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ON THE BEHAVIOR OF SMALL FATIGUE CRACKS 

IN COMMERCIAL ALUMINUM-LITHIUM ALLOYS 

K. T. Venkateswara Rao, W. Yu and R. O. Ritchie 

Center. for Advanced Materials, Lawrence Berkeley Laboratory, and 
Department of Materials Science and Mineral Engineering 
University of California, Berkeley, CA 94720, U.S.A. 

Abstract--The fatigue crack propagation behavior of naturally­
occurring, microstructurally-small (I-1000 \..1m), surface cracks is 
examined as a function of microstructure in commercial aluminum­
lithium alloys 2090-T8E41, 8091-T351 and 2091-T351, and results 
compared with behavior in traditional high-strength aluminum alloys 
2124 and 7150. Despite large differences in the fatigue crack 
propagation behavior of long ( ~10\..lm) cracks in these alloys, little 
difference is observed in the small crack growth resistance, with the 
small crack growth rates for all microstructures lying within a 
scatterband some 2-4 orders of magnitude higher than the near­
threshold fatigue behavior of long cracks •. Such results are 
attributed primarily to a lack of crack tip shielding (developed from 
crack defl ecti on and resul ti ng crack closure from asperi ty wedgi ng) 
with small cracks of limited wake. Since the well-known superior 
fatigue crack growth resistance of aluminum-lithium alloys can be 
traced principally to such shielding, promoted by the branched and 
tortuous nature of their crack paths, the "anomaly" between long and 
small crack behavior appears to be most significant in these alloys. 

INTRODUCTION 

Durability and damage-tolerance in safety-critical components 

and structures is of prime importance for modern aerospace 

applications. Such factors are generally assessed using fracture 

mechanics-based methodologies, where for example it is assumed that 

flaws pre-exist from the initial loading cycle, and the lifetime of 

the structure is estimated as the number of cycles to propagate such 

a flaw to failure. Such damage-tolerant 1 ife prediction procedures, 

as for example specified in the U.S. Air Force mandatory 
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specification MIL-A-83444, require a knowledge of the rate of growth 

of fatigue cracks in the particular microstructure under 

representative environmental and loading conditions (1). This is 

genera lly spec i fi ed as experimental data plots showi ng growth rates 

(da/dN) as a function of the stress intensity range (6K), which are 

then integrated from initial to final crack sizes to determine life. 

Although considered inherently to be conservative as the crack 

initiation 1 ife is assumed to be zero, a potential problem with this 

approach can arise from the "anomalous" behavior of cracks which are 

physically small (~1 mm) or which approach the dimensions of 

microstructure or local plasticity (2). Such small cracks are now 

known to propagate at stress intensities well below the fatigue 

threshold, 6KTH , below which fatigue cracks are presumed dormant, and 

in general to grow at rates far in excess of long (~ 10 mm) cracks at 

the same (nominal) stress intensity range (2-7). Since damage­

tolerant life analyses are· biased by low growth rate data and 

invariably utilize long crack results, there is thus strong potential 

for non-conservative life prediction. 

The newly developed advanced aluminum-lithium alloys are of 

particular interest in this regard, as despite their unquestionably 

superior (long) fatigue crack growth properties compared to 

traditional high strength aluminum alloys (8-14), the discrepancy 

between long and small crack propagation behavior in these alloys has 

recently been shown to be extremely large (15,16). In view of the 

importance of the "small crack" effect in potential airframe and fuel 

tank materials, the objective of this study was thus to document the 
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growth rate characteristics of small (1-1000 llm), naturally-occurring 

surface cracks in a series of commercial aluminum-lithium alloys, 

and to compare such behavior with that measured (17) in traditional 

high strength 2124 and 7150 aluminum alloys. It is shown that 

despite small crack growth rates which are some 2 to 4 orders of 

magnitude faster than long crack behavior, the small crack fatigue 

properties of aluminum-lithium alloys remain comparable to that of 

2124 and 7150 alloys. 

EXPERIMENTAL PROCEDURES 

Materials 

Commercial 25 mm thick plates of 2124 and 7150 and 11 - 15 IIIJ1 

thick plates of 2090, 2091 and 8091 were obtained -with nominal 

composition shown in Table I. All alloys were tested in their 

recolllJ1ended commercial temper condition, a1 though the 2124 and 7150 

alloys were additionally examined at several other tempers. Details 

of the aging treatments are given in Table II. Room temperature 

mechanical properties for the longitudinal orientation (L-T 

orientation for KIc values) are listed in Table III. 

Microstructures 

All alloys show tend to show a pancake-shaped grain structure 

elongated along the rolling direction, with a greater degree of 

anisotropy and general lack of recrystallization in the lithium­

containing alloys. Respective grain sizes are shown in Table IV, 

together with the primary hardening precipitates. Microstructures in 
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Table 1. Various commercial aluminum alloys investigated and 
their no.inal che.ical compositions in wt.l. 

Li Cu Mg Zn Fe 5i Ti Zr Al 

ALCOA 2124 4.50 1.50 0.25 0.30 0.20 0.15 bal 

ALCOA 7150 2.10 2.16 6.16 0.11 0.07 0.02 0.13 ba 1 
'-' 

ALCOA 2090 2.05 2.86 0.01 0.005 0.02 0.01 0.02 0.12 bal 

PECHINEY 2091 1. 7- 1.8- 1.1- 0·.25 0.3 0.2 0.1 0.04- bal 
2.3 2.5 1.9 0.16 

ALCAN 8091 2.60 1. 90 0.90 . 0.20 0.10 0.12 ba 1 

Table II. Heat treat.ents utilized on aluminu. alloys to 
obtain the different .icrostructures. 

Alloy Condition Heat Treatment 

2124 T351 (underaged) solution treat, 2% stretch, natura lly aged 
T751 (overaged) solution treat, 2% stretch, 48 hr at 1900C 

7150 T351 (underaged) solution treat, 2% stretch, 1.5 hr at 121 0C 
T651 (peak aged) solution treat, 2% stretch, 100 hr at 1210C 
T751 (averaged) solution treat, 2% stretch, 24 hr at 1210C 

+ 40 hr at 1630C 

2090 T8E41 (peak aged) solution treat, 6% stretch, 24 hr at 1630C 

2091 T351 (underaged) solution treat, 1-3% stretch,naturally aged 

8091 T351 (underaged) sol uti on treat, 1-3% stretch,naturally aged 
,. 
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Table III. Room temperature mechanical properties of the various 
commercial alu.inum alloys investigated. 

Alloy Yield Strength U. T.S. % Elongation Fracture Toughness 
(MPa) 

-
(MPa) (on 25 mm) K Ie (MPali1i) 

2124- T351 360 488 17.8 24 
2124-T751 370 440 10.2 42 

7150- T351 371 485 6.8 37 
7150- T651 404 480 6.0 21 
7150- T751 372 478 7.1 29 

2090- T8E41 552 589 9.3 35 

2091-T351 517 633 10.3 28 

8091- T351 309 417 10.7 39 

2124 are recrystallized and show evidence of GP zones and several 

constituent phases, including A17Cu2Fe, Al12(Fe,Mn)3Si, Mg 2Si and 

A1 2CuMg (17). In 7150, 4 to 8 nm diameter GP zones are present in 

underaged structures, which are replaced by semi-coherent n 

precipitates (MgZn2-Mg(CuAl)2) on peak aging, and coarsened matrix n 

and incoherent n precipitates (MgZn2 compoun'ds) in both matrix and 

grain boundaries on overaging (18). The aluminum-l ithium alloys, on 

the. other hand, are primarily unrecrystallized and hardened by a 

combination of coherent, matrix precipitates. In the peak aged Al-
I 

Cu-Li alloy 2090, these include spherical 0 (A1 3Li), plate-like T1 

I I * 
(A1 2 CuLi) and 8 (A1 2Cu), with S (A1 3Zr) dispersoids. The 

underaged Al-Cu-Li-Mg alloy 2091, conversely, shows a small degree of 

* I Earl,ier stuqies (e.g., ref. 19) refer to the T1 and 8 precipitates 
as Tl and T2 , respectively. Here, T1 and 8

1 
refer to plate-like 

preclpitates with the (111) and (100) habits, respectively. 
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Table IV. Microstructure and grain sizes of alloys tested 

Alloy Grain Size Primary Hardening Precipitates 
L L-T S-T 

(mm) (\..I m) 6J m) 

2124-T351 0.7 350 50 GP zones 
2124-T751 e(CuA12), A17Cu2Fe, Al12 (Fe,Mn)3Si, Mg2Si 

71S0-T351 2-3 750 
7150- T651 
7150- T751 

2090-TBE41 2-3 500 

2091-T3S1 1-2 600 

B091-T3S1 0.25 65 

30 

50 

40 

25 

GP zones 
n' (Mg.Zn 2-M9(CuAl )2) 
matrix ~ ,~ (MgZn2 compounds) 

8' (A13Li), T1 (A12CuLi), e' (A12CU) 
, 
8, S (A l2CuM9) 
, 
8, S 

I 

recrystallization, a lower volume fraction of 8 and evidence of 

fine, needle-like S precipitates (precursor to A1 2CuMg). Similarly, 

the major strengtheni ng prec i pi tates in the underaged Al-Li -Cu-Mg 
, 

alloy B091 are 8 and S precipitates (20,21). 

Fatigue testing 

To examine the early growth of naturally-occurring, 

microstructurally-small (1-1000 \..1m) surface cracks, fatigue tests 

were performed by acetate replication techniques on smooth, 

unnotched, rectangular specimens cycled in four-point bending (Fig. 

1a) in room temperature air (22 0 C, 45% relative humidity) using 

electro-servo-hydraulic testing machines. Tests were conducted at a 

cyclic frequency of 50 Hz (sine wave) with a load ratio (R = 

Pmin/Pmax) of 0.1, where the maximum bending stresses on the top 
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surface did not exceed 0.9 times the yield stress. Due to the high 

strength and poor short-transverse properties of 2090-T8E41, tests in 

this alloy were carried out on waisted specimens (Fig. 1b) to 

minimize the occurrence of mid-section delamination cracks in the 

plane of loading, where the shear stresses are a maximum. 

Tests were interrupted approximately every 5,000 to 10,000 

cycles and held at the mean load to permit repl ication of the 

electropolished and lightly etched specimen surface. Growth rates 

(~a/~N) were then computed in terms of the mean crack extension 

within such time increments. Typical initiation lives (i.e., to 

d~tect a 0.5 mm visible crack) varied between 1-4 x 105 cycles. 

Cellulose acetate replicas were subsequently gold coated using 

sputtering techniques to gain improved crack length resolution. 

As computed plastic zone sizes remained small (typically 4%) 

compared to crack size, characterization of small-crack growth rates 

in terms of the nominal stress intensity range (~K = Kmax - Kmin ) was 

deemed to be appropriate. Stress intensity factors were computed 

using the Newman and Raju equation (22) for semi-elliptical surface 

flaws assuming an alc (crack depth to half the surface crack length) 

ratio of 0.8, based on serial sectioning experiments. Owing to the 

high degree of crack deflection and meandering, crack lengths were 

measured as the projected lengths normal to the bending tensile 

stresses usi ng opti ca 1 mi croscopy. Wi th such procedures, detecti on 

of crack increments of 1 to 5 J.l m was possible such that crack growth 

rates as low as 5 x 10-10 mlcycle could be readily monitored. 

For comparison, conventional crack growth tests on long 
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( ~ 10 mm) cracks were performed under identical loading and 

environmental conditions, on 6.35 rnm thick compact C(T) specimens. 

Crack length and crack closure were continuously monitored using D.C. 

electrical potential and back-face strain compliance (17) techniques, 

respectively. Growth rates were characterized both in terms of the 
~ 

nominal stress intensity range 6K and the effective stress intensity 

range 6Keff , defined as ~ax - Kcl ' where Kcl is the closure stress 

intensity where the unloading compliance curve first deviates from 

1 inearity. Fracture surfaces and crack path morphologies were 

examined with scanning electron microscopy. 

RESULTS 

long crack behavior 

Long fatigue crack growth behavior in the eight alloys is 

plotted as a function of t:X in Fig. 2. It is readily apparent that 

the a 1 umi num-l i th i um alloys 2090, 8091 and 8090 in genera 1 show the 

lowest growth rates in comparison to the traditional 2124 and 7150 

alloys, although at near-threshold levels growth rates in the 

underaged microstructures of 2124 and 7150 become comparable. The 

superior long crack performance of the aluminum-lithium alloys is 

particularly evident at higher stress intensity ranges, typically 

above 4 MPahi, where for exampl e growth rates are between 5 and ·50 

times slower than than in peak aged or overaged 7150. Of the 

aluminum-lithium alloys, optimum crack growth resistance is seen in 

the higher strength 2090-T8E41 alloy. The excellent long crack 

fatigue properties of these alloys have been attributed primarily to 
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crystallographic crack growth and enhanced crack meandering (10-14), 

induced by the marked slip planarity and deformation' texture 

(particularly in 2090) which is characteristic of the commercial 

alloys. The occurrence of such tortuous crack paths in turn promotes 

significant crack tip shielding (17), i.e., a reduction in the local 

stress intensity experienced at the crack tip, through mechanisms of 

crack deflection (23) and resulting (roughness-induced) crack closure 

from the wedging of fracture surface asperities (24-26), which leads 

to reduced growth rates. 

Small crack behavior in 2124 and 7150 

The behavior of small cracks in underaged and averaged 

microstructures of 2124 and underaged, peak aged and averaged 

microstructures of 7150 are shown in Fig. 3. Data are plotted as a 

function of t:.K and are compared with long crack results from Fig. 2. 

There is clearly significant scatter in the small crack results, 

although this is to be expected as growth rates are measured at 

microstructural dimensions and thus reflect the local variations in 

crack velocity as the crack encounters various features in the 

microstructure. Despite this scatter, it is clear that the growth 

rates of the small cracks invariably exceed those of long cracks at 

equivalent t:.K levels, similar to behavior reported in other alloys 

(e.g., refs. 2-7,15-17). The effect becomes most pronounced with 

decreasing growth rates, such that at near-threshold levels, the 

propagation rates ,of small cracks can be 2 to 3 orders of magnitude 

faster than long cracks. More importantly, the small flaws appear to 
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propagate at stress intensities well below t:.KTH , with no apparent 

sign of an intrinsic threshold. 

Of further interest is that, unlike long crack behavior, the 

small crack results in both 2124 and 7150 appear to be far less 

sensitive to microstructure. For example, the distinctly superior 

crack growth properti es of the underaged mi crostructures, whi ch are 

so apparent for long cracks, are simply not evident in the small 

crack results (Fig. 3). However microstructurally, the small cracks 

do tend to show a decreasing tendency for crack deflection with 

increased aging, similar to observations for long cracks. 

Small crack behavior in aluminum-lithium alloys 

Corresponding growth rate properties of small cracks in the 

aluminum-lithium alloys are shown in Fig. 4. Results for various 

orientations in 2090-T8E41 (Fig. 4a) and in the T351 temper of both 

2091 and 8091 (Fig. 4b) are plotted as a function of t:.K and are 

compared with long crack data. Behavior appears essentially to be 

similar to 2124 and 7150 in that small cracks grow at rates far 

faster than long cracks at equivalent near-threshold levels, and 

further continue to propagate at stress intensity ranges as low as 

0.7 MPa/ffi, well below the long crack threshold t:.KTHo However, in view 

of the generally superjor long crack properties of aluminum-lithium 

alloys (Fig. 2), the discrepancy between long and small crack growth 

rates in these alloys is larger, with small cracks propagating up to 

4 orders of magnitude faster than long cracks at equivalent near­

threshold levels. 
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Microstructurally, the early growth of such small flaws is 

illustrated in Fig. 5, based on scanning electron microscopy of gold 

coated acetate teplicas in 209I-T35I. Cracks initiate from particles 

and grow initially in linear fashion. However, with increasing crack 

length, they begin to show evidence of deflection and branching, and 

presumably start developing crack closure, which with sufficient 

crack size ultimately approaches that of a long crack. 

DISCUSSION 

It is now generally accepted that the fatigue behci'vior of long 

cracks is strongly influenced by crack closure (and crack deflection) 

mechanisms, particularly at lower growth rates below typically 10-8 

m/cycle (27). Crack closure and deflection represent a gene~al class 

Qf "toughening" mechanisms known as crack tip shielding, which act to 

reduce the local "driving force" actually experienced at the crack 

tip (17). In high strength aluminum alloys, where the prominent 

mechanisms of shielding result from the wedging of fracture surface 

a~perities (and to a lesser extent co'rrosion debris) and from crack 

deflection, superior fatigue crack growth properties are generally 

observed in coherent-pa.rticle hardened microstructures, as the 

resul ting planar sl ip promotes deflected and meandering crack paths 

and consequently rough fracture surfaces. It is primarily for this 

reason that (long) crack growth rates tend to be slower in underaged 

microstructures in traditional alloys such as 2124 and 7150. 

Moreover, this notion is particularly relevant to aluminum-lithium 

alloys, where crack paths are especially tortuous due to the marked 
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planarity of slip from the c precipitation and, in the 2090 alloy 

(13,14), from the strong anisotropy/texture which is imparted by 

commercial thermomechanica1 heat treatments and lack of 

recrystallization. As the deflected crack path morphology persists to 

t:.K levels as high as "'20 MPavm in these materials (13), a1uminum­

lithium alloys tend to show generally superior (long) crack growth 

properties over a wide s~ectrum of growth rates. 

The major contribution of crack tip shielding to fatigue crack 

growth resistance in aluminum alloys and particular1Y'aluminum­

lithium alloys has important implications to their fatigue properties 

in general. First, as the prominent source of shielding results from 

wedges inside the crack, the effect of such roughness-induced closure 

will be minimized at high mean stresses where the mean crack opening 

displacements are larger, resulting in large load ratio effects, 

particularly at near-threshold levels(14). Moreover, in the presence 

of continuous or periodic compression cycles, growth rates may 

similarly be increased as the compressive loads can reduce the 

magnitude of closure through the crushing of fracture surface 

asperities (28). Accordingly, when compression overloads are applied 

to arrested cracks at t:.KTH' Significant crack growth can result at 

stress intensities at, or even below, the threshold (13,28). 

More importantly, shielding mechanisms act primarily on the wake 

of the crack, and thus are sensitive to crack size (17). The 

imp1 ication of this is that due to their limited wake, 

microstr.ucturally-small cracks are unlikely to be as affected by 

shielding as long cracks, and thus, at the same nominal t:.K, 
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experience a larger effective near-tip "driving force". In fact, .i!!. 

situ closure stress measurements on small cracks have indicated 

negligible closure levels in 2090 and similar alloys (16). It is 

considered that this is the primary reason for the accelerated and 

"sub-threshold" growth rates of small cracks, as illustrated for the 

eight aluminum alloys in Figs. 3 and 4. However, with increasing 

length such cracks begin to develop closure (16,17) such thit growth 

rates merge with long crack data once shielding levels approach that 

of long flaws. In the present study, this apparently occurs at 

nominal 6K levels of between 4 and B MPa$, when crack lengths exceed 

approximately 700 to 1000 um. 

Explanations for the accelerated growth rates of small cracks 

based on closure arguments can be substanti ated by comparing the 

small crack data with that of long cracks where the role of crack 

closure has been minimized. This is illustrated for 2090-TBE41 in 

Fig. 6, where it can be seen that the long and small crack growth 

rates come into closer correspondence when the long crack data are 

presented in terms of Meff instead of 6K, i.e., where experimental 

measurements of Kcl are used to subtract out the closure 

contribution. Similarly, but a lesser extent, small crack growth 

rates correspond to long crack data measured at high load ratios (R = 

* 0.75). This implies that the behavior of small flaws largely 

reflects that of long cracks with minimal shielding. 

* . Recent studies by Hertzberg and co-workers (29) have shown that by 
measuring long crack growth rates under constant Kmax/increasing Kmin 
loading conditions, which minimize crack closure, a conservatlve 
estimate of 6a/6N vs. 6K behavior for small cracks can be obtained, 
except at very low, sub-threshold stress intensities. 
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It is apparent from Fig. 6, however, that small flaws still 

propagate below the effective threshold, indicating that the small 

crack effect cannot be solely attributed to the closure concept, 

although this clearly is a prominent mechanism. Additional factors 

which have been identified as contributing to discrepancies in long 

and small crack behavior include enhanced crack tip opening strains 

(30), surface microplasticity (31), differences in crack geometry 

(32,33), interactions of sma.ll flaws with microstructural features of 

comparable dimensions (31,34,35), and definition of an appropriate 

IIcrack driving force" (36). Moreover, since naturally occurring, 

small cracks initiate at "weak links" in the microstructure, forming 

crack fronts whic~ encompass only relatively few grains, unlike 

through-thickness long cracks their growth will not be averaged over 

many disadvantageously oriented grains (7). 

Finally, as long cracks in lithium-containing aluminum alloys 

tend to develop the most shielding due to their extremely tortuous 

crack pa ths, the difference between long and small crack growth rates 

appears to be maximized in these materials. However, when compared 

with behavior in other aluminum alloys, small crack growth rates in 

2090-T8E41, 2091-T351 and 8091-T351 are actually no worse than 

resul ts for 2124 and 7150, as shown in Fi g. 7. Moreover, strength 

levels in the 2090 and 2091 alloys are some 35 to 50% higher than in 

2124 and 7150. Although there is considerable inherent scatter in 

the small crack data, it is apparent. that, in contrast to long crack 

behavior (Fig. 2), small crack growth rates in aluminum alloys are 

comparatively less sensitive to both microstructure and composition 

14 
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(including aging condition and strength level). Since long crack 

data at higher growth rates and at high load ratios are similarly 

less sensitive to microstructure (e.g., ref. 17), this suggests that 

the origin of microstructural effects on fatigue crack propagation 

behavior in aluminum alloys results primarily from shielding 

mechanisms. Moreover, since slip planarity and grain size (and hence 

morphology of crack path) are known to be relevant, it would appear 

. that crack defl ecti on and resul ti ng roughness- induced crack closure 

provide the major contribution. 

CONCLUSIOIIS 

Based on a comparison of the fatigue behavior of naturally­

occurring, microstructurally-small (1-1000 ~m) surface cracks in 

commercial aluminum-lithium 2090-T8E41, 2091-T351 and 8091-T351 

alloys and traditional high strength 2124 and 7150 aluminum alloys, 

the following conclusions may be made: 

1. Small fatigue crack growth rates in commercial aluminum 

alloys are up to 2-4 orders of magnitude faster than corresponding 

growth rates for long cracks at equivalent (nominal) stress intensity 

ranges. In contrast to long crack resul ts, over a wide spectrum of 

growth rates from 10- 10 to 10- 6 m/cycle, the influence of 

microstructure and composition on small crack behavior is relatively 

minor. 

2. The accelerated growth rate behavior of small cracks, which 

predominates below typically 10-8 m/cycle, is attributed primarily to 

a limited role of crack tip shielding with cracks of limited wake. In 

precipitation-hardened aluminum alloys, such shielding, which plays a 

15 



dominant role in the near-threshold fatigue behavior of long cracks, 

appears to resul t pri nt"i pa lly from crack defl ecti on and consequent 

crack closure from the wedging of fracture surface asperities. 

3. The discrepancy between long and small fatigue crack behavior 

appears to be maximized in aluminum-lithium alloys. This is in part 

due to their superior long crack properties which result from very 

high levels of shielding induced by severely deflected crack paths 

(promoted by a marked planarity of slip and strong deformation 

texture). However, although up to 4 orders of ma"gnitude faster than 

long cracks, small crack growth rates in 2090, 2191 and 8091 rema i n 

comparable with behavior in traditional alloys, such as 2124-T351 and 

7150- T751. 
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100.000 cycles following crack initiation. Arrow represents the 
direction of applied stresses. 
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