ∼ CN (0, P
ri

2
) and Ji ∼ CN (0, P

ri−di
2

). Next, we invoke Theorem 5.1 to

derive the achievable secure GDoF tuple. For user i∗, obviously its achievable secure GDoF

value is 0. For the other users i 6= i∗, following the proof of Lemma 5.1, it is not hard to get

I(Vi;Yi) ≥ di logP − o(logP ), ∀i ∈ 〈K〉, i 6= i∗, (5.27)

I(Vi;Yj|V K
−i) ≤ o(logP ), ∀i, j ∈ 〈K〉, i 6= j, i 6= i∗ (5.28)

According to the secrecy constraint (5.25), we also need to consider the secrecy penalty
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induced by the eavesdropper. For user i 6= i∗, we obtain

I(Vi;Y0|V K
−i) = h(Y0|V K

−i)− h(Y0|V1, V2, ..., VK) (5.29)

= log

(
1 +

1
2
P ri+α0i

1 + 1
2
P ri∗+α0i∗ + 1

2

∑
k 6=i∗ P

rk−dk+α0k

)
(5.30)

< log

(
1 +

1
2
P ri+α0i

1
2
P ri∗+α0i∗

)
≤ log(1 + 1) = 1 (5.31)

Combining (5.27), (5.28) and (5.31) together, we establish that the secure GDoF value di is

still achievable for user i 6= i∗, which completes the proof of Theorem 5.3.

Remark 5.3. It is notable that the GDoF loss introduced by the external eavesdropper is

unavoidable in the worst-case where, e.g., the eavesdropper sees the same (or better) channel

conditions as one of the users. Similarly, with k ≤ K eavesdroppers, the worst case would

result in the penalty of GDoF of k users. However, the argument given in Theorem 5.3

demonstrates that for the GCJ scheme, the penalty due to k eavesdroppers is never more

than loss of achievable GDoF values for k users.

5.4 Summary

In this chapter, we characterize the secure GDoF region for TIN-optimal interference chan-

nels identified in Theorem 2.1. We demonstrate that for such channels, if we impose a

confidentiality constraint on the messages such that they are required to remain secure

against unintended receivers, the GDoF region is unchanged. We also prove that for such

TIN-optimal interference channels, a GCJ scheme with smart power splitting between mes-

sage signals and jamming signals achieves the entire secure capacity region within a constant

gap. Finally, we discuss the performance of the GCJ scheme for interference channels with

both confidential messages and external eavesdroppers. It should be noted that for Gaussian

interference channels with secrecy constraints, in general the GCJ scheme is not optimal
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from the GDoF perspective, and the interference alignment principle can help improve the

performance in certain channel parameter regimes [80,83].
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Chapter 6

Multilevel Topological Interference

Management

As mentioned in Chapter 1, existing wireless networks are mainly based upon two robust

interference management principles – 1) ignoring interference that is sufficiently weak, and 2)

avoiding interference that is not. These two principles – avoiding versus ignoring interference

– which are mapped to TIM and TIN, respectively, naturally correspond to interference

management in terms of signal vector spaces and signal power levels. Essentially, TIM uses

the interference alignment perspective to optimally allocate signal vector subspaces among

the strong interferers. On the other hand, TIN optimally allocates signal levels among

users by setting the transmit power level at each transmitter and the noise floor level at

each receiver. While interference management approaches based on signal spaces and signal

levels have each been extensively studied in a variety of settings, combining the two has still

been a challenge, especially when the schemes involved are rather fragile because of their

extreme sensitivity to the precise channel realizations. However, due to the minimal channel

knowledge requirements in the TIM and TIN settings, a robust combination of these two

is promising. In this chapter, we will explore how to associate the robust TIM and TIN

119



principles together within a multilevel topological interference management framework.

Chapter 6 is organized as follows. In Section 6.1, we briefly introduce the background. The

joint TIM-TIN problem is formulated in Section 6.2. A baseline decomposition approach is

presented in Section 6.3. Section 6.4 summarizes this chapter.

6.1 Background

As discussed in Chapter 1, although recent years have seen a rapid progress in the capacity

characterization of Gaussian wireless networks, most of current studies are limited by two

factors: the idealized assumption of precise CSIT and the DoF metric. In short, in practice

the precise CSIT is rarely available, and DoF ignores the diverse channel strengths (or

network topology). Evidently, in order to avoid these pitfalls, we should shift our focus

away from optimal ways of exploiting precise CSI, and toward optimal ways of exploiting

a coarse knowledge of interference network topology. This line of thought motivates robust

models of interference networks where only a coarse knowledge of channel strength levels is

available to transmitters and no channel phase knowledge is assumed. This is the multilevel

topological interference management framework. It is a generalization of the elementary TIM

framework introduced in [22], where transmitters can only distinguish between channels that

are connected (strong) and disconnected (weak). In this multilevel setting, because of the

minimal CSIT requirements for TIM and TIN, a robust combination of these two presents

itself. Associating TIM with signal vector space allocations and TIN with signal power level

allocations within the multilevel TIM framework, we refer to the joint allocation of signal

vector spaces and signal power levels as the TIM-TIN problem.

TIM-TIN Problem: With only a coarse channel strength knowledge available at transmit-

ters, we intend to carefully allocate not only the directions of beamforming vectors (i.e.,
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signal vector spaces) but also the transmit powers (i.e., signal power levels) to each of those

beamforming vectors. The necessity of a joint TIM-TIN perspective is evident as follows.

In the vector space allocation schemes used in DoF studies, the signal space containing

the interference is entirely zero-forced. This is typically fine for linear DoF studies because

all signals are essentially equally strong (i.e., every substream carries exactly one DoF), so

any desired signal projected into the interference space always achieves a DoF value of 0.

However, in the GDoF framework we account for the difference in signal strengths. The

signal vector space dimensions occupied by interference may not be fully occupied in terms

of power levels when the interference is weak. Thus, non-zero GDoF values can be achieved

by desired signals projected into the same dimensions as occupied by the interference, if the

interference is weaker than the desired signal. It is this aspect that we intend to exploit in

the multilevel TIM framework.

6.2 Problem Formulation

In this section, we formulate the joint TIM-TIN problem. Consider general K-user interfer-

ence channels presented in (2.4), i.e.,

Yk(t) =
K∑
i=1

√
PαkiejθkiXi(t) + Zk(t), ∀k ∈ 〈K〉.

Suppose that over n channel uses, user k ∈ 〈K〉 sends out bk independent scalar data streams,

each of which carries one symbol sk,l and is transmitted along the n× 1 beamforming vector

vk,l, l ∈ 〈bk〉. The symbols sk,l come from independent Gaussian codebooks, each with zero

mean and unit power, and the beamforming vectors vk,l are scaled to have unit norm. Over
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n channel uses, the output of Receiver k is an n× 1 vector

yk =
K∑
i=1

bi∑
l=1

√
Pαkiejθki

√
P ri,lvi,lsi,l + zk (6.1)

where zk is the n × 1 AWGN vector at Receiver k, and P ri,l is the power allocated to the

l-th data stream of user i. Note that ri,l ≤ 0 due to the power constraint.1 At Receiver k,

the covariance matrix of the desired signal is give by

QD
k =

bk∑
l=1

(vk,lv
†
k,l)P

rk,l+αkk (6.2)

The covariance matrix of the interference from Transmitter i 6= k is

Qki =

bi∑
l=1

(vi,lv
†
i,l)P

ri,l+αki (6.3)

Thus the covariance matrix of the net interference-plus-noise is

QN+I
k =

∑
i 6=k

Qki + I (6.4)

For user k ∈ 〈K〉, given the beamforming vectors and power allocation for each data stream,

as in the TIM-TIN problem the receivers do not attempt to decode the interference, the

achievable rate per channel use is

Rk =
1

n
I(sk,1, sk,2, ..., sk,bk ; yk) (6.5)

=
1

n

[
h(yk)− h(yk|sk,1, sk,2, ..., sk,bk)

]
(6.6)

=
1

n

{
log
∣∣∣QD

k + QN+I
k

∣∣∣− log
∣∣∣QN+I

k

∣∣∣} (6.7)

1Rigorously speaking, with multiple bi data streams at Transmitter i, to satisfy the unit power constraint,
we may assume the power allocated to each data stream as 1

bi
P ri,l , where ri,l ≤ 0. Note that the constant

1/bi does not affect the GDoF results. Thus in this chapter we ignore 1/bi for simplicity.
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and the achievable GDoF value dk is

dk = lim
P→∞

Rk

logP
= lim

P→∞

log
∣∣∣QD

k + QN+I
k

∣∣∣− log
∣∣∣QN+I

k

∣∣∣
n logP

(6.8)

Next, we proceed to simplify the achievable GDoF result (6.8) into a more intuitive form.

Consider a term of the type log |I +P κ1v1v
†
1 +P κ2v2v

†
2 + ...+P κmvmv†m|, where vi, i ∈ 〈m〉

are n× 1 beamforming vectors. Without loss of generality, assume κ1 ≥ κ2 ≥ ... ≥ κm ≥ 0.

Consider the beamforming vectors one by one. For v1, relabel it as vΠ(1) and correspondingly

its associated power exponent κ1 as κΠ(1). For v2, if it falls into span(vΠ(1)), remove it and

then proceed to v3; otherwise, relabel it as vΠ(2) and correspondingly its associated power

exponent κ2 as κΠ(2). Repeat this operation for each beamforming vector. Specifically, for vi,

if it falls into span(vΠ(1),vΠ(2), ...,vΠ(l)), which is the span of all previous linearly independent

vectors obtained from {v1,v2, ...,vi−1}, remove it and then proceed to vi+1; otherwise, relabel

it as vΠ(l+1) and correspondingly its associated power exponent κi as κΠ(l+1). Finally, we

end up with γ ≤ n linearly independent beamforming vectors VΠ = {vΠ(1),vΠ(2), ...,vΠ(γ)}

and their associated power exponents PΠ = {κΠ(1), κΠ(2), ..., κΠ(γ)}. Based on the above

definitions, we present the following lemma.

Lemma 6.1. Suppose vi, i ∈ 〈m〉 are n× 1 vectors, and κ1 ≥ κ2 ≥ ... ≥ κm ≥ 0, then

log
∣∣∣I + P κ1v1v

†
1 + P κ2v2v

†
2 + ...+ P κmvmv†m

∣∣∣ =

γ∑
i=1

κΠ(i) logP + o(log(P )) (6.9)

Proof of Lemma 6.1: Let xi ∼ CN (0, P κi) be independent Gaussian variables. Denote by

z the n × 1 zero mean unit variance circularly symmetric Gaussian vector. When m > γ,

denote the vectors vi * VΠ as vΠ′(j), j ∈ 〈m− γ〉. We have

log
∣∣∣I + P κ1v1v

†
1 + P κ2v2v

†
2 + ...+ P κmvmv†m

∣∣∣
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= h
( m∑
i=1

vixi + z
)

+ o(log(P )) (6.10)

= h
( γ∑
i=1

vΠ(i)xΠ(i) +

m−γ∑
j=1

vΠ′(j)xΠ′(j) + z
)

+ o(log(P )) (6.11)

= h
( γ∑
i=1

vΠ(i)xΠ(i) + z
)

+ o(log(P )) (6.12)

= log

∣∣∣∣∣I +

γ∑
i=1

P κΠ(i)vΠ(i)v
†
Π(i)

∣∣∣∣∣+ o(log(P )) (6.13)

where (6.12) follows from the facts that vΠ′(j), ∀j ∈ 〈m−γ〉, is a linear combination of the vec-

tors in VΠ, and the term
∑m−γ

j=1 vΠ′(j)xΠ′(j) becomes insignificant when P approaches infinity.

More specifically, as P →∞, for the term vi(xi+xj+...+xk) (i < j < ... < k), only the sym-

bol xi with the dominant power exponent κi matters, implying that for the vector vi we can

ignore all the other independent symbols with equal or smaller power exponents in the limit

of P →∞. Next, we follow the proof of Lemma 1 in [48]. Define VΠ , [vΠ(1) vΠ(2) ... vΠ(γ) ]

with size n× γ, and the diagonal matrix PΠ , diag[P κΠ(1) P κΠ(2) ... P κΠ(γ) ] with size γ × γ.

We have

log

∣∣∣∣∣I +

γ∑
i=1

P κΠ(i)vΠ(i)v
†
Π(i)

∣∣∣∣∣
= log

∣∣∣I + VΠPΠV†Π

∣∣∣ (6.14)

= log
∣∣∣I + V†ΠVΠPΠ

∣∣∣ (6.15)

= log |PΠ|+ log
∣∣∣P−1

Π + V†ΠVΠ

∣∣∣ (6.16)

=

γ∑
i=1

κΠ(i) logP +O(1). (6.17)

Plugging (6.17) into (6.13), we complete the proof. �

Applying Lemma 6.1 to (6.8), the TIM-TIN problem is simplified into a form where the

dependence on the assigned vector spaces and power levels is explicit.
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To help further understand the encoding/decoding scheme, according to the chain rule for

the mutual information, we rewrite the achievable rate of user k in (6.5) as follows.

Rk =
1

n

bk∑
i=1

I(sk,i; yk|sk,1, ..., sk,i−1) (6.18)

From the right hand side of (6.18), we obtain the achievable GDoF value for each data stream

sk,i, i.e.,

dk,i = lim
P→∞

I(sk,i; yk|sk,1, ..., sk,i−1)

n logP
(6.19)

= lim
P→∞

h(yk|sk,1, ..., sk,i−1)− h(yk|sk,1, ..., sk,i−1, sk,i)

n logP
(6.20)

Applying Lemma 6.1 to (6.20) and summing up the achievable GDoF value for each data

stream dk,i, i ∈ 〈bk〉, we obtain the same result dk as applying Lemma 6.1 to (6.8). In-

terestingly, (6.18)-(6.20) indicate that dk can be obtained through successive interference

cancellation. Specifically, we first decode sk,1 from the received signal at Receiver k, whose

achievable rate is given by I(sk,1; yk). Then according to (6.20), we obtain the achievable

GDoF value dk,1. After decoding sk,1, Receiver k can subtract it from the received signal and

proceed to decode sk,2, whose achievable rate is equal to I(sk,2; yk|sk,1). Similarly, according

to (6.20), we obtain dk,2. We repeat this decode-and-subtract procedure to get the achievable

GDoF values of all desired data streams for user k, which lead to the final result dk.

Example 6.1. Consider a 3-user interference channel. Over 2 channel uses, Transmitter

1, 2, and 3 send 2, 2, and 1 data streams, respectively, to their desired receivers. Assume

that given the beamforming vectors, the transmitted power allocation of each symbol and the

channel strength level for each link, the received signal at Receiver 1 is given in Fig. 6.1,

where v2,1 and v3,1 are aligned along one direction. The length of the vector denotes the
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v1;1
v1;2

v3;1

v2;1

v2;2

Figure 6.1: The received signal at Receiver 1, where the length of the vector represents the
received power of the carried symbol.

received power of the carried symbol. We have

r1,1 + α11 > r1,2 + α11 > r3,1 + α13 > r2,1 + α12 > r2,2 + α12 > 0.

Define

d′k = lim
P→∞

log
∣∣QD

k + QN+I
k

∣∣
logP

, d′′k = lim
P→∞

log
∣∣QN+I

k

∣∣
logP

(6.21)

Applying Lemma 6.1 to the above two terms, we get

d′1 = r1,1 + α11 + r1,2 + α11, d′′1 = r3,1 + α13 + r2,2 + α12 (6.22)

So the achievable GDoF value of user 1 is

d1 =
d′1 − d′′1

2
=

1

2
[(r1,1 + α11 + r1,2 + α11)− (r3,1 + α13 + r2,2 + α12)] (6.23)

We can obtain the same GDoF result through successive interference cancellation. To decode

s1,1, we first zero-force the strongest interference s1,2 and then treat all the other interference
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as noise. The achievable GDoF value of data stream s1,1 is

d1,1 =
(r1,1 + α11 −max{r3,1 + α13, r2,1 + α12, r2,2 + α12})

2
(6.24)

=
1

2
(r1,1 + α11 − r3,1 − α13) (6.25)

After recovering s1,1, we subtract it off from the received signal and then decode s1,2. Simi-

larly, in this step we first zero-force the strongest interference s3,1 (and the aligned interfer-

ing data stream s2,1 simultaneously) and then treat all the other interference as noise. The

achievable GDoF value of data stream s1,2 is

d1,2 =
1

2
(r1,2 + α11 − r2,2 − α12) (6.26)

Adding (6.25) and (6.26) together, the achievable GDoF value for user 1 is

d1 =
1

2
[(r1,1 + α11 + r1,2 + α11)− (r3,1 + α13 + r2,2 + α12)] (6.27)

which is the same as (6.23). Note that the achievable GDoF value does not depend on the

decoding order, i.e., if we take a reverse decoding order for s1,1 and s1,2, we still achieve the

same GDoF value for user 1 through successive interference cancellation.

6.3 A Baseline Decomposition Approach

In general, the TIM-TIN problem remains open. In this section, we present a baseline de-

composition approach. It is based on a decomposition of the network into two components,

which can be solved separately and then combined to produce an achievable GDoF region for

the original network. Specifically, given an arbitrary interference network, in the decompo-

sition approach, two copies of the network are created, which are called the TIM component
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and the TIN component. The desired links are copied in both networks. However, each

interfering link is mapped to either the TIM component or the TIN component (but not

both). Note that for one network, different TIM-TIN decompositions are possible.

Tx3

Tx1

Tx2

Rx1

Rx2

Rx3

Tx4 Rx4

Rx5Tx5

Figure 6.2: A 5-user interference channel

Example 6.2. Consider the 5-user interference channel in Fig. 6.2, where the channel

strength level of solid black and red links is 1 and the channel strength level of dashed blue

links is 0.5. Fig. 6.3 shows one possible decomposition of this channel into a TIN component

and a TIM component, where the blue (weak) interference links are mapped to the TIN

component and the red (strong) ones to the TIM component.

The purpose of the decomposition approach is to simplify the TIM-TIN problem by solving

the TIM and TIN components separately. First, consider the TIM component only. We

assume that all the non-zero links that are mapped to the TIM component are equally

strong (even if they are not) and find a linear TIM solution to obtain the GDoF tuple

(d1,TIM, d2,TIM, ..., dK,TIM), which identifies the fraction of the interference-free signal space

that is available to each user. Next, consider the TIN component only. Suppose that

through appropriate power control, the GDoF tuple (d1,TIN, d2,TIN, ..., dK,TIN) is achievable
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Tx3

Tx1

Tx2

Rx1

Rx2

Rx3

Tx4 Rx4

Rx5Tx5

Tx3

Tx1

Tx2

Rx1

Rx2

Rx3

Tx4 Rx4

Rx5Tx5

TIM Component TIN Component

Figure 6.3: One possible decomposition for the interference channel in Fig. 6.2

via the TIN scheme, which identifies the fraction of the available signal power level to each

user. It turns out that the product of the two fractions for each user, i.e., the GDoF tuple

(d1,TIN × d1,TIM, d2,TIN × d2,TIM, ..., dK,TIN × dK,TIM) is achievable in the original network,

which identifies the net signal dimensions available to each user. Finally, the convex hull of

all similarly achieved GDoF tuples corresponding to different decompositions is achievable

through time-sharing.

W1

W5
W2

W4

W3

Figure 6.4: The achievable scheme to achieve the symmetric GDoF value 0.3 for the inter-
ference channel in Fig. 6.2
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To help understand the decomposition approach, we proceed to revisit Example 6.2. In the

TIM component of Fig. 6.3, according to [22], it is not hard to verify that a symmetric

GDoF value 0.5 is achievable. In the TIN component of Fig. 6.3, where the TIN optimality

condition of Theorem 2.1 is satisfied, according to Theorem 2.1, a symmetric GDoF value 0.6

is achievable. Therefore, in the original network, a symmetric GDoF value 0.6× 0.5 = 0.3 is

achievable through the decomposition approach. Specifically, the achievable scheme is given

explicitly in Fig. 6.4. It uses 2 dimensional space (i.e., 2 channel uses) and 4 beamforming

vectors, where any two of them are linearly independent. Each user sends out one data

stream, and the data streams carrying the messages W2 and W5 are aligned along the same

vector. From the GDoF perspective, the transmit power ri for user i is selected as r1 = 0,

r2 = −0.1, r3 = −0.2, r4 = −0.3 and r5 = −0.4. It is not hard to verify that every user

achieves a GDoF value of 0.3:

• Receiver 1 first zero-forces the interference from Transmitter 4. Then, in the remaining

signal dimension, it treats the interference from Transmitter 2 as noise. Thus the

achievable GDoF value for user 1 is (1− 0.4)/2 = 0.3.

• Receiver 2 first zero-forces the interference from Transmitter 1 and then treats the

interference from Transmitter 3 and 5 as noise, which achieves (0.9 − 0.3)/2 = 0.3

GDoF.

• Receiver 3 first zero-forces the interference from Transmitter 2 and 5 and then treats

the interference from Transmitter 4 as noise, which achieves (0.8−0.2)/2 = 0.3 GDoF.

• Receiver 4 first zero-forces the interference from Transmitter 1 and then treats the

interference from Transmitter 5 as noise, which achieves (0.7− 0.1)/2 = 0.3 GDoF.

• Receiver 5 only needs to zero-force the interference from Transmitter 4 to achieve

0.6/2 = 0.3 GDoF.
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Note that in the achievable scheme given in Fig. 6.4, the transmit power allocation policy

comes from the power control solution (which achieves the symmetric GDoF value 0.6) for

the TIN component in Fig. 6.3, and the alignment relationship for the beamforming vectors

comes from the TIM solution (which achieves the symmetric GDoF value 0.5) for the TIM

component in Fig. 6.3.

Tx3

Tx1

Tx2

Rx1

Rx2

Rx3

Tx4 Rx4

Rx5Tx5

Tx3

Tx1

Tx2

Rx1

Rx2

Rx3

Tx4 Rx4

Rx5Tx5

TIM Component TIN Component

Figure 6.5: Another possible decomposition for the interference channel in Fig. 6.2

Finally, recall that the decomposition approach is quite flexible, i.e., any interfering link can

be mapped into either TIM or TIN components. In general, one would expect that to obtain

a “good” achievable GDoF region, the TIM component should contain all the “strong”

interfering links and the TIN component should contain all the “weak” interfering links.

This is, however, not always the case. Consider the 5-user interference channel in Example

6.2 again. It is not difficult to verify that if the interfering link between Transmitter 3 and

Receiver 2 (note that for this link α23 = 0.5) is moved from the TIN component to the

TIM component as shown in Fig. 6.5, then the new TIN and TIM component achieve a

symmetric GDoF value of 2/3 and 1/2, respectively. Therefore, the achievable symmetric
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GDoF value via the decomposition approach can be improved to 1/3. As shown in Fig. 6.6,

the corresponding achievable scheme uses a 2-dimensional vector space and 3 beamforming

vectors, any two of which are linearly independent. Each user sends out one data stream.

The beamforming vectors carrying the messages W1 and W3 are aligned along one direction,

and the beamforming vectors carrying W2 and W5 are aligned along another direction. The

transmit powers are r1 = r3 = 0, r2 = r4 = −1/6, and r5 = −1/3.

W1

W5
W2

W4

W3

Figure 6.6: The achievable scheme to achieve the symmetric GDoF value 1/3 for the inter-
ference channel in Fig. 6.2

6.4 Summary

In this chapter, under the assumption that only a coarse knowledge of channel strengths

and no knowledge of channel phases is available to transmitters, we formulate a joint signal

vector space and signal power level optimization problem (i.e., the TIM-TIN problem). This

problem is still open in general. In the first step of solving this problem, our focus here

is not on optimality, but rather on simplicity and robustness. In particular, we propose a

natural baseline decomposition approach to address this joint optimization problem, which

decomposes a network into TIN and TIM components, allocates the signal power levels to

each user in the TIN component, allocates signal vector space dimensions to each user in

the TIM component, and guarantees that the product of the two is an achievable number of
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signal dimensions available to each user in the original network.
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Chapter 7

Conclusion

In this dissertation, we mainly demonstrate the optimality of TIN for various Gaussian

interference networks from an information theoretic perspective. The contributions are sum-

marized as follows:

• In Chapter 2, for K-user Gaussian interference channels we identify a broad condition

under which TIN is optimal from the GDoF perspective and within a constant gap to

the exact capacity region. In words, this TIN-optimality condition is “for each user

the desired signal strength is no less than the sum of the strengths of the strongest

interference from this user and the strongest interference to this user (all values in dB

scale)”. Moreover, for K-user Gaussian interference channels with arbitrary channel

strengths, we fully characterize the achievable GDoF region via the TIN scheme (i.e.,

the TIN region) and establish its duality as a byproduct.

• In Chapter 2, we also extend the optimality of TIN to MIMO interference channels

where all transmitters and receivers are equipped with the same number of antennas.

For MIMO channels with different transmit and receive antenna numbers, we show

that there exist non-trivial parameter regimes where a simple scheme of zero-forcing
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strong interference and treating the others as noise achieves the sum GDoF value.

• In Chapter 3, we show that for TIN-optimal interference channels identified in The-

orem 2.1, expanding the message set to include an independent message from each

transmitter to each receiver does not increase sum GDoF, and that operating the new

channel as the original interference channel and treating interference as noise is optimal

for the sum capacity up to a constant gap. We also extend the sum GDoF optimality

of TIN to general X channels with arbitrary numbers of transmitters and receivers.

• In Chapter 4, we prove that for K-user compound Gaussian interference channels, if

in each possible network realization, the TIN-optimality condition of Theorem 2.1 is

satisfied individually, then TIN achieves the entire GDoF region of the whole com-

pound setting, which is the intersection of the GDoF regions of all possible network

realizations.

• In Chapter 4, we also show that in terms of GDoF, the power control and TIN problems

for compound and regular interference channels are equivalent. Remarkably, the equiv-

alent regular counterpart may be different from all the possible network realizations of

the compound channel. In addition, we develop several power control algorithms from

the GDoF perspective for compound networks.

• In Chapter 5, we demonstrate that for Gaussian interference channels with confidential

messages, if the TIN-optimality condition identified in Theorem 2.1 is satisfied, the

secrecy constraints incur no penalty from the GDoF perspective, and that a scheme

based on Gaussian signaling, cooperative jamming, and smart power splitting achieves

the entire secure capacity region within a constant gap.

• In Chapter 6, combining TIM with TIN, we formulate a joint signal vector space

and signal power level optimization problem and propose a baseline decomposition

approach.
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An interesting future direction is to determine both sufficient and necessary conditions for

the optimality of TIN. It is noteworthy that in previous work, from both exact capacity and

GDoF perspectives, the existing TIN-optimality results are primarily in the form of sufficient

conditions. In most cases, the necessity of these optimality conditions remains undetermined.

In [7–9], for 2-user interference channels, it is shown that when the interference strength is

below certain threshold, TIN achieves the exact sum capacity, but the optimal interference

threshold is still open. For K-user interference channels, it is conjectured that the TIN-

optimality condition identified in Theorem 2.1 is also necessary for TIN to be optimal for

the whole GDoF region except for a set of channel gain values with measure zero [34]. For X

channels and compound interference channels, we have shown that the identified conditions

in this dissertation is only sufficient but not necessary for the optimality of TIN [36,37].

Another research direction is to apply the theoretical insights obtained in this dissertation to

real-world wireless network design. Our work has motived several scheduling and power con-

trol algorithms for heterogeneous networks. In [84], inspired by the TIN-optimality condition

of Theorem 2.1, Naderializadeh and Avestimehr proposed a distributed scheduling algorithm

called ITLinQ for device-to-device networks. The numerical results in [84] show that ITLinQ

significantly outperforms other state-of-the-art scheduling schemes (e.g., FlashLinQ [85]) in

some practical settings. Similarly, motived by the TIN-optimality condition, in [86] Ad-

hikary, Dhillon, and Caire developed an interference coordination scheme for heterogeneous

cellular networks. In terms of power control, besides our work presented in Chapter 4, Yi

and Caire designed several power control schemes by reformulating the TIN problem from a

combinatorial perspective, and also studied the joint scheduling and power control problem

in [76]. This line of research is still in its infancy. It is interesting from both theoretical and

practical points of view.
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Appendix A

Replacing αij < 0 with αij = 0

For exposition simplicity, in this appendix we refer to the channel with potentially negative

αij (i, j ∈ 〈K〉) as the original channel, and the channel with all negative αij replaced by

0 as the modified channel. To prove the claim that replacing αij < 0 with αij = 0 does

not impact the GDoF or the constant gap results in Chapter 2, we go through the following

steps:

• First, we establish that the capacity region of the original channel is within a constant

gap to that of the modified channel, which indeed illustrates that the two channels

have the same GDoF region. The proof requires two directions, namely

Coriginal ⊆ Cmodified + constant,

and

Cmodified ⊆ Coriginal + constant.

In the following, for clarity denote by ᾱij the channel strength level of the link between
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Transmitter j and Receiver i in the original channel, ∀i, j ∈ 〈K〉. The channel input-

output relationship for the original channel is then described by

Ȳk(t) =
K∑
i=1

√
P ᾱkiejθkiXi(t) + Z̄k(t), ∀k ∈ 〈K〉,

where Z̄k(t) ∼ CN (0, 1) and some ᾱki might be negative. Define αij , ᾱ+
ij, ∀i, j ∈ 〈K〉.

The received signal of user k ∈ 〈K〉 in the modified channel is

Yk(t) =
K∑
i=1

√
PαkiejθkiXi(t) + Zk(t)

=
K∑
i=1

√
P ᾱ+

kiejθkiXi(t) + Zk(t)

=
∑
i∈Nk

ejθkiXi(t) +
∑
i/∈Nk

√
P ᾱkiejθkiXi(t) + Zk(t),

where Zk(t) ∼ CN (0, 1) is independent of Z̄k(t), Nk is the set of transmitter indices

whose link to Receiver k is with negative channel strength level in the original channel

(i.e., Nk =
{
i ∈ 〈K〉 : ᾱki < 0

}
).

First, we prove Coriginal ⊆ Cmodified + constant. Define W , {W1,W2, ...,WK}, and let

Ŷk(t) = Ȳk(t)− Yk(t) =
∑
i∈Nk

(
√
P ᾱki − 1)ejθkiXi(t) + Z̄k(t)− Zk(t).

Then, we have

I(Wk; Ȳ
n
k )

≤ I(Wk;Y
n
k , Ŷ

n
k )

= I(Wk;Y
n
k ) + I(Wk; Ŷ

n
k |Y n

k )

= I(Wk;Y
n
k ) + h(Ŷ n

k |Y n
k )− h(Ŷ n

k |Y n
k ,Wk)

(a)

≤ I(Wk;Y
n
k ) + h(Ŷ n

k )− h(Ŷ n
k |Y n

k ,W)
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= I(Wk;Y
n
k ) + h(Ŷ n

k )− h(Z̄n
k − Zn

k |W , Zn
k )

(b)

≤ I(Wk;Y
n
k ) +

n∑
t=1

h(Ŷk(t))− h(Z̄n
k )

(c)

≤ I(Wk;Y
n
k ) + n log[πe(K + 2)]− n log(πe)

= I(Wk;Y
n
k ) + n log(K + 2),

where step (a) follows the facts that dropping conditioning does not reduce entropy

(for the second term) and adding conditioning does not increase entropy (for the third

term), step (b) follows the chain rule and the fact that dropping conditioning does

not reduce entropy, and step (c) holds since |Nk| ≤ K and Gaussian distribution

maximizes differential entropy under a given variance constraint. This implies that

Coriginal ⊆ Cmodified + constant.

Similarly, we can prove the other direction, i.e., Cmodified ⊆ Coriginal+constant, as follows.

I(Wk;Y
n
k )

≤ I(Wk; Ȳ
n
k , Ŷ

n
k )

= I(Wk; Ȳ
n
k ) + I(Wk; Ŷ

n
k |Ȳ n

k )

= I(Wk; Ȳ
n
k ) + h(Ŷ n

k |Ȳ n
k )− h(Ŷ n

k |Ȳ n
k ,Wk)

≤ I(Wk; Ȳ
n
k ) + h(Ŷ n

k )− h(Ŷ n
k |Ȳ n

k ,W)

= I(Wk; Ȳ
n
k ) + h(Ŷ n

k )− h(Z̄n
k − Zn

k |W , Z̄n
k )

≤ I(Wk; Ȳ
n
k ) +

n∑
t=1

h(Ŷk(t))− h(Zn
k )

≤ I(Wk; Ȳ
n
k ) + n log(K + 2).

• Next, we prove that the original and modified channels always have the same TIN

region P∗. To this end, we only need to show that with the same transmit power

vector (P r1 , P r2 , ..., P rK ), user i ∈ 〈K〉 in both channels achieves the same GDoF value
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through the TIN scheme. In the modified channel, through the TIN scheme, the rate

achieved by user i is

Ri = log

(
1 +

Pαii+ri

1 +
∑

j 6=i P
αij+rj

)
,

and the achievable GDoF by user i through TIN equals

di = max{0, αii + ri −max{0,max
j:j 6=i

(αij + rj)}}. (A.1)

Now consider the original channel. Similarly, the achievable rate of user i is

R̄i = log

(
1 +

P ᾱii+ri

1 +
∑

j 6=i P
ᾱij+rj

)
.

In the original channel, denote the set of user indices whose direct link is with negative

channel strength level as U . For all the users i ∈ U , it is easy to verify that the

achievable GDoF through TIN is

d̄i = 0, (A.2)

while for the users i /∈ U , we have

d̄i = max{0, ᾱii + ri −max{0,max
j:j 6=i

(ᾱij + rj)}}

(d)
= max{0, ᾱ+

ii + ri −max{0,max
j:j 6=i

(ᾱij + rj)}}

(e)
= max{0, ᾱ+

ii + ri −max{0,max
j:j 6=i

(ᾱ+
ij + rj)}}

= max{0, αii + ri −max{0,max
j:j 6=i

(αij + rj)}},

(A.3)

where step (d) follows from the fact that ᾱ+
ii = ᾱii for users i /∈ U , and step (e) holds

since when ᾱij < 0, we have ᾱij + rj < 0, ᾱ+
ij + rj ≤ 0, and replacing the former with
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the latter does not impact the final result.

Combining (A.2) and (A.3), we obtain that for user i ∈ 〈K〉

d̄i = max{0, αii + ri −max{0,max
j:j 6=i

(αij + rj)}} (A.4)

Comparing (A.1) with (A.4), we establish that the original and modified channels have

the same TIN region P∗.

• Finally, we demonstrate that in the original channel, if the following condition holds

ᾱ+
ii ≥ max

j:j 6=i
{ᾱ+

ji}+ max
k:k 6=i
{ᾱ+

ik}, ∀i ∈ 〈K〉 (A.5)

TIN achieves the capacity region to within log(3K) bits.

Start with the converse. For the original channel, when condition (A.5) is satisfied,

based on Lemma 2.1, we have

Ri ≤ log(1 + P ᾱii) ≤ log(1 + P ᾱ+
ii) ≤ ᾱ+

ii logP + 1 = αii logP + 1, ∀i ∈ 〈K〉

(A.6)

m∑
j=1

Rij ≤
m∑
j=1

log

(
1 + P ᾱij ij+1 +

P ᾱij ij

1 + P ᾱij−1ij

)
(A.7)

≤
m∑
j=1

log

(
1 + P ᾱij ij+1 +

P
ᾱ+
ij ij

1 + P ᾱij−1ij

)
(A.8)

=
m∑
j=1

log

(
1 + P ᾱij ij+1 +

P
ᾱ+
ij ij

P 0 + P ᾱij−1ij

)
(A.9)

<
m∑
j=1

log

(
1 + P ᾱij ij+1 +

P
ᾱ+
ij ij

P
ᾱ+
ij−1ij

)
(A.10)

=
m∑
j=1

log

(
P
ᾱ+
ij−1ij + P

ᾱij ij+1
+ᾱ+

ij−1ij + P
ᾱ+
ij ij

P
ᾱ+
ij−1ij

)
(A.11)
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≤
m∑
j=1

log

(
3P

ᾱ+
ij ij

P
ᾱ+
ij−1ij

)
(A.12)

=
m∑
j=1

[(ᾱ+
ijij
− ᾱ+

ij−1ij
) logP + log 3] (A.13)

=
m∑
j=1

[(αijij − αij−1ij) logP + log 3], (A.14)

for all cycles (i1, i2, ..., im) ∈ ΠK , ∀m ∈ {2, 3, ..., K}. Comparing (2.29) and (2.34) with

(A.6) and (A.14), we find that the modified and original channels have the same outer

bounds.

Next, consider the achievability. For the modified channel, denote the achievable rate

region through TIN under condition (2.7) asRTIN. In the modified channel, for any rate

tuple RTIN = (R1, R2, ..., RK) ∈ RTIN, we have a corresponding transmit power vector

PTIN = (P r1 , P r2 , ..., P rK ). Denote by PTIN the set of the transmit power vectors for

all the rate tuples in RTIN. In the original channel, applying the same set of transmit

power vectors PTIN for transmitters and treating interference as noise at each receiver,

we obtain an achievable TIN region R̄TIN such that (i) any user k /∈ U achieves a

rate no less than that in the modified channel when the same transmit power vector

is utilized, as for that user the interfering links in the original channel are no stronger

than those in the modified channel, which indicates that for users k /∈ U the constant

gap cannot increase in the original channel; (ii) the constant gap for any user k ∈ U is

at most 1 bit, since according to (A.6) the achievable rate of that user is upper bounded

by 1 bit. Therefore, combining with the constant gap result for the modified channel

(see Theorem 2.2), we show that for the original channel, when condition (A.5) holds,

TIN achieves to within log(3K) bits of the entire capacity region.

Combining the above steps, we establish that assigning a value of 0 to negative channel

strength levels (in the original channel) does not impact the GDoF or the constant gap

results in Chapter 2 (i.e., Theorem 2.1, 2.2 and 2.3).
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Appendix B

Proof of Theorem 4.5

We prove Theorem 4.5 through contradiction. For clarity, we first explain how the GGPC

algorithm works in details. Recall that in the initialize step, we obtain the initial power

allocation ri(0) = li,dst, ∀i ∈ 〈K〉. According to Lemma 4.1, with this initial power allo-

cation, the achievable GDoF tuple (d1(0), d2(0), ...dK(0)) dominates the target GDoF tuple

(d1, d2, ..., dK). Also notice that at this point, the effective noise floor at each receiver is 0.

Then in the first update of the GGPC algorithm, each transmitter reduces its power by

∆(0) = min
i
{ri(0) + αii − di}, (B.1)

which is no less than 0, as ri(0) + αii ≥ di(0) ≥ di, ∀i ∈ 〈K〉. Without loss of generality,

assume

arg min
i
{ri(0) + αii − di} = 1 (B.2)

After the first update, the transmit power of user 1 is

r1(1) = r1(0)−∆(0) = d1 − α11 (B.3)
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With the updated power allocation, user 1 achieves the following GDoF value

d1(1) = max
{

0, r1(0)−∆(0) + α11 −max
j 6=1
{0, rj(0)−∆(0) + α1j}

}
(B.4)

= max
{

0, r1(0)− [r1(0) + α11 − d1] + α11

}
(B.5)

= max{0, d1} (B.6)

=d1 (B.7)

where (B.5) follows from (B.1), (B.2) and the argument below

d1(0) ≥ d1 (B.8)

⇒r1(0) + α11 −max
j 6=1
{0, rj(0) + α1j} ≥ d1 (B.9)

⇒r1(0) + α11 − d1 ≥ max
j 6=1
{0, rj(0) + α1j} (B.10)

⇒∆(0) ≥ max
j 6=1
{0, rj(0) + α1j} (B.11)

⇒∆(0) ≥ max
j 6=1
{rj(0) + α1j} (B.12)

⇒max
j 6=1
{0, rj(0)−∆(0) + α1j} = 0 (B.13)

From (B.13), we find that after the first update, at Receiver 1 the interference from others is

all below the effective noise floor 0, and Transmitter 1 cannot further lower its power in (B.3)

due to the effective noise floor. In other words, user 1 cannot further reduce its transmit

power while maintaining the target GDoF value, since it “hits” the effective noise floor.

For other users j 6= 1, after the first power allocation update the achievable GDoF value is

dj(1) = max
{

0, rj(0)−∆(0) + αjj −max
i 6=j
{0, ri(0)−∆(0) + αji}

}
(B.14)

Consider the following two cases.
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• maxi 6=j{ri(0)−∆(0) + αji} ≤ 0: In this case, from (B.14), we obtain

dj(1) = max
{

0, rj(0)−∆(0) + αjj
}

= max
{

0, rj(0) + αjj −min
i
{ri(0) + αii − di}

}
≥max

{
0, rj(0) + αjj − [rj(0) + αjj − dj]

}
= max{0, dj}

=dj

• maxi 6=j{ri(0)−∆(0) + αji} > 0: In this case, from (B.14), we get

dj(1) = max
{

0, rj(0)−∆(0) + αjj −max
i 6=j
{ri(0)−∆(0) + αji}

}
= max

{
0, rj(0) + αjj −max

i 6=j
{ri(0) + αji}

}
= max

{
0, rj(0) + αjj −max

i 6=j
{0, ri(0) + αji}

}
= max{0, dj(0)}

= dj(0)

≥ dj

Combining the above two cases together, we demonstrate that after the first update, user

j 6= 1 still achieves an GDoF value which dominates the target one. To summarize, after the

first update of transmit power allocations, user 1 obtains the exact target GDoF value d1 and

achieves its transmit power limit due to the effective noise floor, and (d1(1), d2(1), ..., dK(1))

dominates the target GDoF tuple.

We proceed the transmit power updates. In the second update, according to the GGPC

algorithm, the transmit power of user 1 is fixed and the transmit powers of others are

updated. It is notable that in the following updates the fixed power of user 1 exerts a
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constant interference level to other users. Therefore, the effective noise floor at Receiver

j 6= 1 becomes max{0, αj1 + r1(1)}. Also note that in the sequel updates, user j 6= 1 can

only reduce its transmit power, so the achieved GDoF value of user 1 remains as d1. Next, we

only need to repeat the argument of the first update for the following updates till the powers

of all users are fixed by the GGPC algorithm. More specifically, in each update, transmit

powers of some users are reduced to the limits for achieving the target GDoF values, since

they “hit” their own effective noise floor, which is determined by the users whose transmit

powers are fixed in the previous updates. And after each update, we always obtain an

acceptable GDoF tuple dominating the target one.

Equipped with the above observations, now we proceed to prove Theorem 4.5 by contra-

diction. Assume that for a target GDoF tuple (d1, d2, ..., dk), the power control solution

r∗ = (r∗1, r
∗
2, ..., r

∗
K) yielded by the GGPC algorithm is not globally optimal. So there exists

another power allocation r† = (r†1, r
†
2, ..., r

†
K) that also achieves the target GDoF tuple, and

there is at least one i0 ∈ 〈K〉 such that r†i0 < r∗i0 . For the GGPC algorithm, in the update

step determining the final power allocation r∗i for user i ∈ 〈K〉, denote by Ui the set of users

whose transmit powers have been fixed already. For instance, if r∗i is determined in the first

update, then Ui = φ.

Assume that r∗i0 is limited by user i1 ∈ Ui0 . In other words, after the previous updates, among

all users in the set Ui0 , user i1 ∈ Ui0 with transmit power r∗i1 yields the strongest interference

level to user i0, which is larger than 0.1 Apparently, if after the previous updates, the

strongest interference level from the users in Ui0 to user i0 is no larger than 0, then according

to the GGPC algorithm, r∗i0 = di0 − αi0i0 . In this case, r∗i0 cannot be reduced further while

maintaining the desired GDoF value di0 , which contradicts that r†i0 < r∗i0 still achieves di0 .

As r∗i0 can be reduced without affecting the achievable GDoF value di0 , the transmit power

of user i1 should also be reduced in order to lower the interference level to user i0. Thus, we

1If there are multiple users yielding the same strongest interference level to user i0, we can pick up user
i1 as any one of them to proceed the proof.

153



have r†i1 < r∗i1 . Then apply the same argument to user i1. Similarly, we will obtain a user

i2 ∈ Ui1 such that r†i2 < r∗i2 . Repeat the same argument. More specifically, for user in−1,

we have known that r†in−1
< r∗in−1

. Then among all the users in the set Uin−1 , there exists a

user in ∈ Uin−1 yielding the strongest interference level to user in−1, which is larger than 0.

Since r∗in−1
can be reduced without affecting the achievable GDoF value din−1 , the transmit

power of user in should also be reduced in order to lower the interference level to user in−1.

Hence we have r†in < r∗in . Assume that for user im, it final power allocation is determined

in the first update and holds fixed afterwards. Finally, we obtain r†im < r∗im . Recall that in

the GGPC algorithm, after the first update, r∗im = dim − αimim , which cannot be reduced

further while maintaining the target GDoF value. We end up with a contradiction that

r†im < r∗im still achieves the target GDoF value for user im. Therefore, we complete the proof

of Theorem 4.5 and establish that the GGPC algorithm indeed yields the globally optimal

transmit power allocation for any feasible GDoF tuple in the polyhedral TIN region.
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