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Abstract

The Doob-Martin compactification of Markov chains of growing words

by

Hye Soo Choi

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Steven Neil Evans, Chair

We study the limiting behavior of Markov chains that iteratively generate a sequence of
random finite words.

In the first part of thesis, we consider a Markov chain such that the nth word is uniformly
distributed over the set Wn of words of length 2n in which n letters are a and n letters
are b: at each step an a and a b are shuffled in uniformly at random among the letters of
the current word. We also consider a Markov chain such that the nth word takes values in
the set of words in Bn such that the number of letters a in the first k letters is at least the
number of letters b in those positions for any 1 ≤ k ≤ 2n: at each step an a and a b are
shuffled uniformly at random into the existing word so that the a precedes the b. We obtain
a concrete characterization of the respective Doob-Martin boundaries of these Markov chains
and thereby delineate all the ways in which the Markov chains can be conditioned to behave
at large times. We exhibit a bijective correspondence between the points in the respective
boundaries of Markov chains and ergodic random total orders on the set {a1, b1, a2, b2, . . .}
that have the specific properties determined by the Markov chains. We establish for the
first Markov chain a further bijective correspondence between the set of such random total
orders and the set of pairs (µ, ν) of diffuse probability measures on [0, 1] such that 1

2
(µ+ν) is

Lebesgue measure: the restriction of the random total order to {a1, b1, . . . , an, bn} is obtained
by taking X1, . . . , Xn (resp. Y1, . . . , Yn) i.i.d. with common distribution µ (resp. ν), letting
(Z1, . . . , Z2n) be {X1, Y1, . . . , Xn, Yn} in increasing order, and declaring that the kth smallest
element in the restricted total order is ai (resp. bj) if Zk = Xi (resp. Zk = Yj).

The second part of thesis focuses on the mixing time of a Markov chain of words in Wn

that arises from removing a letter a and a letter b uniformly at random followed by inserting
the letter a and the letter b uniformly at random back into one of the slots defined by the
remaining letters. We present an upper bound of the form n log n + (log 8)n and a lower
bound of the form (1− α)n log n− cαn, α > 1

2
.
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Chapter 1

Introduction

This thesis studies the limiting behavior of Markov chains of words drawn from the alphabet
{a, b}. We build Markov chains of growing words drawn from the alphabet {a, b} in such
a way that, starting with the empty word, a letter a and a letter b are added into random
positions of the current word. By imposing different rules for the manner in which a letter
a and a letter b are added, we construct two Markov chains (Un)n∈N0 and (Wn)n∈N0 that
arise from two different addition mechanisms. As the length of the words Un and Wn in the
Markov chains goes off to infinity as n → ∞, the possible arrangements of the 2n letters
of the words become more diversified over time. We delineate the wide variety of limiting
behavior by considering the Doob-Martin compactification of the Markov chains (Un)n∈N0

and (Wn)n∈N0(see Section 2.2 for a summary of the relevant general theory).
We also consider a Down-up Markov chain (DU t)t∈N0 for which the length of the word

remains constant over time. The forward transition dynamics of (DU t)t∈N0 is built from the
chain (Un)n∈N0 by composing the backward transition dynamics of (Un)n∈N0 with the forward
transition dynamics of (Un)n∈N0 : a letter a and a letter b are chosen at random, removed from
the current word, and reinserted in random positions. This can be regarded as relative of
random-to-random card shuffling where a card is chosen at random, removed from the deck,
and reinserted in a random position. We study the limiting behavior of the chain (DU t)t∈N0

by investigating how fast the distribution of DU t converges to its stationary distribution as
t→∞ with respect to total variation distance. In doing so, we obtain bounds on the mixing
time of the chain (DU t)t∈bN0 .

1.1 Motivation
As suggested by the existence [27] of more than 300 equivalent combinatorial interpretations
of the Catalan number, many bijective correspondences exist between the families of discrete
combinatorial ensembles counted by the Catalan numbers. Indeed, our investigation for
Markov chains of words drawn from two-letter alphabet was initially motivated by such a
bijection between trees and a certain type of words drawn from the two-letter alphabet {a, b}.



CHAPTER 1. INTRODUCTION 2

This relation enables every Markov chain that appears in this thesis to be transformed into
a Markov chain of corresponding trees and the details will be discussed in later chapters. To
explain the bijection, we recall some relevant terms and a good source for the material in
this part is [1].

Definition 1.1.1. A Dyck word is defined iteratively as follows:

• The empty word ∅ is a Dyck word,

• All words w that can be factored as w = aubv where the subwords u, v are Dyck words
are Dyck words.

Definition 1.1.2. A 1-dominated word with n + 1 letters a and n letters b is a word w of
form w = au where u is a Dyck word of length 2n.

Definition 1.1.3. A tree on the finite set S 6= ∅ is a pair (r, (T1, T2, . . . , Tk)) with k ≥ 0
such that

• r is an element of S,

• T1, . . . , Tk are some trees defined on the sets S1, ..., Sk,

• the sets {r}, S1, . . . , Sk form a partition of S.

Definition 1.1.4. A postfix labeling of the nodes of the tree T = (r, (T1, . . . , Tk)) for an
ordered set B with #B = #S, is a labeling such that the root r is labeled with maxB and
the subtrees T1, . . . , Tk are given postfix labelings with the respective sets B1, . . . , Bk, where
B1, . . . , Bk is a partition of B\{maxB} and bi < bj for bi ∈ Bi and bj ∈ Bj with i < j.
When we refer to the postfix labeling of T we mean the postfix labeling with B = [n], where
n = #S is the number of nodes of T .

It is a well-known result from [26] (see also [1, Chapter 4]) that there exists a bijection
between the set of trees with n + 1 nodes and the set of 1-dominated words with n + 1
letters a and n letters b for n in N0. While traversing nodes in a tree in the order of the
postfix labeling, one can construct a 1-dominated word with n+1 letters a and n letters b as
follows: starting from the empty word ∅, one can keep concatenating the word with a letter
a followed by as many letters b as the node has children.

There is, moreover, a bijection between pairs (i, w), (see [1, Section 4.3.3] for details)
where i ∈ [2n − 1] and w is a 1-dominated word with n letters a and n − 1 letters b,
and words v with n letters a and n − 1 letters b: the bijection sends (i, w) to the word
v = v1 · · · v2n−1 given by vj = wi+j, where the addition is modulo 2n− 1.

For future reference in later chapters, we formally state these theorems.

Theorem 1.1.5. There exists a bijection between the set of trees with n + 1 nodes and the
set of 1-dominated words with n+ 1 letters a and n letters b for n in N0.
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Theorem 1.1.6. There exists a bijection between pairs (i, w), where i ∈ [2n− 1] and w is a
1-dominated word with n letters a and n− 1 letters b, and words v with n letters a and n− 1
letters b.

1.2 Main results
To introduce our main results formally, we give the definition of the Markov chains (Un)n∈N0 ,
(Wn)n∈N0 , and (DU t)t∈N0 .

Definition 1.2.1. Define a Markov chain (Un)n∈N0 such that

• U0 is the empty word ∅,

• conditional on Un = u1 . . . u2n, the word Un+1 is constructed by choosing 1 ≤ In+1, Jn+1 ≤
2n+ 2 with In+1 6= Jn+1 uniformly at random, placing an a in position In+1 and a b in
position Jn+1, and placing the letters u1, . . . , u2n in that order into the remaining 2n
positions.

Definition 1.2.2. Define a Markov chain (Wn)n∈N0 such that

• W0 is the empty word ∅.

• conditional on Wn = v1 . . . v2n, the word Wn+1 is constructed by choosing 1 ≤ In+1 <
Jn+1 ≤ 2n+ 2 uniformly at random (that is, all

(
2n+2

2

)
possibilities are equally likely),

placing an a in position In+1 and a b in position Jn+1, and placing the letters v1, . . . , v2n

in that order into the remaining 2n positions.

Definition 1.2.3. Define a Markov chain (DU t)t∈N0 such that

• DU0 is a random word of length 2n drawn from the alphabet {a, b} that consists of n
letters a and n letters b,

• conditional on DU t = u1u2 · · ·u2n−1u2n, the word DU t is constructed by choosing It
and Jt independently and uniformly at random from the index set {1 ≤ i ≤ 2n : ui = a}
and the index set {1 ≤ j ≤ 2n : uj = b}), respectively, and 1 ≤ Ĩt, J̃t ≤ 2n with
Ĩt 6= J̃t uniformly at random (that is, all 2n(2n − 1) possibilities are equally likely)
followed by placing an a in position Ĩt and a b in position J̃t, and placing the letters
uσ(1)uσ(2) · · ·uσ(2n−2) in that order in the remaining 2n − 2 positions, where σ is the
unique increasing bijection from [2n− 2] to [2n] \ {It, Jt}.

The following theorem collects together the results we establish in this dissertation. We
will describe the bijections asserted in Theorem 1.2.4 and Theorem 1.2.5 explicitly as we
proceed.

Theorem 1.2.4. There are bijective correspondences between the following sets:
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(i) extremal elements of the Doob–Martin boundary associated with the transition proba-
bilities of the Markov chain (Un)n∈N0 and the reference state ∅,

(ii) extremal nonnegative harmonic functions for the Markov chain (Un)n∈N0 normalized to
take the value 1 at the reference state ∅,

(iii) pairs (µ, ν) of probability measures on [0, 1] such that 1
2
(µ + ν) = λ, the Lebesgue

measure on [0, 1].

(iv) the distributions of extremal infinite bridges for the Markov chain (Un)n∈N0,

(v) the distributions of ergodic exchangeable random total orders ≺ on the set I0 =
⋃
n∈N{an, bn}.

Theorem 1.2.5. There are bijective correspondences between the following sets:

(i) extremal elements of the Doob–Martin boundary associated with the transition proba-
bilities of the Markov chain (Wn)n∈N0 and the reference state ∅,

(ii) extremal nonnegative harmonic functions for the Markov chain (Wn)n∈N0 normalized
to take the value 1 at the reference state ∅,

(iii) probability measures µ concentrated on {(x, y) : 0 ≤ x ≤ y ≤ 1} such that 1
2
(µ(· ×

R) + µ(R × ·)) = λ, the Lebesgue measure on [0, 1] and the labeled infinite bridge
(L∞n )n∈N0 uniquely determined by µ satisfies that the conditional distribution of L∞n
given Ψ(L∞n ) is uniform on the set of labeled associated admissible matchings of Ψ(L∞n )
for all n ∈ N0.

(iv) the distributions of extremal infinite bridges for the Markov chain (Wn)n∈N0,

(v) the distributions of ergodic exchangeable random paired total orders ≺ on the set I0 =⋃
n∈N{an, bn} such that the labeled infinite bridge (L∞n )n∈N0 uniquely determined by ≺

satisfies that the conditional distribution of L∞n given Ψ(L∞n ) is uniform on the set of
labeled associated admissible matchings of Ψ(L∞n ) for all n ∈ N0,

where Ψ(L∞n ) is the word drawn from the alphabet {a, b} that consist of n letters a and n
letters that is uniquely determined by L∞n , n ∈ N0.

Theorem 1.2.6. The mixing time tmix for the Markov chain (DU t)t∈N0 has an upper bound
of the form n log n+ (ln 8)n and a lower bound of the form (1− α)n log n− cαn, α > 1

2
.

1.3 Overview
The remainder of this thesis is organized into two additional chapters. In Chapter 2, we
characterize the Doob-Martin compactification of the Markov chain (Un)n∈N0 and (Wn)n∈N0 .
This chapter is the combination of a joint work with Steven N. Evans [6] and a joint work
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with Steven N. Evans and Anton Wakolbinger. As the characterizations of the Doob-Martin
compactification of the Markov chain (Un)n∈N0 and (Wn)n∈N0 have many common features
due to their apparent similarity, we interleave the processes of identifying the Doob-Martin
compactification of the Markov chains (Un)n∈N0 and (Wn)n∈N0 . However there are still some
subtle difference in the two processes, so we often distinguish the part for the chain (Un)n∈N0

and the part for the chain (Wn)n∈N0 by splitting the parts into subsections. In Chapter 3,
we obtain upper and lower bounds on the mixing time of the down-up chain (DU t)t∈N0 using
coupling methods.
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Chapter 2

The Doob-Martin compactification of
Markov chains of growing words

2.1 Introduction

Generating Markov chains (Un)n∈N0
and (Wn)n∈N0

drawn from the
alphabet {a, b}
There is a very simple way of producing a uniformly distributed random permutation of a
set with n objects, say [n] := {1, . . . , n}: we take the elements of [n] in order and lay them
down successively so that the kth element goes into a uniformly chosen one of the k “slots”
defined by the k − 1 elements that have already been laid down (the slot before the first
element, the slot after the last element, or one of the k − 2 slots between elements). This
sequential algorithm has the attractive feature that when the first k elements have been laid
down they are in uniform random order; that is, the algorithm builds uniformly distributed
random permutations of [1], [2], . . . , [n] in a sequential manner.

Suppose that we enumerate a standard deck of cards with the elements of the set [52].
If the deck is in some order, then the colors of the successive cards (Red or Black) define
a word of length 52 from the two-letter alphabet {R,B} in which 26 letters are R and 26
letters are B (recall that a word of length k from a finite alphabet A is just an element of
the Cartesian product Ak, although it is usual to write the word (a1, . . . , ak) more succinctly
as a1 · · · ak). Moreover, if the order of the deck is random and uniformly distributed, then
the resulting word is uniformly distributed over the set of 52!

26!26!
such words.

Unfortunately, our sequential randomization algorithm doesn’t have the feature that at
the (2k)th step for 1 ≤ k ≤ 26 we have a random word from the alphabet {R,B} that is
uniformly distributed over the set of

(
2k
k

)
words in which k letters are R and k letters are B.

However, there is a simple way of modifying our algorithm to produce the latter type
of random words sequentially. We begin at step 0 with the empty word. Suppose that we
have completed k steps and a word of length 2k has been produced. The first sub-step of
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step k + 1 inserts the letter R uniformly at random into one of the 2k + 1 slots defined by
these 2k letters to produce a word of length 2k+ 1. The second sub-step inserts the letter B
uniformly at random into one of the 2k + 2 slots defined by these 2k + 1 letters to produce
a word of length 2k + 2 and thereby complete step k + 1. It is not difficult to see that,
despite the apparent dependence of this procedure on the ordering of the letters R and B,
this procedure does indeed achieve what it is claimed to achieve.

From now on we will replace the alphabet {R,B} by the alphabet {a, b} and write
(Un)n∈N0 for the Markov chain that arises from our random insertion procedure. The formal
definition of (Un)n∈N0 is given as follows.

Definition 2.1.1. Define a Markov chain (Un)n∈N0 such that

• U0 is the empty word ∅,

• conditional on Un = u1 . . . u2n, the word Un+1 is constructed by choosing 1 ≤ In+1, Jn+1 ≤
2n+ 2 with In+1 6= Jn+1 uniformly at random, placing an a in position In+1 and a b in
position Jn+1, and placing the letters u1, . . . , u2n in that order into the remaining 2n
positions.

Thus, Un ∈Wn, where Wn is the set words drawn from the alphabet {a, b} that consist
of n letters a and n letters b. Set W :=

⊔
n∈N0

Wn and denote N(w) = n for w ∈Wn, n ∈ N0.
A ballot sequence is a string consisting of n letters a and n letters b such that for any

1 ≤ k ≤ 2n the number of letters a in the first k letters is at least the number of letters
b in those positions. Note that a ballot sequence is just another expression for a Dyck
word defined in Section 1.1. Write Bn for the set of ballot sequences of length 2n, and set
B :=

⊔
n∈N0

Bn. The cardinality of the set Bn is the nth Catalan number Cn, where

Cn =
1

n+ 1

(
2n

n

)
.

See [27] for an enumeration of other combinatorial interpretations, generalization, refine-
ments, variants of the Catalan number.

A natural way to generate ballot sequences in a sequential manner is to start with the
empty word and insert an additional letter a and an additional letter b at each step in such
a way that such a way that the additional letter a comes before the additional letter b in the
word.

Definition 2.1.2. Define a Markov chain (Wn)n∈N0 such that

• W0 is the empty word ∅.

• conditional on Wn = v1 . . . v2n, the word Wn+1 is constructed by choosing 1 ≤ In+1 <
Jn+1 ≤ 2n+ 2 uniformly at random (that is, all

(
2n+2

2

)
possibilities are equally likely),

placing an a in position In+1 and a b in position Jn+1, and placing the letters v1, . . . , v2n

in that order into the remaining 2n positions.

Thus, Wn takes values in Bn for n ∈ N0. Denote N(w) = n for w ∈ Bn, n ∈ N0.
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The Markov chains of trees that correspond to Markov chains
(Un)n∈N0

and (Wn)n∈N0

Markov chain (Un)n∈N0 that sequentially generates random words such that Un is uniformly
distributed over the set of words drawn from the alphabet {a, b} that have n letters a and n
letters b can be trivially modified to give a Markov chain (Ũn)n∈N0 such that Ũn is uniformly
distributed over the set of words drawn from the alphabet {a, b} that have n + 1 letters a
and n letters b: instead of starting with the empty word, one starts with the word consisting
of a single letter a. By Theorem 1.1.5 and Theorem 1.1.6 there is a bijection that turns the
latter Markov chain into a Markov chain ((In, S̃n))n∈N0 , where In and S̃n are independent
for each n, In is uniformly distributed on [2n+ 1], and S̃n is uniformly distributed over the
set of 1-dominated word with n + 1 letters a and n letters b. Moreover, composing these
two bijections turns the Markov chain (Ũn)n∈N0 into a Markov chain ((In, Sn))n∈N0 , where
In and Sn are independent for each n, In is uniformly distributed on [2n + 1], and Sn is
uniformly distributed over the set of trees with n + 1 vertices that are equipped with the
postfix labeling.

Theorem 1.1.5 also enables the Markov chain (Wn)n∈N0 that sequentially generates a word
Bn to be transformed into a Markov chain (T̃n)n∈N0 such that T̃n are trees with n+ 1 nodes,
and vice versa. The stepwise procedure can be described as follows. By concatenating letter
a with Wn, we can build a 1-dominated word with n + 1 letters a and n letters b. This
1-dominated word can then form the corresponding tree with n+1 nodes under the bijection
discussed above. One can compose these two transformations to turn the Markov chain
(Wn)n∈N0 into a Markov chain (T̃n)n∈N0 . Note that all the steps are invertible.

The Markov chains ((In, Tn))n∈N0 and (T̃n)n∈N0 are certainly transient and have count-
able state spaces. We are interested in the manner in which (In, Tn) and (T̃n)n∈N0 “escape to
infinity” as n→∞. This question is made precise by considering the Doob-Martin compact-
ification of the Markov chains (see Section 2.2 for a summary of the relevant general theory).
One can obtain an explicit description of the transition dynamics of these Markov chains,
but since ((In, Tn))n∈N0 and (T̃n)n∈N0 are just the Markov chains (Vn)n∈N0 and (Wn)n∈N0 ,
respectively, “in disguise” it is easier to work with the latter Markov chains (the limit space
of the Markov chains within the Doob-Martin compactification remains the same up to iso-
morphism). Since (Vn)n∈N0 is a minor modification of (Un)n∈N0 , we go even further and
investigate (Un)n∈N0 and (Wn)n∈N0 .

Shuffle product and Hopf algebra

Let W be the algebra that consists of the empty word ∅ as well as finite linear combinations
of words drawn from the alphabet {a, b} with scalars in Q. For example, ab + 2

3
ba and

2
7
abbb+ baabb+ 1

5
bbbbaa are elements in the algebra W. Equivalently W is a free Q-module

generated by finite words drawn from the alphabet {a, b}.

Definition 2.1.3. The shuffle product � is a bilinear map from W×W to W. It is uniquely
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determined by its value for each pair of words. The shuffle product v � w of two words
v = v1 · · · vm and w = w1 · · ·wn is

v� w :=
∑

f :[m]7→[m+n]
g:[n]7→[m+n]

u1 · · ·un+m,

where the sum runs over pairs of functions (f, g) that satisfy the conditions listed as follows:

• f : [m] 7→ [m+ n] and g : [n] 7→ [m+ n] are strictly increasing,

• f([m]) ∩ g([n]) = ∅

• f([m]) ∪ g([n]) = [n+m],

• the letter uf(i) is the ith letter vi in the word v for i ∈ [m] and likewise the letter ug(j)
is the jth letter wj in the word w for j ∈ [n].

For examples,

a� b = ab + ba,
ab� ab = abab+ aabb+ aabb + aabb+ aabb + abab

= 2abab+ 4aabb.

In other words, the shuffle product of two words is the sum of all ways of interleaving the
two words.

Up to a normalization, the coefficient of a word u = u1 · · ·un+m in the shuffle product
of two words v and w is the probability that the shuffle of v and w results in u. Taking
the previous example, the shuffle of a with b results in ab with probability 1

2
and ba with

probability 1
2
. It is noteworthy that the algebra W equipped with the shuffle product and

suitable associated coproduct and antipode constitutes a prime example of a Hopf algebra
– see, for example, [4, 23, 21, 8, 5, 10]. The Markov chains (Un)n∈N0 and (Wn)n∈N0 can be
embedded into the algebra W, and their distributions can be characterized by∑

w∈Wn

P{Un = w}w =
1

(2n)!
a� b� a� b� · · ·� a� b︸ ︷︷ ︸

2n terms

,

∑
w∈Bn

P{Wn = w}w =
2n

(2n)!
ab� ab� · · ·� ab︸ ︷︷ ︸

n terms

.

Infinite bridges

We investigate the infinite bridges (equivalently, the Doob h-transforms) for the Markov
chains (Un)n∈N0 and (Wn)n∈N0 ; that is, the Markov chains that have the same backwards-in-
time transition dynamics as (Un)n∈N0 and (Wn)n∈N0 , respectively. We thereby identify the
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Doob-Martin compactification of the state space of each Markov chain. This enables us to
characterize the nonnegative harmonic functions for the Markov chains and hence delineate
all the ways that the Markov chains can be conditioned to “behave at infinity”. Merging the
processes of characterizing the Doob-Martin compactification of the Markov chains (Un)n∈N0

and (Wn)n∈N0 may confuse the reader and thus we divide our exposition into two parts (the
parts use concepts with similar names but use them in different ways).

Infinite bridges and exchangeable random total orders for (Un)n∈N0

More specifically, we show that a W-valued Markov chain is an infinite bridge for the Markov
chain (Un)n∈N0 if and only if the backwards dynamics are given by removing one letter a and
one letter b uniformly at random from the current word. We can enrich the state space of
the Markov chain (Un)n∈N0 by replacing Wn with the set W̃n that consists of words made up
from the letters a1, b1, . . . , an, bn written down in some order (each letter appearing once);
that is, a word such as aababb will be associated with a word such as a3a1b2a2b1b3 – a
given w ∈ Wn has (n!)2 associated words in W̃n. We can then enhance an infinite bridge
(U∞n )n∈N0 to produce a Markov chain (Ũ∞n )n∈N0 with values in W̃ :=

⊔
n∈N0

W̃n such that
given U∞n = u the value of Ũ∞n is uniformly distributed over all ways of “subscripting” the
letters in u; for example, if U∞2 = abba, then Ũ∞2 is uniformly distributed over the four words
a1b1b2a2, a2b1b2a1, a1b2b1a2, a2b2b1a1. Moreover, in going from Ũ∞n to Ũ∞n−1 the letters an
and bn are deleted. We may view Ũ∞n as a random total (that is, linear) order on the set
{a1, b1, . . . , an, bn}. As n varies, these orders are consistent in the sense that the order Ũ∞n
induces on {a1, b1, . . . , an−1, bn−1} is just the order given by Ũ∞n−1. Consequently, there is a
total order on {a1, b1, a2, b2, . . .} that induces each of the orders given by the Ũ∞n . This total
order is exchangeable in the sense that finite permutations of the subscripts of the a’s and
b’s separately leave its distribution unchanged.

The infinite bridge (U∞n )n∈N0 is extremal (that is, not a mixture of infinite bridges or,
equivalently, has an almost surely trivial tail σ-field) if and only if the exchangeable random
total order on {a1, b1, a2, b2, . . .} is ergodic in the sense that if an event is unchanged by finite
permutations of the subscripts of the a’s and b’s separately, then it has probability zero or
one. By general Doob–Martin theory, extremal bridges correspond to extremal elements of
the Doob–Martin boundary and, in general, some elements of the Doob–Martin boundary
may not be extremal. We show that the latter phenomenon does not occur in our setting –
all Doob–Martin boundary points of the Markov chain (Un)n∈N0 are extremal.

We demonstrate that there is a bijective correspondence between ergodic exchangeable
random total orders on {a1, b1, a2, b2, . . .} and pairs (µ, ν) of diffuse probability measures on
the unit interval [0, 1] such that µ+ν

2
= λ, where λ is Lebesgue measure on [0, 1]: let V1, V2, . . .

be i.i.d. with distribution µ and W1,W2, . . . be independent and i.i.d. with distribution ν,
then, writing ≺ for the total order we have ai ≺ aj (resp. ai ≺ bj, bi ≺ aj, bi ≺ bj) if
Vi < Vj (resp. Vi < Wj, Wi < Vj, Wi < Wj). Another way of describing this construction
is the following. We only need to describe the restriction of the random total order to
{a1, b1, . . . , an, bn} for each n ∈ N0. Let (Z1, . . . , Z2n) be {V1,W1, . . . , Vn,Wn} in increasing
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order and declare that the kth smallest element of {a1, b1, . . . , an, bn} in the restricted total
order is ai (resp. bj) if Zk = Xi (resp. Zk = Yj).

We remark that, due to the relationship µ+ν
2

= λ, the probability measure ν is uniquely
determined by the probability measure µ and vice versa and hence we could have said
that the ergodic exchangeable random total orders are in bijective correspondence with the
probability measures µ on [0, 1] that satisfy µ ≤ 2λ. However, we find the more symmetric
description to be preferable.

In terms of the Doob–Martin topology, we show that a sequence (yk)k∈N with yk ∈
WN(yk) and N(yk) → ∞ as k → ∞ converges to the point in the Doob–Martin boundary
corresponding to the pair of measures (µ, ν) if and only if for each m ∈ N the sequence of
random words obtained by selecting m letters a and m letters b uniformly at random from
yk and maintaining their relative order converges in distribution as k → ∞ to the random
word that is obtained by writing V1, . . . , Vm,W1, . . . ,Wm in increasing order to make a list
(Z1, . . . , Z2m) as above and then putting a letter a (resp. b) in position ` of the word when
Z` ∈ {V1, . . . , Vm} (resp. Z` ∈ {W1, . . . ,Wm}). Moreover, the convergence of (yk)k∈N to y
is equivalent to the weak convergence of µk to µ and νk to ν, where µk (resp. νk) is the
probability measure that places mass 1

N(yk)
at the point `

2N(yk)
1 ≤ ` ≤ 2N(yk), if the `th

letter of the word yk is the letter a (resp. b).

Infinite bridges and exchangeable random paired total orders for (Wn)n∈N0

A matching of [2n] is a partition of [2n] into subsets (called blocks) of size 2. We can take
any matching M of [2n] and produce a ballot sequence w = w1 . . . w2n ∈ Bn: if {i, j} is a
block of M with i < j, then wi = a and wj = b. Conversely, we say that a matching M
of [2n] is an associated admissible matching for the word w = w1 . . . w2n if for every block
{i, j} of M with i < j we have wi = a and wj = b; that is, it is possible to build w by
successive shuffles in such a way that the indices in each block correspond to letters that
were shuffled in together. A labeled matching of [2n] is a matching in which the n blocks
are labeled with distinct elements of [n]. A labeled associated admissible matching L for the
word w = w1 . . . w2n describes a possible way of building w by successive shuffles: if {i, j}
is a block of L labeled by k, then i (respectively, j) is the location at step n of the letter a
(respectively, b) shuffled in at step k. Given a labeled matching L of [2n], let Ψ(L) ∈ Bn be
the corresponding word (that is, forget about the block labels and for each block {i, j} with
i < j place a letter a in position i and a letter b in position j).

Suppose that (W∞
n )n∈N0 is an infinite bridge. We show that there exists a Markov process

(L∞n )n∈N0 with distribution uniquely specified by the requirements that:

• L∞n is a random labeled matching of [2n] for all n ∈ N,

• the process (Ψ(L∞n ))n∈N0 has the same distribution as (W∞
n )n∈N0 ,

• the conditional distribution of L∞n given Ψ(L∞n ) is uniform on the set of labeled asso-
ciated admissible matchings of Ψ(L∞n ) for all n ∈ N0,
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• the backward transition mechanism of (L∞n )n∈N0 is deterministic: in going from step
n+ 1 to step n the pair {i, j} labeled with n+ 1 is deleted and the increasing bijection
from [2(n + 1)] \ {i, j} to [2n] is applied to turn the resulting labeled matching of
[2(n+ 1)] \ {i, j} into a labeled matching of [2n].

We can turn L∞n into a word of length 2n in the alphabet
⋃n
k=1{ak, bk} in which each

letter appears exactly once as follows: place the letter ap in position i if the block of L∞n
labeled p is of the form {i, j} with i < j and place the letter bq in position ` if the block of L∞n
labeled q is of the form {k, `} with k < `. This word defines a total order on

⋃n
k=1{ak, bk}

in the obvious way: c ∈
⋃n
k=1{ak, bk} precedes d ∈

⋃n
k=1{ak, bk} in the total order if the

letter c comes before the letter d in the word. This total order is paired, by which we
mean that ar always precedes br. These paired total orders are consistent as n varies and
hence define a paired total order on I0 :=

⋃
k∈N{ak, bk}. This random paired total order

on I0 is exchangeable in the obvious sense. Conversely, we can reverse this process, start
with any exchangeable random paired total order on I0, and produce an infinite bridge.
Moreover, this procedure is bijective: distinct infinite bridge distributions correspond to
distinct exchangeable random paired total order distributions and vice versa. It therefore
suffices to characterize the possible distributions of exchangeable random paired total orders.

A mixture of infinite bridges is an infinite bridge, so we actually want to characterize
the infinite bridges that cannot be written as mixtures. The latter are the extremal infinite
bridges and are the infinite bridges that have almost surely trivial tail σ-fields. Extremal
infinite bridges correspond to exchangeable random paired total orders that are ergodic in the
sense that events which are invariant under finite permutations of indices have probability
zero or one. It therefore further suffices to characterize the possible distributions of ergodic
exchangeable random paired total orders.

One way to produce an ergodic exchangeable random paired total order / on I0 is the
following. Take a probability measure η on R2 that assigns all of its mass to the set {(s, t) ∈
R2 : s ≤ t} and has diffuse marginals. Let ((Sn, Tn))n∈N be independent and identically
distributed with common distribution η. Declare that

• ai / aj if Si < Sj,

• bi / bj if Ti < Tj,

• ai / bj if Si < Tj,

• bi / aj if Ti < Sj,

• ak / bk if Sk = Tk.

The exchangeability of / is clear. The ergodicity follows from the Hewitt–Savage zero–one
law. Alternatively, observe first that we can encode / by a jointly exchangeable array D =
(D(i, j))i,j∈N,i 6=j that takes values in the 6-element set {IJIJ, IJJI, IIJJ, JIIJ, JIJI, JJII}
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as follows: for i, j ∈ N, i 6= j,

D(i, j) :=



IJIJ, if ai / aj / bi / bj,
IJJI, if ai / aj / bj / bi,
IIJJ, if ai / bi / aj / bj,
JIIJ, if aj / ai / bi / bj,
JIJI, if aj / ai / bj / bi,
JJII, if aj / bj / ai / bi.

The ergodicity of / is equivalent to the ergodicity of D in the usual sense for such arrays
and, by a result of Aldous (see Lemma 7.35 of [17]), this is equivalent to the array being
dissociated – a condition which clearly holds here; that is, the ergodicity of / follows from the
fact that if H1, . . . , Hs are disjoint finite subsets of N, then the s subarrays of D consisting of
entries indexed by the respective sets {(i, j) : i, j ∈ Hr, i 6= j}, 1 ≤ r ≤ s, are independent.

One of our key results is that all ergodic exchangeable random paired total orders arise
from the construction above for some measure η. Of course, η is not unique: if ν is the push-
forward of η by (s, t) 7→ (g(s), g(t)) for some function g such that 1

2
(η(· ×R) + η(R× ·))-a.e

u ∈ R is a point of increase of g, then applying the above construction with ν instead of η gives
an ergodic exchangeable random paired total order on I0 with the same distribution. Taking
g(u) = 1

2
(η((−∞, u]×R) + η(R× (−∞, u])), u ∈ R, the push-forward ν of η is a measure on

{(x, y) : 0 ≤ x ≤ y ≤ 1} that satisfies 1
2
(ν(· × [0, 1]) + ν([0, 1]× ·)) = λ, where λ is Lebesgue

measure on [0, 1]. We obtain a bijective correspondence between probability measures µ on
{(x, y) : 0 ≤ x ≤ y ≤ 1} with diffuse marginals and distributions of ergodic exchangeable
random paired total orders (and hence between probability measures on {(x, y) : 0 ≤ x ≤
y ≤ 1} with diffuse marginals and infinite bridges with almost surely trivial tail σ-fields) if
we impose the normalization that 1

2
(µ(· × R) + µ(R × ·)) is the Lebesgue measure λ. Note

that the normalization condition implies that µ has diffuse marginals.
The following theorem collects together the results we establish in the paper. We will

describe the bijections asserted in the theorem explicitly as we proceed.

Theorem 2.1.4. There are bijective correspondences between the following sets:

(i) extremal elements of the Doob–Martin boundary associated with the transition proba-
bilities of the Markov chain (Wn)n∈N0 and the reference state state ∅,

(ii) extremal nonnegative harmonic functions normalized to take the value 1 at the reference
state ∅,

(iii) probability measures µ concentrated on {(x, y) : 0 ≤ x ≤ y ≤ 1} such that 1
2
(µ(· ×

R) + µ(R × ·)) = λ, the Lebesgue measure on [0, 1], and the labeled infinite bridge
(L∞n )n∈N0 uniquely determined by µ satisfies that the conditional distribution of L∞n
given Ψ(L∞n ) is uniform on the set of labeled associated admissible matchings of Ψ(L∞n )
for all n ∈ N0.
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(iv) the distributions of extremal infinite bridges for the Markov chain (Wn)n∈N0,

(v) the distributions of ergodic exchangeable random paired total orders ≺ on the set I0 =⋃
n∈N{an, bn} such that the labeled infinite bridge (L∞n )n∈N0 uniquely determined by ≺

satisfies that the conditional distribution of L∞n given Ψ(L∞n ) is uniform on the set of
labeled associated admissible matchings of Ψ(L∞n ) for all n ∈ N0.

Suitably composing the following bijections suffices to construct bijections between any
of the sets (i)–(v) in Theorem 2.1.4. For each point ξ in the Doob–Martin boundary the
normalized nonnegative harmonic function K(·, ξ) is extremal and all extremal normalized
nonnegative functions are of this form. A function h is a normalized nonnegative har-
monic function if and only if h = hµ for a unique probability measures µ concentrated
on {(x, y) ∈ [0, 1]2 : x < y} that has diffuse marginals. A random total order on I0 is an
ergodic exchangeable random paired order if and only if it arises from the construction of Re-
mark 2.5.2 for some unique probability measures µ concentrated on {(x, y) ∈ [0, 1]2 : x < y}
that has diffuse marginals. Lemma 2.4.6 describes a bijective correspondence between infinite
bridges and exchangeable random paired total orders, and by Lemma 2.5.14 an infinite bridge
is extremal if and only if the corresponding random order is ergodic.

Example 2.1.5. The chain (Wn)n∈N0 is itself an infinite bridge. The corresponding normal-
ized nonnegative harmonic function is the constant function h ≡ 1. One way to construct
(Wn)n∈N0 is as follows. Let (X1, Y1), (X2, Y2), . . . be independent identically distributed ran-
dom variables with common distribution µ(dx, dy) = 2 dx dy, 0 ≤ x ≤ y ≤ 1; that is, µ is
the distribution of a pair (X, Y ) chosen uniformly at random from {(x, y) : 0 ≤ x ≤ y ≤ 1}.
For n ∈ N0, let Zn,1, . . . , Zn,2n be X1, Y1, . . . , Xn, Yn listed in increasing order. Define the
word Wn = Wn,1 . . .Wn,2n by setting Wn,k = a (resp. Wn,k = b) if Zn,k ∈ {X1, . . . , Xn} (resp.
Zn,k ∈ {Y1, . . . , Yn}). It follows from the Hewitt–Savage zero–one law that the tail σ-field
of the chain (Wn)n∈N0 is almost surely trivial and hence this infinite bridge is extremal. In
particular, the chain converges almost surely to an extremal element of the Doob–Martin
boundary. Denote by (Ln)n∈N0 the process of labeled associated admissible matchings cor-
responding to (Wn)n∈N0 ; that is, (Ln)n∈N0 is the particular instance of the object denoted
above by (L∞n )n∈N0 in the special case where (W∞

n )n∈N0 is (Wn)n∈N0 . We may construct Ln
by matching i, j ∈ [2n] and labeling this block with k when Xk = Zn,i and Yk = Zn,j. The
corresponding ergodic exchangeable random paired total order ≺ on I0 =

⋃
k∈N{ak, bk} is

defined by declaring that

• ai ≺ aj if Xi < Yj,

• bi ≺ bj if Yi < Yj,

• ai ≺ bj if Xi < Yj,

• bi ≺ aj if Yi < Xj.
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2.2 Background on the Doob-Martin compactification
We review some parts of Doob-Martin compactification theory that are essential to under-
stand further discussion. While the primary source for this material is [11], helpful reviews
can be found in [18, Chapter 10], [29, Chapter 7], [24, Chapter 7], [25].

Let (Xn)n∈N0 be a Markov chain with countable state space S and transition probabilities
P . Assume that (Xn)n∈N0 is transient, i.e. Px{∃n > 0 |Xn = x} < 1 for x ∈ S. Suppose also
that there is a reference state o ∈ S with F (o, x) > 0 for x ∈ S, where

F (x, y) :=
∞∑
n=0

Px{Xn = y,Xj 6= y for 0 ≤ j ≤ n− 1}

= Px{X hits y}.

Definition 2.2.1. The Doob-Martin kernel K with reference state o is

K(x, y) :=
F (x, y)

F (o, y)
=
G(x, y)

G(o, y)
for x, y ∈ S,

where G(x, y) :=
∑∞

n=0 P
n(x, y) is the Green kernel. The kernel K is well-defined since the

denominators in the definition are always positive by the assumption on the distinguished
state o.

Two important properties of the Doob-Martin kernel are that K(o, y) = 1 for y ∈ S and
that, for x, y ∈ S with x 6= y, ∑

z∈S

P (x, z)K(z, y) = K(x, y),∑
z∈S

P (y, z)K(z, y) > K(y, y).

It follows that the functions K(·, y), y ∈ S, are distinct superharmonic functions.
We recall the following general fact (see, for example, [29, Theorem 7.13]).

Theorem 2.2.2. If F is a countable family of bounded real-valued functions on a countable
set S, then there exists a unique (up to homeomorphic equivalence) compactification Ŝ = ŜF
of S such that

(a) every function f ∈ F extends uniquely to a continuous function on Ŝ (which we still
denote by f), and

(b) the family F separates the boundary points: if ξ, η ∈ Ŝ\S are distinct, then there is
f ∈ F with f(ξ) 6= f(η).

The compactification Ŝ is metrizable.
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Definition 2.2.3. Let F be the family of functions {K(x, ·) : x ∈ S}. Because K(x, y) =
F (x,y)
F (o,y)

≤ F (x,y)
F (o,x)F (x,y)

= 1
F (o,x)

for x, y ∈ S, the set {K(x, ·) : x ∈ S} is a countable family of
bounded functions on S. Therefore, F induces a compactification Ŝ of S via Theorem 2.2.2.
This compactification is called the Doob-Martin compactification of S (with respect to P ).
The Doob-Martin boundary of S (with respect to P ), written as ∂S, is the set Ŝ\S.

By construction, the Doob–Martin kernel extends to a continuous nonnegative function
K : S× Ŝ 7→ R called the extended Doob–Martin kernel. In general, K(·, ξ) is a nonnegative
superharmonic function for ξ ∈ ∂S. However, if P has finite range, that is, the set {y ∈ S :
P (x, y) > 0} is finite for all x ∈ S, then for all ξ ∈ ∂S the nonnegative function K(·, ξ) is
harmonic.

Given any nonnegative harmonic function h, there exists a finite Borel measure ν on ∂S
such that

h(x) =

∫
∂S

K(x, ξ) ν(dξ).

In general, the measure ν is not unique, but it is unique if it is required to be concentrated on
the subset of ∂S consisting of points ξ such that K(·, ξ) is an extremal nonnegative harmonic
function (a nonnegative harmonic function is extremal if it cannot be written as a nontrivial
convex combination of nonnegative harmonic functions).

There is a random variable X∞ taking its values in ∂S such that, for x ∈ S,

lim
n→∞

Xn = X∞ Px-almost surely

in the topology of Ŝ. The tail σ-field of (Xn)n∈N0 coincides with the σ-field generated by
X∞, Px-almost surely.

For the rest of this section, we consider the special case where there exists a partition of⊔∞
n=0 Sn of S with S0 = {o} and Sn finite, n ∈ N0, such that P (x, y) > 0 only if x ∈ Sn and

y ∈ Sn+1 for some n ∈ N0. The chain (Un)n∈N0 (resp. (Wn)n∈N0) is of this form with S = W
(resp. S = B), Sn = Wn (resp. Sn = Bn), and o = ∅. For z in S, there exists a unique
index Nz ∈ N0 such that z ∈ SNz . If the chain (Xn)n∈N0 starts from the reference state o,
then Nz is the only time when it can take the value of z with positive probability. We have
F (x, y) = G(x, y), x, y ∈ S, in this case.

Definition 2.2.4. Let (Xy
0 , . . . , X

y
Ny

) be the Markov chain (X0, . . . , XNy) under Po condi-
tioned on the event {XNy = y}. This conditioned process is called a bridge. It is a Markov
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chain with transition probabilities

P{Xy
n+1 = z |Xy

n = x} =
Po{Xn+1 = z,Xn = x,XNy = y}

Po{Xn = x,XNy = y}

=
F (o, x)P (x, z)F (z, y)

F (o, x)F (x, y)

=
P (x, z)F (z, y)/F (o, y)

F (x, y)/F (o, y)

=
P (x, z)K(z, y)

K(x, y)
for x, z ∈ S.

The backward transition probabilities of a bridge are calculated as follows:

P{Xy
n = x |Xy

n+1 = z} =
Po{Xn+1 = z,Xn = x,XNy = y}

Po{Xn+1 = z,XNy = y}

=
F (o, x)P (x, z)F (z, y)

F (o, z)F (z, y)

=
F (o, x)P (x, z)

F (o, z)

= P{Xn = x |Xn+1 = z} for x, z ∈ S.

These backward transition probabilities are thus independent of the choice of y in S, and
hence are common to all bridges.

Writing Q for the matrix of backward transition probabilities we have for x ∈ Sm and
y ∈ Sm+n

Qn(y, x) =
F (o, x)F (x, y)

F (o, y)
= F (o, x)K(x, y). (2.1)

Definition 2.2.5. An infinite bridge for (Xn)n∈N0 is a Markov chain (X∞n )n∈N0 with X∞0 = o
and the same backward transition probabilities as (Xn)n∈N0 .

An examination of the transitions probabilities stated in the Definition 2.2.4 shows that
a sequence (yn)n∈N0 with Nyn →∞ as n→∞ converges in the Doob-Martin topology if and
only if for all k ∈ N0 the initial segment (Xyn

0 , . . . , Xyn
k ) of the associated bridges converges

in distribution as n → ∞ (cf. [15]). The limiting distributions of the initial segments are
consistent and form the distributions of initial segments of an infinite bridge (X∞n )n∈N0 .
Put h(x) := limn→∞K(x, yn), x ∈ S. Then h is a nonnegative harmonic function and the
transition probabilities of the infinite bridge can be written as

P{X∞n+1 = z |X∞n = x} =
P (x, z)h(z)

h(x)
for x, z ∈ Sh,

where Sh := {x ∈ S : h(x) > 0}. That is, (X∞n )n∈N0 is the Doob harmonic transform of
(Xn)n∈N0 determined by the harmonic function h.
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If (X∞n )n∈N0 is any infinite bridge, then

P{X∞n+1 = z |X∞n = x} =
Po{X∞ hits z}P{X∞n = x |X∞n+1 = z}

Po{X∞ hits x}

=
h(z)P (x, z)

h(x)
for z, x ∈ Sh,

where h is the harmonic function defined by h(x) := Po{X∞ hits x}
F (o,x)

and Sh denotes its support
{x ∈ S : h(x) > 0}. Conversely, any Doob harmonic transform of (Xn)N0 is an infinite
bridge. There is thus a bijective correspondence between infinite bridges and nonnegative
harmonic functions normalized to have h(o) = 1.

An infinite bridge is extremal if its distribution cannot be written as a nontrivial mixture
of distributions of infinite bridges. An infinite bridge is extremal if and only if its tail σ-field
is almost surely trivial. Also, an infinite bridge is extremal if and only if the corresponding
nonnegative harmonic function cannot be written as a nontrivial convex combination of
nonnegative harmonic functions with h(o) = 1. (in which case we recall from [29] that we
say that the nonnegative harmonic function is extremal or minimal). A necessary condition
for a nonnegative harmonic function with h(0) = 1 to be extremal is that is of the form
K(·, ξ) for some ξ ∈ ∂S, but in general this condition is not sufficient. Consequently, a
necessary condition for an infinite bridge to be extremal is that it can be constructed as the
limit in distribution of bridges (Xyn

0 , . . . , Xyn
Nyn

) for some sequence (yn)n∈N with Nyn →∞ as
n→∞.

Example 2.2.6. The classical two color Pólya’s urn scheme is a prime example of how Doob-
Martin topology delineates the limiting behavior of a Markov chain. We refer to [3] for
rigorous proofs and more details.

Imagine an urn containing a black ball and a white ball. Each time, another ball is added
to the urn as follows:

1. a ball is drawn uniformly at random from the urn and its color is observed,

2. it is then replaced in the urn with an additional ball of the same color,

3. and the selection process is repeated.

Write Bn andHn for the number of black balls and the number of white balls, respectively,
in the urn after n additional balls are added, n ∈ N0. By definition, (B0, H0) = (1, 1). It is
easy to see that (Bn)n∈N0 and (Hn)n∈N0 are non-decreasing sequences and converge almost
surely to infinity. In other words, with the usual discrete topology on the state space N×N,
the Markov chain (Bn, Hn)n∈N0 converges to infinity as n → ∞ in the sense of one point
compactification of the state space.

However, we can embed the state space N × N into a richer topological space and de-
lineate the asymptotic behaviors of the chain. The Doob-Martin compactification is such a
topological space where the chain converges to a limit almost surely.
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It is obvious that the initial position (1, 1) is a reference state of the Markov chain
(Bn, Hn)n∈N0 . The transition probabilities and Green kernels for the chain (Bn, Hn)n∈N0 are
described as follows. For b, h, b̃, h̃ ∈ N with b ≤ b̃, h ≤ h̃,

G((b, h), (b̃, h̃)) = P (b̃+h̃−b−h)((b, h), (b̃, h̃))

=

(
b̃+ h̃− b− h

b̃− b

)
b · · · (b̃− 1)h · · · (h̃− 1)

(b+ h) · · · (b̃+ h̃− 1)
,

K((b, h), (b̃, h̃)) =
G((b, h), (b̃, h̃))

G((1, 1), (b̃, h̃))

=

b···(b̃−1)h···(h̃−1)

(b+h)···(b̃+h̃−1)

(b̃+h̃−(b+h)

b̃−b

)
(b̃−1)!(h̃−1)!

(b̃+h̃−1)!

(
b̃+h̃−2
b̃−1

)
=

b···(b̃−1)h···(h̃−1)

(b+h)···(b̃+h̃−1)

(b̃+h̃−(b+h))!

(b̃−b)!(h̃−b)!
(b̃−1)!(h̃−1)!

(b̃+h̃−1)!

(b̃+h̃−2)!

(b̃−1)!(h̃−1)!

=
(b+ h− 1)!

(b− 1)!(h− 1)!

(b̃− b+ 1) · · · (b̃− 1)(h̃− h+ 1) · · · (h̃− 1)

(b̃+ h̃− b− h+ 1) · · · (b̃+ h̃− 2)
.

It follows that a sequence (bn, hn)n∈N0 in N×N with bn →∞, hn →∞ as n→∞ converges
in the Doob-Martin topology if and only if bn

bn+hn
converges as n → ∞. More precisely, if

limn→∞
bn

bn+hn
= c for 0 ≤ c ≤ 1, then for (b, h) ∈ N× N

lim
n→∞

K((b, h), (bn, hn))

= lim
n→∞

(b+ h− 1)!

(b− 1)!(h− 1)!

(bn − b+ 1)

bn + hn − b− h+ 1
· · · bn − 1

bn + hn − h− 1

hn − h+ 1

bn + hn − b− h
· · · hn − 1

bn + hn − 2

=
(b+ h− 1)!

(b− 1)!(h− 1)!
cb−1(1− c)h−1.

Because
(

Bn
Bn+Hn

)
n∈N0

is a bounded martingale, we have that
(

Bn
Bn+Hn

)
n∈N0

converges al-
most surely and therefore the Markov chain (Bn, Hn)n∈N0 converges almost surely in the
Doob-Martin topology. Moreover, an induction establishes that Bn

Bn+Hn
is uniformly dis-

tributed over the set { 1
n+2

, 2
n+2

, . . . , n+1
n+2
}, n ∈ N0. Consequently,

(
Bn

Bn+Hn

)
n∈N0

converges in
distribution to a U [0, 1] random variable and the Doob-Martin boundary can be identified
with the unit interval [0, 1].
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2.3 Transition probabilities and Labeled Infinite bridges

Transition probabilities and Labeled infinite bridges for (Un)n∈N0

Definition 2.3.1. For n ∈ N0 write Wn for the set of words from the alphabet {a, b} that
have n letters a and n letters b and put W :=

⊔
n∈N0

Wn.

By definition, the Markov chain (Un)n∈N0 has state space W and one-step transition
probabilities

P{Un+1 = w |Un = v} =
M(v, w)

(2n+ 2)(2n+ 1)

for v ∈ Wn and w ∈ Wn+1, where M(v, w) is the number of ways to write w = v1xv2yv3 in
such a way that {x, y} = {a, b} and v1, v2, v3 are (possibly empty) words such that v = v1v2v3.
That is, M(v, w) is the number of times that v appears inside w as a sub-word. (We recall
that, in general, a word c1 · · · cp is a sub-word of a word d1 · · · dq if there is a map f : [p]→ [q]
such that f(i) < f(j) for 1 ≤ i < j ≤ p and df(k) = ck for 1 ≤ k ≤ p.)

In order to write down multi-step transition probabilities for the Markov chain (Un)n∈N0 ,
it is convenient to introduce the following standard notation (see, for example, [20]).

Definition 2.3.2. Given two words w and v drawn from some finite alphabet, write
(
w
v

)
for

the number of times that v appears as a sub-word of w.

Example 2.3.3. For example,
(
abbaba
bba

)
= 4 because bba appears inside abbaba as a sub-word

four times:

abbaba abbaba abbaba abbaba.

Remark 2.3.4. Note that if our alphabet has only one letter, then
(
w
v

)
is just the usual

binomial coefficient
(|w|
|v|

)
, where we use the notation |u| for the length of the word u.

For a general finite alphabet A,
(
w
v

)
is uniquely determined by the following three prop-

erties, where we write A∗ for the set of finite words with letters drawn from the alphabet A
(see [20, Proposition 6.3.3]):

•
(
w
∅

)
= 1 for all w ∈ A∗, where ∅ is the empty word,

•
(
w
v

)
= 0 for all v, w ∈ A∗ with |w| < |v|,

•
(
wy
vx

)
=
(
w
vx

)
+ δx,y

(
w
v

)
, for all v, w ∈ A∗ and x, y ∈ A, where δ is the usual Kronecker

delta.

The counting involved in determining
(
w
v

)
for general v, w ∈ A∗ is handled by the following

result from [7]. Define an infinite matrix P with entries indexed by A∗ by setting the (v, w)
entry to be

(
w
v

)
. If the row and column indices are ordered so that they are nondecreasing in

word length, then P is an upper triangular matrix with 1 in every position on the diagonal.
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Define another infinite matrix H indexed by A∗ by setting the (v, w) entry to be
(
w
v

)
if

|w| = |v|+ 1 and 0 otherwise. With the same ordering of the indices as for P , the matrix H
is upper triangular with 0 in every position on the diagonal. The matrix exponential exp(H)
is well-defined and is equal to P .

Using the above notation, we can express the transition probabilities of (Un)n∈N0 as
follows.

Lemma 2.3.5. For words v ∈Wm and w ∈Wm+n

P{Um+n = w |Um = v} =

(
w

v

)
n!n!

(2m+ 1)(2m+ 2) · · · (2(m+ n))
.

Proof. We proceed by induction. The result is certainly true when n = 1. Supposing it is
true for some value of n, in order to show it is true for n + 1, we need to show that for
u ∈Wm and w ∈Wm+n+1 we have∑

v∈Wm+1

(
v

u

)
1

(2m+ 1)(2m+ 2)

(
w

v

)
n!n!

(2m+ 3)(2m+ 4) · · · (2(m+ n+ 1))

=

(
w

u

)
(n+ 1)!(n+ 1)!

(2m+ 1)(2m+ 2) · · · (2(m+ n+ 1))
,

or, equivalently, that ∑
v∈Wm+1

(
v

u

)(
w

v

)
=

(
w

u

)
(n+ 1)2.

This, however, is clear. The lefthand side counts the number of words v ∈Wm+1 such that
u is subword of v and v is a subword of w. Any such v and its embedding in w arises by
taking an embedding of u in w and then specifying which of the remaining n + 1 letters a
in w and which of the remaining n + 1 letters b in w are used to build the word with its
particular embedding, and this is what the righthand side counts.

Corollary 2.3.6. The Doob–Martin kernel of (Un)n∈N0 with distinguished state the empty
word is, for v ∈Wm and w ∈Wm+n,

K(v, w) =

(
w

v

) (
2m
m

)(
m+n
m

)2 .
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Proof. We have

K(v, w)

=
P{Um+n = w |Um = v}
P{Um+n = w |U0 = ∅}

=

(
w
v

)
n!n!

(2m+1)(2m+2)···(2(m+n))(
w
∅

)
(m+n)!(m+n)!

(2(m+n))!

=

(
w

v

)
n!n!(2(m+ n))!

(m+ n)!(m+ n)!(2m+ 1)(2m+ 2) · · · (2(m+ n))

=

(
w

v

) (
2m
m

)(
m+n
n

)(
m+n
n

) .

Remark 2.3.7. Up to the factor
(

2m
m

)
, the Doob–Martin kernel K(v, w) is the probability

that if we select m of the letters a and m of the letters b uniformly at random from w
and list these letters in the same relative order that they appear in w the resulting word
is v. Therefore, a sequence (wk)k∈N in W with N(wk) → ∞ as k → ∞ converges in the
Doob–Martin topology if and only if for every m ∈ N the sequence of random words in Wm

obtained by selecting m letters a and m letters b from wk (and maintaining their relative
order) converges in distribution as k →∞.

Definition 2.3.8. For w ∈ Wk, k ∈ N0, let (Uw
0 , . . . , U

w
k ) be the bridge for (Un)n∈N0 from

the empty word to w.

Theorem 2.3.9. The backward transition dynamics for all bridges for (Un)n∈N0 from the
empty word are the same and consist of removing at each step one letter a and one letter b
uniformly at random.

Proof. Consider the bridge for (Un)n∈N0 from the empty word to w ∈Wk.
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For 0 ≤ m ≤ k − 1, v ∈Wm+1, and u ∈Wm we have

P{Uw
m = u |Uw

m+1 = v}

=
P{Um = u, Um+1 = v |Uk = w}

P{Um+1 = v |Uk = w}

=
P{Um = u, Um+1 = v, Uk = w}

P{Um+1 = v, Uk = w}

=
P{Um = u}P{Um+1 = v |Um = u}P{Uk = w |Um+1 = v}

P{Um+1 = v}P{Uk = w |Um+1 = v}

=

(
v

u

) 1
(2m+1)(2m+2)

× m!m!
(2m)!

(m+1)!(m+1)!
(2m+2)!

=

(
v
u

)
(m+ 1)2

.

In order to go backward from the word v of length 2(m+ 1) to the word u of length 2m,
we have to remove one a and one b. There are

(
v
u

)
pairs of a and b such that the removal of

the pair from v results in u, and there are a total of (m + 1)2 pairs of a and b in v, and so
the result follows from the calculation above.

Suppose that (yn)n∈N is a sequence of words in W :=
⊔
n∈N0

Wn that converges in the
Doob–Martin topology and is such thatN(yn)→∞ as n→∞. Recall that (Uyn

0 , . . . , Uyn
N(yn)),

n ∈ N, is the associated bridge that starts from the empty word and is tied to being in state yn
at time N(yn). The finite dimensional distributions of (Uyn

0 , . . . , Uyn
N(yn)) converge as n→∞.

Thus, there exists a process (U∞n )n∈N0 such that for every k ∈ N0 the random (k + 1)-tuple
(Uyn

0 , . . . , Uyn
k ) converges in distribution to (U∞0 , . . . , U∞k ).

The forward evolution dynamics of the Markov chain (U∞n )n∈N depend on the sequence
(yn)n∈N, whereas from Section 2.2 and Theorem 2.3.9 the backward evolution is Marko-
vian and doesn’t depend on the sequence (yn)n∈N; given U∞k+1, the word U∞k is obtained by
removing one letter a and one letter b uniformly at random from U∞k+1.

For each n ∈ N0 the distribution of U∞n defines the distribution of a random element
Ũ∞n,n of the set W̃n of words of length 2n drawn from the alphabet {a1, b1, . . . , an, bn} with
each letter appearing once by assigning the labels [n] uniformly at random to the letters a
and to the letters b. More precisely, for U∞n = c1 . . . c2n, let An := {i ∈ [n] : ci = a} and
Bn := {j ∈ [n] : cj = b}, let Σ : An → [n] and T : Bn → [n] be random bijections that are
conditionally independent and uniformly distributed given U∞n , and define Ũ∞n,n := c̃1 . . . c̃2n

by

c̃k :=

{
aΣ(k), k ∈ An,
bT (k), k ∈ Bn.

For 0 ≤ p ≤ n, define Ũ∞n,p to be the word obtained by deleting {ap+1, bp+1, . . . , an, bn}
from Ũ∞n,n. Observe that if 0 ≤ p ≤ m∧n, then Ũ∞m,p, Ũ∞n,p and Ũ∞p,p have the same distribution.
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Moreover, if for 0 ≤ p ≤ n we let U∞n,p be the result of removing the labels from Ũ∞n,p (that
is, U∞n,p is the element of Wp obtained by replacing the letters ak, 1 ≤ k ≤ p, by the letter
a and the letters bk, 1 ≤ k ≤ p, by b), then (U∞n,0, . . . , U

∞
n,n) has the same distribution as

(U∞0 , . . . , U∞n ).
By Kolmogorov’s consistency theorem, there is a process (Ũ∞n )n∈N0 such that (Ũ∞0 , . . . , Ũ∞m )

has the same distribution as (Ũ∞n,0, . . . , Ũ
∞
n,m) for any m ≤ n and the result of removing the

labels from (Ũ∞n )n∈N0 has the same distribution as (U∞n )n∈N0 . By the transfer theorem [16,
Theorem 6.10], we may even suppose that (Ũ∞n )n∈N0 is defined on an extension of the prob-
ability space on which (U∞n )n∈N0 is defined in such a way that (U∞n )n∈N0 is the result of
removing the labels from (Ũ∞n )n∈N0 .

Transition probabilities and labeled infinite bridges for the Markov
chain (Wn)n∈N0

By definition, (Wn)n∈N0 is a Markov chain with state space B and its transition probabilities
are as follows: for v = v1 . . . v2n ∈ Bn and w = w1 . . . w2(n+1) ∈ Bn+1,

P{Wn+1 = w |Wn = v} =
R(v, w)(

2(n+1)
2

) , (2.2)

where R(v, w) is the number of pairs (i, j) with 1 ≤ i < j ≤ 2(n + 1) such that w =
v1 . . . vi−1avi . . . vj−2bvj−1 . . . v2n. For example, P{W2 = aabb} = 2

3
and P{W2 = abab} = 1

3

corresponding to the respective sets of possibilities {aabb, aabb, aabb, aabb} and {abab, abab}
for placing the new a and b. Similar enumerations establish that the probabilities of the
various transitions from states in B2 to states in B3 are

( aaabbb aababb aabbab abaabb ababab

aabb 9/15 4/15 1/15 1/15 0
abab 0 4/15 4/15 4/15 3/15

)
and that the marginal probability distribution of W3 is given by P{W3 = aaabbb} = 6

15
,

P{W3 = aababb} = 4
15
, P{W3 = aabbab} = 2

15
, P{W3 = abaabb} = 2

15
, and P{W3 =

ababab} = 1
15
.

Definition 2.3.10. A matching of [2n] is a partition of [2n] into subsets of size 2. Given
a word w = w1 . . . w2n ∈ Bn, we say that a matchingM of [2n] is an associated admissible
matching of the word w if for every block {i, j} of M with i < j we have wi = a and
wj = b. For example, if n = 3 and w = aababb, then the associated admissible matchings
of the word w are {{1, 3}, {2, 5}, {4, 6}}, {{1, 3}, {2, 6}, {4, 5}}, {{1, 5}, {2, 3}, {4, 6}}, and
{{1, 6}, {2, 3}, {4, 5}}.

Any matchingM of [2n] defines a word w ∈ Bn for whichM is an associated admissible
matching: if {i, j} is a block ofM with i < j, then place a letter a in the position i and a letter
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b in the position j. Denote this word by Φ(M); for example, Φ({{1, 3}, {2, 5}, {4, 6}}) =
aababb. Let Λ(w) := #{M : Φ(M) = w} be the number of associated admissible matchings
of a word w; for example, Λ(aababb) = 4.

Definition 2.3.11. For a word w = w1 . . . w2n ∈ Bn, define its height function

H(t) := #{1 ≤ i ≤ t : wi = a} −#{1 ≤ j ≤ t : wj = b}, 1 ≤ t ≤ 2n.

Lemma 2.3.12. Given a word w = w1 . . . w2n ∈ Bn, the number of associated admissible
matchings is

Λ(w) =
∏

1≤k≤2n,wk=a

H(k).

Proof. For 1 ≤ k ≤ n, write ik (respectively, jk) for the position of the kth letter a (respec-
tively, letter b) in the word w; that is, #{1 ≤ r ≤ ik : wr = a} = k, #{1 ≤ s ≤ jk : ws =
b} = k, wik = a, and wjk = b. Then, for 1 ≤ t ≤ 2n,

H(t) = #{1 ≤ p ≤ n : ip ≤ t} −#{1 ≤ q ≤ n : iq ≤ t}.

Note that win = a and wk = b for in + 1 ≤ k ≤ 2n, and therefore in must be matched
with one of {in + 1, . . . , 2n}. Observe that the cardinality of this set is

n−#{1 ≤ j ≤ in : wj = b} = #{1 ≤ i ≤ in : wi = a} −#{1 ≤ j ≤ in : wj = b}
= H(in).

Removing the letter a in position in and the letter b in the position with which in is
matched produces the same word v = v1 . . . v2n−2 regardless of which index is matched with
in. The number of associated admissible matchings of the word w is therefore the product
of H(in) and the number of associated admissible matchings of the word v.

Let the function G be defined from v in the same manner that H was defined from w.
Then in−1 ∈ [2n− 2] is the position of the last letter a in w and, for 1 ≤ t ≤ in−1,

#{1 ≤ i ≤ t : vi = a} = #{1 ≤ i ≤ t : wi = a}

and
#{1 ≤ j ≤ t : vj = b} = #{1 ≤ i ≤ t : wj = b}

so that G(t) = H(t) for 1 ≤ t ≤ in−1. An induction then establishes that the number of
associated admissible matchings of w is

n∏
p=1

H(ip),

as required.
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Using the same randomness that went into the construction of (Wn)n∈N0 , it is possible
to generate a Markov chain (Mn)n∈N0 such that Mn is an associated admissible matching
of Wn for n in N. Recall that In+1 < Jn+1 is the pair of indices uniformly picked from
{(i, j) : 1 ≤ i < j ≤ 2n+ 2} when constructing Wn+1 from Wn. In going from Mn to Mn+1,
we match In+1 and Jn+1; more precisely, we make {In+1, Jn+1} a block of the partition
Mn+1 and define the remaining blocks by taking each block {k, `} of Mn with k < ` and
transforming it into the block {p, q} of Mn+1, where

• p = k and q = ` if k < ` < In+1 < Jn+1,

• p = k and q = `+ 1 if k < In+1 < `+ 1 < Jn+1,

• p = k + 1 and q = `+ 1 if In+1 < k + 1 < `+ 1 < Jn+1,

• p = k + 1 and q = `+ 2 if In+1 < k + 1 < Jn+1 < `+ 2,

• p = k + 2 and q = `+ 2 if In+1 < Jn+1 < k + 2 < `+ 2.

Proposition 2.3.13. (i) For each n ∈ N0, the random matching Mn is uniformly dis-
tributed over the 1

n!

∏n
k=1

(
2k
2

)
= (2n − 1)(2n − 3) · · · 3 · 1 = (2n − 1)!! matchings of

[2n].

(ii) For each n ∈ N0 and w ∈ Bn, the marginal distribution of Wn is

P{Wn = w} = P{Φ(Mn) = w} =
Λ(w)

(2n− 1)!!
.

(iii) For each n ∈ N0 and w ∈ Bn, the conditional distribution of Mn given Wn = w is
uniform on the Λ(w) associated admissible matchings of w.

(iv) For v ∈ Bn and w ∈ Bn+1,

P{Wn = v |Wn+1 = w} =
1

n+ 1
R(v, w)

Λ(v)

Λ(w)
.

(v) The conditional distribution of Mn given Mn+1 =M is the distribution of the random
partition of [2n] that is produced by first removing a block {i, j} uniformly at random
from the n + 1 blocks of M to produce a matching of the set [2n + 2] \ {i, j} and
then applying the unique increasing bijection from [2n + 2] \ {i, j} to [2n] to turn this
matching into a matching of [2n].

(vi) Consider w ∈ Bn+1 and construct a random matching R of [2n] as follows. Let S be
a uniform random admissible associated matching for w and let R be such that the
conditional distribution of R given S = S coincides with the conditional distribution
of Mn given Mn+1 = S described in (v). Then, the distribution of R is the same as
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the conditional distribution of Mn given {Wn+1 = w}. Thus, the distribution of the
random word Φ(R) coincides with the conditional distribution ofWn given {Wn+1 = w}.
Moreover, given Φ(R) the conditional distribution of the random matching R is uniform
on the set of associated admissible matchings of Φ(R).

Proof. The proof of part (i) is essentially immediate from the definition of (Mn)n∈N0 , but we
present a proof by induction for the sake of completeness. The result is certainly true when
n = 1. Suppose that the result holds for some n ∈ N. Let M be a matching of [2n + 2].
If {i, j} is a block ofM, letMij be the matching of [2n] that is obtained by removing the
block {i, j} fromM to produce a matching of the set [2n+ 2] \ {i, j} and then applying the
unique increasing bijection from [2n+2]\{i, j} to [2n] to turn this matching into a matching
of [2n]. By the inductive hypothesis,

P{Mn+1 =M} =
∑

1≤i<j≤2n+2

P{Mn+1 =M, (In+1, Jn+1) = (i, j)}

=
∑

{i,j}∈M, i<j

P{Mn =Mij, (In+1, Jn+1) = (i, j)}

= (n+ 1)
1

(2n− 1)!!

2

(2n+ 2)(2n+ 1)

=
1

(2(n+ 1)− 1)!!
,

as required.
Part (ii) follows readily from part (i), and part (iii) can be derived from parts (i) and (ii)

: forM such that Φ(M) = w,

P{Mn =M|Wn = w} =
P{Mn =M,Wn = w}

P{Wn = w}

=
P{Mn =M}
P{Wn = w}

=
1

(2n− 1)!!

/
Λ(w)

(2n− 1)!!

=
1

Λ(w)
.

For part (iv) we have

P{Wn = v |Wn+1 = w} =
P{Wn = v}P{Wn+1 = w |Wn = v}

P{Wn+1 = w}
,

where
P{Wn+1 = w |Wn = v} =

2R(v, w)

(2n+ 2)(2n+ 1)
,
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P{Wn+1 = w} =
Λ(w)

(2n+ 1)!!
,

and
P{Wn = v} =

Λ(v)

(2n− 1)!!
.

Thus the backward transition probability can be rewritten as follows:

P{Wn = v |Wn+1 = w} =
Λ(v)

(2n− 1)!!

2R(v, w)

(2n+ 2)(2n+ 1)

/
Λ(w)

(2n+ 1)!!

=
1

n+ 1
R(v, w)

Λ(v)

Λ(w)
.

The proof of part (v) is very similar to that of part (i). LetM be a matching of [2n] and
N be a matching of [2n+2]. As above, if {i, j} is a block of N , write Nij for the matching of
[2n] that is obtained by removing this block from N and then applying the unique increasing
bijection from [2n+2]\{i, j} to [2n] to turn this matching of [2n+2]\{i, j} into a matching
of [2n]. Then

P{Mn =M|Mn+1 = N}

=
P{Mn =M}P{Mn+1 = N |Mn =M}

P{Mn+1 = N}

=
P{Mn =M}
P{Mn+1 = N}

×
∑

1≤i<j≤2n+2

1{{i, j} ∈ N ,M = Nij}
2

(2n+ 2)(2n+ 1)

=
(2n+ 1)!!

(2n− 1)!!
· #{{i, j} ∈ N :M = Nij} ·

2

(2n+ 2)(2n+ 1)

=
#{{i, j} ∈ N :M = Nij}

n+ 1
,

as required.
For part (vi) we have that

P{Mn = R|Wn+1 = w}

=
∑

Φ(S)=w

P{Mn = R|Wn+1 = w, Mn+1 = S} P{Mn+1 = S |Wn+1 = w}

=
∑

Φ(S)=w

P{Mn = R|Mn+1 = S} P{Mn+1 = S |Wn+1 = w}

=
∑
S

P{R = R|S = S} P{S = S}

= P{R = R}.

Thus, the distribution of R is, as claimed, the same as the conditional distribution of Mn

given {Wn+1 = w}.



CHAPTER 2. THE DOOB-MARTIN COMPACTIFICATION OF MARKOV CHAINS
OF GROWING WORDS 29

Moreover, because Mn given Wn is uniformly distributed on the set of associated admis-
sible matchings for Wn by part (iii) and by construction Wn+1 is conditionally independent
of Mn given Wn, we have

P{R = R|Φ(R) = v}
= P{Mn = R|Wn = v, Wn+1 = w}

=
P{Mn = R, Wn = v, Wn+1 = w}

P{Wn = v, Wn+1 = w}

=
P{Wn = v}P{Mn = R|Wn = v}P{Wn+1 = w |Mn = R, Wn = v}

P{Wn = v, Wn+1 = w}

=
1

Λ(v)

P{Wn = v}P{Wn+1 = w |Wn = v}
P{Wn = v, Wn+1 = w}

=
1

Λ(v)
.

This shows that the conditional distribution of R given Φ(R) is indeed uniformly distributed
on the set of associated admissible matchings of Φ(R).

Remark 2.3.14. The above proof of Proposition 2.3.13 contains a proof of part (iv) of the
result. However, it is informative to observe that part (iv) is, as follows, a consequence of
part (vi) of the result. Part (vi) says that P{Wn = v |Wn+1 = w} = P{Φ(R) = v} and

P{Φ(R) = v} =
∑

Φ(R)=v

P{R = R}

=
∑

Φ(R)=v,Φ(S)=w

P{R = R, S = S}.

In the sum we only need to consider pairs (R,S) such that Φ(S) = w, there is a block {i, j}
of the partition S such that 1 ≤ i < j ≤ 2n+2 and the removal of the the letters a and b from
the positions in w given by the indices i, j produces v, and the partition R is obtained by
removal of the block from S followed by the usual transformation of indices that transforms
a matching of [2n + 2] \ {i, j} into a matching of [2n]. The number of pairs of indices that
can be matched is R(v, w). The number of associated admissible matchings of w in which
two particular indices i, j are matched is Λ(v), because if we remove the matched pair {i, j}
of indices we obtain a matching of v after the usual transformation of indices. For each such
associated admissible matching S of w there is probability 1

Λ(w)
that S will take the value S.

Lastly, for such a pair (R,S), if S takes the value S, then for each of the n+ 1 blocks of S
there is probability 1

n+1
that this block will be removed so that R takes the value R. Thus,

P{Φ(R) = v} = R(v, w)Λ(v)
1

Λ(w)

1

n+ 1
,

as claimed.
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Definition 2.3.15. A labeled matching of [2n] is a matching in which the n blocks are labeled
with distinct elements of [n].

Given a labeled matching L of [2n], let Ψ(L) ∈ Bn be the corresponding word produced
by ignoring the labels and placing a letter a in position i and a letter b in position j for
each block {i, j} of L with i < j. Using the same randomness that was used to construct
(Wn)n∈N0 and (Mn)n∈N0 , it is possible to build a Markov chain (Ln)n∈N0 such that Ln is a
labeled matching of [2n] for n ∈ N: the blocks of Ln are the same as the blocks of Mn and
in going from Ln to Ln+1 the newly created block {In+1, Jn+1} is labeled with n + 1 whilst
the blocks that arise by transforming blocks already present in Mn keep their labels. Thus,
Ψ(Ln) = Wn.

The following result is immediate from Proposition 2.3.13.

Corollary 2.3.16. (i) For each n ∈ N, the random matching Ln is uniformly distributed
over the n!(2n− 1)!! labeled matchings of [2n].

(ii) For each n ∈ N, the conditional distribution of Ln given Mn is uniform over the n!
labelings of Mn and the conditional distribution of Ln given Wn is uniform over the
n!Λ(Wn) labeled associated admissible matchings of Wn.

(iii) The labeled matching Ln is obtained from the labeled matching Ln+1 by removing the
block labeled n + 1 and if this block contains the indices {i, j} applying the unique
increasing bijection from [2n+ 2] \ {i, j} to [2n] to turn this labeled matching of [2n+
2]\{i, j} into a labeled matching of [2n] (in particular, the backward transition dynamics
of (Ln)n∈N0 are deterministic).

(iv) Consider w ∈ Bn+1 and construct a random labeled matching C of [2n] as follows. Let
D be a uniform random labeled associated admissible matching for w and C be such
that the conditional distribution of C given {D = D} coincides with the conditional
distribution of Ln given {Ln+1 = D} described in (iii). Then, the distribution of
C is the same as the conditional distribution of Ln given {Wn+1 = w}. Thus, the
distribution of the random word Ψ(C) coincides with the conditional distribution of
Wn given {Wn+1 = w}. Moreover, given Ψ(C), the the conditional distribution of
the random labeled matching C is uniform on the set of labeled associated admissible
matchings of Ψ(C).

Recall that an infinite bridge for the Markov chain (Wn)n∈N0 is a Markov chain (W∞
n )n∈N0

such that W∞
0 = ∅ and P{W∞

n = v |W∞
n+1 = w} = P{Wn = v |Wn+1 = w} for all v ∈ Bn,

w ∈ Bn+1, and n ∈ N0.

Corollary 2.3.17. Suppose that (W∞
n )n∈N0 is an infinite bridge for (Wn)n∈N0. Then there

exists a Markov process (L∞n )n∈N0 with distribution uniquely specified by the requirements
that:

• L∞n is a random labeled matching of [2n] for all n ∈ N,



CHAPTER 2. THE DOOB-MARTIN COMPACTIFICATION OF MARKOV CHAINS
OF GROWING WORDS 31

• the process (Ψ(L∞n ))n∈N0 has the same distribution as (W∞
n )n∈N0,

• the conditional distribution of L∞n given Ψ(L∞n ) is uniform on the set of labeled asso-
ciated admissible matchings of Ψ(L∞n ) for all n ∈ N0,

• the conditional distribution of L∞n given {L∞n+1 = L} is the same as the conditional
distribution of Ln given {Ln+1 = L}.

Proof. Fix n ∈ N0 and w ∈ Bn. Define a Markov process (Ln,w0 , . . . , Ln,wn ) by requiring that

• Ln,wn is a random labeled matching of [2n] that is uniformly distributed over the labeled
associated admissible matchings for w,

• the conditional probabilities for Ln,wm given Ln,wm+1 are the same as the conditional prob-
abilities for Lm given Lm+1 for 1 ≤ m ≤ n− 1. In other words, Ln,wm is obtained from
Ln,wm+1 by removing the block labeled m + 1 and transforming the remaining blocks
without changing their labels by applying the unique increasing bijection to [2n].

It follows from Corollary 2.3.16 that (Ψ(Ln,w0 ), . . . ,Ψ(Ln,wn )) has the same distribution as
(W0, . . . ,Wn) conditional on the event {Wn = w}. Moreover, the latter conditional distribu-
tion is the same as the distribution of (W∞

0 , . . . ,W∞
n ) conditional on the event {W∞

n = w}.
We can therefore construct a Markov process (Ln0 , . . . , L

n
n) with a distribution that is

uniquely specified by the requirements that

• (Ψ(Ln0 ), . . . ,Ψ(Lnn)) has the same distribution as (W∞
0 , . . . ,W∞

n ),

• conditional probabilities for Lnm given Lnm+1 are the same as the conditional probabilities
for Lm given Lm+1 for 1 ≤ m ≤ n− 1,

• the conditional distribution of Lnm given Ψ(Lnm) is uniform on the set of labeled asso-
ciated admissible matchings of Ψ(Lnm) for 1 ≤ m ≤ n.

It is clear that (Ln
′

0 , . . . , L
n′

n′) has the same distribution as (Ln
′′

0 , . . . , Ln
′′

n′ ) when n′ < n′′

and hence, using Kolmogorov’s extension theorem, we can construct a process (L∞n )n∈N0 such
that (L∞0 , . . . , L

∞
n ) has the same distribution as (Ln0 , . . . , L

n
n) for any n ∈ N0.

2.4 The exchangeable random total order associated
with a labeled infinite bridge

The exchangeable random total order associated with an infinite
bridge (Ũ∞n )n∈N0

A state of a labeled infinite bridge is a word of length 2n from the alphabet {a1, b1, . . . , an, bn}
in which each letter appears once. Another way to think of such an object is as a total order
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on the set
⋃n
k=1{ak, bk}. Because the labeled infinite bridge evolves by slotting in the letters

an+1 and bn+1 at the (n+ 1)th step while leaving the relative positions of {a1, b1, . . . , an, bn}
unchanged, these successive total orders are consistent: the total order on {a1, b1, . . . , an, bn}
given by the state of the infinite bridge at step n is the same as the total order obtained by tak-
ing the state of the infinite bridge at step n+1 (a total order on {a1, b1, . . . , an, bn, an+1, bn+1})
and looking at the corresponding induced total order on {a1, b1, . . . , an, bn}.

This projective structure means that we can associate any path of a labeled infinite
bridge with a unique total order on I0 :=

⋃
n∈N{an, bn} such that the induced total order on

{a1, b1, . . . , an, bn} coincides with the state of the labeled infinite bridge at step n.
We now introduce some general notions about random total orders.

Definition 2.4.1. A random total order ≺ on I0 is a map from the underlying probability
space to the collection of total orders on I0 such that the indicator 1{x ≺ y} is a random
variable for every x, y ∈ I0. A random total order ≺ is exchangeable if for every n ∈ N the
induced total order ≺n on

⋃n
k=1{ak, bk} has the same distribution as the random total order

≺nσ,τ for any permutations σ, τ of {1, 2, . . . , n}, where ≺nσ,τ is defined as follows:

• aσ(i) ≺nσ,τ bτ(j) iff ai ≺n bj

• bτ(i) ≺nσ,τ aσ(j) iff bi ≺n aj

• aσ(i) ≺nσ,τ aσ(j) iff ai ≺n aj

• bτ(i) ≺nσ,τ bτ(j) iff bi ≺n bj.

Remark 2.4.2. The distribution of a random total order ≺ is determined by the joint dis-
tribution of the random variables {1{x ≺ y} : x, y ∈

⋃n
k=1{ak, bk}} for arbitrary n ∈ N (of

course, since 1{x ≺ x} = 0 and 1{x ≺ y} = 1 − 1{y ≺ x} for x 6= y, it suffices to take an
appropriate subset of size

(
2n
2

)
of these (2n)2 random variables for each n ∈ N).

Remark 2.4.3. If ≺ is an exchangeable random total order, then the induced random total
orders ≺n, n ∈ N, are consistent in the sense that if we take the random total order ≺n+1 on⋃n+1
k=1{ak, bk} and remove {an+1, bn+1}, then the induced random total order on

⋃n
k=1{ak, bk}

is ≺n.
Furthermore,

⋃n+1
k=1{ak} and

⋃n+1
k=1{bk} under the total orders induced by ≺n+1 are each

order isomorphic to [n + 1] with the usual total order, and, moreover, if we let I and J be
the images of an+1 and bn+1, then I and J are independent and uniformly distributed on
[n+ 1].

Conversely, suppose for each n ∈ N that there is a random total order ≺n on
⋃n
k=1{ak, bk},

these random total orders have the property that ≺n has the same distribution as ≺nσ,τ for
any permutations σ, τ of [n] for all n ∈ N, and these total orders are consistent. Then there
is an exchangeable random order ≺ on I0 such that ≺n is the corresponding induced total
order on

⋃n
k=1{ak, bk}.
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In terms of these general notions, if we let ≺n, n ∈ N, be the random total order on⋃n
k=1{ak, bk} corresponding to Ũ∞n , then these total orders are consistent and there is an

exchangeable random total order ≺ on I0 such that the restriction of ≺ to
⋃n
k=1{ak, bk} is

≺n.

The exchangeable random paired total order associated with an
infinite bridge (W̃∞

n )n∈N0

Definition 2.4.4. A random total order ≺ on I0 :=
⋃
n∈N{an, bn} is a map from the under-

lying probability space to the collection of total orders on I0 such that 1{x ≺ y} is a random
variable for every x, y ∈ I0. The distribution of ≺ is determined by the joint distribution of
the random variables {1{x ≺ y} : x, y ∈

⋃n
k=1{ak, bk}} for arbitrary n ∈ N. A random total

order ≺ on I0 is paired if an ≺ bn for all n ∈ N. A random paired total order ≺ on I0 is
exchangeable if for every n ∈ N the induced random total order ≺n on

⋃n
k=1{ak, bk} has the

same distribution as the random total order ≺nσ for any permutation σ of [n] := {1, 2, . . . , n},
where ≺nσ is defined as follows:

• aσ(i) ≺nσ bσ(j) iff ai ≺n bj,

• bσ(i) ≺nσ aσ(j) iff bi ≺n aj,

• aσ(i) ≺nσ aσ(j) iff ai ≺n aj,

• bσ(i) ≺nσ bσ(j) iff bi ≺n bj.

Remark 2.4.5. If ≺ is an exchangeable random total order, then the induced random total
orders ≺n, n ∈ N, are consistent in the sense that if we take the random total order ≺n+1 on⋃n+1
k=1{ak, bk} and remove {an+1, bn+1}, then the induced random total order on

⋃n
k=1{ak, bk}

is ≺n.
Conversely, suppose that for each n ∈ N there is a random total order /n on

⋃n
k=1{ak, bk}.

Suppose that these random total orders are paired in the obvious sense and have the property
that /n has the same distribution as /nσ for any permutation σ of [n] for all n ∈ N. Suppose
further that these paired total orders are consistent. Then, by Kolmogorov’s extension
theorem there is an exchangeable random paired total order / on I0 such that /n is the
corresponding induced total order on

⋃n
k=1{ak, bk}.

We can turn L∞n (from Corollary 2.3.17) into a word of length 2n in the alphabet⋃n
k=1{ak, bk} in which each letter appears exactly once as follows: place the letter ap in

position i if the block of L∞n labeled p is of the form {i, j} with i < j and place the letter bq
in position ` if the block of L∞n labeled q is of the form {k, `} with k < `. This is equivalent
to replacing a letter a (respectively, b) in the word Ψ(L∞n ) appearing in position i (respec-
tively, `) with the letter ap (respectively, bq) if the block of L∞n containing i (respectively,
`) is labeled p (respectively, q). The resulting word in the alphabet

⋃n
k=1{ak, bk} then de-

fines a paired total order on that alphabet in the obvious way: c ∈
⋃n
k=1{ak, bk} precedes
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d ∈
⋃n
k=1{ak, bk} in the total order if the letter c comes before the letter d in the word. These

paired total orders are consistent as n varies and hence define a paired total order on I0. The
following result defines this paired total order a little more formally, records the fact that
it is exchangeable, and lays out how to go in the reverse direction and produce an infinite
bridge from an exchangeable random total order. We omit the straightforward proof.

Lemma 2.4.6. Suppose that (W∞
n )n∈N0 is an infinite bridge for (Wn)n∈N0 and (L∞n )n∈N0

is the corresponding process of labeled associated admissible matchings guaranteed by Corol-
lary 2.3.17. Define a random paired total order ≺ on I0 by declaring for p, q ∈ N that

• ap ≺ aq if for any n ∈ N with 1 ≤ p, q ≤ n the block labeled p (respectively, q) in L∞n
is of the form {i, j} with i < j (respectively, {k, `} with k < `) where i < k,

• bp ≺ bq if for any n ∈ N with 1 ≤ p, q ≤ n the block labeled p (respectively, q) in L∞n is
of the form {i, j} with i < j (respectively, {k, `} with k < `) where j < `,

• ap ≺ bq if for any n ∈ N with 1 ≤ p, q ≤ n the block labeled p (respectively, q) in L∞n is
of the form {i, j} with i < j (respectively, {k, `} with k < `) where i < `,

• bp ≺ aq if for any n ∈ N with 1 ≤ p, q ≤ n the block labeled p (respectively, q) in L∞n is
of the form {i, j} with i < j (respectively, {k, `} with k < `) where j < k.

Then the random paired total order ≺ is exchangeable.
Conversely, suppose that ≺ is an exchangeable random total order on I0. Define a pro-

cess of labeled matchings (L∞n )n∈N0 as follows: if c1, . . . , c2n is a listing of
⋃n
k=1{ak, bk} with

c1 ≺ · · · ≺ c2n, then make {i, j} ⊂ [2n] a block of L∞n labeled with k ∈ [n] whenever ci = ak
and cj = bk. Then (W∞

n )n∈N0 := (Ψ(L∞n ))n∈N0 is an infinite bridge and (L∞n )n∈N0 is the cor-
responding process of labeled associated admissible matchings guaranteed by Corollary 2.3.17
if and only if the conditional distribution of L∞n given Ψ(L∞n ) is uniform on the set of labeled
associated admissible matchings of Ψ(L∞n ) for all n ∈ N0.

2.5 Characterization of exchangeable random total
orders

Characterization of exchangeable random total orders associated
with infinite bridges (Ũn)n∈N0

The results of the previous sections indicate that if we want to understand the Doob–Martin
compactification for (Un)n∈N0 we need to understand infinite bridges for (Un)n∈N0 , and this
boils down to understanding exchangeable random total orders on I0.

A mixture of two exchangeable random total orders is also an exchangeable random total
order, so we are interested in exchangeable random total orders ≺ that are extremal in the
sense that their distributions cannot be written as a nontrivial mixture of the distributions
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of two other exchangeable random total orders. This is equivalent to requiring that if A is
a measurable subset of the space of total orders on I0 with the property that ≺∈ A if and
only if ≺σ,τ∈ A for all finite permutations σ, τ , then P{≺∈ A} ∈ {0, 1}. We say that an
exchangeable random total order with this property is ergodic.

The following result can be established using essentially the same argument as in Propo-
sition 5.19 of [13], and we omit the details.

Lemma 2.5.1. The tail σ-field of an infinite bridge (U∞n )n∈N0 is almost surely trivial if
and only if the exchangeable random total order induced by the corresponding labeled infinite
bridge (Ũ∞n )n∈N0 is ergodic.

Remark 2.5.2. There is one obvious way to produce an ergodic exchangeable random total
order. Let ζ and η be two diffuse probability measures on R. Let (Vn)n∈N be i.i.d. with
common distribution ζ, let (Wn)n∈N be i.i.d. with common distribution η, and suppose that
these two sequences are independent. The total order ≺ on I0 defined by declaring that

• ai ≺ aj if Vi < Vj,

• bi ≺ bj if Wi < Wj,

• ai ≺ bj if Vi < Wj,

• bi ≺ aj if Wi < Vj,

is exchangeable and ergodic; exchangeability is obvious and ergodicity is immediate from the
Hewitt–Savage zero–one law applied to the i.i.d. sequence ((Vn,Wn))n∈N.

We will show that all ergodic exchangeable random total orders arise this way. Note
that many pairs of probability measures can give rise to random total orders with the same
distribution: replacing ζ and η by their push-forwards by some common strictly increasing
function does not change the distribution of the resulting random total order.

Definition 2.5.3. Given an exchangeable random total order ≺ on I0, define d : I0 × I0 →
[0, 1] by requiring that d(x, x) = 0 for all x ∈ I0, d(x, y) = d(y, x) for all x, y ∈ I0, and

d(x, y) := lim sup
n→∞

1

2n
#{1 ≤ k ≤ n : x ≺ ak ≺ y}

+ lim sup
n→∞

1

2n
#{1 ≤ ` ≤ n : x ≺ b` ≺ y}

for x ≺ y. It follows from exchangeability, de Finetti’s theorem, and the strong law of large
numbers that in the above the superior limits are actually limits almost surely.

Remark 2.5.4. It is clear that by redefining d on a P-null set we may assume for every
x, y, z ∈ I0 that

• d(x, y) ≥ 0,
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• d(x, y) = d(y, x),

• d(x, z) ≤ d(x, y) + d(y, z),

• d(x, y) = 0 if x = y.

Remark 2.5.5. For distinct x, y, z ∈ I0 the triangle inequality d(x, z) ≤ d(x, y) + d(y, z) can
be sharpened to a statement that for all x, y, z

• d(x, z) = d(x, y) + d(y, z) if x ≺ y ≺ z,

• d(x, z) = d(x, y)− d(y, z) if x ≺ z ≺ y,

• d(x, z) = d(y, z)− d(x, y) if y ≺ x ≺ z,

and three analogous equalities when z ≺ x.

Proposition 2.5.6. If x, y ∈ I0 with x 6= y, then d(x, y) > 0 almost surely. Therefore almost
surely d is a metric.

Proof. We need to show for k, ` ∈ N with k 6= ` that d(ak, a`) > 0 and d(bk, b`) > 0, and,
furthermore, for arbitrary k, ` ∈ N that d(ak, b`) > 0.

Consider d(ak, a`). Set

Im := 1({ak ≺ am ≺ a`} ∪ {a` ≺ am ≺ ak}), m /∈ {k, `}.

Suppose that Πn, n ∈ N is a uniform random permutation of [n]. By exchangeability of the
total order, if k ∨ ` ≤ n, then

P{Im = 0, 1 ≤ m ≤ n, m /∈ {k, `}}
= P({Πn(`) = Πn(k) + 1} ∪ {Πn(k) = Πn(`) + 1})

= 2(n− 1)
1

n(n− 1)

=
2

n

and the random variables {Im : m ∈ N, m /∈ {k, `}} are exchangeable. It follows from de
Finetti’s theorem and the strong law of large numbers that

lim
n→∞

1

n
#{1 ≤ m ≤ n : ak ≺ am ≺ a`} = lim

n→∞

1

n

n∑
m=1

Im > 0

almost surely and hence d(ak, a`) > 0. A similar argument shows that d(bk, b`) > 0.
It remains to show that d(ak, b`) > 0. Set M := {m ∈ N : ak ≺ bm}. It follows from

exchangeability that on the event {M 6= ∅} ⊇ {ak ≺ b`} we have #M = ∞ almost surely
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and indeed that limn→∞
1
n
#(M ∩ [n]) > 0. Write M = {m1,m2, . . .} with m1 < m2 < . . ..

Fix p ∈ N and set
Jq := 1{bmq ≺ bmp}, q 6= p.

By exchangeability of the total order, if p ∨ q ≤ r, then

P{Jq = 0, 1 ≤ q ≤ r, q 6= p |M 6= ∅} = P{Πr(p) = 1} =
1

r

and the random variables {Jq : q ∈ N, q 6= p} are conditionally exchangeable given {M 6= ∅}.
It follows from de Finetti’s theorem that on the event {M 6= ∅}

lim
n→∞

1

n
#{q : mq ∈ [n], ak ≺ bmq ≺ bmp} > 0

almost surely and hence d(ak, b`) > 0 almost surely on the event {ak ≺ b`}. A similar
argument shows that d(ak, b`) > 0 almost surely on the event {b` ≺ ak}.

Definition 2.5.7. Given an ergodic exchangeable random total order ≺ on I0, denote by I
the completion of I0 with respect to the metric d.

Definition 2.5.8. Define f : I0 → [0, 1] by

f(y) := sup{d(x, y) : x ∈ I0, x ≺ y}.

Remark 2.5.9. It follows from Remark 2.5.5 that

f(y) = lim sup
n→∞

1

2n
#{1 ≤ k ≤ n : ak ≺ y}

+ lim sup
n→∞

1

2n
#{1 ≤ ` ≤ n : b` ≺ y},

|f(x)− f(y)| = d(x, y), x, y ∈ I0,

and
f(x) < f(y)⇐⇒ x ≺ y, x, y ∈ I0,

so that f is an order-preserving isometry from I0 into [0, 1]. Thus the function f extends
by continuity to an isometry from I into [0, 1] and if ≺ is extended to I by declaring that
x ≺ y ⇐⇒ f(x) < f(y), then ≺ is a total order on I and f is an order-preserving isometry
from I into [0, 1] and hence an order-preserving isometric bijection from I to the image set
J := f(I) ⊆ [0, 1]. Because I is complete, J is complete. Because J is a complete subset of
[0, 1] it is closed and hence compact, and therefore I itself is compact. It follows from the
ergodicity of ≺ that J is almost surely constant. We will see below that J = [0, 1].
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Remark 2.5.10. Define a sequence ((Xn, Yn))n∈N of J2-valued random variables by setting
Xn := f(an) and Yn := f(bn). The exchangeability of ≺ implies that if σ and τ are two
finite permutations of N, then ((Xσ(n), Yτ(n)))n∈N has the same distribution as ((Xn, Yn))n∈N.
In particular, the sequence ((Xn, Yn))n∈N is exchangeable. It is a consequence of de Finetti’s
theorem and the ergodicity of ≺ that this sequence is i.i.d. with common distribution some
probability measure π on J2. It follows from the next result that π = µ⊗ν for two probability
measures µ and ν on J that we call the canonical pair. Because Xm 6= Xn and Ym 6= Yn
almost surely for m 6= n, the probability measures µ and ν must be diffuse.

Lemma 2.5.11. Suppose that the random variables X ′, Y ′, X ′′, Y ′′ are such that

1. (X ′, Y ′)
d
= (X ′′, Y ′′)

2. ((X ′, Y ′), (X ′′, Y ′′))
d
= ((X ′, Y ′′), (X ′′, Y ′))

3. (X ′, Y ′)⊥⊥(X ′′, Y ′′).

Then X ′, X ′′, Y ′, Y ′′ are independent.

Proof. For Borel sets A′, A′′, B′, B′′ we have

P{X ′ ∈ A′, X ′′ ∈ A′′, Y ′ ∈ B′, Y ′′ ∈ B′′}
= P{X ′ ∈ A′, Y ′ ∈ B′}P{X ′′ ∈ A′′, Y ′′ ∈ B′′} by (3)
= P{X ′ ∈ A′, Y ′′ ∈ B′}P{X ′′ ∈ A′′, Y ′ ∈ B′′} by (2)
= P{X ′ ∈ A′}P{Y ′′ ∈ B′}P{X ′′ ∈ A′′}P{Y ′ ∈ B′′} by (3)
= P{X ′ ∈ A′}P{Y ′ ∈ B′}P{X ′′ ∈ A′′}P{Y ′′ ∈ B′′} by (1).

Theorem 2.5.12. Any ergodic exchangeable random total order ≺ has the same distribution
as one given by the construction in Remark 2.5.2 for some pair of diffuse probability measures
(ζ, η) on R. The canonical pair of diffuse probability measures (µ, ν) on [0, 1] are uniquely
determined by the moment formulae∫

[0,1]

xn µ(dx)

=

(
1

2

)n ∑
c∈

∏n
k=1{ak,bk}

P{c1 ≺ an+1, . . . , cn ≺ an+1}

and ∫
[0,1]

yn ν(dy)

=

(
1

2

)n ∑
c∈

∏n
k=1{ak,bk}

P{c1 ≺ bn+1, . . . , cn ≺ bn+1}.
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The probability measure 1
2
(µ+ ν) is Lebesgue measure on [0, 1] and, in particular, J = [0, 1].

Moreover, µ and ν are the respective push-forwards of ζ and η by the function z 7→ 1
2
(ζ +

η)((−∞, z])

Proof. We have already shown that an ergodic exchangeable random total order has the
same distribution as one built from an arbitrary pair (ζ, η) of diffuse probability measures
on R using the construction in Remark 2.5.2.

Define ((Xn, Yn))n∈N as in Remark 2.5.10. It follows from Remark 2.5.9 that

Xn =
1

2
µ((−∞, Xn]) +

1

2
ν((−∞, Xn])

and
Yn =

1

2
µ((−∞, Yn]) +

1

2
ν((−∞, Yn])

for any n ∈ N. Let (In)n∈N be a sequence of i.i.d. random variables that is independent of
((Xn, Yn))n∈N with P{In = 0} = P{In = 1} = 1

2
and set Zn := InXn + (1− In)Yn so that the

sequence (Zn)n∈N is i.i.d. with common distribution 1
2
(µ+ ν). We have

Zn =
1

2
(µ+ ν)((−∞, Zn]),

and so 1
2
(µ+ ν) is Lebesgue measure on [0, 1]. Thus, for any n ∈ N∫

[0,1]

xn µ(dx) = P{Z1 < Xn+1, . . . , Zn < Xn+1}

=

(
1

2

)n ∑
c∈

∏n
k=1{ak,bk}

P{c1 ≺ an+1, . . . , cn ≺ an+1}

and ∫
[0,1]

yn ν(dy) = P{Z1 < Yn+1, . . . , Zn < Yn+1}

=

(
1

2

)n ∑
c∈

∏n
k=1{ak,bk}

P{c1 ≺ bn+1, . . . , cn ≺ bn+1},

as claimed.
The proof of the final claim is straightforward and we omit it.

Remark 2.5.13. We haven’t shown that if (yk)k∈N is a sequence of points of W, where
yk ∈ WN(yk), N(yk) → ∞ as k → ∞, and limk→∞ yk = y in the Doob–Martin topology
for some arbitrary y in the Doob–Martin boundary that the harmonic function K(·, y) is
extremal. This is equivalent to showing that if the infinite bridge (U∞n )n∈N0 is the limit of
the bridges (Uyk

0 , . . . , Uyk
N(yk)), then (U∞n )n∈N0 has an almost surely trivial tail σ-field. This

is, in turn, equivalent to showing that the corresponding labeled infinite bridge induces an
ergodic exchangeable random order. The latter, however, can be established along the lines
of [13, Corollary 5.21] and [14, Corollary 7.2], so we omit the details.
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Characterization of exchangeable random paired total orders
associated with infinite bridges (W̃n)n∈N0

We see from previous sections that understanding the Doob-Martin boundary is equivalent
to understanding infinite bridges, and that this further boils down to understanding the
corresponding exchangeable random paired total orders on I0. A mixture of two exchangeable
random paired total orders is also an exchangeable random paired total order, so we are
interested in exchangeable random paired total orders ≺ that are extremal in the sense that
they cannot be written as a mixture of two other exchangeable random paired total orders.
This is equivalent to requiring that if A is a measurable subset of the space of total orders
on I0 with the property that / ∈ A if and only if /σ ∈ A for all paired total orders / and all
finite permutations σ of N, then P{≺∈ A} ∈ {0, 1}. We say that an exchangeable random
paired total order with this property is ergodic.

The pertinence of ergodic random total orders to the distribution of infinite bridges
(W∞

n )n∈N0 is due to the following lemma which follows from essentially the same arguments
as the proof of [13, Proposition 5.19].

Lemma 2.5.14. The tail σ-field of an infinite bridge (W∞
n )n∈N0 is almost surely trivial if

and only if the exchangeable random total order induced by the corresponding labeled infinite
bridge (L∞n )n∈N0 is ergodic.

Remark 2.5.15. Let η be a probability measure on R2 that assigns all of its mass to the
set {(s, t) : s ≤ t} and has diffuse marginals. Let ((Sn, Tn))n∈N be i.i.d. with common
distribution η. A random total order / on I0 may be constructed by declaring that

• ai / aj if Si < Sj,

• bi / bj if Ti < Tj,

• ai / bj if Si < Tj,

• bi / aj if Ti < Sj,

• ak / bk if Sk ≤ Tk,

The is random total order is paired, exchangeable, and ergodic. The properties of being
paired and exchangeable are obvious from the construction. As remarked in the Introduc-
tion, ergodicity follows from the Hewitt-Savage zero-one law or by suitably encoding the
exchangeable random total order as a jointly exchangeable array and checking that this ar-
ray is ergodic because it is dissociated. We now proceed to show that all ergodic exchangeable
random paired total orders are of this form.
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Proposition 2.5.16. Suppose that ≺ is an ergodic exchangeable random paired total order
on I0. Define f : I0 → [0, 1] by

f(c) = lim sup
n→∞

1

2n
#{1 ≤ k ≤ n : ak ≺ c}

+ lim sup
n→∞

1

2n
#{1 ≤ ` ≤ n : b` ≺ c}.

If c, d ∈ I0 with c ≺ d, then f(c) < f(d) almost surely with a possible exception when c = ak
and d = bk for some k ∈ N.

Proof. It follows from exchangeability, de Finetti’s theorem, and the strong law of large
numbers that limit superiors in the definition are actually limits almost surely.

Consider first the proof that f(ak) < f(a`) on the event {ak ≺ a`}. Set

Im := 1{ak ≺ am ≺ a`}, m /∈ {k, `}.

By exchangeability of the random total order, if k ∨ ` ≤ n, then

P{Im = 0, 1 ≤ m ≤ n, m /∈ {k, `} | ak ≺ a`} = (n− 1)
1

n(n− 1)

/
1

2
=

2

n

because
P{Im = 0, 1 ≤ m ≤ n, m /∈ {k, `}, ak ≺ a`}

is the probability (n − 1) 1
n(n−1)

that a uniform random permutation σ of [n] is such that
σ(p) = k and σ(p + 1) = ` for some p with 1 ≤ p ≤ n − 1. Also, the random variables
{Im : m ∈ N, m /∈ {k, `}} are conditionally exchangeable given the event {ak ≺ a`}. It
follows from de Finetti’s theorem and the strong law of large numbers that

lim
n→∞

1

n
#{1 ≤ m ≤ n : ak ≺ am ≺ a`} = lim

n→∞

1

n

n∑
m=1

Im > 0

almost surely on the event {ak ≺ a`} and hence f(ak) < f(a`) almost surely on the event
{ak ≺ a`}.

A similar argument shows that f(bk) < f(b`) almost surely on the event {bk ≺ b`}.
It remains to show for k 6= ` that f(ak) < f(b`) almost surely on the event {ak ≺ b`}

(respectively, f(bk) < f(a`) almost surely on the event {bk ≺ a`}). Consider the first case
and denote the random set {m ∈ N : ak ≺ bm} by M . It follows from exchangeability that
#M = ∞ almost surely and indeed limn→∞

1
n
#(M ∩ [n]) > 0 on the event {M 6= ∅}. For

this case, write M = {m1,m2, . . .} with m1 < m2 < . . . and for fixed p ∈ N define

Jq := 1{bmq ≺ bmp}, q 6= p.
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By exchangeability of the total order, if p ∨ q ≤ r, then

P{Jq = 0, 1 ≤ q ≤ r, q 6= p |M 6= ∅} =
1

r

and the random variables {Jq : q ∈ N, q 6= p} are conditionally exchangeable given {M 6= ∅}.
It follows from de Finetti’s theorem that on the event {M 6= ∅}

lim
n→∞

1

n
#{q : mq ∈ [n], ak ≺ bmq ≺ bmp} > 0

almost surely and hence f(ak) < f(b`) almost surely on the event {ak ≺ b`}. A similar
argument shows that f(bk) < f(a`) almost surely on the event {bk ≺ a`}.

Theorem 2.5.17. Suppose that ≺ is an ergodic exchangeable random paired total order on
I0. Let f : I0 → [0, 1] be as in Proposition 2.5.16. Define a sequence ((Xn, Yn))n∈N of [0, 1]2-
valued random variables by setting Xn := f(an) and Yn := f(bn). Then ((Xn, Yn))n∈N is
i.i.d. with common distribution a probability measure µ that assigns all of its mass to the set
{(x, y) : 0 ≤ x ≤ y ≤ 1} and has the property that 1

2
(µ(·×R)+µ(R×·)) is Lebesgue measure

on [0, 1]. The probability measure µ is uniquely determined by the moment formulae∫
[0,1]2

xmyn µ(dx, dy)

=

(
1

2

)m+n ∑
c∈

∏m+n
k=1 {ak,bk}

P{c1 ≺ am+n+1, . . . , cm ≺ am+n+1,

cm+1 ≺ bm+n+1, . . . , cm+n ≺ bm+n+1}.

The ergodic exchangeable random paired total order ≺ on I0 can be recovered from the random
sequence ((Xn, Yn))n∈N by declaring

• ai ≺ aj if Xi < Xj,

• bi ≺ bj if Yi < Yj,

• ai ≺ bj if Xi < Yj,

• bi ≺ aj if Yi < Xj,

• ak ≺ bk if Xk = Yk.

Proof. The exchangeability of the random paired total order ≺ implies that the sequence
((Xn, Yn))n∈N is exchangeable. It is a consequence of de Finetti’s theorem that in order to
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show that this sequence is i.i.d. it suffices to show that it has an almost surely trivial tail
σ-field. For any m,n ∈ N we have that

Xn = f(an)

= lim sup
p→∞

1

2p
#{k : m ≤ k ≤ p, ak ≺ an}

+ lim sup
p→∞

1

2p
#{` : m ≤ ` ≤ p, b` ≺ an},

Yn = f(bn)

= lim sup
p→∞

1

2p
#{k : m ≤ k ≤ p, ak ≺ bn}

+ lim sup
p→∞

1

2p
#{` : m ≤ ` ≤ p, b` ≺ bn}.

Thus, given a real-valued random variable Vm that is measurable with respect to σ{(Xn, Yn) :
n ≥ m} there exists a measurable real-valued function Υm defined on the paired total
orders on I0 such that Vm = Υm(≺) almost surely and Υm(≺) = Υm(≺π) almost surely for
any permutation π of N that leaves the elements of {m,m + 1, . . .} fixed. Consequently,
given a real-valued random variable V that is measurable with respect to the tail σ-field⋂
m∈N σ{(Xn, Yn) : n ≥ m} there exists a measurable real-valued function Υ defined on the

paired total orders on I0 such that V = Υ(≺) almost surely and Υ(≺) = Υ(≺π) almost surely
for any permutation π of N that leaves all but finitely many of the elements of N fixed. It
follows from the ergodicity of ≺ that any tail measurable random variable V is constant
almost surely and hence the sequence ((Xn, Yn))n∈N is i.i.d. with common distribution some
probability measure µ on [0, 1]2. By Proposition 2.5.16, µ is concentrated on the set {(x, y) :
0 ≤ x ≤ y ≤ 1}, and P{Xm = Xn} = P{Ym = Yn} = 0 for m 6= n, hence the marginal
distributions of µ must be diffuse.

Let (In)n∈N be a sequence of i.i.d. random variables that is independent of ((Xn, Yn))n∈N
with P{In = 0} = P{In = 1} = 1

2
and set Un := InXn + (1 − In)Yn so that the sequence

(Un)n∈N is i.i.d. with common distribution 1
2
(α+ β), where α and β are the distributions of

Xn and Yn. By construction,

Xn = f(an)

= lim
m→∞

1

2m
#{1 ≤ k ≤ m : ak ≺ an}

+ lim
m→∞

1

2m
#{1 ≤ ` ≤ m : b` ≺ an}

= lim
m→∞

1

2m
#{1 ≤ k ≤ m : Xk ≺ Xn}

+ lim
m→∞

1

2m
#{1 ≤ ` ≤ m : Y` ≺ Xn}

=
1

2
(α + β)([0, Xn]),
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and a similar argument shows that

Yn =
1

2
(α + β)([0, Yn]).

Therefore,

Un =
1

2
(α + β)([0, Un]).

Now for any diffuse probability measure γ on [0, 1], the distribution of γ([0, Z]) for Z a ran-
dom variable with distribution γ is uniform on [0, 1]. Therefore, Un has a uniform distribution
on [0, 1] and 1

2
(α + β) is the Lebesgue measure on [0, 1]. Thus,∫

[0,1]2
xmyn µ(dx, dy)

= P{U1 < Xm+n+1, . . . , Um < Xm+n+1,

Um+1 < Ym+n+1, . . . , Um+n < Ym+n+1}

=

(
1

2

)m+n ∑
c∈

∏m+n
k=1 {ak,bk}

P{c1 ≺ am+n+1, . . . , cm ≺ am+n+1,

cm+1 ≺ bm+n+1, . . . , cm+n ≺ bm+n+1}.

Remark 2.5.18. Let µ be a probability measure on [0, 1]2 that assigns all of its mass to the
set {(s, t) : 0 ≤ s ≤ t ≤ 1} and has the property that 1

2
(µ(· × R) + µ(R × ·)) is Lebesgue

measure on [0, 1]. Let ((Sn, Tn))n∈N be i.i.d. with common distribution µ. Define a process of
labeled matchings (L∞n )n∈N0 as follows: if C1, . . . , C2n are the order statistics of

⋃n
k=1{Sk, Tk}

with C1 ≤ · · · ≤ C2n, then make {i, j} ⊂ [2n] a block of L∞n labeled with k ∈ [n] whenever
Ci = Sk and Cj = Tk. Then (W∞

n )n∈N0 := (Ψ(L∞n ))n∈N0 is an extremal infinite bridge and
(L∞n )n∈N0 is the corresponding process of labeled associated admissible matchings guaranteed
by Corollary 2.3.17 if and only if the conditional distribution of L∞n given Ψ(L∞n ) is uniform
on the set of labeled associated admissible matchings of Ψ(L∞n ) for all n ∈ N0.

2.6 Identification of extremal harmonic functions

Idenfitication of extremal harmonic functions for the chain (Un)n∈N0

Any extremal infinite bridge (U∞n )n∈N0 is the h-transform of the original Markov chain
(Un)n∈N0 with an extremal harmonic function h. We know from the above that such a
process arises as follows in terms of the canonical pair (µ, ν) of diffuse probability measures
associated with the corresponding point in the Doob–Martin boundary.
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We first require some notation. Given (x1, . . . , xn, y1, . . . , yn) ∈ R2n with distinct entries,
let z1 < · · · < z2n be a listing of {x1, . . . , xn, y1, . . . , yn} in increasing order. Define

W((x1, . . . , xn, y1, . . . , yn)) = u1 . . . u2n ∈Wn

by

ui =

{
a, if zi ∈ {x1, . . . , xn},
b, if zi ∈ {y1, . . . , yn}.

Given v ∈Wn, set
S(v) :=W−1({v}) ⊂ R2n.

For example,

S(abba) =
⊔
σ,τ

{(x1, x2, y1, y2) ∈ R4 : xσ(1) < yτ(1) < yτ(2) < xσ(2)},

where the union is over all pairs of permutations σ, τ of the set {1, 2}. In general, S(v) is
the disjoint union of (n!)2 connected open sets that all have boundaries of zero Lebesgue
measure.

Now take independent sequences of real-valued random variables (Xk)k∈N and (Yk)k∈N,
where the Xk are i.i.d. with common distribution µ and the Yk are i.i.d. with common
distribution ν and set

U∞n =W((X1, . . . , Xn, Y1, . . . , Yn)).

We have
P{U∞n = u} = µ⊗n ⊗ ν⊗n(S(u))

We also know that

P{U∞n = u |U∞n+1 = v} =

(
v
u

)
(n+ 1)2

.

It follows that

P{U∞n+1 = v |U∞n = u}

= µ⊗(n+1) ⊗ ν⊗(n+1)(S(v))

(
v
u

)
(n+ 1)2

/
µ⊗n ⊗ ν⊗n(S(u)).

On the other hand,

P{U∞n+1 = v |U∞n = u} =
1

h(u)
P{Un+1 = v |Un = u}h(v)

=
h(v)

h(u)

(
v
u

)
(2n+ 2)(2n+ 1)

.

Thus,
h(v)

h(u)
=
µ⊗(n+1) ⊗ ν⊗(n+1)(S(v))

µ⊗n ⊗ ν⊗n(S(u))

(2n+ 2)(2n+ 1)

(n+ 1)2
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and, up to an arbitrary multiplicative constant,

h(w) =

(
2m

m

)
µ⊗m ⊗ ν⊗m(S(w))

for w ∈Wm.
Since h(∅) = 1, this normalization is the extended Doob–Martin kernel w 7→ K(w, y),

where y is the point in the Doob–Martin boundary that corresponds to the pair of diffuse
probability measures (µ, ν).

Remark 2.6.1. The constant harmonic function h ≡ 1 arises from the above construction
with µ and ν both being the Lebesgue measure λ on [0, 1]. Therefore the process (Un)n∈N0 is
itself the extremal bridge associated with the pair (λ, λ). In particular, (Un)n∈N0 converges
almost surely to this point in the Doob–Martin boundary associated with this pair.

We observed in Remark 2.3.7 that a sequence (yk)k∈N with N(yk) → ∞ as k → ∞
converges in the Doob–Martin topology if and only if for every m ∈ N the sequence of
random words in Wm obtained by selecting m letters a and m letters b uniformly at random
from yk and maintaining their relative order converges in distribution as k → ∞. We can
now enhance that result as follows.

Proposition 2.6.2. Consider a sequence (yk)k∈N in W, where yk ∈ WN(yk), k ∈ N, and
N(yk) → ∞ as k → ∞. If y is the point in the Doob–Martin boundary that corresponds to
the pair of diffuse probability measures (µ, ν) with 1

2
(µ + ν) = λ, then limk→∞ yk = y in the

Doob–Martin topology if and only if

lim
k→∞

(
yk
w

)(
N(yk)
m

)2 = µ⊗m ⊗ ν⊗m(S(w))

for all w ∈ Wm for all m ∈ N. That is, limk→∞ yk = y if and only if for each m ∈ N the
sequence of random words in Wm obtained by selecting m letters a and m letters b uniformly
at random from yk and maintaining their relative order converges in distribution as k →∞
to the random word U∞m =W(X1, . . . , Xm, Y1, . . . , Ym) defined above.

Given a sequence (yk)k∈N in W, where yk ∈WN(yk), k ∈ N, and N(yk)→∞ as k →∞,
define a sequence of pairs of discrete probability measures ((µk, νk))k∈N on [0, 1] as follows.
For k ∈ N the two probability measure µk and νk both assign all of their mass to the set
{ `

2N(yk)
: 1 ≤ ` ≤ 2N(yk)}. For 1 ≤ i ≤ 2N(yk), µk( i

2N(yk)
) = 1

N(yk)
if the ith letter of yk is

the letter a, otherwise µk( i
2N(yk)

) = 0. Similarly, for 1 ≤ j ≤ 2N(yk), νk( j
2N(yk)

) = 1
N(yk)

if
the jth letter of yk is the letter b, otherwise νk( j

2N(yk)
) = 0. In particular, 1

2
(µk + νk) is the

uniform probability measure on { `
2N(yk)

: 1 ≤ ` ≤ 2N(yk)}. Observe that if w ∈ Wm, then,
for w ∈Wm,

(N(yk)
m)2µ⊗mk ⊗ ν⊗mk (S(w)) = (m!)2

(
yk
w

)
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so that (
yk
w

)(
N(yk)
m

)2 =

(
N(yk)

m

N(yk)(N(yk)− 1) · · · (N(yk)−m+ 1)

)2

µ⊗mk ⊗ ν⊗mk (S(w)).

One direction of the following corollary is now immediate.

Corollary 2.6.3. Suppose that (yk)k∈N and ((µk, νk))k∈N are as above. If (yk)k∈N converges
in the Doob–Martin topology to the point y in the Doob–Martin boundary that corresponds
to the pair of probability distributions (µ, ν), then (µk)k∈N converges weakly to µ and (νk)k∈N
converges weakly to ν. Conversely, if (µk)k∈N converges weakly to µ and (νk)k∈N converges
weakly to ν, then 1

2
(µ + ν) = λ, and if y is the point in the Doob–Martin boundary that

corresponds to the pair (µ, ν), then (yk)k∈N converges in the Doob–Martin topology to y.

Proof. As we have already remarked, if (µk)k∈N converges weakly to µ and (νk)k∈N converges
weakly to ν then, since the boundary of S(w) is Lebesgue null for any word w ∈Wm, m ∈ N,
we have that µ⊗mk ⊗ ν⊗mk (S(w)) converges to µ⊗m ⊗ ν⊗m(S(w)) so that

lim
k→∞

(
yk
w

)(
N(yk)
m

)2 = µ⊗m ⊗ ν⊗m(S(w)),

and it follows from Proposition 2.6.2 that (yk)k∈N converges to the point y in the Doob–
Martin boundary that corresponds to the pair (µ, ν).

Conversely, suppose that (yk)k∈N converges to the point y in the Doob–Martin boundary
corresponding to the pair (µ, ν). Given any subsequence of N there is, by the compactness in
the weak topology of probability measures on [0, 1], a further subsequence such that along this
further subsequence µk converges weakly to some probability measure µ′ and νk converges
weakly to some probability measure ν ′. Note that 1

2
(µ′+ν ′) = λ. From the other direction of

the corollary, this implies that along the subsubsequence yk converges to the point y′ in the
Doob–Martin boundary corresponding to the pair of probability measures (µ′, ν ′). Because
y′ = y it must be the case (µ′, ν ′) = (µ, ν). Thus, from any subsequence of N we can extract
a further subsequence along which µk converges weakly to µ and νk converges weakly to ν,
and this implies that (µk)k∈N converges weakly to µ and (νk)k∈N converges weakly to ν.

Identification of extremal harmonic functions for (Wn)n∈N0

As discussed in Section 2.4, an extremal infinite bridge (W∞
n )n∈N0 arises as follows when the

corresponding point in the Doob-Martin boundary is identified with the probability measure
µ constructed in Theorem 2.5.17 that is concentrated on {(x, y) : 0 ≤ x ≤ y ≤ 1}.

We start with some notation. Given ((x1, y1) . . . , (xn, yn)) ∈ {(x, y) : 0 ≤ x ≤ y ≤ 1}n
with {xi, yi} ∩ {xj, yj} = ∅, i 6= j, let z1 ≤ · · · ≤ z2n be a listing of {x1, y1, . . . , xn, yn} in
nondecreasing order. Define

W((x1, y1), . . . , (xn, yn)) = u1 . . . u2n ∈ Bn
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by

ui =


a, if zi ∈ {x1, . . . , xn} and zi /∈ {y1, . . . , yn},
a, if zi = zi+1,

b, if zi ∈ {y1, . . . , yn} and zi /∈ {x1, . . . , xn},
b, if zi = zi−1.

Now take a sequence ((Xk, Yk))k∈N that is i.i.d. with common distribution µ. Then

W∞
n =W(((X1, Y1), . . . , (Xn, Yn)).

The extremal infinite bridge (W∞
n )n∈N0 is the Doob harmonic transform of the chain

(Wn)n∈N0 with a unique extremal harmonic function h normalized so that h(∅) = 1, and we
now identify this function.

Given v ∈ Bn, set

S(v) :=W−1({v}) ⊂ {(x, y) : 0 ≤ x ≤ y ≤ 1}n.

Then for u ∈ Bn,
P{W∞

n = u} = µ⊗n(S(u)).

Also, for v ∈ Bn+1, by Proposition 2.3.13 (iv),

P{W∞
n = u |W∞

n+1 = v} =
1

n+ 1
R(u, v)

Λ(u)

Λ(v)
.

It follows that

P{W∞
n+1 = v |W∞

n = u}

= µ⊗(n+1)(S(v))
1

n+ 1
R(u, v)

Λ(u)

Λ(v)

/
µ⊗n(S(u)).

On the other hand, it follows from (2.2) that

P{W∞
n+1 = v |W∞

n = u} =
1

h(u)
P{Wn+1 = v |Wn = u}h(v)

=
h(v)

h(u)

R(u, v)(
2(n+1)

2

) .
Thus,

h(v)

h(u)
=
µ⊗(n+1)(S(v))

µ⊗n(S(u))

Λ(u)

Λ(v)

(2n+ 2)(2n+ 1)

2(n+ 1)
=
µ⊗(n+1)(S(v))

µ⊗n(S(u))

Λ(u)

Λ(v)
(2n+ 1),

and so
h(w) = (2m− 1)!!P{W∞

m = w}/Λ(w) = (2m− 1)!!µ⊗m(S(w))/Λ(w) (2.3)

for w ∈ Bm, m ≥ 1, when we set h(∅) = 1. Put hµ := h to record the dependence on µ.
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Remark 2.6.4. The foregoing has established Theorem 2.1.4.

Example 2.6.5. Consider the normalized harmonic function h ≡ 1. We have that h = hµ

where
µ(dx, dy) = 2 dx dy, 0 ≤ x ≤ y ≤ 1.

The chain (Wn)n∈N0 is therefore itself an extremal bridge that converges also in the Doob–
Martin topology to the extremal element of the Doob–Martin boundary corresponding to
µ.

Example 2.6.6. Consider the sequence (wn)n∈N where wn ∈ Bn is the word abab . . . ab. Recall
that Q is the matrix of backward transition probabilities. It is clear that if v ∈ Bm, m < n,
then Q(wn, v) = 1 if v = abab . . . ab and Q(wn, v) = 0 otherwise. From (2.1), if v =
abab . . . ab ∈ Bm, then

K(v, wn) =
Qn−m(wn, v)

Pm(∅, v)
=

(2m− 1)!!

Λ(v)
,

where Λ(v) = 1. It follows that (wn)n∈N converges in the Doob–Martin topology to the point
y in the Doob–Martin boundary for which the extended Doob–Martin kernel is, for v ∈ Bm,

K(v, y) =

{
(2m− 1)!!, if v = abab . . . ab,

0, otherwise.

Thus K(·, y) is the extremal harmonic function hµ for µ(dx, dy) = dx δx(dy), 0 ≤ x ≤ y ≤ 1.

Example 2.6.7. Consider the sequence (wn)n∈N where wn ∈ Bn, n ∈ N, is the word consisting
of C runs of the letter a of successive lengths A1

n, . . . , A
C
n interleaved with C runs of the letter

b of successive lengths B1
n, . . . , B

C
n . Here

∑C
i=1A

i
n =

∑C
j=1B

j
n = n and

∑c
i=1A

i
n ≥

∑c
j=1 B

j
n

for 1 ≤ c ≤ C.
Suppose that

lim
n→∞

(
A1
n

n
, . . . ,

ACn
n

)
= (p1, . . . , pC)

and

lim
n→∞

(
B1
n

n
, . . . ,

BC
n

n

)
= (q1, . . . , qC).

It will be convenient to set

γ0 = 0, γ1 =
p1

2
, γ2 =

p1 + q1

2
, γ3 =

p1 + q1 + p2

2
, . . . ,

γ2C =
p1 + · · ·+ pC + q1 + · · ·+ qC

2
= 1,

Consider a uniform labeled associated admissible matching Ln = {((i, j), k)} of the word
wn; the presence of the element ((i, j), k) indicates that a letter a with index i ∈ [2n] is
matched with a letter b with index j ∈ [2n] and that this pair is labeled by k ∈ [n].
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We start by observing that ACn ≤ BC
n . Following lines similar to our proof of the formula

for Λ(w) in Lemma 2.3.12, all the letters a in the final run of length ACn must be matched
with a b in the final run of length BC

n . This leaves BC
n − ACn letters b in the final run

unmatched. Assigning mass 1
n
to each letter, there is thus asymptotically a mass qC − pC of

letters b unmatched in the final run. The matching arises by choosing uniformly at random
without replacement the letters b that will be matched with the successive letters a. More
explicitly, denote by 1 ≤ k1 < · · · < kACn ≤ n the labels for which the corresponding
matched pairs (i, j) of indices are such that i indexes a letter a in the final run and j
indexes a letter b in the final run. Denote by (Snh, Tnh) the matched pair of indices labeled
by kh, 1 ≤ h ≤ ACn . The sequence (Sn1, . . . , SnACn ) (resp. (Tn1, . . . , TnACn ) consists of ACn
uniform picks without replacement from the range A1

n + B1
n + · · · + AC−1

n + BC−1
n + [ACn ]

(resp. A1
n +B1

n + · · ·+AC−1
n +BC−1

n +ACn + [BC
n ]) and these two sequences are independent.

The finite-dimensional marginals of ((Sn1
2n
, Tn1

2n
), . . . , (

S
nACn

2n
,
T
nACn

2n
)) converge in distribution as

n→∞ to an i.i.d. infinite sequences with common distribution ν given by

ν(dx, dy) =

{
22

pCqC
dx dy, (x, y) ∈ (γ2C−2, γ2C−1)× (γ2C−1, γ2C),

0, otherwise.

Now AC−1
n ≤ BC−1

n −ACn +BC
n . All of the letters a in the (C−1)st run of length AC−1

n must
be matched either with the letters b in the (C−1)st run of length BC−1

n or with the remaining
BC
n − ACn unmatched letters b in the Cth run. The matching arises by choosing uniformly

without replacement the letters b in the pool of size BC−1
n −ACn +BC

n that will be matched
with the successive letters a. Asymptotically, proportions qC−1

qC−1+qC−pC and qC−pC
qC−1+qC−pC of the

mass pC−1 of letters a in the (C− 1)st run will be matched with, respectively, the letters b in
the (C − 1)st run and the remaining letters b in the Cth run. Thus, asymptotically, the mass
of letters b in the (C − 1)st and Cth runs is reduced to, respectively, qC−1 − pC−1 qC−1

qC−1+qC−pC

and qC − pC − pC−1 qC−pC
qC−1+qC−pC .

Continuing in this way, we see that for 1 ≤ i ≤ j ≤ C there is asymptotically a constant
amount of mass rij matched from the ith run of letters a to the jth run of letters b. The masses
rij satisfy pi =

∑
i≤j r

ij, 1 ≤ i ≤ C, and qj =
∑

i≤j r
ij, 1 ≤ j ≤ C, and are determined

inductively as follows. Firstly, rCC = pC . Secondly, suppose that rij has been determined
for k+ 1 ≤ i ≤ j ≤ C. For k+ 1 ≤ j ≤ C the amount of mass left unmatched in the jth run
of letters b is qj −

∑j
`=k+1 r

`j. It follows that rkj, k ≤ j ≤ C, is determined by

rkk = pk
qk

qk +
∑C

j=k+1

(
qj −

∑j
`=k+1 r

`j
)

and

rkh = pk
qh −

∑h
`=k+1 r

`h

qk +
∑C

j=k+1

(
qj −

∑j
`=k+1 r

`j
) , k + 1 ≤ h ≤ C.
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Given the uniform random labeled associated admissible matching Ln, write 1 ≤ Unk <
Vnk ≤ 2n, for the pair of indices such that ((Unk, Vnk), k) ∈ Ln, 1 ≤ k ≤ n. That is, k
labels a matched pair of indices (Unk, Vnk) such that Unk is the index of a letter a and Vnk
is the index of a letter b. Set Xnk = Unk

2n
and Ynk = Vnk

2n
, 1 ≤ k ≤ n. The finite-dimensional

distributions of ((Xn1, Yn1), . . . , (Xnn, Ynn)) converge as n → ∞ to those of the sequence
((X1, Y1), (X2, Y2), . . .) that is i.i.d. with common distribution the probability measure µ
concentrated on {(x, y) : 0 ≤ x ≤ y ≤ 1} that is defined as follows:

µ(dx, dy) =

{
22rij

piqj
dx dy, (x, y) ∈ (γ2i−2, γ2i−1)× (γ2j−1, γ2j), 1 ≤ i ≤ j ≤ C,

0, otherwise.

This tells us that we can build an infinite bridge using µ and that the infinite bridge is
the limit of the bridges going to the wn.
Remark 2.6.8. In Example 2.6.7, for 1 ≤ j1 ≤ j2 ≤ C, define

cj1j2 :=
rj1j2

rj1j1
,

then we have that for 1 ≤ j1 = j2 ≤ 2n

cj1j2 = 1,

and for 1 ≤ j1 < j2 ≤ C

cj1j2 =
qj2 −

∑j2
l=j1+1 r

lj2

qj1
.

We also have that for 1 ≤ j1 < j2 ≤ C

r(j1−1)j2

r(j1−1)j1
=
qj2 −

∑j2
l=j1

rlj2

qj1 − rj1j1

=
qj2 −

∑j2
l=j1+1 r

lj2 − rj2j2

qj1 − rj1j1
= cj1j2 .

Continuing in this way, a backward induction establishes that for 1 ≤ i ≤ j1 ≤ j2 the value
of rij2

rij1
does not depend on i and

rij2

rij1
= cj1j2 .

It follows that
rij = ri1c1j, 1 ≤ i ≤ j ≤ n.

Consequently,

µ(dx, dy) =

{
2ri1

pi
2c1j

qj
dx dy, (x, y) ∈ (γ2i−2, γ2i−1)× (γ2j−1, γ2j), 1 ≤ i ≤ j ≤ C,

0, otherwise.
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Observe that the measures µ presented in Example 2.6.5 and Example 2.6.7 have the
common features that

µ({(x, y) : 0 ≤ x = y ≤ 1}) = 0,

and that there exist functions f, g : [0, 1] 7→ R such that

µ(dx, dy) = f(x)g(y)dxdy

on the set {(x, y) : 0 ≤ x < y ≤ 1}.
We will see that having these common features is a sufficient condition for the chain

(W∞
n )n∈N0 that arises via the construction of Remark 2.5.18 from µ to be an extremal infi-

nite bridge. Let (L∞n )n∈N0 be the labeled infinite bridge that arises via the construction of
Remark 2.5.18 from such measure µ. Given a labeled matching L of [2n], define ZLi = Sk,
ZLj = Tk for each block {i, j} labeled with k ∈ [n] of L with i < j. Then

P{L∞n = L}
= P{ZL1 < ZL2 < . . . < ZL2n}

=

∫
· · ·
∫
zL1 <z

L
2 <...<z

L
2n

n∏
k=1

f(sk)g(tk)ds1 · · · dsndt1 · · · dtn,

where the letter zLi is substituted by sk and the letter zLj is substituted by tk for each
block {i, j} labeled with k ∈ [n] of L with i < j. Since

∏n
k=1 f(sk)g(tk) is invariant under

permutation of each index set; that is, for permutations σ, τ of [n]

n∏
k=1

f(sσ(k))g(tτ(k)) =
n∏
k=1

f(sk)g(tk),

if there are labeled matchings L1,L2 of [2n] such that

{1 ≤ i ≤ 2n : (i, j) is a block of L1} = {1 ≤ i ≤ 2n : (i, j) is a block of L2},

or equivalently,
Ψ(L1) = Ψ(L2),

then
P{L∞n = L1} = P{L∞n = L2}.

This establishes that the conditional distribution of L∞n given Ψ(L∞n ) is uniform on the set
of labeled associated admissible matchings of Ψ(L∞n ) for all n ∈ N0 and thus (W∞

n )n∈N0 :=
(Ψ(L∞n ))n∈N0 is an extremal infinite bridge.
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2.7 Extremal harmonic functions from exponential
distributions

The Plackett-Luce model for the chain (Un)n∈N0

In general, there is no simple closed form expression for the transition probabilities of an
infinite bridge (U∞n )n∈N0 associated with a pair of (not necessarily canonical) diffuse proba-
bility measures ζ, η and hence the associated harmonic function h. However, it is possible to
obtain such expressions in the special case where ζ is the exponential distribution with rate
parameter α and η is the exponential distribution with rate parameter β. Given u ∈ Wn

and 1 ≤ i ≤ 2n, set
An
i (u) := #{i ≤ j ≤ 2n : uj = a}

and
Bn
i (u) := #{i ≤ j ≤ 2n : uj = b}.

By the reasoning that goes into the analysis of the Plackett-Luce or vase model of random
permutations (see, for example, [22]),

P{U∞n = u} = (n!)2αnβn
2n∏
i=1

1

An
i (u)α + Bn

i (u)β

– this is essentially just repeated applications of the elementary result usually called com-
peting exponentials: if S and T are independent exponentially distributed random variables
with rate parameters λ and θ, then the probability of the event {S < T} is λ

λ+θ
and condi-

tional on this event the random variables S and T − S are independent and exponentially
distributed with rate parameters λ+ θ and θ. (As a check, note that when α = β = γ, say,
this probability is, as expected, 1/

(
2n
n

)
.) We also know that

P{U∞n = u |U∞n+1 = v} =

(
v
u

)
(n+ 1)2

.

It follows that

P{U∞n+1 = v |U∞n = u}

=

(
v
u

)
(n+ 1)2

((n+ 1)!)2αn+1βn+1

2(n+1)∏
i=1

1

An+1
i (v)α + Bn+1

i (v)β/
(n!)2αnβn

2n∏
i=1

1

An
i (u)α + Bn

i (u)β

=

(
v

u

)
αβ

∏2n
i=1(An

i (u)α + Bn
i (u)β)∏2(n+1)

i=1 (An+1
i (v)α + Bn+1

i (v)β)
.
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As a check, when α = β = γ, say, this transition probability is(
v

u

)
(2n)!

(2(n+ 1))!
=

(
v
u

)
(2n+ 2)(2n+ 1)

,

as expected.
The corresponding harmonic function h satisfies(

v

u

)
αβ

∏2n
i=1(An

i (u)α + Bn
i (u)β)∏2(n+1)

i=1 (An+1
i (v)α + Bn+1

i (v)β)

=
h(v)

h(u)

(
v
u

)
(2n+ 2)(2n+ 1)

.

We conclude from this that, up to an arbitrary positive constant,

h(w) =
(2m)!αmβm∏2m

i=1(Am
i (w)α + Bm

i (w)β)

for w ∈Wn.

The Plackett-Luce model for the chain (Wn)n∈N0

We know that any extremal infinite bridge and hence any extremal harmonic function arises
via the construction of Remark 2.5.2 from a probability measure η that is concentrated
on {(x, y) : x ≤ y}. Here we obtain the explicit form of the extremal harmonic function
when η is the probability distribution of (U, V ) conditional on U < V , where U and V
are independent exponential random variables with respective rate parameters α and β. It
is a familiar fact (sometimes referred to as the property of “competing exponentials”) that
P{U < V } = α

α+β
and conditional on the event {U < V }, the random variables U and V −U

are independent with distributions that are exponential with respective parameters α + β
and β. Therefore,

η(dx, dy) = (α + β)βe−αxe−βy dx dy, 0 ≤ x < y.

Suppose that Z1, . . . , Zm are independent exponential random variables with respective
rate parameters γ1, . . . , γm. For i ∈ [m] put Σ(i) = j if #{k ∈ [m] : Zk ≤ Zj} = i; that is,
Σ(i) is the index of the ith smallest of the values in a realization of Z1, . . . , Zm. It follows
from the competing exponentials fact that

P{Σ(1) = σ(1), . . . ,Σ(m) = σ(m)}

=
γσ(1)

γσ(1) + · · ·+ γσ(m)

γσ(2)

γσ(2) + · · ·+ γσ(m)

· · ·
γσ(m−1)

γσ(m−1) + γσ(m)

.

This is a standard formula for the Plackett-Luce model of random permutations – see [22,
Section 5.6].
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Now consider independent random variables U1, . . . , Un, V1, . . . , Vn, where each Ui has an
exponential distribution with parameter α and each Vi has an exponential distribution with
parameter β. For i ∈ [n] and j ∈ [n] put

I(i) := #{k ∈ [n] : Uk ≤ Ui}+ #{` ∈ [n] : V` ≤ Ui}

and
J(j) := #{k ∈ [n] : Uk ≤ Vj}+ #{` ∈ [n] : V` ≤ Vj}.

A labeled associated admissible matching of a word w ∈ Bn is described uniquely by giving
the indices f1 < f2 < · · · < fn ∈ [2n] of the letters a in the word, the distinct indices
g1, . . . , gn ∈ [2n] of letters b with gi > fi being the index matched with the index fi, and a
bijection π : [n]→ [n], where π(i) is the label of the block {fi, gi} in the matching. Writing
θ = α

β
, we have from the above that

P{I(π(1)) = f1, J(π(1)) = g1, . . . , I(π(n)) = fn, J(π(n)) = gn |U1 < V1, . . . , Un < Vn}

=
αnβn∏2n

k=1 (#{s ∈ [n] : fs ≥ k}α + #{t ∈ [n] : gt ≥ k}β)

/(
α

α + β

)n
=

(1 + θ)n∏2n
k=1 (#{s ∈ [n] : fs ≥ k}θ + #{t ∈ [n] : gt ≥ k})

.

Recall from Definition 2.3.11 the height function H defined by the word w and, adopting
the convention H(0) = 0, note that

2n− k + 1 = #{s ∈ [n] : fs ≥ k}+ #{t ∈ [n] : gt ≥ k}

and
H(k − 1) = (n−#{s ∈ [n] : fs ≥ k})− (n−#{t ∈ [n] : gt ≥ k}).

Thus,

#{s ∈ [n] : fs ≥ k} =
1

2
(2n− k + 1−H(k − 1))

and
#{t ∈ [n] : gt ≥ k} =

1

2
(2n− k + 1 +H(k − 1)).

Therefore, if (W∞
n )n∈N0 is the infinite bridge associated with the probability measure η,

we have by Corollary 2.3.16 (ii)

P{W∞
n = w}

= n!Λ(w)P{I(π(1)) = f1, J(π(1)) = g1, . . . , I(π(n)) = fn, J(π(n)) = gn

|U1 < V1, . . . , Un < Vn}

= n!Λ(w)
(1 + θ)n∏2n

k=1

(
1
2
(2n− k + 1−H(k − 1))θ + 1

2
(2n− k + 1 +H(k − 1))

) .
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As a check, consider the case when α = β and hence θ = 1. In this case, the righthand
side is

n!Λ(w)
2n

(2n)!
=

Λ(w)

(2n− 1)!!
,

as expected from Examples 2.1.5 and 2.6.5 and Proposition 2.3.13.
Recalling the formula we obtained for Λ(w) from Lemma 2.3.12, we have

P{W∞
n = w} = n!

(1 + θ)n
∏n

i=1H(fi)∏2n
k=1

(
1
2
(2n− k + 1−H(k − 1))θ + 1

2
(2n− k + 1 +H(k − 1))

) .
It follows from (2.3) that

h(w) = (2m− 1)!!m!
(1 + θ)m∏2m

k=1

(
1
2
(2m− k + 1−H(k − 1))θ + 1

2
(2m− k + 1 +H(k − 1))

)
for w ∈ Bm. Again as expected, h ≡ 1 when θ = 1.
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Chapter 3

Mixing time of the Down-up Markov
chain of words

3.1 Introduction
In a standard deck of cards, the colors of successive cards (Red or Black) defines a word of
length 52 drawn from the two-letter alphabet {R,B} in which 26 letters are R and 26 letters
are B. Consider a card shuffle that consists of removing a card in the red suits and a card in
the black suits independently and uniformly at random followed by inserting the two cards
back into uniformly chosen positions in the deck of the remaining 50 cards independently.
The resulting transition in the color of successive cards defines a new word of length 52
drawn from the two-letter alphabet {R,B} in which 26 letters are R and 26 letters are B.

We can generalize this shuffling mechanism to any number of letters R and letters B.
From now on, we will replace the two-letter alphabet {R,B} by the two-letter alphabet
{a, b}. Choose a word uniformly at random from the set of words drawn from the two-letter
alphabet {a, b} that consists of n letters a and n letters b, and denote the set of such words
by Wn, n ∈ N0. We shuffle the word in Wn by removing a letter a and a letter b from the
word uniformly at random, followed by reinserting the letter a into a uniformly chosen one
of 2n − 1 slots defined by the other remaining 2n − 2 letters, then reinstating the letter b
into a uniformly chosen one of 2n slots defined by the 2n− 1 letters. Write (DU t)t∈N0 for a
Markov chain with state space Wn that arises from this removal and reinsertion procedure.

Definition 3.1.1. Define a Markov chain (DU t)t∈N0 such that

• DU0 takes values in Wn,

• conditional on DU t = u1u2 · · ·u2n−1u2n, the word DU t is constructed by choosing It
and Jt independently and uniformly at random from the index set {1 ≤ i ≤ 2n : ui = a}
and from the index set {1 ≤ i ≤ 2n : ui = b}), respectively, choosing 1 ≤ Ĩt, J̃t ≤ 2n

with Ĩt 6= J̃t uniformly at random (that is, all 2n(2n − 1) possibilities are equally
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likely), placing an a in position Ĩt and a b in position J̃t, and placing the letters
uσ(1)uσ(2) · · ·uσ(2n−2) in that order in the remaining 2n − 2 positions, where σ is the
unique increasing bijection from [2n− 2] to [2n] \ {It, Jt}.

Our shuffling technique is related to random-to-random card shuffling where a card is
chosen at random, removed from the deck, and reinserted in a random position. More
specifically, random-to-random card shuffle on the deck of n cards consists of picking a card
and a position of the deck independently, uniformly at random and moving the chosen card
to the chosen position. Bernstein and Nestoridi [2] proved that the random-to-random card
shuffle exhibits cutoff at 3

4
n log n: they proved an upper bound for the mixing time for the

random-to-random insertion shuffle of the form 3
4
n log n+ cn and Subag [28] proved a lower

bound for the mixing time of the form (3
4
− o(1))n log n.

The Markov chain (DU t)t∈N0 that sequentially generates random words such that DU t

is asymptotically uniformly distributed over Wn can be trivially modified to give a Markov
chain (D̃U t)t∈N0 such that D̃U t is asymptotically uniformly distributed over the set of words
drawn from the alphabet {a, b} that have n+1 letters a and n letters b: adding a letter a into
the slot before the first letter of the word (DU t)t∈N0 . By Theorem 1.1.5 and Theorem 1.1.6
there is a bijection that turns the Markov chain (D̃U t)t∈N0 into a Markov chain ((Kt, T̃t))n∈N0 ,
where Kt and T̃t are independent for each t, Kt is uniformly distributed on [n + 1], and T̃t
is uniformly distributed over the set of 1-dominated word with n+ 1 letters a and n letters
b as there are n + 1 cyclic permutations which transforms a 1-dominated word with n + 1
letters a and n letters b into a word with n + 1 letters a and n letters b that starts with a.
Moreover, composing these two bijections turns the Markov chain (D̃U t)t∈N0 into a Markov
chain ((Kt, Tt))t∈N0 , where Kt and Tt are independent for each t, Kt is uniformly distributed
on [n + 1], and Tt is uniformly distributed over the set of trees with n + 1 vertices that are
equipped with the postfix labeling. In fact, removing a letter a and a letter b from DU t is a
equivalent of deleting a vertex and an edge from the tree that corresponds to the word DU t,
and reinserting those two letters a and b back to the word is a equivalent of adding a vertex
and an edge to the tree.

There is a clear relationship between the transition dynamics of the Markov chains
(DU t)t∈N0 and (Un)n∈N0 . Recall from Theorem 2.3.9 that the backward transition dynamics
of (Un)n∈N0 consists of removing an a and a b independently and uniformly at random at
each step and that the forward transition dynamics of (Un)n∈N0 consists of adding an a and
a b independently into uniformly chosen one of slots defined by the letters of the word at
each step. Therefore, the forward transition dynamics of the Markov chain (DU t)t∈N0 is the
same as the backward transition dynamics of (Un)n∈N0 followed by the forward transition
dynamics of (Un)n∈N0 .

The Markov chain (DU t)t∈N0 has an attractive feature that ifDU t is uniformly distributed
over the set Wn, then DU t+1 is also uniformly distributed over Wn: in other words, the
stationary distribution is the uniform distribution over Wn. Using total variation distance
as a metric on the space of probabilities on Wn, we study the mixing time for the chain
(DU t)t∈N0 .
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3.2 Background on Mixing times
We review some parts of general theory for mixing times that are essential to understand
further discussion. The primary reference for this section is [19, Chapter 4] and [9] where the
reader may find the original source of strong stationary times and a wide range of methods
to estimate the rate of convergence of a Markov chain to its stationary distribution.

Consider a discrete Markov chain (Xt)t∈N0 with the finite state space Ω and transition
matrix P that is irreducible and aperiodic.

Definition 3.2.1. A probability π on Ω is a stationary distribution for the Markov chain
(Xt)t∈N0 if

π(y) =
∑
x∈Ω

π(x)P (x, y), y ∈ Ω.

It is a classical result that Markov chain (Xt)t∈N0 has a unique stationary distribution π,
and the distribution of Xt converges to its stationary distribution π as t→∞ with respect
to the metric known as the total variation distance.

Definition 3.2.2. Total variation distance between two probability distributions µ and ν
on a measurable space (Ω,A ) is defined by

||µ− ν||TV := sup
A∈A
|µ(A)− ν(A)|.

If the space Ω is a finite set and the σ-algebra A is the maximal σ-algebra on Ω consisting
of all subsets of Ω, then Definition 3.2.2 can be re-formulated:

||µ− ν||TV := max
A⊆Ω
|µ(A)− ν(A)|.

There are other probabilistic interpretations of total variation distance for a finite set Ω.
More specifically, Proposition 3.2.3 reduces total variation distance to a simple sum over the
state space Ω. Proposition 3.2.4 suggests a different probabilistic approach to total variation
distance using coupling: ||µ − ν||TV measures how close to identical two random variables
realizing µ and ν can be forced to be.

Proposition 3.2.3. Let µ and ν be two probability distributions on a finite set Ω. Then

||µ− ν||TV =
1

2

∑
x∈Ω

|µ(x)− ν(x)|.

Proposition 3.2.4. Let µ and ν be two probability distributions on Ω. A coupling of probabil-
ity distributions µ and ν is a pair of random variables (X, Y ), defined on a single probability
space, such that the marginal distribution of X is µ and the marginal distribution of Y is ν.
Then

||µ− ν||TV = inf{P{X 6= Y } : (X, Y ) is a coupling of µ and ν}.
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Definition 3.2.5. Let P be the set of all probability distributions on the state space of
the Markov chain. Denote the supremum of the total variation distance to its stationary
distribution π over all possible initial distributions by

d(t) := sup
µ∈P

∥∥µP t − π
∥∥
TV

.

Note that d(t) is a non-increasing function of t.

It is useful to introduce a parameter which measures the time required by (Xt)t∈N0 for
the total variation distance to its stationarity distribution π to be small.

Definition 3.2.6. The mixing time tmix(ε), ε > 0, of a Markov chain is defined by

tmix(ε) := min{t : d(t) ≤ ε}.

Set
tmix := tmix

(
1/4
)
.

Along with coupling, strong stationary times are effective methods for obtaining upper
bounds on the total variation distance to the stationary distributoin.

Definition 3.2.7. A random variable τ taking values in N0 ∪ {∞} is said to be a stopping
time relative to a filtration (Ft)t∈N0 if

{τ = t} ∈ Ft, t ∈ N0.

Especially, a stopping time τ relative to a filtration (Ft)t∈N0 is said to be a randomized
stopping time for the Markov chain (Xt)t∈N0 if the filtration (Ft)t∈N0 is larger than the
canonical filtration (σ(X0, X1, . . . , Xt))t∈N0 ; that is,

σ(X0, X1, . . . , Xt) ⊆ Ft, t ∈ N0.

Definition 3.2.8. A stationary time τ for (Xt)t∈N0 is a randomized stopping time such that
the distribution of Xτ is the stationary distribution π;

Px{Xτ ∈ A} = π(A), A ⊆ Ω.

Definition 3.2.9. A strong stationary time for a Markov chain (Xt)t∈N0 is a randomized
stopping time τ such that

Px{τ = t,Xτ ∈ A} = Px{τ = t}π(A), A ⊆ Ω,

that is, τ is a stationary time for (Xt)t∈N0 and is independent of Xτ .
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Remark 3.2.10. In fact, since Ω is a finite space, Definition 3.2.9 and Definition 3.2.8 can be
simplified: a randomized stopping time τ is a stationary time if

Px{Xτ = y} = π(y), x, y ∈ Ω.

Moreover, a randomized stopping time τ is a strong stationary time if

Px{τ = t,Xτ = y} = Px{τ = t}π(y), x, y ∈ Ω.

Theorem 3.2.11 shows that a strong stationary time provides an upper bound on d(t),
and thus an upper bound on the mixing time tmix.

Theorem 3.2.11. If τ is a strong stationary time for (Xt)t∈N0, then

d(t) = max
x
||Px(Xt ∈ ·)− π(·)||TV ≤ max

x
Px{τ > t}.

3.3 The stationary distribution for (DU t)t∈N0

Definition 3.3.1. Let Wn be the set of words drawn from two-letter alphabet {a, b} that
consist of n letters a and n letters b.

In order to write down the transition probabilities for the Markov chain (DU t)t∈N0 , it is
convenient to introduce the following standard notation (see, for example, [20]).

Definition 3.3.2. Given two words w and v drawn from some finite alphabet, write
(
w
v

)
for

the number of times that v appears as a sub-word of w.

Example 3.3.3. For example,
(
abbaba
abb

)
= 3 because abb appears inside abbaba as a sub-word

three times:

abbaba abbaba abbaba.

By definition, the Markov chain (DU t)t∈N0 has state space Wn and one-step transition
probabilities

P{DU t+1 = v |DU t = u} =
∑

w∈Wn−1

w|u,w|v

(
u

w

)
1

n2
·
(
v

w

)
1

(2n− 1)(2n)

=
∑

w∈Wn−1

w|u,w|v

1

2n3(2n− 1)

(
u

w

)(
v

w

)
, u, v ∈Wn,

where w|u (resp. w|v) means that w is a subword of u (resp. v).

Definition 3.3.4. Write πn for the uniform distribution over Wn.



CHAPTER 3. MIXING TIME OF THE DOWN-UP MARKOV CHAIN OF WORDS 62

Theorem 3.3.5. The stationary distribution of the Down-up Markov chain (DU t)t∈N is the
uniform distribution πn over Wn.

Proof. As the transition probability P{DU t+1 = v |DU t = u} is the same as the transition
probability P{DU t+1 = u |DU t = v}, the detailed balance equations are satisfied by the
uniform distribution πn on Wn; that is,

P{DU t+1 = v |DU t = u}πn(u) = P{DU t+1 = u |DU t = v}πn(v), u, v ∈Wn.

3.4 Coupling
We will construct a Markov chain (Mt)t∈N0 that has the same distribution as the Markov
chain (DU t)t∈N0 . Consider a random word M0 in Wn, and write Mk

0 for the kth letter of M0;
that is,

M0 = M1
0M

2
0 · · ·M2n

0 .

Definition 3.4.1. Define two index sets I and J for the letters a and the letters b, respec-
tively, in the word M0 such that

I := {1 ≤ k ≤ 2n : Mk
0 = a},

J := {1 ≤ k ≤ 2n : Mk
0 = b}.

Definition 3.4.2. Construct a Markov chain (Vt)t∈N0 with the state space [0, 1]2n as follows

• V0 = (V 1
0 , V

2
0 , . . . , V

2n
0 ), where V 1

0 , V
2

0 , . . . , V
2n

0 are i.i.d. U [0, 1] random variables,

• sort the realizations of V 1
0 , V

2
0 , . . . , V

2n
0 in increasing order, and write σ for the unique

permutation of [2n] such that

V
σ(1)

0 < V
σ(2)

0 < · · · < V
σ(2n−1)

0 < V
σ(2n)

0 ,

• conditional on Vt = (V 1
t , V

2
t , . . . , V

2n
t ), the sequence Vt+1 = (V 1

t+1, V
2
t+1, . . . , V

2n
t+1) is

constructed by taking i.i.d U [0, 1] variables V a
t , V

b
t , choosing It, Jt independently and

uniformly at random from the index sets I and J, respectively, and putting

V
σ(It)
t+1 = V a

t ,

V
σ(Jt)
t+1 = V b

t ,

V k
t+1 = V k

t , 1 ≤ k ≤ 2n with k 6= σ(It), σ(Jt).
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Definition 3.4.3. Define a random sequence (Mt)t∈N0 inWn such thatMt is built from Vt by
laying down V 1

t , V
2
t , . . . , V

2n
t in increasing order and replacing V σ(k)

t by Mk
0 for 1 ≤ k ≤ 2n.

At each time t ∈ N0 we associate the random variable V σ(k)
t with the kth letter Mk

0 of
M0, 1 ≤ k ≤ 2n. Thus, V σ(k)

t is associated with a letter a (resp. b) in M0 if k ∈ I (resp.
k ∈ J). Updating the random variables V σ(It)

t+1 and V
σ(Jt)
t+1 relocates the letter a associated

with V σ(It)
t and the letter b associated with V σ(Jt)

t in the word Mt into uniformly chosen one
of the slots defined by the other 2n− 2 letters while constructing Mt+1 from Mt. Moreover,
the associated letter a (resp. b) is uniformly chosen from the n letters a (resp. b) of Mt

because It (resp. Jt) is chosen uniformly at random from I (resp. J). This establishes that
the forward transition dynamics of (Mt)t∈N0 is the same as those of (DU t)t∈N0 . Consequently,
(Mt)t∈N0 is also a Markov chain and the mixing time for the chain (Mt)t∈N0 is the mixing
time for the chain (DU t)t∈N0 .

Theorem 3.4.4. The mixing time for the chain (Mt)t∈N0 is the mixing time for the chain
(DU t)t∈N0.

We will therefore study the mixing time for the chain (Mt)t∈N0 from now on.

3.5 An upper bound on the mixing time
Definition 3.5.1. Define a randomized stopping time τab for the chain (Mt)t∈N0 by

τab := min

{
t :

⋃
1≤s≤t

{Is, Js} = [2n]

}
.

In other words, τab is the first time when all 2n letters of M0 have had their associated
U [0, 1] random variable updated at least once. Write Gt for the σ-algebra σ(Is, Js,Ms, 1 ≤
s ≤ t), then {τab = t} ∈ Gt, t ∈ N0. Thus, τab is a randomized stopping time for the Markov
chain (Mt)t∈N0 relative to the augmented filtration (Gt)t∈N0 .

Lemma 3.5.2. The randomized stopping time τab is a strong stationary time for the Markov
chain (Mt)t∈N0.

Proof. By construction, conditional on τab, for 1 ≤ k ≤ 2n the random variable V σ(k)
0 has

been updated to a new U [0, 1] random variable V σ(k)
0 at some time 1 ≤ t ≤ τab. Let tk be the

most recent time before the time τab such that V σ(k)
tk

was updated to a new U [0, 1] random
variable. By definition,

V
σ(k)
tk

= V σ(k)
τab

, 1 ≤ k ≤ 2n.

Since V σ(1)
t1 , V

σ(2)
t2 , . . . , V

σ(2n)
t2n are i.i.d. U [0, 1] random variables, V σ(1)

τab , V
σ(2)
τab , . . . , V

σ(2n)
τab are

also conditionally i.i.d. U [0, 1] random variables conditional on τab. Consequently, the order
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of V σ(1)
τab , V

σ(2)
τab , . . . , V

σ(2n)
τab is uniformly distributed over the (2n)! possible orders given τab so

that the conditional distribution of Mτab given τab is the uniform distribution πn over Wn.
Therefore,

P{Mt = w, τab = t}
= P{Mt = w|τab = t}P{τab = t}
= πn(w)P{τab = t}, w ∈Wn,

as required.

Definition 3.5.3. Write τa (resp. τb) for the first time when the n letters a (resp. b) have
had their associated U [0, 1] random variable updated at least once; that is,

τa := min{t : {Is : 1 ≤ s ≤ t} = I},

τb := min{t : {Js : 1 ≤ s ≤ t} = J}.

Observe that, by definition,
τab = max{τa, τb}.

Remark 3.5.4. Moreover, recall that each time t, It and Jt are chosen independently and
uniformly at random from I and J, respectively. The dynamics of choosing an index It (resp.
Jt) from I (resp. J) is just the same as the dynamics of choosing a coupon from an urn
containing n different coupons in the coupon collector’s game. Thus, the distribution of τa
(resp. τb) corresponds to the distribution of the coupon collector’s time when he first collects
every one of the n types of coupons.

As a result, we can apply the following general bound on the tail of the coupon collector
time (see, for example, [19] for the proof) to τa and τb.

Theorem 3.5.5. Consider a collector attempting to collect a complete set of n coupons.
Assume that each time a new coupon is chosen uniformly and independently from the set of
n possible types, and let τ be the first time when the set contains every type. Then, for c > 0,

P{τ > bn log n+ cnc} ≤ e−c, n ∈ N.

Corollary 3.5.6. For c > 0,

P{τa > bn log n+ cnc} ≤ e−c, n ∈ N.

P{τb > bn log n+ cnc} ≤ e−c, n ∈ N.

Lemma 3.5.7. For c > 0,

P{τab > bn log n+ cnc} ≤ 2e−c.
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Proof. As τab = max(τa, τb), for c > 0

P{τab > bn log n+ cnc} = P{max{τa, τb} > bn log n+ cnc}
≤ P{τa > bn log n+ cnc}+ P{τb > bn log n+ cnc}
≤ e−c + e−c

= 2e−c.

Theorem 3.5.8.
tmix ≤ n log n+ (log 8)n.

Proof. It follows from Theorem 3.2.11 that the strong stationary time τab gives

d(t) ≤ max
w∈Wn

Pw{τab > t}, t > 0.

Applying this inequality with bn log n+ cnc instead of t, together with Lemma 3.5.7, estab-
lishes that, for c > 0,

d(bn log n+ cnc)
≤ max

w∈Wn

Pw{τab > bn log n+ cnc}

≤ 2e−c.

Consequently, for c = log 8,

d(bn log n+ (log 8)nc) ≤ 2e− log 8 =
1

4
,

as desired.

3.6 A lower bound on the mixing time
Definition 3.6.1. For a word w = w1 . . . w2n ∈Wn, define its height function

Hw(t) := #{1 ≤ i ≤ t : wi = a} −#{1 ≤ j ≤ t : wj = b}, 1 ≤ t ≤ 2n.

Definition 3.6.2. Define functions Hmax, Hmin, Hextr on Wn such that

Hmax(w) := max
1≤t≤2n

Hw(t), w ∈Wn,

Hmin(w) := min
1≤t≤2n

Hw(t), w ∈Wn,

Hextr(w) := max
1≤t≤2n

|Hw(t)|, w ∈Wn.
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If we represent a word w in Wn by a polygonal line with segments joining (t−1, Hw(t−1))
and (t,Hw(t)), 1 ≤ t ≤ 2n, then Hextr(w) is the maximum vertical distance between the
resulting path and the straight line joining (0, 0) and (2n, 0). By definition,

Hextr(w) = max{Hmax(w),−Hmin(w)}.

Definition 3.6.3. Write Wα
n for the set of words w in Wn such that Hextr(w) > 1

3
nα.

Lemma 3.6.4. For 0 < α < 1, there exists a constant Kα >
3e2π

2
such that

πn(Wα
n) ≤ Kαe

− 1
4
n2α−1

, n ∈ N0.

Proof. By union bound,

πn(Wα
n)

= πn({w ∈Wn : Hextr(w) >
1

3
nα})

= πn({w ∈Wn : max{Hmax(w),−Hmin(w)} > 1

3
nα})

≤ πn({w ∈Wn : Hmax(w) >
1

3
nα}) + πn({w ∈Wn : Hmin(w) < −1

3
nα}).

Represent a word w in Wn by a polygonal graph with segments joining (t− 1, Hw(t− 1))
and (t,Hw(t)), 1 ≤ t ≤ 2n. Let a path be a polygonal graph that can arise by this geometric
representation of a word in Wn. Then the number of words w such that Hmax(w) > 1

3
nα is

the same as the number of paths from (0, 0) and (2n, 0) whose height is equal to b1
3
nαc+ 1

at some time 1 ≤ t ≤ 2n. By the reasoning that goes into reflection principle for a simple
random walk (see, for example, [12]) the number of such paths corresponds to the number
of paths from (0, 0) to (2n, 2b1

3
nαc+ 2). Thus,

πn({w ∈Wn : Hmax(w) >
1

3
nα}) =

(
2n

n+ b1
3
nαc+ 1

)/(
2n

n

)
=

n!n!

(n+ b1
3
nαc+ 1)!(n− b1

3
nαc − 1)!

.

We recall Stirling’s formula:
√

2πn(
n

e
)n ≤ n! ≤ e

√
n(
n

e
)n, n ∈ N.

It follows from Stirling’s formula that

πn({w ∈Wn : Hmax(w) >
1

3
nα})

≤

(
e2n2n+1

)/(
2π

(
n+ b1

3
nαc+ 1

)n+b 1
3
nαc+ 3

2
(
n− b1

3
nαc − 1

)n−b 1
3
nαc− 1

2

)
.



CHAPTER 3. MIXING TIME OF THE DOWN-UP MARKOV CHAIN OF WORDS 67

Observe that

∂

(
log
(
(n+ x)n+x+ 1

2 (n− x)n−x+ 1
2

))
∂x

= log(n+ x) +
1

2(n+ x)
− log(n− x)− 1

2(n− x)

≥ 0

because
∂(log y + 1

2y
)

∂y
=

1

y
− 1

2y2
≥ 0, y >

1

2
.

Thus, (n + x)n+x+ 1
2 (n− x)n−x+ 1

2 is an increasing function of x on the set {x ∈ R : 0 < x <
n− 1

2
}. Since b1

3
nαc+ 1 ≥ 1

3
nα,

πn({w ∈Wn : Hmax(w) >
1

3
nα})

≤

(
e2n2n+1

)/(
2π

(
n+

1

3
nα
)n+ 1

3
nα+ 1

2
(
n− 1

3
nα
)n− 1

3
nα+ 1

2

)

= e2

/(
2π

(
1 +

1

3
nα−1

)n+ 1
3
nα+ 1

2
(

1− 1

3
nα−1

)n− 1
3
nα+ 1

2

)

= e2

/(
2π

√
1− 1

9n2(1−α)

((
1− 1

9n2(1−α)

)−9n2(1−α))− 1
9
n2α−1+ 1

27
n3α−2((

1 +
1

3n1−α

)3n1−α) 2
9
n2α−1

)
.

Since (1 + 1
3n1−α )3n1−α is an increasing function of n that converges to e as n → ∞, and

(1− 1
9n2(1−α) )

−9n2(1−α) is a decreasing function of n that converges to e as n→∞, there exists
Nα ∈ N such that for n ≥ Nα √

1− 1

9n2(1−α)
≥ 2

3
,(

1 +
1

3n1−α

)3n1−α

≥ e
3
4 ,(

1− 1

9n2(1−α)

)−9n2(1−α)

≤ e
5
4 .

Consequently, for n ≥ Nα

πn({w ∈Wn : Hmax(w) >
1

3
nα}) ≤ e2

/(
4

3
π
(
e

5
4

)−n2α−1+n3α−2(
e

3
4

)2n2α−1

)
≤ 3π

4
e(− 1

4
n2α−1+2).
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This establishes that there exists a constant Kα := max{3e2π
2
, 2e

1
4
N2α−1
α } such that

πn({w ∈Wn : Hmax(w) >
1

3
nα}) ≤ Kα

2
e−

1
4
n2α−1

, n ∈ N0.

By symmetry, a similar argument shows that

πn({w ∈Wn : Hmin(w) < −1

3
nα}) ≤ Kα

2
e−

1
4
n2α−1

, n ∈ N0.

It follows that

πn(Wα
n) ≤ πn({w ∈Wn : Hmax(w) >

1

3
nα}) + πn({w ∈Wn : Hmin(w) < −1

3
nα})

≤ Kαe
− 1

4
n2α−1

, n ∈ N0.

Definition 3.6.5. Define randomized stopping times ταa and ταb for the Markov chain
(Mt)t∈N0 by

ταa := min{t : |{Is : 1 ≤ s ≤ t}| = n− bnαc},
ταb := min{t : |{Js : 1 ≤ s ≤ t}| = n− bnαc}.

Definition 3.6.6. Define a randomized stopping time τα for the Markov chain (Mt)t∈N0 by

ταab := min{ταa , ταb }.

By definition, ταa (resp. ταb ) is the first time when (n − bnαc) letters a (resp. b) have
had their associated U [0, 1] random variables updated, and ταab is the first time when either
(n−bnαc) letters a or (n−bnαc) letters b have had their associated U [0, 1] random variables
updated in the construction of (Mt)t∈N0 . It is guaranteed that until time ταab there are at
least bnαc letters a and at least bnαc letters b that have not been relocated and have kept
their relative order.

As explained in Remark 3.5.4, taking an index It and an index Jt uniformly at random
from I and J, respectively, is just the same as choosing a coupon from the urn containing n
types of coupons. Consequently, ταa and ταb have the same distribution with the first time
when (n− bnαc) types of coupons have been collected in the coupon collector’s game.

Lemma 3.6.7. Consider a collector attempting to collect a set of coupons from an urn
contain one of each of n types of coupons. Assume that each time a new coupon is chosen
uniformly and independently from the the set of n possible types, and let τα be the first time
when the collector’s set contains (n− bnαc) distinct types. Then

|E[τα]− (1− α)n log n| ≤ n log

(
nα+1

(nα − 1)(n+ 1)

)
,

Var(τα) ≤ n2−α.
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Proof. For 1 ≤ m ≤ n, write Tm for the number of coupons collected after the set first
contains m − 1 distinct types until the set first contains m distinct types. Then (Tm)m∈N
is a sequence of independent geometric random variables such that Tm has the geometric
distribution with the probability of success (n−m+ 1)/n for 1 ≤ m ≤ n. Thus,

E[τα] = E[T1 + T2 + . . .+ Tn−bnαc]

=

n−bnαc∑
m=1

n

n−m+ 1

= n

n−bnαc∑
m=1

1

n−m+ 1
.

Observe that

n

∫ n+1

bnαc+1

1

x
dx ≤ n

n−bnαc∑
m=1

1

n−m+ 1
≤ n

∫ n

bnαc

1

x
dx,

or equivalently,

n
(

log(n+ 1)− log(bnαc+ 1)
)
≤ n

n−bnαc∑
m=1

1

n−m+ 1
≤ n

(
log n− log(bnαc)

)
.

As 1
x
is a decreasing function of x, we have

n

∫ n+1

bnαc+1

1

x
dx ≤ n

∫ n+(nα−bnαc)

nα

1

x
dx ≤ n

∫ n

bnαc

1

x
dx,

equivalently,

n
(

log(n+ 1)− log(bnαc+ 1)
)
≤ n

(
log(n+ (nα−bnαc))− log(nα)

)
≤ n

(
log n− log(bnαc)

)
.

Thus, the distance between n
∑n−bnαc

m=1
1

n−m+1
and n

(
log(n+(nα−bnαc))− log(nα)

)
is upper

bounded as follows:∣∣∣∣∣∣n( log(n+ (nα − bnαc)− log(nα)
)
− n

n−bnαc∑
m=1

1

n−m+ 1

∣∣∣∣∣∣
≤ n

(
log n− log(bnαc)

)
− n

(
log(n+ 1)− log(bnαc+ 1)

)
.
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It follows from the triangle inequality that∣∣∣∣∣∣n( log n− log(nα)
)
− n

n−bnαc∑
m=1

1

n−m+ 1

∣∣∣∣∣∣
≤

∣∣∣∣∣∣n( log(n+ (nα − bnαc)− log(nα)
)
− n

n−bnαc∑
m=1

1

n−m+ 1

∣∣∣∣∣∣+ n log(n+ (nα − bnαc)− n log n

≤ n
(

log n− log(bnαc)
)
− n

(
log(n+ 1)− log(bnαc+ 1)

)
+ n
(

log(n+ (nα − bnαc)− log n
)

= n log

(
bnαc+ 1

bnαc
· n+ (nα − bnαc

n+ 1

)
≤ n log

(
n(nα)

(nα − 1)(n+ 1)

)
= n log

(
nα+1

(nα − 1)(n+ 1)

)
.

Moreover,

Var(τα) = Var(T1 + T2 + T3 + · · ·+ Tn)

= n

n−bnαc∑
m=2

(m− 1)

(n−m+ 1)2

≤ n

∫ n−nα

1

t

(n− t)2
dt

= n

[
log(n− t) + n

(
1

n− t

)]n−nα
1

= n

(
α log

n

n− 1
− n

n− 1
+ n1−α

)
≤ n2−α.

It follows from Chebychev’s inequality that the stopping time τα is highly likely to be
concentrated near its expectation within the distance of order n. More specifically



CHAPTER 3. MIXING TIME OF THE DOWN-UP MARKOV CHAIN OF WORDS 71

P{τα ≤ (1− α)n log n−
(

log

(
nα+1

(nα − 1)(n+ 1)

)
+ c
)
n}

= P{τα − E[τα] ≤ (1− α)n log n−
(

log

(
nα+1

(nα − 1)(n+ 1)

)
+ c
)
n− E[τα]}

≤ P{|τα − E[τα]| ≥ cn}

≤ Var(τα)

c2n2

≤ 1

c2nα
.

Corollary 3.6.8. For c > 0,

P{ταa ≤ (1− α)n log n−
(

log

(
nα+1

(nα − 1)(n+ 1)

)
+ c
)
n} ≤ 1

c2nα
,

P{ταb ≤ (1− α)n log n−
(

log

(
nα+1

(nα − 1)(n+ 1)

)
+ c
)
n} ≤ 1

c2nα
,

P{ταab ≤ (1− α)n log n−
(

log

(
nα+1

(nα − 1)(n+ 1)

)
+ c
)
n} ≤ 2

c2nα
.

Proof. The first two inequalities are immediate from Lemma 3.6.7. We have

ταab = min{ταa , ταb }.

It follows from the preceding inequalities and a union bound that

P{ταab ≤ (1− α)n log n−
(

log

(
nα+1

(nα − 1)(n+ 1)

)
+ c
)
n}

= P{ταa ≤ (1− α)n log n−
(

log

(
nα+1

(nα − 1)(n+ 1)

)
+ c
)
n}

+ P{ταb ≤ (1− α)n log n−
(

log

(
nα+1

(nα − 1)(n+ 1)

)
+ c
)
n}

≤ 2

c2nα
.

Lemma 3.6.9. Define w∗ := a · · · a︸ ︷︷ ︸
n

b · · · b︸ ︷︷ ︸
n

in Wn to be the word that consists of n successive

letters a followed by n successive letters b. Then, for α ≥ 1
2
,

Pw∗{Hextr(Mt) >
2

3
nα | ταab ≥ t} ≥ 1−Kαe

− 1
4
n2α−1

,

where Kα >
3e2π

2
is the constant from Lemma 3.6.4.
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Proof. Assume that the Markov chain (Mt)t∈N0 starts with the word w∗, then by definition
of ταab, there exist at least bnαc letters a and bnαc letters b that have not had their associated
U [0, 1] random variables updated by the time ταab. Conditional on {ταab ≥ t}, take bnαc letters
a and bnαc letters b from the set of such letters to build a subword uαt of Mt and construct
a subword vαt of Mt with the remaining (n − bnαc) letters a and the remaining (n − bnαc)
letters b ofMt. As the 2bnαc letters of uαt have kept their original relative order, uαt is almost
surely bnαc letters a followed by bnαc letters b. Consequently, conditional on {ταab ≥ t},

Hmin(uαt ) = 0,

Hmax(uαt ) = bnαc.

Suppose that the word vαt contains na letters a and nb letters b with na, nb ≥ 0 that have
not had their associated U [0, 1] random variables updated before time t. Let k1, . . . , k2n be
a listing of [2n] such that

• V σ(ks)
t , 1 ≤ s ≤ na, is associated to one of the na letters a,

• V σ(ks)
t , na + 1 ≤ s ≤ na + nb, is associated to one of the nb letters b,

• {kna+nb+1, . . . , kn+nb} = [n] \ {k1, . . . , kna},

• {kn+nb+1, . . . , k2n} = {n+ 1, . . . , 2n} \ {kna+1, . . . , kna+nb}.

SinceM0 = w∗, the indices k1, . . . , kna are chosen uniformly without replacement from the set
I = [n] and likewise the indices kna+1, . . . , kna+nb are chosen uniformly without replacement
from the set J = {n+ 1, . . . , 2n}. By definition, either V σ(ks)

t is associated with a letter a for
1 ≤ s ≤ na or na + nb + 1 ≤ s ≤ n + nb. Similarly, either V σ(ks)

t is associated with a letter
b for na + 1 ≤ s ≤ na + nb or n + nb + 1 ≤ s ≤ 2n. Moreover, for 1 ≤ s ≤ na + nb, the
associated uniform variables have not been updated and thus V σ(ks)

t = V
σ(ks)

0 is the ks-th
order statistics of the 2n i.i.d. U [0, 1] random variables V 1

0 , . . . , V
2n

0 .
Using a coupling argument, we will prove that

P{Hmin(vαt ) < x| ταab ≥ t} ≤ πn{w ∈Wn−bnαc : Hmin(w) < x}, x ∈ R.

Take i.i.d U [0, 1] random variables U1, . . . , U4n−na−nb . Write Ũ1 < . . . < Ũ2n for the order
statistics of U2n−na−nb+1, . . . , U4n−na−nb . Pick l1, . . . , lna+nb uniformly at random without
replacement from the index set [2n] and construct a sequence k̃1, . . . , k̃na+nb as follows.

• put k̃s := ls for s ∈ Sa, where Sa := {1 ≤ s ≤ na : ls ∈ [n]},

• put k̃s := ls for s ∈ Sb, where Sb := {na + 1 ≤ s ≤ na + nb : ls ∈ {n+ 1, . . . , 2n}},

• choose k̃s, s ∈ {1, . . . , na}\Sa, uniformly at random without replacement from [n]\{ls :
s ∈ Sa},
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• choose k̃s, s ∈ {na + 1, . . . , na + nb} \ Sb, uniformly at random without replacement
from {n+ 1, . . . , 2n} \ {ls : s ∈ Sb}.

Define
Ṽ
σ(ks)
t := Ũk̃s , 1 ≤ s ≤ na + nb,

Ṽ
σ(ks)
t := Us−na−nb , na + nb + 1 ≤ s ≤ 2n.

V
σ(ks)

t := Ũls , 1 ≤ s ≤ na + nb,

V
σ(ks)

t := Us−na−nb , na + nb + 1 ≤ s ≤ 2n.

Because l1, . . . , lna+nb are uniformly chosen without replacement from the index set [2n],
V
σ(ks)

t , 1 ≤ s ≤ 2n, are i.i.d. U [0, 1] random variables. Consequently, if we construct a word
w̃αt by laying down V 1

t , . . . , V
2n

t in order and replacing V σ(ks)

t by a (resp. b) for 1 ≤ s ≤ n
(resp. n + 1 ≤ s ≤ 2n), the n letters a and the n letters b are in the uniform order and w̃αt
is uniformly distributed over Wn−bnαc. Moreover, Ṽ σ(ks)

t , 1 ≤ s ≤ na + nb, is the k̃s-th order
statistics of i.i.d. U [0, 1] random variables U2n−na−nb+1, . . . , U4n−na−nb . By construction we
have

(k1, . . . , kna+nb)
d
= (k̃1, . . . , k̃na.+nb),

and therefore (
Ṽ 1
t , . . . , Ṽ

2n
t

) d
=
(
V 1
t , . . . , V

2n
t

)
.

It follows that if we construct a word ṽαt by laying down Ṽ 1
t , . . . , Ṽ

2n
t in order and replacing

Ṽ
σ(ks)
t by a (resp. b) for 1 ≤ s ≤ n (resp. n+ 1 ≤ s ≤ 2n), then ṽαt

d
= vαt .

By definition, we also have that

k̃s ≤ ls, 1 ≤ s ≤ na,

k̃s ≥ ls, na + 1 ≤ s ≤ na + nb,

and thus
Ṽ
σ(kj)
t ≤ V

σ(kj)

t , 1 ≤ j ≤ na,

Ṽ
σ(kj)
t ≥ V

σ(kj)

t , na + 1 ≤ j ≤ na + nb,

Ṽ
σ(kj)
t = V

σ(kj)

t , na + nb + 1 ≤ j ≤ 2n.

Consequently, each letter a is located closer to the beginning in the word ṽαt than in the
word w̃αt and that each letter b is located closer to the end in the word ṽαt than in the word
w̃αt , and therefore

Hmin(ṽαt ) ≥ Hmin(w̃αt ).

For x ∈ R
P{Hmin(vαt ) < x| ταab ≥ t} = P{Hmin(ṽαt ) < x}

≤ P{Hmin(w̃αt ) < x}
= πn{w ∈Wn−bnαc : Hmin(w) < x}.
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In other words, the minimum of the height of vαt stochastically dominates the minimum of
the height of a word of the same length when all of the associated uniform random variables
have been updated.

By an argument similar to that in the proof for Lemma 3.6.4, if we represent a word in
Wn−bnαc by a path, then the number of words w in Wn−bnαc such that Hmin(w) < −1

3
nα is

the same as the number of paths from (0, 0) to (2n− 2bnαc,−2b1
3
nαc − 2). Therefore,

πn−bnαc({w ∈Wn−bnαc : Hmin(w) < −1

3
nα}) =

(
2n− 2bnαc

n− 2b1
3
nαc − 1

)/(
2n− 2bnαc
n− bnαc

)
≤
(

2n

n− b1
3
nαc − 1

)/(
2n

n

)
= πn({w ∈Wn : Hmin(w) < −1

3
nα}).

It follows from Lemma 3.6.4 and the stochastic dominance that, for α ≥ 1
2
,

Pw∗{Hmin(vαt ) < −1

3
nα | ταab ≥ t} ≤ πn−bnαc({w ∈Wn−bnαc : Hmin(w) < −1

3
nα})

≤ πn({w ∈Wn : Hmin(w) < −1

3
nα})

≤ πn({w ∈Wn : Hextr(w) >
1

3
nα})

≤ Kαe
− 1

4
n2α−1

.

Since the word Mα
t can be obtained by interleaving the words uαt and vαt ,

Hmax(Mα
t ) ≥ Hmax(uαt ) +Hmin(vαt )

= nα +Hmin(vαt ).

It follows that, for α ≥ 1
2
,

Pw∗{Hextr(Mt) ≥
2

3
nα | ταab ≥ t} ≥ Pw∗{Hmax(Mt) ≥

2

3
nα | ταab ≥ t}

≥ Pw∗{nα +Hmin(vαt ) ≥ 2

3
nα | ταab ≥ t}

≥ Pw∗{Hmin(vαt ) ≥ −1

3
nα | ταab ≥ t}.

≥ 1−Kαe
− 1

4
n2α−1

.

Theorem 3.6.10. For α > 1
2
, there exists a constant cα > 0 such that

tmix ≥ (1− α)n log n− cαn,

where Kα >
3e2π

2
is the constant from Lemma 3.6.4.
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Proof.

Pw∗{Hextr(Mt) ≥
2

3
nα} − πn({w ∈Wn : Hextr(w) ≥ 2

3
nα})

≥
(
Pw∗{Hextr(Mt) ≥

2

3
nα, ταab ≥ t} − πn({w ∈Wn : Hextr(w) ≥ 2

3
nα})P{ταab ≥ t}

)
−
∣∣∣∣Pw∗{Hextr(Mt) ≥

2

3
nα, ταab < t} − πn({w ∈Wn : Hextr(w) ≥ 2

3
nα})P{ταab < t}

∣∣∣∣ .
It follows from Lemma 3.6.9 and Lemma 3.6.4 that there exists Kα >

3e2π
2

such that

Pw∗{Hextr(Mt) ≥
2

3
nα, ταab ≥ t} − πn({w ∈Wn : Hextr(w) ≥ 2

3
nα})Pw∗{ταab ≥ t}

≥ (1− 2Kαe
− 1

4
n2α−1

)Pw∗{ταab ≥ t}.

We also have∣∣∣∣Pw∗{Hextr(Mt) ≥
2

3
nα, ταab < t} − πn({w ∈Wn : Hextr(w) ≥ 2

3
nα})P{ταab < t}

∣∣∣∣
≤
∣∣∣∣Pw∗{Hextr(Mt) ≥

2

3
nα, ταab < t}

∣∣∣∣+

∣∣∣∣πn({w ∈Wn : Hextr(w) ≥ 2

3
nα})P{ταab < t}

∣∣∣∣
≤ 2P{ταab < t}.

Therefore,

d(t) ≥ Pw∗{Hextr(Mt) ≥
2

3
nα} − πn({w ∈Wn : Hextr(w) ≥ 2

3
nα})

≥ (1− 2Kαe
− 1

4
n2α−1

)Pw∗{ταab ≥ t} − 2Pw∗{ταab < t}
= (1− 2Kαe

− 1
4
n2α−1

)(1− Pw∗{ταab < t})− 2Pw∗{ταab < t}
= 1− 2Kαe

− 1
4
n2α−1 − (3− 2Kαe

− 1
4
n2α−1

)Pw∗{ταab < t}

≥ 1− 2Kαe
− 1

4
n2α−1 −

∣∣∣3− 2Kαe
− 1

4
n2α−1

∣∣∣Pw∗{ταab < t}.

Put t = (1−α)n log n−
(

log

(
nα+1

(nα−1)(n+1)

)
+ c

)
n for c > 0. It follows from Corollary 3.6.8

that

d

(
(1− α)n log n−

(
log

(
nα+1

(nα − 1)(n+ 1)

)
+ c

)
n

)
≥ 1− 2Kαe

− 1
4
n2α−1 −

∣∣∣3− 2Kαe
− 1

4
n2α−1

∣∣∣Pw∗{ταab < (1− α)n log n−
(

log

(
nα+1

(nα − 1)(n+ 1)

)
+ c

)
n

}
≥ 1− 2Kαe

− 1
4
n2α−1 −

∣∣∣3− 2Kαe
− 1

4
n2α−1

∣∣∣ 2

c2nα
.
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Since for α > 1
2

lim
n→∞

1− 2Kαe
− 1

4
n2α−1 −

∣∣∣3− 2Kαe
− 1

4
n2α−1

∣∣∣ 1

c2nα
= 1,

lim
n→∞

log

(
nα+1

(nα − 1)(n+ 1)

)
= 0,

there exists a constant cα > 0 such that

tmix ≥ (1− α)n log n− cαn.

Corollary 3.6.11.
1

2
≤ lim inf

n→∞

tmix

n log n
≤ lim sup

n→∞

tmix

n log n
≤ 1.

Proof. It is a immediate result of Theorem 3.6.10 and Theorem 3.5.8 that for α > 1
2

(1− α) + cα
1

log n
≤ tmix

n log n
≤ 1 +

log 8

log n
.

Thus, by sending n→∞, we have for any α > 1
2

(1− α) ≤ lim inf
n→∞

tmix

n log n
≤ lim sup

n→∞

tmix

n log n
≤ 1.

It is established by sending α→∞ that

1

2
≤ lim inf

n→∞

tmix

n log n
≤ lim sup

n→∞

tmix

n log n
≤ 1.
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