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A B S T R A C T

Locally optimal designs for nonlinear models require a single set of nominal values for the unknown parameters.
An alternative is the maximin approach that allows the user to specify a range of values for each parameter of
interest. However, the maximin approach is difficult because we first have to determine the locally optimal design
for each set of nominal values before maximin types of optimal designs can be found via a nested optimization
process. We show that particle swarm optimization (PSO) techniques can solve such complex optimization
problems effectively. We demonstrate numerical results from PSO can help find, for the first time, formulae for
standardized maximin D-optimal designs for nonlinear model with 3 or 4 parameters on the compact and
nonnegative design space. Additionally, we show locally and standardized maximin D-optimal designs for inhi-
bition models are not necessarily supported at a minimum number of points. To facilitate use of such designs, we
create a web-based tool for practitioners to find tailor-made locally and standardized maximin optimal designs.
1. Introduction

One of the simplest and popular models to study enzyme kinetics is
the 2-parameter Michaelis-Menten equation.

υ ¼ ηðθ; sÞ þ ε ¼ Vmax⋅s
kmþ s

þ ε; s 2 X; θ ¼ ðVmax; kmÞ⊤:

Here s is the substrate concentration chosen from a user-selected range of
concentrations, X, to observe the velocity of the reaction υ whose mean
response is η(θ,s). The parameter km is the Michaelis-Menten constant
which controls the rate of the reaction. Another parameter, Vmax, repre-
sents the rate of the enzyme kinetic reaction at the maximum substrate
concentration. Each error term ε is assumed to be normally distributed
with mean 0 and constant variance and errors are assumed to be inde-
pendent. The design space X is assumed to be compact and is pre-
specified for the study.

Optimal design issues for the Michaelis-Menten model have been
quite extensively studied in the literature, see for example [1–8], among
others. Much of the work in the literature, including those just cited,
requires a single best guess for the model parameters to construct locally
D-optimal designs for estimating the parameters. This approach has
drawbacks because previous studies or experts may not agree on a single
).
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best guess for the values of the model parameters. Because locally
optimal designs can be sensitive to mis-specification of the nominal
values for the model parameters, it is helpful to consider alternative
design strategies.

Our approach is to first elicit a parameter space that includes all
possible values of all the parameters in the mean function of the model.
This space may be selected by the user or from opinions of experts. We
then seek a design that maximizes the minimal determinant of the in-
formation matrix over this parameter space. The resulting optimal de-
signs are called maximin D-optimal designs. They are also appealing
because in practice, it is often easier to elicit a range of possible values for
each model parameter than a prior distribution or a single best guess for
the set of nominal values for the model parameters.

Maximin (or minimax) optimal designs were found by Refs. [9–12]
and by Dette and his team, which includes [7,13], among several others.
A drawback of maximin optimal designs for nonlinear models is that they
are difficult to find both analytically and even numerically. Some at-
tempts were made to find such designs under a more restricted setup. For
example [11,12,14], found minimax D-optimal designs for the logistic
model under various restrictions, such as searching only among the class
of symmetrical balanced designs. Ref. [15] constructed maximin
D-optimal designs for a bioassay study using the four-parameter logistic
model. However, his approach was not based on theory and the optimal
7

mailto:rbchen@mail.ncku.edu.tw
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chemolab.2017.08.009&domain=pdf
www.sciencedirect.com/science/journal/01697439
http://www.elsevier.com/locate/chemometrics
http://dx.doi.org/10.1016/j.chemolab.2017.08.009
http://dx.doi.org/10.1016/j.chemolab.2017.08.009
http://dx.doi.org/10.1016/j.chemolab.2017.08.009


P.-Y. Chen et al. Chemometrics and Intelligent Laboratory Systems 169 (2017) 79–86
designs were found under a restrictive setting so that the resulting de-
signs are not truly maximin optimal. To date, formulae for maximin
optimal designs are available for simple models with up to 2 parameters
and the derivation is specific to the model and not generalizable to even
slightly different models. To our best knowledge, there is also no known
algorithm that is guaranteed to generate the maximin optimal design in a
general regression setting even for linear models.

A more complicated version of the maximin design criterion is a
standardized version of the maximin criterion and seek a standardized
maximin D-optimal design. The standardized criterion is especially
meaningful when the magnitude of parameters in the model vary
considerably [13]. Results not shown here suggest that standardized
maximin optimal designs are generally more robust to mis-specification
in the nominal values than maximin optimal designs. For this reason,
we focus on finding standardized maximin optimal designs and not
discuss maximin optimal designs further. Between the two types, stan-
dardized maximin D-optimal designs are clearly more technically diffi-
cult to study and determine and so less discussed. In our work, we test the
capability of particle swarm optimization (PSO) to find these hard to find
optimal designs for nonlinear models with more than two parameters and
use the numerical results to develop formulae for the optimal designs.

PSO was proposed by Ref. [16] and is a member of the class of
nature-inspired meta-heuristic algorithms. Such algorithms are increas-
ingly used in various disciplines for general optimization purposes [17,
18]. Ref. [19] provides an overview of such algorithms. Our earlier
successes using PSO to tackle simpler but different types of design
problems [20–22] and [23] encouraged us to now test PSO algorithms
further with more challenging design problems. An example of an
application of PSO to tackle estimation problems is [24], who applied
PSO to estimate parameters in a pharmacokinetic mixed effects
nonlinear model.

Section 2 describes four nonlinear models used in enzyme kinetic
studies and how PSO algorithmworks in general. Section 3 presents PSO-
generated standardized maximin D-optimal for estimating model pa-
rameters and show how PSO can help find formulae for the optimal de-
signs among designs. Additionally, we show that not all standardized
maximin optimal designs are minimally supported, i.e., designs with the
number of support points equal to the number of parameters in the mean
function. In particular, we produce a standardized maximin optimal
design with 4 points for a 3-parameter inhibition model, thereby inva-
lidating the assumption made in Ref. [25] that locally D-optimal designs
for the inhibition models are minimally supported. Section 4 offers
conclusions.

2. Standardized maximin optimal designs for enzyme inhibition
kinetic models and PSO

This section first reviews a few ways to extend Michaelis-Menten
model to study inhibition effects in enzyme kinetic reaction, different
design criteria and design efficiency for estimating model parameters.
Then we review particle swarm optimization (PSO) techniques in the
context of finding optimal deigns.

2.1. Common inhibition models and design problems

Our inhibition models have either 3 or 4 parameters with two
controllable variables, s for the substrate concentration and i for the in-
hibition amount. The design space X is the cartesian product of S � I,
where S is the interval 0 � smin � s � smax and I is the interval
0 � imin � i � imax. Both the upper and lower bounds are user-selected
and throughout, we assume that the vector of model parameters θ in
the model belongs in a known region θ called the plausible region.

Ref. [25] provided interpretation of the parameters in the 4 inhibition
models, which all have two common parameters Vmax and km. The
competitive model and the noncompetitive models has a common third
parameter kic. The uncompetitive model has a third parameter kiu. Both
80
the parameters kic and kiu are called dissociation constants and are
assumed to be positive. The mixed-type model contains all four param-
eters. These 4 inhibition models describe different behaviors of the in-
hibitor and they are:

Competitive Inhibition: This type of inhibitor will blocks the
enzyme and make it unable to react with the substrate to form product. In
this case, the inhibitor competes with the substrates for space on
the enzyme.

υ ¼ ηðθ; s; iÞ þ ε ¼ Vmax⋅s

km
�
1þ i

kic

�
þ s

þ ε; ðs; iÞ 2 X ¼ S� I:

Uncompetitive Inhibition: The inhibitor binds to the enzyme-
substrate complex and prevents the enzyme from turning substrate into
product. The velocity equation is

υ ¼ ηðθ; s; iÞ þ ε ¼ Vmax⋅s

kmþ s
�
1þ i

kiu

�þ ε; ðs; iÞ 2 X ¼ S� I:

Noncompetitive Inhibition: The inhibitor can be competitive or
uncompetitive that either blocks the enzyme or binds to the enzyme-
substrate complex. Neither of which can react to form product. The ve-
locity equation is

υ ¼ ηðθ; s; iÞ þ ε ¼ Vmax⋅s

ðkmþ sÞ
�
1þ i

kic

�þ ε; ðs; iÞ 2 X ¼ S� I:

Mixed-type Inhibition Model: The mixed-type inhibition is a
generalization of the noncompetitive model and it has 4 parameters. The
velocity equation is

υ ¼ ηðθ; s; iÞ þ ε¼ Vmax⋅s

km
�
1þ i

kic

�
þ s
�
1þ i

kiu

�þ ε; ðs; iÞ 2 X ¼ S� I:

We focus on approximate designs proposed by Kiefer in the late
1950's. Approximate designs are probability measures and after they are
found they are rounded to an exact design for implementation. For
instance, if ξ¼ fðx1;w1Þ; ðx2;w2Þ;…; ðxq;wqÞg is an approximate design
with q points at xj ¼ (sj,ij), j¼ 1;…;q with corresponding weights
w1;…;wq, the implemented design takes nwi number of observations at xi
to each nwi is a rounded positive integer nearest to n � wi and nw1 þ
nw2 þ⋯þ nwq ¼ n: The worth of a design is measured by its Fisher in-
formationmatrix, defined as the negative of the expectation of the second
derivatives of the total log-likelihood function with respect to the model
parameters. That is, given a design ξ, the information matrix for an in-
hibition model is

Mðξ; θÞ ¼
Xq
j¼1

wjf
�
sj; ij; θ

�
f
�
sj; ij; θ

�⊤
;

where f(s,i,θ) is the gradient vector of η(θ,s,i), i.e. f ðs; i; θÞ ¼ ∂ηðθ;s;iÞ
∂θ :

For an optimality criterion, the design questions are the choice of the
optimal value for q and the triplet ðsj; ij;wjÞ; j ¼ 1;…; q; subject
to
Pq

j¼1wi ¼ 1.
The four inhibition models are nonlinear models and so their infor-

mation matrices M(ξ,θ) depend on the unknown model parameters θ.
Consequently a design criterion formulated in terms of the information
matrix depends on θ, prompting [26] to call designs that optimize such a
criterion locally optimal. For example, if θ0 is a vector of nominal values
for θ, a locally D-optimal design ξθ0 is a design that maximizes

ΨðξÞ ¼ logjMðξ; θ0Þj

among all designs on X. Here the nominal values for θ frequently comes
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from a pilot study or from an expert's opinion.
Design efficiency measures how the design performs relative to the

optimum. Different designs can be meaningfully compared using their
criterion values or some function thereof. For example for D-optimality,
we compare the performances of two designs ξ1 and ξ2 via the ratio of
their determinants,

�jMðξ1; θ0Þj
jMðξ2; θ0Þj

�1∕p

;

where p is the number of parameters in the mean function. When ξ2 is the
(locally) D-optimal design for θ0, the above ratio becomes the D-effi-
ciency of the design ξ1. If the D-efficiency of ξ1 is 0.5, the design ξ1 has to
be replicated twice to do as well as the D-optimal design.

The maximin approach requires that a known region θ for all plau-
sible values of θ be specified in advance and the locally D-optimal design
be available for each set of θ 2 θ. Following Ref. [7], the standardized
maximin D-optimal design ξ*SM maximizes the minimal efficiency among
all possible efficiencies from assumed values of θ in θ and so is the design
that maximizes

Ψ ðξÞ ¼ minθ2θ

� jMðξ; θÞj
supγ

��Mðγ; θÞ��
�1∕p

; (1)

where the denominator is the determinant of the information matrix of
the locally D-optimal design for the specific parameter θ.

2.2. Particle swarm optimization

To find standardized maximin optimal designs numerically, we resort
to particle swarm optimization (PSO) techniques. Amain appeal of PSO is
that it does not require assumptions on the problem for it to find the
optimum. In particular, PSO can be used to optimize non-differentiable
functions, such as the maximin or minimax optimality criteria. PSO
came from studying animal behavior, such as when a flock of birds is
looking for food on the ground. More specifically, the user first generates
a flock of P birds, which are particles representing candidates of the
optimal design. To find the optimal solution, the user also specifies the
maximum number of iterations tmax for PSO to find the optimum. PSO
then updates the position of the jth particle using equations (2) and (3) at
each iteration t, t ¼ 1;…; tmax. They relate its previous and current po-
sitions with its previous and current velocities as follows:

vðtþ1Þ
j ¼ ωðtÞvðtÞ

j þ c1R1 �
	
xðtÞ
j;L � xðtÞ

j



þ c2R2 �

	
xðtÞ
G � xðtÞ

j



; (2)

xðtþ1Þ
j ¼ xðtÞ

j þ vðtþ1Þ
j ; j ¼ 1; 2;…;P: (3)

In (2), � is the Hadamard product, i.e. denotes componentise multipli-

cation, vðtþ1Þ
j is the velocity of the jth particle at the (t þ 1)th iteration and

it has three components: its previous velocity vðtÞ
j with which it flew to

the current position xðtÞ
j and xðtÞ

j;L is local best position it has found so far.

The flock shares information and decides on the global best position xðtÞ
G

among all the local best positions at the tth iteration. The tuning pa-
rameters are: (i) ω(t) is the inertia weight which can be a constant, or a

function of the iteration counter that keeps decreasing the effect of vðtÞ
j

during the updating procedure, (ii) c1 and c2 are the cognitive and the
social parameters, respectively, and they guide the particle stochastic

movement towards xðtÞ
j;L and xðtÞ

G , (iii) R1 and R2 are two uniformly and
independently random vectors from the interval [0, 1]. These represent
the basic ideas of PSO but there are many other improvements that make
it work better, see for example [16], and [19].

Our aim is to find an approximate design to maximize the criterion (1)
in the multi-nested optimization problem using the modified nested PSO
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algorithm proposed by Ref. [23]. To fix ideas, we describe how PSO finds
the standardized maximin optimal design when the locally optimal
design is known. There are two layers of optimization: an outer loop and
an inner loop. This means that we need to specify two sets of flock sizes
and two numbers for the maximum number of iterations to run the PSO.
Depending on the model and the type of optimal designs we wish to find,
we may vary these four numbers as described in our applications. We
keep the rest of the PSO tuning parameters in (2) fixed for all our
computation. Specifically, for both the outer and inner loops, we let ω(t)

to be a linearly decreasing function in t with a starting weight of
ω0 ¼ 0.95 and a terminal weight of ω1 ¼ 0.2 at the end of the first 80% of
the maximum number of iterations tmax. For the remaining 20% of the
iterations, ω(t) is set to be a constant with a value of 0.2. Throughout, we
used the default values with c1 ¼ c2 ¼ 2. In practice, PSO searches are
typically fast and if the sought optimal design is not found, usually a few
more trials is required, with or without changes to the PSO algorithm.

3. Standardized maximin D-Optimal designs for inhibition
models

We first review how we check optimality of a design among all de-
signs on the given design space. We then present formulae for minimally
supported standardized maximin optimal designs in Section 3.2, and in
Section 3.3, we show such designs are not necessarily optimal among all
designs. We conclude with a web-based tool for finding standardized
maximin optimal designs.

3.1. Equivalence theorems and standardized maximin optimal designs

The maximin or standardized maximin criteria are concave over the
set of all designs on the design space X and so equivalence theorems are
available; see Ref. [27] or [28]. Such theorems are derived from direc-
tional derivative considerations and are useful to check whether a design
is locally, maximin or standardizedmaximinD-optimal among all designs
on X. For example, [8] showed that an approximate design ξ*SM is stan-
dardized maximin D-optimal if and only if there exists a probability
measure μ on Aðξ*SMÞ such that for all ðs; iÞ 2 X, the directional derivative
dðs; i; ξ*SMÞ of the criterion at ξ*SM in the direction of any point mass design
δ(s,i) has to satisfy

d
�
s; i; ξ*SM

� ¼ ∫ Aðξ*SMÞf
⊤ðs; i; θÞM�1

�
ξ*SM ; θ

�
f ðs; i; θÞμðdθÞ � p � 0

(4)

with equality at the support points of ξ*SM . Here A(ξ) is the answering set

AðξÞ ¼
(
θ* 2 θ

�����
��M�ξ; θ*���

supγ
��M�γ; θ*��� ¼ minθ2θ

jMðξ; θÞj
supγ

��Mðγ; θÞ��
)
; (5)

and the vector function f(s,i,θ) is the gradient of the mean function E(υ) of
one of the above models.

The equivalence theorem can be used to construct an efficiency lower
bound for any design without knowing the optimum, see the monograph
by Ref. [27]. This means that if an algorithm produces a design with a
D-efficiency of at least 98%, the user may find it adequate for his or her
purpose and terminate the algorithm to implement the design. For a
regression model with p parameters, Atwood's efficiency lower bound is
p∕(λ þ p), where λ is the maximal value of the function on the left hand
side of (4).

An equivalence theorem can also be used to find a formula for the
optimal design for relatively simple models. This is done by substituting
each support point of the optimal design in (4) and solving for the sup-
port points and weights from the resulting equations. We show here for
the first time that it is possible to derive analytical formulae for stan-
dardized maximin optimal designs for a model with more than 2
nonlinear parameters. This is helpful for studying properties of the
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optimal design, and in particular, its robustness to model assumptions.
Following Ref. [25], the nominal values for the parameters are

ðVmax; km; kic; kiuÞ ¼ ð7:2975;4:3859;2:5822; 5Þ and the design space is
X ¼ S � I ¼ [0,30] � [0,60]. They reported locally D-optimal designs for
three 3-parameter inhibition models and a fourth for mixed-type inhi-
bition, which has an additional parameter. We assume each parameter
has a known range of plausible values and to fix ideas, let the plausible
region be θ ¼ [kmL,kmU] � [kicL,kicU] ¼ [4,5] � [2,3] for both the
competitive and noncompetitive models, let θ ¼ [kmL,kmU] � [kiuL,
kiuU] ¼ [4,5] � [4,5] for the uncompetitive model, and let θ is [kmL,
kmU] � [kicL,kicU] � [kiuL,kiuU] ¼ [4,5] � [2,3] � [4,5] for the
mixed-type model. We note that the optimal design does not depend on
the parameter Vmax. Thus we can treat it as a fixed constant and will not
include in our parameter vector.

As an illustration, we use PSO to find the standardized maximin D-
optimal design for the competitive model when the locally D-optimal
designs are available [25]. We first initiate a flock of candidate designs
each with 3 design points, i.e. q ¼ 3. This is a natural choice since there
are 3 parameters in our model and usually a locally D-optimal design is
minimally supported. For more complicated models, it is advantageous to
search for the optimum using a flock each with a larger number of design
points. This gives PSOmore room to maneuver and frequently it is able to
find the right number of points as it converges to the optimum, even in
the case when the optimal design has fewer number of points than the
number of parameters in the model. This is an appealing feature of PSO
because many conventional algorithms require special handling of a
singular information matrix during the iterative process. Our design
criterion has two nested levels of optimization, an outer loop and an
inner loop. The nested PSO settings for the outer loop are 256 particles
and 200 iterations, and for the inner loop, there are 128 particles and 100
iterations.

Our PSO-generated standardized maximin D-optimal designs are
quite similar to the locally D-optimal designs found by Ref. [25]. For
example, under the given setup with X ¼ S � I ¼ [0,30] � [0,60], the
PSO-generated standardized maximin D-optimal design ξPSO for the
competitive model has s2 ¼ smax and i1 ¼ i2 ¼ imin and its efficiency is
99%. The maximum value of the function d(s,i,ξPSO) is 0.0003, which is
close to the expected value of 0 if the PSO-generated design is optimal.
The PSO-generated standardized maximin optimal designs allowed us to
make an informed conjecture on the theoretical optimal designs. In
particular, the number and location of the support points enabled us to
work with the equivalence theorem and established closed form formulae
for the standardized maximin optimal designs. For example, using PSO
results for the competitive inhibition model as an illustrative example,
we conjectured that the standardized maximin optimal design has the
Table 1
Theoretical (ξ*SM ) and the PSO-generated 3-point standardizedmaximin D-optimal designs (ξPSO)
efficiency lower bounds [27] of the PSO-generated designs relative to the optimum.

Design space ¼ X ¼ S � I Support point weight

X ¼ [9,30] � [0,60] ξPSO
	
9:0000
0:0000



0.3333

ξ*SM
	
9:0000
0:0000



1/3

X ¼ [0,30] � [18,60] ξPSO
	
10:6440
18:0000



0.3333

ξ*SM
	
10:6363
18:0000



1/3

X ¼ [9,30] � [18,60] ξPSO
	
10:6451
18:0000



0.3333

ξ*SM
	
10:6363
18:0000



1/3
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form ξ ¼ {(s1,0,1∕3),(30,0,1∕3),(30,i3,1∕3)}, which is similar to the
assumption made by Ref. [25]. Assuming that μ in (4) is equally sup-
ported at ð4;3Þ⊤ and ð5;2Þ⊤ in θ and imposing conditions required in the
equivalence theorem, we then solved the resulting equations and arrived
at s1 ¼ 3.4429 and i3 ¼ 18.8944.

A similar strategy produces other standardized maximin D-optimal
designs. For example, consider the competitive inhibition model defined
on 3 different design spaces: X ¼ [9,30] � [0,60], X ¼ [0,30] � [18,60]
and X ¼ [9,30] � [18,60]. Table 1 displays the PSO-generated designs
ξPSO's and Fig. 1 shows the directional derivative function d(s,i,ξPSO) of
each of these designs is close to what we expect if ξPSO is standardized
maximin D-optimal. The table suggests that the sought optimal designs
share the same structure shown in the previous paragraph. If we now
impose the conditions required by the equivalence theorem and solve the
resulting set of equations, we obtain the numerical standardizedmaximin
D-optimal designs ξ*SM in Table 1 on these 3 design spaces.
3.2. Analytical results for minimally supported optimal designs

We now show how one may use the equivalence theorem and nu-
merical results from PSO to obtain analytical description of the minimally
supported standardized maximin D-optimal designs for the inhibition
models. Closed-form formulae for optimal designs are desirable because
they facilitate study of robustness properties of a design to model as-
sumptions. A key difficulty in applying the equivalence theorem is the
determination of the associate probability measure μ in (4). Even if our
current design ξ is standardized maximin D-optimal, failure to find this
probability measure μ will not enable us to claim the current design is
optimal. An effective way to find the probability measure in (4) is
therefore highly desirable but seems elusive to date.

Minimally supported optimal designs can be appealing in terms of
time, labor and monetary savings for some studies. The availability of
formulae for such optimal designs can greatly facilitate studying prop-
erties of the optimal designs. A disadvantage is that they cannot be used
to check for model inadequacy. Another is that minimally supported
optimal designs may not be optimal among all designs. We also deter-
mine in Section 3.3, for the first time, a standardized maximin optimal
design for an inhibition model with more than 3 parameters.

To obtain the closed-form description of the minimally supported
standardized maximin optimal design or any other optimal design, guess
work is required. The biggest problem is to guess correctly how many
points are needed and where these points are. For instance, if the design
space is symmetrical about 0, one hopes that the optimal design is also
symmetric and so there are fewer number of variables that needs to be
optimized in the design problem. Frequently, this means that equations
for the competitive model on different design spaces. The last column displays the Atwood's

D-efficiency	
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99.99%
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18:8944



100.00%

1/3 1/3	
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Figure 1. Directional derivative of the standardized maximin D-optimality criterion evaluated at the PSO-generated design for the competitive inhibition model for the 3 design spaces.
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emanating from the equivalence theorem have to be solved, with one
equation for each of the posited design point of the optimal design. In
addition, one typically has to find roots of additional equations derived
from taking derivatives of the directional derivative function and setting
them equal to zero at the “interior” support points of the design to ensure
all conditions in the equivalence theorem are satisfied.

To fix ideas, consider finding the formula for the standardized
maximin D-optimal design for the competitive inhibition model on the
design space X ¼ ½smin; smax� � ½imin; imax� and both smin and imin are
nonnegative. From PSO numerical results, we conjectured that the
standardized maximin optimal design ξ is a 3-point equally weighted
design with the following properties: one of its support points is at the
extreme ends of the two concentrations, one support point is at ðs1; iminÞ
and the third is at (s3,i3). Further numerical search indicates that, ac-
cording to the definition of answering set in (5), the minimal efficiency of
the standardized maximin D-optimal design occurs at the corner points of
θ. For example, if one plots the D-efficiencies of the standardized
maximin D-optimal design for the first case in Table 1 when the
parameter space is [4,5] � [2,3], it can be shown that the efficiencies
attain their minimum at two corner points, θ*1 ¼ ðkmL; kicUÞ and
θ*2 ¼ ðkmU ; kicLÞ. Accordingly, based on the equivalence theorem, we
solve the minimization problem:
83
min
α1 ;α2

X3
k¼1

 X
j¼1;2

αjf ⊤
�
sk; ik; θ*j

�
M
�
ξ; θ*j

��1
f
�
sk; ik; θ*j

�
� 3

!2

;

with the constraints that α1; α2 2 ½0; 1� and α1 þ α2¼ 1. Our experience is
that the numerical solutions are α1 ¼ α2 ¼ 0.5 for this and many other
problems with different design spaces and parameter spaces. Our
conjecture is that the associate probability measure for the optimal
design is equally supported at two points in the answering set θ*1 and θ*2,
i.e. AðξÞ ¼ fθ*1; θ*2g. A direct calculation shows that the directional de-
rivative of the standardized maximin criterion evaluated at a design ξ in
the direction of the degenerate design at (s,i) is

dðs; i; ξÞ ¼ 0:5f ⊤
�
s; i; θ*1

�
M
�
ξ; θ*1

��1
f
�
s; i; θ*1

�
þ0:5f ⊤

�
s; i; θ*2

�
M
�
ξ; θ*2

��1
f
�
s; i; θ*2

�� 3:

Imposing conditions from the equivalence theorem that must be
satisfied for an optimal design lead to requiring that

d
ds

dðs; i; ξÞjs¼s1 ;i¼imin
¼ 0;

d
ds

dðs; i; ξÞjs¼s3 ;i¼i3

¼ 0 and
d
di
dðs; i; ξÞjs¼s3 ;i¼i3

¼ 0:
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The solutions of these equations are displayed below.

s*1 ¼ max

(
smin;

�½Comp:A� þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½Comp:A� � ½Comp:B�p
½Comp:C�

)
;

s*3 ¼ max

(
smin;min

( ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmLkmUðkicL þ imaxÞðkicU þ imaxÞ

kicLkicU

s
; smax

))
;

i*3 ¼ min
�
imin þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Comp:B�
kmLkmU

s
; imax

)
;

where

½Comp:A� ¼ kmLkmUðkicLþ iminÞðkicU þ iminÞ;
½Comp:B� ¼ ½kmUðkicLþ iminÞþ kicLsmax�� ½kmLðkicU þ iminÞþ kicUsmax�;
½Comp:C� ¼ kmUkicUðkicLþ iminÞþ kmLkicLðkicU þ iminÞþ kicLkicUsmax:

These provide the interior support points of the optimal design for the
competitive inhibit model, including the standardized maximin optimal
designs and the associate measures for the other inhibition models.
Clearly, when the plausible region becomes a singleton set, for example
when kmL¼ kmU, kicL¼ kicU and kiuL¼ kiuU, the formulae reduce to those
for locally D-optimal designs in Ref. [25]. Table 2 displays the support
structures for each type of inhibition models and, the mathematical
formulae of these four standardized maximin optimal designs are shown
in the supplementary material.
3.3. Minimally supported designs may not be optimal designs

In this subsection, we show that standardized maximin optimal de-
signs are not necessarily minimally supported designs. With the help of
PSO, we were able to disprove an assumption that locally D-optimal
designs for the inhibition models are always minimally supported.
Ref. [25] found formulae for the locally D-optimal designs for the inhi-
bition models by assuming that all such designs are equally supported at
the minimal number of points. We show here that for certain parameter
configurations, locally D-optimal designs have 3 or more points. To fix
ideas, we use the noncompetitive inhibition model as an illustra-
tive example.

It is assumed in Ref. [25] that when

smin � smaxkm
smax þ 2km

and kicþ 2imin � imax; (6)

the locally D-optimal design for the model is equally supported at
ðsmin; iminÞ, ðsmax; iminÞ and ðsmax; imaxÞ. However, this assumption is invalid.
For instance, suppose that the design space is [15,30] � [30,60] and the
nominal values for the parameters are θ ¼ ð4;2Þ⊤. It is easy to check that
the parameter configuration satisfies the conditions in (6) and a direct
calculation shows that the design ξL�3pt is equally supported at (30,30),
(15,30) and (30,60). This design was reported to be locally D-optimal in
Ref. [25]. However, according to the directional derivative function of
Table 2
Anticipated structure of equally weighted 3- and 4-point standardized maximin D-optimal des
associate measure μ(θ) for the 4 inhibition models.

Inhibition model Design structure

Competitive
	

s1
imin


 	
smax
imin


 	
s3
i3



Uncompetitive

	
s1
imin


 	
smax
imin


 	
smax
i3



Noncompetitive

	
s1
imin


 	
smax
imin


 	
smax
i3



Mixed-type

	
s1
imin


 	
s2
i2


 	
smax
imin


 	
sm
i
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the locally D-optimal criterion at ξ, which is,
dθðs; i; ξÞ ¼ f ðs; i; θÞ⊤M�1ðξ; θÞf ðs; i; θÞ � 3, Fig. 2(a) shows dθ

�
s; i; ξL�3pt

�
has a maximum value of 0.9042 at the corner point (15,60), and the
Atwood's efficiency lower bound [27] of ξL�3pt is 76.84%. Thus, the
design ξL�3pt is not locally D-optimal among all designs on the given
design space. In addition to find ξL�3pt by the analytical results in
Ref. [25], we also tried to generate the corresponding optimal design by
the PSO algorithm. The numerical generator provided an identical design
as ξL�3pt even when we doubled the swarm size and the number of iter-
ations. Therefore, we conjecture that the optimal design with this
parameter configuration might not always be minimally supported.

We applied the PSO algorithm with 256 particles and 200 iterations
and the PSO-generated 4-point design is

ξL�4pt ¼
8<
:
	
15:0000
30:0000


 	
30:0000
30:0000


 	
30:0000
60:0000


 	
15:0000
55:0958



0:3069 0:3164 0:2542 0:1225

9=
;

Fig. 2(b) shows the directional derivative function dθ(s,i,ξL�4pt) has a
maximum value 0.0002 with equality at the four support points. This
confirms that the PSO-generated 4-point design is locally D-optimal
design for all practical purposes. Further calculation shows that the
determinant of the information matrix for ξL�4pt is about 5.37% larger
than that from the three-point design, ξL�3pt, which was erroneously
claimed to be locally D-optimal in Ref. [25].

What is the standardized maximin D-optimal design for the
noncompetitive inhibition model when the true values of the parameters
(km,kic) are believed to lie in inside [4,5] � [2,3]? From the results in
Section 3.2, the theoretical support points are (15,30), (30,30) and
(30,60), because 15 ¼ s1 ¼ smin > s*1 and 60 ¼ i3 ¼ imax < i*3. We denote
this 3-point design as ξSMM�3pt. To check ξSMM�3pt is optimal or not, the
maximum value of d(s,i,ξSMM�3pt) in (4) should be less than or equal to 0.
However, it is easy to verify that its maximal value is 0.8527, and so this
3-point design is not standardized maximin D-optimal. A direct calcula-
tion shows the Atwood's efficiency lower bound of ξSMM�3pt is 77.87%.
Fig. 3(a) shows the directional derivative function of the standardized
maximin criterion at this 3-point design and suggests that the standard-
ized maximin design has four points which is similar in structure to the
locally D-optimal design.

To find the 4-point standardized maximin D-optimal design, we
modified the nested PSO to solve the 3-layer optimization problem. The
first is to find the locally D-optimal design for each set of parameter
values when the corresponding analytical results of 3-point designs in
Ref. [25] is not locally D-optimal verified by the equivalence theorem. In
the second step, PSO searches for point or points in the parameter space
that produce the extremum in the inner optimization problem in (1). The
third step uses another PSO to determine the standardized maximin
design that maximizes the criterion. Because the whole process requires
extensive computational time, it is frequently helpful to fix some pa-
rameters. For our example, we fix the first 3 design points at the 3 corner
points, (15,30), (30,30) and (30,60), and set the fourth point as (15,i4).
Therefore, the unknown components in our design structure are i4 and
igns on design space S� I ¼ ½smin ; smax� � ½imin; imax� and the answering sets A(ξ) with the

Answering sets with associate measure	
kmL
kicU


 	
kmU
kicL



	
kmL
kiuL


 	
kmU
kiuU



	
kmL
kicL


 	
kmL
kicU


 	
kmU
kicL


 	
kmU
kicU



ax

4


 0
@ kmL
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kiuU

1
A

0
@ kmU

kicL
kiuL

1
A



Figure 2. Plots of the directional derivative of the D-optimality criterion at the 3-point design ξL�3pt (a) and 4-point locally D-optimal design ξL�4pt (b) for the noncompetitive inhibition
model with parameter vector (km,kic) ¼ (4,2) on the design space S � I ¼ [15,30] � [30,60].

Figure 3. Contour plots of the directional derivatives of the D-optimality criterion at ξSMM�3pt (a) confirming that the 3-point design is not standardized maximin D-optimal, and, ξSMM�4pt

(b) which is standardized maximin D-optimal for the non-competitive inhibition model.
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four corresponding design weights, w1;…;w4. To apply this 3-layer
nested PSO, we choose 25, 10 and 64 particles for outer loop, inner loop
optimizations and locally D-optimal design search with 200, 50 and 32
iterations respectively. The best standardized maximin D-optimal design
we found is

ξSMM�4pt ¼
8<
:
	
15:0000
30:0000


 	
30:0000
30:0000


 	
30:0000
60:0000


 	
15:0000
55:2155



0:3066 0:3175 0:2586 0:1173

9=
;

For this 4-point design, the maximal value of the directional deriva-
tive function over the design space is 0.0051 and a direct calculation
shows the D-efficiency of this design is at least 99.83% by Atwood's
method [27]. The plot of the its directional derivative function is shown
in Fig. 3(b).

Since the fourth design point in the best design we found is close to
the corner point, we fixed the four corner points as the four design points
and applied the 3-layer nested PSO with the same setups to search only
85
for the best weights, w1,w2,w3 and w4. The PSO-generated design is

ξSMM�4pt�W ¼
8<
:
	
15:0000
30:0000


 	
30:0000
30:0000


 	
30:0000
60:0000


 	
15:0000
60:0000



0:3111 0:3163 0:2571 0:1155

9=
;

and the maximal value of the directional derivative function of the
standardized maximin criterion at ξSMM�4pt�W is 0.0286, implying that
the PSO-generated design has at least 99.06% D-efficiency by Atwood's
efficiency lower bound [27]. The upshot is that the two PSO-generated
4-point designs, ξSMM�4pt and ξSMM�4pt�W, are nearly standardized
maximin D-optimal since their D-efficiencies are above 99% and higher
than that of the 3-point design, ξSMM�3pt.
3.4. A web-based tool

We provide a web-based tool to facilitate practitioners implement
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tailor-made standardized maximin optimal designs for inhibition models.
There is currently no software for generating such optimal designs. Our
web-based tool provides researchers with additional design options and
facilitate comparing performances of standardized maximin optimal
designs with their competitors.

Our web-based tool is in the form of a shiny package in R software
available at https://pingyangchen.shinyapps.io/stdmmop
tdesigninhibition. By default this app finds 3-point designs for the
competitive, noncompetitive and uncompetitive inhibition models, and a
4-point designs for the mixed-type inhibition model on the pre-specified
design spaces and parameter space.

When the search terminates, we display the PSO-generated design,
the computing time required and its D-efficiency lower bound. On
average, the online app takes about 9 min to find the standardized
maximin D-optimal designs shown in Table 1 by using 256 particles and
200 iterations for the outer loop, and, 128 particles and 100 iterations for
the inner loop. If desired, the site also displays the plot to confirm opti-
mality of the generated design. If the graph satisfies the conditions in the
equivalence theorem in (4), the generated design is standardized D-
maximin optimal; otherwise it is not.

Finding the standardized maximin optimal designs for nonlinear
models are challenging and time consuming. For this reason, our code
limits the user to find locally D-optimal designs up to 8 support points.
For more complicated models, we recommend the user downloads our
codes from the GitHub repository at https://github.com/PingYangChen/
stdmmOptDesignInhibition and make appropriate changes to the code.
There is also an option to specify whether a minimally supported design
is sought. The complete set of instructions for using our codes are
available from this GitHub repository.

4. Conclusions

Standardized maximin or standardized minimax D-optimal designs
and even their simpler versions maximin or minimax D-optimal designs
for nonlinear models are difficult to find and study because such design
problems have a non-differentiable criterion and require multiple levels
of optimization. Our work shows that use of a nature-inspired meta-
heuristic algorithm can generate such maximin optimal designs for in-
hibition models. The structure of the numerical optimal designs enables
us to derive the formula of the standardized maximin design that are
helpful for studying further properties of the optimal designs. We also
provide a web-based tool to facilitate practitioners generate tailor-made
maximin or standardized maximin optimal designs after they input pa-
rameters for their specific design problem. The performance of various
designs can be compared on the website as well. For example, our nu-
merical results suggest that standardized maximin optimal designs are
generally less sensitive to maximin optimal designs when there is mis-
specification of the nominal values. Supporting numerical results are
omitted for space consideration but interested reader can request them
from the first author.

Our approach of using PSO to find standardized maximin optimal
designs and, if desired, their analytical forms are not limited to inhibition
models and standardized maximin optimal designs considered here. It
can be broadly applied to find and compare other types of hard-to-find
optimal designs for different models. We hope our work will stimulate
greater interest in use of nature-inspired metaheuristic algorithms to
solve statistical optimization problems.
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