
Lawrence Berkeley National Laboratory
LBL Publications

Title

Benchmarking materials property prediction methods: the Matbench test set and
Automatminer reference algorithm

Permalink

https://escholarship.org/uc/item/25b1x09j

Journal

npj Computational Materials, 6(1)

ISSN

2057-3960

Authors

Dunn, Alexander
Wang, Qi
Ganose, Alex
et al.

Publication Date

2020

DOI

10.1038/s41524-020-00406-3

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/25b1x09j
https://escholarship.org/uc/item/25b1x09j#author
https://escholarship.org
http://www.cdlib.org/

Benchmarking Materials Property Prediction
Methods: The Matbench Test Set and
Automatminer Reference Algorithm

Alexander Dunn1,2*, Qi Wang1, Alex Ganose1, Daniel Dopp1, and Anubhav Jain1*

1. Lawrence Berkeley National Laboratory, Energy Technologies Area, 1

Cyclotron Road, Berkeley, CA 94720, United States

2. Department of Materials Science and Engineering, University of California,

Berkeley CA 94720, United States

* Correspondence to ardunn@lbl.gov, ajain@lbl.gov

Abstract

We present a benchmark test suite and an automated machine learning procedure
for evaluating supervised machine learning (ML) models for predicting properties of
inorganic bulk materials. The test suite, Matbench, is a set of 13 ML tasks that
range in size from 312 to 132k samples and contain data from 10 density functional
theory-derived and experimental sources. Tasks include predicting optical, thermal,
electronic, thermodynamic, tensile, and elastic properties given a materials
composition and/or crystal structure. The reference algorithm, Automatminer, is a
highly-extensible, fully-automated ML pipeline for predicting materials properties
from materials primitives (such as composition and crystal structure) without user
intervention or hyperparameter tuning. We test Automatminer on the Matbench
test suite and compare its predictive power with state-of-the-art crystal graph
neural networks and a traditional descriptor-based Random Forest model. We find
Automatminer achieves the best performance on 8 of 13 tasks in the benchmark.

1

We also show our test suite is capable of exposing predictive advantages of each
algorithm – namely, that crystal graph methods appear to outperform traditional
machine learning methods given ~104 or greater data points. The pre-processed,
ready-to-use Matbench tasks and the Automatminer source code are open source
and available online (http://hackingmaterials.lbl.gov/automatminer/). We encourage
evaluating new materials ML algorithms on the Matbench benchmark and
comparing them against the latest version of Automatminer.

Introduction

 New functional materials are vital for making fundamental advances across
scientific domains, including computing and energy conversion. However, most
materials are brought to commercialization primarily by direct experimental
investigation, an approach typically limited by 20+ year design processes,
constraints in the number of chemical systems that can be investigated, and the
limits of a particular researcher's intuition. By utilizing materials “big data” and
leveraging advances in machine learning (ML), the emerging field of materials
informatics has demonstrated massive potential as a catalyst for materials
development, alongside ab initio techniques such as high-throughput density
functional theory1,2 (DFT). For example, by using support vector machines to search
a space of more than 118k candidate crystal structures, Tehrani et al.3 identified,
synthesized, and experimentally validated two novel superhard carbides. In another
study, Cooper et al.4 applied natural language processing (NLP) techniques to
assemble 9k photovoltaic candidates from scientific literature; equipped with
algorithmic structure-property encodings and a design-to-device data mining
workflow, they identified and experimentally realized a new high-performing
panchromatic absorption dye. These examples are but two of many. The sheer
investigative volume and potential research impact of materials data mining has
helped brand it as “materials 4.0”5 or “the 4th paradigm”6 of materials research.

2

However, the growing role of ML in materials design exposes weaknesses in
the materials data mining pipeline: first, there is no systematic method for
comparing and selecting materials ML models. Comparing newly published models
to existing techniques is crucial for rational ML model design and advancement of
the field. Other fields of applied ML have seen rapid advancement in recent years in
large part due to the creation and use of standardized community benchmarks such
ImageNet7 (16,000+ citations) for image classification and the Stanford Question
Answering Dataset8 (1400+ citations) for NLP. While there are commonly used
datasets for materials problems as well, e.g., Castelli et al.’s investigation of cubic
perovskites9, it is uncommon for two algorithms to be tested against the same
dataset and with the same data cleaning procedures. Methods for estimating
generalization error (e.g., the train/test split) also vary significantly. Typically,
either the predictive error is averaged over a set of cross-validation folds (CV
score)10 or a hold-out test set is used, with the specifics of the split procedure
varying between studies. Furthermore, if a model’s hyperparameters are tuned to
directly optimize one of these metrics, equivalent to trying many models and only
reporting the best one, they may significantly misrepresent the true generalization
error10,11 (model selection bias). Arbitrary choice of hold-out set can also bias a
comparison in favor of one model over another (sample selection bias)12–14. Thus, the
materials informatics community lacks a standard benchmarking method for
critically evaluating new models. If models cannot be accurately compared, ML
studies are difficult to reproduce and innovation suffers.

Moreover, the breadth of materials ML tasks is so large that many models
must still be designed and tuned by hand. While encouraging for the field, the
recent explosion15 of novel descriptors and models has given practitioners a
paradox-of-choice, as selecting the optimal descriptors and model for a given task is
nontrivial. The consequences of this paradox-of-choice can be that researchers select
suboptimal models or spend researcher time towards re-tuning models for new
applications. Thus, an automatic algorithm – which requires no expert domain

3

knowledge to operate yet utilizes knowledge from published literature – could be of
great use in prototyping, validating, and analyzing novel high-fidelity models.

Given the above considerations, a benchmark consisting of the following two
parts is needed: (1) a robust test suite of materials ML tasks and (2) an automatic
“reference” model. The test suite must mitigate arbitrarily favoring one model over
another. Furthermore, it should contain a variety of datasets such that domain-
specific algorithms can compare on specific datasets and general-purpose
algorithms can compare across multiple relevant tasks. The second part, the
reference algorithm, may serve multiple purposes. First, it might provide a
community standard – or “lower bar” – which future innovation in materials ML
should aim to surpass. Second, it can act as an entry point into materials
informatics for non-domain specialists since it only requires a dataset as input.
Finally, it can help determine which descriptors in the literature are most
applicable to a given task or set of tasks.

In this paper, we introduce both these developments - a benchmark test set
and a reference algorithm - for application to inorganic, solid state materials
property prediction tasks. Matbench, the test suite, is a collection of 13 materials
science-specific data mining tasks curated to reflect the diversity of modern
materials data. Containing both traditional “small” materials datasets of only a few
hundred samples and large datasets of >105 samples from simulation-derived
databases, Matbench provides a consistent nested cross validation16 (NCV) method
for estimating regression and classification errors on a range of mechanical,
electronic, and thermodynamic material properties. Automatminer, the reference
algorithm, is a general-purpose and fully-automated machine learning pipeline. In
contrast to other published models that are trained to predict a specific property,
Automatminer is capable of predicting any materials property given materials
primitives (e.g., chemical composition) as input when provided with a suitable
training dataset. It does this by performing a procedure similar to a human
researcher: by generating descriptors using Matminer’s library17 of published
materials-specific featurizations, performing feature reduction and data

4

preprocessing, and determining the best machine learning model by internally
testing various possibilities on validation data. We test Automatminer on the test
suite in order to establish baseline performance, and we present a comparison of
Automatminer with published ML methods. Finally, we demonstrate our
benchmark capable of distinguishing predictive strengths and weaknesses among
ML techniques. We expect both Matbench and Automatminer to evolve over time,
although the current versions of these tools are ready for immediate use. As
evidence of its usefulness, Kabiraj et al.18 have recently used Automatminer in their
research on 2D ferromagnets.

Results

Matbench test suite v0.1

 The Matbench test suite v0.1 contains 13 supervised ML tasks from 10
datasets. Matbench’s data is sourced from various sub-disciplines of materials
science, such as experimental mechanical properties (alloy strength), computed
elastic properties, computed and experimental electronic properties, optical and
phonon properties, and thermodynamic stabilities for crystals, 2D materials, and
disordered metals. The number of samples in each task ranges from 312 to 132,752,
representing both relatively scarce experimental materials properties and
comparatively abundant properties such as DFT-GGA19 formation energies. Each
task is a self-contained dataset containing a single material primitive as input
(either composition or composition plus crystal structure) and target property as
output for each sample. To help enforce homogeneity, datasets are precleaned to
remove unphysical computed data and task-irrelevant experimental data (see
Methods for more details); thus, as opposed to many raw datasets or structured
online repositories, Matbench’s tasks have already had their data cleaned for input
into ML pipelines. We recommend the datasets be used as-is for consistent
comparisons between models. To mitigate model and sample selection biases, each
task uses a consistent nested cross-validation16 procedure for error estimation (see

5

Methods). The distribution of datasets with respect to application type, sample
count, type of input data, and type of output data is illustrated in Figure 1; detailed
notes on each task can be found in Table 1.

Table 1: The dataset test suite. The test suite contains 13 separate ML tasks
spread across 10 datasets. The test suite’s datasets are diversified across multiple
metrics, including target property, number of samples (representing several orders
of magnitude), and method for determining the target property.

Target

Property

(Unit)

Task Type Data Source Samples Structure

available

Method

Bulk Modulus
(GPa)

Regression Materials Project20–22 10,987 Yes DFT-GGA

Shear Modulus
(GPa)

Regression Materials Project20–22 10,987 Yes DFT-GGA

Band Gap (eV) Regression Materials Project20,21 106,113 Yes DFT-GGA

Metallicity
(binary)

Classification Materials Project20,21 106,113 Yes DFT-GGA

Band Gap (eV) Regression Zhuo et al.23 4,604 No Experiment

Metallicity
(binary)

Classification Zhuo et al.23 4,921 No Experiment

Bulk Metallic
Glass formation
(binary)

Classification Landolt-Bornstein
Handbook24,25

5,680 No Experiment

Refractive index
(no unit)

Regression Materials Project20,21,26 4,764 Yes DFPT-GGA

6

Formation
Energy
(eV/atom)

Regression Materials Project20,21 132,752 Yes DFT-GGA

Formation
Energy
(eV/atom)

Regression Castelli et al. 9 18,928 Yes DFT-GGA

Freq. at Last
Phonon PhDOS
Peak (1/cm)

Regression Materials Project20,21,27 1,296 Yes DFPT-GGA

Exfoliation
Energy
(meV/atom)

Regression JARVIS DFT 2D28 636 Yes DFT-vDW-DF

Steel yield
strength (GPa)

Regression Citrine Informatics29 312 No Experiment

7

Figure 1: Categorical dataset distribution of the 13 machine learning tasks in the
Matbench test suite v0.1. Methods of categorization are listed on the left:
“Application” describes the ML target property of the task as it relates to materials,
“Num. samples” describes the number of samples in each task, “Input Type”
describes the materials primitives that serve as input for each task, and “Task
Type” designates the supervised ML task type. Numbers in the bars represent the
number of tasks fitting the descriptor above it (e.g., there are 10 regression tasks).

Automatminer Reference Algorithm

At a high level, an Automatminer pipeline can be considered a black box that
performs many of the steps typically performed by trained researchers (feature

8

extraction, feature reduction, model selection, hyperparameter tuning). Given only
a training dataset, and without further researcher intervention or hyperparameter
tuning, Automatminer produces a machine learning model that accepts materials
compositions and/or crystal structures and returns predictions. Automatminer can
create persistent end-to-end pipelines containing all internal training data,
configuration, and the best-found model - allowing the final models to be further
inspected, shared, and reproduced.

As shown in Figure 2, the Automatminer pipeline is composed of four stages.
In the first stage, autofeaturization, Automatminer generates potentially relevant
features using Matminer’s featurizer library17 and verifies that each featurizer is
valid for a threshold percentage (default 90%) of materials input objects. An
example of an invalid behavior would be trying to apply a featurizer that is not
parameterized for noble gases to crystals or compounds containing those elements.
Automatminer next applies each featurizer in an error-tolerant fashion, expanding
a material primitive into potentially many thousands of features derived from
published literature. The next step in the pipeline is the cleaning stage. This
prepares the feature matrix for ML by handling errors (e.g., imputing unknown
values) and encoding categorical features. The third stage uses one or more
dimensionality reduction algorithms (e.g., based on Pearson correlation
coefficients30 or principal component analysis31) to reduce the feature vector
dimension, removing, for example, redundant or linearly dependent sets of features.
Finally, an AutoML stage searches a pre-defined space of internal pipelines which
are entirely agnostic to materials inputs. These tree-based internal pipelines as
implemented in the TPOT library32 include techniques for normalization, nonlinear
transformations, and ML models with corresponding hyperparameter grids. Each
stage can be extensively customized to facilitate end-user needs; for example,
pipelines can retain custom features, use single models instead of AutoML, and fine
tune feature selection hyperparameters. However, pre-configured pipeline presets
are available based on memory, CPU, and time constraints, and no user
customization is required to train or predict using materials data when using these

9

presets. In this work, we report results generated using the "Express" preset, which
is designed to run with a maximum AutoML training time of 24 hours.

Figure 2: The AutoML + Matminer (Automatminer) pipeline, which can be applied
to composition-only datasets, structure datasets, and datasets containing electronic
bandstructure information. Once fit, the pipeline accepts one or more materials
primitives and returns a prediction of a materials property. During
autofeaturization, the input dataset is populated with potentially relevant features
using the Matminer library. Next, data cleaning and feature reduction stages
prepare the feature matrices for input to an AutoML search algorithm. During
training, the final stage searches ML pipelines for optimal configurations; during
prediction, the best ML pipeline (according to validation score) is used to make
predictions.

 We evaluate Automatminer on the Matbench test suite and provide
comparisons with alternative algorithms in Figure 3. The evaluation is performed

10

using a five-fold Nested Cross Validation (NCV) procedure. In contrast to relying on
a single train-test split, in the five-fold NCV procedure, five different train-test sets
are created. For each of the five train-test sets, a machine learning model is fit
using only the training data and evaluated on the test data. Note that this implies
that even for a single type of model (e.g., Automatminer or CGCNN33), a slightly
different model will be trained for each of the five splits since the training data
differs between splits. The errors from the five different overall runs are averaged
to give the overall score. Note that within each of the five runs of this outer loop, the
training data portion is generally split using an inner cross-validation that is used
for model selection within the training data, hence the name "Nested Cross
Validation" (in our procedure, an algorithm can make use of the training data
however it chooses). One advantage of 5-fold nested CV over a traditional train-test
split is that each sample in the overall dataset is present as training in four of the
splits and as test in one of the splits.
 For all tasks, the Automatminer “Express” preset configuration is used in
this work. The Express preset only implements featurizers from Matminer that are
broadly applicable (tend to produce valid feature values for almost all compositions
and/or crystal structures), are computationally efficient (<2s/sample), and can be
trivially transformed from matrices to vectors for each sample. "Express" feature
reduction typically retains between 20 and 200 features based on a feature
importance threshold from a Random Forest34 model. The reduced number of
features allows for accelerated evolution of the TPOT genetic algorithm within the
Express training time limit of 24 hours. Further details can be found in the Methods
and Supplementary Information. While other presets are available in
Automatminer, we have found that the Express preset generally retains 95% or
more of the accuracy of more expensive presets on multiple data-scarce tasks (bulk
metallic glass classification, experimental band gap regression/classification,
exfoliation energy regression) at less than 50% of the computational cost to reach
reasonable AutoML convergence. We emphasize that the Automatminer Express

11

preset is a single configuration capable of fitting on all Matbench tasks with no
additional input or configuration. We do not modify this preset for different tasks.

Four alternative algorithms are used for comparison. To simulate a control, a
Dummy model predicts the mean of the training set (regression) or randomly selects
a label in proportion to the distribution of the training set (classification). As a
second baseline representing commonly used methods, we employ a Random
Forest34 model (RF) using Magpie elemental statistics25 and Sine Coulomb Matrix35
(if structures are present in the dataset) to predict each property. Finally, for tasks
containing relaxed structures, we also test against CGCNN33 and MEGNet36, two
graph-network algorithms for general-purpose property prediction. It must be
emphasized that a goal of Matbench is to minimize arbitrary biases when
comparing models. Therefore, the four alternatives and Automatminer all
underwent identical error estimation procedures (NCV on identical folds) for each
task.

For some Matbench tasks, we were able to find published scores of
researcher-optimized machine learning models, which we label as the “Best
Literature” score. However, it should be noted that although these studies report
the same error metric (MAE) using similar datasets, the scores do not use identical
datasets (e.g., using different data filtering algorithms to remove erroneous or
unreliable data points) or the same error estimation procedure (e.g., they do not use
nested cross validation and may use different proportions of train and test).
Therefore, these scores cannot be directly compared to the algorithms listed above.

12

Figure 3: Comparison of machine learning algorithm accuracies on the Matbench
v0.1 test suite (see Table 1 for more details of the test sets). Numbers on each
square represent either the mean average error (regression) or mean ROC-AUC
(classification) of a five-fold nested cross validation (NCV), except for "Best
Literature" scores. Best Literature scores were taken from published literature
models23,37,38 evaluated on similar tasks or datasets, often subsets of those in
Matbench, and do not use NCV. Colors represent “prediction quality” with respect
to either the dataset target mean average deviation (MAD) or the high/low limits of
ROC-AUC (0.5 is equivalent to random, 1.0 is best); blue and red represent high
and low prediction qualities, respectively. The best score for each task is outlined
with a black box (The "Best Literature" scores are excluded because they do not use
the same testing protocol). To account for variance from choice of NCV split,
multiple scores may be outlined if within 1% of the true “best” score. A comparison
with a pure Random Forest (RF) model using Magpie25 and SineCoulombMatrix35
features is provided for reference. Dummy predictor results are also shown for each
task. All Automatminer, CGCNN, MEGNet, and RF results were generated using

13

the same NCV test procedure on identical train/test folds; all featurizer (descriptor)
fitting, hyperparameter optimization, internal validation, and model selection were
done on the training set only. A full breakdown of all error estimation procedures
can be found in Methods.

All models outperform Dummy on all tasks: the Dummy comparison exhibits
errors between 68% and 299% higher than the best model for any task. We next
examine which algorithms perform best, with “best” taken to include scores within
1% of the best NCV score (we find the standard deviation between folds for the
same model is typically between 0.5 - 5%). The Automatminer Express preset has a
best NCV score (lowest mean average error, MAE or highest receiver operating
characteristic area under curve, ROCAUC) on 8 of 13 tasks. In particular,
Automatminer equals or outperforms the RF pipeline on all tasks except predicting
formation energies across the Materials Project. Among the nine structure tasks
only, Automatminer and MEGNet both have best scores on 4 tasks each. CGCNN is
the highest performer only for the Materials Project band gap regression task; yet,
across the 6 tasks with more than 10# samples, the MEGNet and CGCNN scores
are generally quite close.

Notably, we also find Automatminer has similar errors to scores taken from
literature. Although these results are taken directly from published reports which
use similar – but not identical – datasets and a variety of non-NCV error
procedures, it is notable that Automatminer can automatically generate models of
roughly similar quality to tediously hand-optimized models. This suggests that
similar results as those obtained in the literature can be obtained from a fully
automated ML pipeline that requires no researcher tuning or intuition.
 Next, we examine how the performance of the various machine learning
algorithms varies with the size of the training dataset without regard to the specific
task. To do this, we normalize the errors on the various tasks by dividing the mean
average error (MAE) by the mean average deviation (MAD) in the dataset. With
this normalization, a model that always predicts the average of the dataset will

14

have an error of exactly 1.0. Using least-squares linear regression, we find
noticeable inverse trends in the MAE/MAD relative error (Figure 4) with respect to
the log of dataset size. Interestingly, irrespective of the target property, the rates of
improvement with increasing dataset size (slope of the lines) are vastly different
between algorithms. In Figure 4(a), we plot the trend for structure-based regression
tasks only. The graph network models CGCNN and MEGNET have high relatively
high errors on tasks with small datasets, but improve rapidly as the task’s dataset
size increases. In contrast, the descriptor-based Automatminer and RF models have
lower errors on small datasets, but their rates of improvement are far shallower,
and they lose their small data advantage as the data size passes 10# samples. Both
graph neural network approaches have similarly high rates of improvement, which
may indicate that the underlying ML algorithms are able to leverage information
from large datasets more efficiently than traditional ML (RF) or AutoML. This
finding corroborates Schmidt et al.’s prediction15 that universal graph neural
networks33,36 will dominate the state-of-the-art on large (>105 samples) materials
datasets.
 In Figure 4(b), we compare Automatminer against the Random Forest model
since these two models are able to make predictions on all regression tasks (both
composition-only as well as composition plus structure tasks). In 4(b), AutoML’s
advantage over more conventional techniques narrows as the number of samples
increases. Near 105 samples, the AutoML advantage is essentially lost. This
phenomenon can be partially explained from the 24-hour training time limitation of
the Automatminer Express preset. Although the exact pipeline used by the RF
model exists in the Express model space, the long training time of each ML pipeline
reduces the AutoML search efficiency. Given enough time and computational
resources to internally validate and improve its model, it is highly probable the
Automatminer Express preset will either find a model equivalent to or superior to
the RF model. However, simple ML models (such as the RF we tested) can equal or
outperform our AutoML approach if the AutoML search is inefficient in finding the
optimal model.

15

Figure 4: (a) Trends in relative predictive accuracy for all algorithms on the eight
Matbench v0.1 regression tasks with crystal structure. Algorithms are segregated
by color. For each task-algorithm pair, the mean MAE of the nested CV test folds is
divided by the dataset mean average deviation to get the relative error. A relative
error of zero represents perfect predictive performance; a relative error of 1.0 is

16

equivalent to predicting the mean of the dataset (as in the Dummy Predictor). The
plot is agnostic to target property. A least-squares linear regression line of the same
color as the scatter points was fit for each algorithm. Multiple tasks have an
identical dataset size but differ in their relative errors (e.g., log10 K and log10 G). (b)

Similar to (a) but for all regression tasks (including those lacking crystal structure
data as input) and only showing the two algorithms valid for all such tasks.

All algorithms exhibit a noisy yet universal trend which decreases the
relative errors as the dataset size increases, even though the underlying task is also
changing with size. Such a trend corroborates Zhang and Ling’s observations39
based on a survey of materials ML data in published literature, which suggests the
relationship between error (constructed using literature CV data and scaled by
range rather than mean average deviation) and dataset size can be fit with a
decreasing power law. This trend identified by Zhang and Ling is similar to that
found in the more structured results we present. However, we additionally find that
the rate of improvement differs substantially between more conventional machine
learning approaches versus the graph neural network approaches. Furthermore,
despite these overall trends, it is clear that the details of the underlying task do
matter. For example, the two graph networks (CGCNN and MEGNET) appear to
far outperform the two traditional ML algorithms (Random Forest and
Automatminer) on the two formation energy prediction tasks. However, they do not
outperform the traditional algorithms by as much on the band gap regression task,
despite the large-data domain that graph networks excel in. Similarly, while
Automatminer outperforms the graph networks on most small datasets, MEGNet
decisively outperforms Automatminer for the PhDOS task. The predictive
advantage may lie in MEGNet’s specific architecture and implementation rather
than an inherent advantage of crystal graph neural networks, given CGCNN has
higher error than both Automatminer and MEGNet for the PhDOS task.

17

Discussion

The reference algorithm and test suite presented above encompass a
benchmark that can be used to accelerate development of supervised learning tasks
in materials science. Automatminer provides an extensible and universal platform
for automated model selection, while Matbench defines a consistent test procedure
for unbiased model comparison. Together, Automatminer + Matbench define a
performance baseline for machine learning models aiming to predict materials
properties from composition or crystal structure. In this section, we address
limitations and extensions of both the reference algorithm and the test suite.

Reference algorithm analysis

 Although the “Express” preset was used to demonstrate Automatminer’s
performance, the Automatminer pipeline is fully configurable at each stage. To
reduce the complexity of developing end-to-end materials ML pipelines,
Automatminer provides other preset configurations for varying CPU capabilities,
time requirements, and objectives. Each preset defines a specific balance between
computational cost and comprehensiveness of ML search. For example, the “Debug”
preset employs only a single computationally inexpensive featurizer (Magpie
featurizer17,25) and a heavily restricted AutoML model space restricted to a two
minute training time; similarly, the “Debug_single” preset only uses a single
predictor (Random Forest) in place of an AutoML algorithm. Other presets exist
which expand on the Express featurizer set using more expensive featurization and
longer AutoML optimization times. Generally, we observe diminishing returns on
performance with more expensive presets; minor improvements in performance
require significant increases in computational time. This is particularly noticeable
on small datasets where many ML pipelines can be attempted within the time
restriction. For instance, in classifying experimental metallicities, the Express
preset improves ROC-AUC a negligible ~0.2% (0.919) on average over Debug
(0.917), with the Heavy (most expensive) preset improving only another 0.6%

18

(0.925). Further details on the comparison of presets can be found in the
Supplementary Information.
 Automatminer may be further improved by including more descriptor
techniques in its featurizer sets, especially if those featurizers provide information-
dense features at low computational cost. For example, Automatminer does not
implement any features for determining 2nd-nearest neighbor coordination, an
important structural motif representing medium-range order. Lack of relevant
featurizers may also explain the graph networks’ advantages in predicting certain
thermodynamic properties. Due to the ability of crystal graph networks to
effectively convolve site/bond data, they may more accurately represent 3D chemo-
spatial information than traditional descriptors. Future Automatminer
development might benefit from using the chemo-spatial data (hidden-layer
embeddings) from crystal graph networks as input via transfer learning; similarly,
graph-composition networks such as RooSt40, which have demonstrated success in
learning hidden representations from stoichiometry alone, may serve as a valuable
improvement on Automatminer’s current featurizer set. Adding such descriptors to
Automatminer is well within its current capabilities, since Automatminer is
extensible (with respect to featurizers) by design.
 With respect to machine learning models searched by the AutoML library, we
find that the majority of AutoML training on materials ML tasks find tree-ensemble
methods perform better than the other models in the search space such as k-nearest
neighbors, logistic regression, and elastic net regression. On small datasets, we
observe tree-ensembles have sufficient model complexity to model material-property
relationships more faithfully than regularized linear methods or logistic regression.
However, the dominance of tree-ensembles is in part an artifact of the relatively
small model search space of Automatminer, which at present does not include
nonlinear support vector machine kernels or neural networks. Models with higher
complexity, such as deep neural networks, may also improve Automatminer’s
performance on large datasets. Thus, the AutoML search can be improved by
expanding the model space at increasing computational cost. However, regardless of

19

the pre-defined model space or feature set construction, thoughtfully-engineered
models such as graph networks or other concepts will likely be able to exceed the
baseline AutoML model’s performance. An AutoML algorithm is best suited for the
rapid prototyping of more complex human-tuned models rather than the
replacement of architectures designed with human expertise.

Test suite limitations and extensions

In the Matbench benchmark, we use NCV as a one-size-fits-all tool for
evaluation, but it is also conceivable that domain-specific methods better estimate
the generalization error than NCV. Ren et al.38 use “grouped” CV to estimate the
error of their models for classifying bulk metallic glasses outside of the chemical
systems contained in the training set. The rationale behind grouped CV is that the
testing procedure should mimic the real-world application. In the case of bulk
metallic glass study, the intended goal of the algorithm was to make predictions in
chemical systems where no data points were yet present. However, a randomized
train/test split would likely result in selecting some data points from all chemical
systems for the training and testing data. Instead, grouped CV will first separate
data points by chemical space, and then select an entire chemical space to fall into
either the test or training set. This ensures that testing is conducted on new
chemical spaces for which there is no training data within that chemical space.

Yet, using grouped CV requires a well-defined manner for grouping the data.
In the case of bulk metallic glasses, chemical systems are easily identified as
natural groups since the goal is to predict data for entirely unexplored chemical
systems. For other materials ML tasks, features for grouping may be hidden in
subtle structural motifs or nuances of electronic configuration. Leave-one-cluster-
out CV (LOCO-CV)41 is one potential variant of grouped CV that aims to automate
grouping by k-means clustering. However, the groups are determined by the choice
of input features, which poses two fundamental problems with this technique. First,
researchers employing different input features will end up with different definitions
of groups and thus different testing procedures; this could be corrected if the

20

features used for the grouping procedure were standardized (even if a different set
of input features was used for prediction). Second, the input features may not
properly capture the most physically-relevant grouping; for example, if all input
features are based on composition, but the most natural grouping is by a structural
feature such as crystal type, then the resulting groups will have less value. Thus,
for now it is largely up to researchers to determine the need for using grouped CV
and to determine the best grouping strategy. Other strategies41,42 to predict outlier
data in the test set may also prove useful.

An improved benchmark could use a specific, distinct error estimation
procedure for every task; such a procedure can be determined by domain experts to
most accurately represent the real-world use of the algorithm. The ideal benchmark
would therefore be a consensus of community tasks, each with an error estimation
procedure customized to most accurately reflect the algorithm’s true error rate in
that particular subfield. We chose NCV as a standard error estimator because there
are few such well-agreed-upon procedures for existing materials datasets. Future
versions of the benchmark may include error estimation procedures other than
NCV.

Matbench is not intended to be a final benchmark but a versioned resource
that will grow with the field. The ever-increasing volume of data generated from
advances in high-throughput experimentation and computation may enable future
ML algorithms to predict classes of materials properties that are presently sparse.
For example, ab initio defect calculations are presently expensive, but an
investigation by Emery and Wolverton43 has demonstrated DFT can generate defect
data in promising quantities for future mainstream statistical learning. Advances
in high-throughput experimental techniques (such as automated experimentation)
also have the possibility to vastly increase the size and scope of materials data; for
instance, a recent study44 was able to capture UV-Vis spectroscopy data for more
than 179,000 metal oxides. A benchmark must evolve to represent these
advancements in materials data production. We expect Matbench to be an evolving
representation of materials property prediction tasks, and updated versions of

21

Matbench will be released to reflect emerging areas of research. In a similar
fashion, Automatminer is designed to be extensible toward new techniques for
generating descriptors from compositions, crystal structures, and electronic band
structures. As new research is released for converting materials objects to machine-
learnable descriptors, we intend on incorporating this knowledge into
Automatminer’s architecture.

Conclusion

 We presented Matbench v0.1, a set of ML tasks aimed at standardizing
comparisons of materials property prediction algorithms. We also introduced
Automatminer, a fully-automated pipeline for predicting materials properties,
which we used to set a baseline across the task set. Using Matbench, we compare
Automatminer with crystal graph neural network models, a traditional Random
Forest model, and a Dummy control model. We find Automatminer’s auto-generated
models outperform or equal the RF model across all but one task and are more
accurate than crystal graph networks on most tasks with ~104 points or fewer.
However, crystal graph networks appear to learn better on tasks with larger
datasets. Automatminer can be used outside of benchmarking to make predictions
automatically and seed research for more specialized, hand-tuned models. We
encourage evaluating new ML algorithms on the Matbench benchmark and
comparing with the latest version of Automatminer.

Methods

 Raw data for Matbench v0.1 were obtained by downloading from the original
sources. Tabular versions of some datasets are available online through Matminer’s
dataset retrieval tools. These datasets contain metadata and auxiliary data. In
contrast, the final Matbench datasets are curated tasks containing only the
materials input objects and target variables, with all extraneous data removed.

22

Unphysical (e.g., negative DFT elastic moduli), highly uncommon or
unrepresentative samples (e.g., solid state noble gases) were removed according to a
specific per-task procedure. Table 2 describes the resources and steps needed to
recreate each dataset from the original source or Matminer version.

Table 2: Procedures and sources for creating datasets in Matbench v0.1.
"Original Source" denotes the original work that produced the raw data, which
needs not be in tabular form. Matminer source datasets are tabular versions of this
raw data which can be retrieved with Matminer and may apply additional post-
processing or filtering to the original source data. More information on these
datasets can be found on Matminer’s dataset summary page and in the Matminer
source code. Additional modifications are enumerated.

Task name Target Property (Unit) Original Source Matminer source
dataset

Additional
modifications

log_kvrh Bulk Modulus (GPa) Materials Project20–22 None* 1,2,3,6,7

log_gvrh Shear Modulus (GPa) Materials Project20–22 None* 1,2,3,6,7

mp_gap Band Gap (eV) Materials Project20,21 None* 1,6,7

mp_is_metal Metallicity (binary) Materials Project20,21 None* 1,6,7

expt_gap Band Gap (eV) Zhuo et al.23 expt_gap 8,9

expt_is_metal Metallicity (binary) Zhuo et al.23 expt_gap 8,10

glass Bulk Metallic Glass
formation (binary)

Landolt-Bornstein
Handbook24,25

glass_ternary_la
ndolt

8, 11

dielectric Refractive index (no
unit)

Materials
Project20,21,26

None* 1,4,6,7

mp_e_form Formation Energy
(eV/atom)

Materials Project20,21 None* 5,6,7

23

perovskites Formation Energy
(eV/atom)

Castelli et al.9 castelli_perovskit
es

7

phonons Freq. at Last Phonon
PhDOS Peak (1/cm)

Materials
Project20,21,27

phonon_dielectric
_mp

1,7

jdft2d Exfoliation Energy
(meV/atom)

JARVIS DFT 2D28 jarvis_dft_2d 7

steels Steel yield strength
(GPa)

Citrine Informatics29 steel_strength 8

* Generated using the Materials Project API21 on 4/12/2019.
1. Remove entries having a formation energy or energy above the convex hull more than 150meV.
2. Remove entries having GVoigt, GReuss, GVRH, KVoigt, KReuss, or KVRH less than or equal to zero.
3. Remove entries failing GReuss ≤ GVRH ≤ GVoigt or KReuss ≤ KVRH ≤ KVoigt
4. Remove entry with refractive index less than 1.
5. Remove entries having formation energies greater than 3.0eV. This operation removes ~1500 1-

dimensional crystal structures likely resulting from mis-converged DFT structure optimizations of
Half-Heuslers present in the Materials Project database as of the generation date.

6. Remove entries containing noble gases.
7. Remove all columns except structure and the target variable.
8. Remove all columns except composition and the target variable.
9. Filter according to unique compositions by ensuring no composition has conflicting metallicity.
10. Filter according to unique compositions by removing compositions with a range of reported band gap

values of more than 0.1eV. For each remaining composition, select the value closest to the mean of that
composition's reported values.

11. Filter according to unique compositions, removing compositions with any conflicting bulk metallic glass
formation classifications.

 Five-fold nested cross validation was used to evaluate each algorithm on
every task of the benchmark. The outer test loop of the cross validation used
uniformly randomized splits generated with scikit-learn45 KFold (random seed
18012019). The splits were identical for each algorithm. Classification tasks used
stratified cross validation generated with StratifiedKFold (random seed 18012019)
to more accurately represent classification performance with unbalanced numbers
of each class label. Within each of the five splits, 80% training + validation data is
given to the algorithm to optimize the model internally, and the remaining 20% is

24

used for testing. After predicting on each of the five 20% test splits, the error or
AUC is averaged over the five folds. The internal validation and model selection
process is dependent on the algorithm.

It is worthwhile to quickly enumerate the limitations of NCV and justify its
use. First, NCV is computationally expensive. For k-fold NCV, the traditional hold-
out tuning/validation/test procedure must be repeated k times. NCV also depends
on the choice of internal learning procedure for each fold, an aspect which mimics
the selection process used by other resampling methods; thus, even when the test
sets are fixed, repeating identical procedures can produce error estimates with high
variance46. Several alternative schemes have been proposed which preserve NCV’s
advantages while attempting to mitigate issues from increased variability and
computational cost. One potential improvement is repeated NCV; but even this
approach demonstrates large variation of loss estimates across nested CV runs and
is even more computationally expensive than NCV47. A promising alternative
proposes a smooth analytical alternative to NCV which would reduce the NCV’s
computational intensity46. This analytical alternative also reduces the variability
introduced by learning set choice using weights determined after the outer CV loop
has been fixed. Yet, the analytical alternative relies on critical assumptions which
do not hold for particular models such as support vector machines with noisy
observations. Therefore, at this time, NCV is an adequate method for evaluating
and comparing models using the Matbench benchmark.
 The descriptor-based RF and Automatminer models use Matminer17 to
generate all descriptors and have identical data cleaning procedures. The Random
Forest model uses the SineCoulombMatrix35 featurizer for tasks containing
structure and mean, average deviation, range, and max/min statistics on elemental
Magpie25 features (implemented as the “magpie” preset for the ElementProperty
featurizer) for all tasks containing chemical compositions. To handle missing
features, the RF pipeline drops features with more than 1% missing values.
Remaining samples having missing features are imputed using the mean of the
known data. Categorical features were encoded using one-hot encoding. The

25

Random Forest model itself consisted of 500 estimators and a max depth of “None”,
meaning nodes are expanded until all leaves are pure or contain less than 2
samples.

Automatminer v1.0.3.20191111 was used for all Automatminer benchmarks.
Features were generated according to Automatminer’s autofeaturizer “Express”
preset, and a full list of featurizers is available in the Supplementary Information.
The number of features was reduced using an ensemble-based decision tree method
set to capture 99% of the Gini importance48. Finally, TPOT v.10.1 was used to train
and internally validate (5-fold CV within the training data) competing ML pipelines
before selecting the model used to make test predictions. TPOT uses an
evolutionary algorithm to optimize the hyperparameters in a given model space. In
this context, algorithms (e.g., support vector machines, gradient boosted trees) are
integrated into their existing hyperparameter grids such that the algorithms are
treated essentially as special hyperparameters. Internal TPOT pre- and post-
processing steps (such as normalization) are also included in the model space.
Rather than determining a set number of generations to evolve the model
population, the Automatminer "Express" preset sets TPOT to evaluate the
maximum number of generations of 100 individuals each within 24 hours given a
maximum evaluation time of 20 minutes per individual. Individuals were trained
and evaluated with 10x parallelism using the n_jobs Automatminer preset
configuration option. A full table of the Automatminer-TPOT model space is
described in the Supplementary Information.
 CGCNN and MEGNet models were trained and optimized by splitting the
training portion of each outer NCV fold into 75% train and 25% validation portions.
Thus, the overall split for each fold is 60% training, 20% validation, and 20% test.
Each model is trained in epochs of 128-structure batches by optimizing according to
mean squared error loss (regression) or binary cross-entropy (classification). After
each epoch, the validation loss is computed with the same scoring functions as the
final evaluation: MAE for regression or ROC-AUC for classification (made negative
so that higher loss represents worse performance). To prevent overfitting, the

26

training is stopped early when the validation loss does not improve over a period of
at least 500 epochs. A full table of hyperparameters for each algorithm is provided
in the Supplementary Information.

Each model’s training, validation, and evaluation for each NCV fold were
performed on separate groups of compute nodes. Each fold of the RF model and
Automatminer were trained and evaluated on a single 24-core Intel Xeon E5-2670
v3 with 64GB RAM (LR4 node). All CGCNN and MEGNET training was performed
using one NVIDIA 1080Ti GPU using CUDA (accompanied by two Intel Xeon E5-
2623 CPUs with 60GB RAM). Workflows were set up and executed using the
FireWorks49 software package.

Data Availability

Instructions for downloading and using the Matbench benchmark can be viewed on
the official documentation
(https://hackingmaterials.lbl.gov/automatminer/datasets.html). The datasets can
also be interactively viewed and examined on the Materials Project MPContribs-ML
platform (https://ml.materialsproject.org) as serialized tabular data. The code for
retrieving and loading the Matbench datasets can be found in the dataset_retrieval
folder of the Matminer code (https://github.com/hackingmaterials/matminer). We
also encourage readers to suggest modifications to the Matbench dataset test suite
on the help forum (https://discuss.matsci.org/c/matminer). All versions of the
Automatminer code are open source via a BSD-style license and are available
through the online repository (https://github.com/hackingmaterials/automatminer).
We note that all the code for running the specific tests in this paper is also present
in a subpackage of this repository:
(https://github.com/hackingmaterials/automatminer/tree/master/automatminer_dev
).

27

Author Contributions

AD, QW, and AJ conceived the project. AD, QW, DD, and AJ designed the dataset
test suite. AD, QW, and AG implemented the Automatminer codebase. AD and QW
performed the benchmarking tests. AD prepared the manuscript. AJ supervised the
project. All authors reviewed and edited the manuscript.

Competing Interests

The authors declare no competing interests.

Acknowledgements

This work was intellectually led and funded by the United States Department of
Energy, Office of Basic Energy Sciences, Early Career Research Program, which
provided funding for AD, QW, AG, DD, and AJ. Lawrence Berkeley National
Laboratory is funded by the DOE under award DE-AC02-05CH11231. This research
used the Lawrencium computational cluster resource provided by the IT Division at
the Lawrence Berkeley National Laboratory (Supported by the Director, Office of
Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231). This research used resources of the National
Energy Research Scientific Computing Center (NERSC), a U.S. Department of
Energy Office of Science User Facility operated under Contract No. DE-AC02-
05CH11231. We thank Samy Cherfaoui of the Electrical Engineering and Computer
Science Department at the University of California, Berkeley for code contributions.
We also thank Patrick Huck for assistance in hosting the data on the MPContribs
platform through the Materials Project.

28

References

1. Kohn, W. & Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects.

Phys Rev 140, A1133–A1138 (1965).

2. Hohenberg, P. & Kohn, W. Inhomogeneous Electron Gas. Phys Rev 136, B864–B871 (1964).

3. Mansouri Tehrani, A. et al. Machine Learning Directed Search for Ultraincompressible,

Superhard Materials. J. Am. Chem. Soc. 140, 9844–9853 (2018).

4. Cooper, C. B. et al. Design-to-Device Approach Affords Panchromatic Co-Sensitized Solar Cells.

Adv. Energy Mater. 9, 1802820 (2019).

5. Jose, R. & Ramakrishna, S. Materials 4.0: Materials big data enabled materials discovery. Appl.

Mater. Today 10, 127–132 (2018).

6. Agrawal, A. & Choudhary, A. Perspective: Materials informatics and big data: Realization of the

“fourth paradigm” of science in materials science. APL Mater. 4, 053208 (2016).

7. Deng, J. et al. ImageNet: A large-scale hierarchical image database. in 2009 IEEE Conference on

Computer Vision and Pattern Recognition 248–255 (IEEE, 2009).

doi:10.1109/CVPR.2009.5206848.

8. Rajpurkar, P., Zhang, J., Lopyrev, K. & Liang, P. SQuAD: 100,000+ Questions for Machine

Comprehension of Text. ArXiv160605250 Cs (2016).

9. Castelli, I. E. et al. New cubic perovskites for one- and two-photon water splitting using the

computational materials repository. Energy Environ. Sci. 5, 9034 (2012).

10. Hastie, T., Tibshirani, R. & Friedman, J. H. Chapter 7: Model Assessment and Selection. in The

elements of statistical learning: data mining, inference, and prediction 241–249 (Springer, 2009).

11. Cawley, G. C. & Talbot, N. L. C. On Over-fitting in Model Selection and Subsequent Selection

Bias in Performance Evaluation. J. Mach. Learn. Res. 11, 2079–2107 (2010).

12. Heckman, J. J. Sample Selection Bias as a Specification Error. Econometrica 47, 153 (1979).

13. Alexander J. Smola, Arthur Gretton, Karsten M. Borgwardt & Bernhard Scholkopf. Correcting

sample selection bias by unlabeled data. in NIPS’06 Proceedings of the 19th International

Conference on Neural Information Processing Systems 601–608 (2006).

29

14. Miroslav Dud ́ık, Robert E. Schapire & Steven J. Phillips. Correcting sample selection bias in

maximum entropy density estimation. in NIPS’05 Proceedings of the 18th International

Conference on Neural Information Processing Systems 323–330.

15. Schmidt, J., Marques, M. R. G., Botti, S. & Marques, M. A. L. Recent advances and applications

of machine learning in solid-state materials science. Npj Comput. Mater. 5, 83 (2019).

16. Stone, M. Cross-Validatory Choice and Assessment of Statistical Predictions. J. R. Stat. Soc. Ser.

B Methodol. 36, 111–147 (1974).

17. Ward, L. et al. Matminer: An open source toolkit for materials data mining. Comput. Mater. Sci.

152, 60–69 (2018).

18. Kabiraj, A., Kumar, M. & Mahapatra, S. High-throughput discovery of high Curie point two-

dimensional ferromagnetic materials. Npj Comput. Mater. 6, 35 (2020).

19. Perdew, J. P. & Yue, W. Accurate and simple density functional for the electronic exchange

energy: Generalized gradient approximation. Phys. Rev. B 33, 8800–8802 (1986).

20. Jain, A. et al. Commentary: The Materials Project: A materials genome approach to accelerating

materials innovation. APL Mater. 1, 011002 (2013).

21. Ong, S. P. et al. The Materials Application Programming Interface (API): A simple, flexible and

efficient API for materials data based on REpresentational State Transfer (REST) principles.

Comput. Mater. Sci. 97, 209–215 (2015).

22. de Jong, M. et al. Charting the complete elastic properties of inorganic crystalline compounds.

Sci. Data 2, 150009 (2015).

23. Zhuo, Y., Mansouri Tehrani, A. & Brgoch, J. Predicting the Band Gaps of Inorganic Solids by

Machine Learning. J. Phys. Chem. Lett. 9, 1668–1673 (2018).

24. Nonequilibrium phase diagrams of ternary amorphous alloys. (Springer, 1997).

25. Ward, L., Agrawal, A., Choudhary, A. & Wolverton, C. A general-purpose machine learning

framework for predicting properties of inorganic materials. Npj Comput. Mater. 2, 16028 (2016).

26. Petousis, I. et al. High-throughput screening of inorganic compounds for the discovery of novel

dielectric and optical materials. Sci. Data 4, 160134 (2017).

30

27. Petretto, G. et al. High-throughput density-functional perturbation theory phonons for inorganic

materials. Sci. Data 5, 180065 (2018).

28. Choudhary, K., Kalish, I., Beams, R. & Tavazza, F. High-throughput Identification and

Characterization of Two-dimensional Materials using Density functional theory. Sci. Rep. 7,

5179 (2017).

29. Gareth Conduit & Saurabh Bajaj. Mechanical properties of some steels. (2017).

30. Freedman, D., Pisani, R. & Purves, R. Statistics (international student edition). Pisani R Purves

4th Edn WW Nort. Co. N. Y. (2007).

31. Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ.

Psychol. 24, 417–441 (1933).

32. Olson, R. S. et al. Automating Biomedical Data Science Through Tree-Based Pipeline

Optimization. in Applications of Evolutionary Computation (eds. Squillero, G. & Burelli, P.) vol.

9597 123–137 (Springer International Publishing, 2016).

33. Xie, T. & Grossman, J. C. Crystal Graph Convolutional Neural Networks for an Accurate and

Interpretable Prediction of Material Properties. Phys. Rev. Lett. 120, 145301 (2018).

34. Breiman, L. Random Forests. Mach Learn 45, 5–32 (2001).

35. Faber, F., Lindmaa, A., von Lilienfeld, O. A. & Armiento, R. Crystal structure representations

for machine learning models of formation energies. Int. J. Quantum Chem. 115, 1094–1101

(2015).

36. Chen, C., Ye, W., Zuo, Y., Zheng, C. & Ong, S. P. Graph Networks as a Universal Machine

Learning Framework for Molecules and Crystals. Chem. Mater. 31, 3564–3572 (2019).

37. Choudhary, K., DeCost, B. & Tavazza, F. Machine learning with force-field-inspired descriptors

for materials: Fast screening and mapping energy landscape. Phys. Rev. Mater. 2, 083801 (2018).

38. Ren, F. et al. Accelerated discovery of metallic glasses through iteration of machine learning and

high-throughput experiments. Sci. Adv. 4, eaaq1566 (2018).

39. Zhang, Y. & Ling, C. A strategy to apply machine learning to small datasets in materials science.

Npj Comput. Mater. 4, 25 (2018).

31

40. Goodall, R. E. A. & Lee, A. A. Predicting materials properties without crystal structure: Deep

representation learning from stoichiometry. ArXiv191000617 Cond-Mat Physicsphysics (2019).

41. Meredig, B. et al. Can machine learning identify the next high-temperature superconductor?

Examining extrapolation performance for materials discovery. Mol. Syst. Des. Eng. 3, 819–825

(2018).

42. Xiong, Z. et al. Evaluating explorative prediction power of machine learning algorithms for

materials discovery using k-fold forward cross-validation. Comput. Mater. Sci. 171, 109203

(2020).

43. Emery, A. A. & Wolverton, C. High-throughput DFT calculations of formation energy, stability

and oxygen vacancy formation energy of ABO3 perovskites. Sci. Data 4, 170153 (2017).

44. Stein, H. S., Soedarmadji, E., Newhouse, P. F., Dan Guevarra & Gregoire, J. M. Synthesis,

optical imaging, and absorption spectroscopy data for 179072 metal oxides. Sci. Data 6, 9 (2019).

45. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 2825–

2830 (2011).

46. Bernau, C., Augustin, T. & Boulesteix, A.-L. Correcting the Optimal Resampling-Based Error

Rate by Estimating the Error Rate of Wrapper Algorithms: Estimating the Error Rate of

Wrapper Algorithms. Biometrics 69, 693–702 (2013).

47. Krstajic, D., Buturovic, L. J., Leahy, D. E. & Thomas, S. Cross-validation pitfalls when selecting

and assessing regression and classification models. J. Cheminformatics 6, 10 (2014).

48. Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. Classification And Regression Trees.

(Routledge, 2017). doi:10.1201/9781315139470.

49. Jain, A. et al. FireWorks: a dynamic workflow system designed for high-throughput applications:

FireWorks: A Dynamic Workflow System Designed for High-Throughput Applications. Concurr.

Comput. Pract. Exp. 27, 5037–5059 (2015).

Supplementary Information
For	Benchmarking	Materials	Property	Prediction	Methods:	The	Matbench	Test	
Set	and	Automatminer	Reference	Algorithm		

By	Alexander	Dunn,	Qi	Wang,	Alex	Ganose,	Daniel	Dopp,	and	Anubhav	Jain

1. Training and prediction timing

Figure S1: Training and prediction times (in node hours) for MEGNet1, CGCNN2,
Automatminer, and the Random Forest3 (RF) algorithm on the Matbench test suite
in log-log scale. All 13 tasks in Matbench (including composition-only tasks) are
shown for Automatminer and the RF algorithms; only the 9 structure tasks are
shown for the graph networks MEGNet and CGCNN. Each point represents a single
fold of nested cross validation for each task. Each fold of the RF model and
Automatminer were trained and evaluated on a compute node containing a single
24-core Intel Xeon E5-2670 v3 with 64GB RAM (LR4 node). Similarly, all CGCNN
and MEGNet training and prediction was performed using a single node containing
two Intel Xeon E5-2623 CPUs with 60GB RAM) and one NVIDIA 1080Ti
(parallelized with CUDA); multiple GPUs were not used as, at the time of training,
neither CGCNN nor MEGNet support multi-GPU training. Linear regressions in
log-log scale are provided for each algorithm.

2. Automatminer Configuration
Beyond what is listed in Methods, the Automatminer configuration is determined by
the specifics of two primary operations - specifying a set of Matminer4 featurizers
(featurization) and specifying a predetermined model space. During fitting and
prediction, Automatminer robustly applies this set of featurizers and TPOT5
searches the model space for the optimal model. The Automatminer “Express”
preset used to generate the results in the main text includes preset settings for a set
of Automatminer features (Table S2.1), a data cleaning and feature reduction
procedure (described in Methods), and settings for TPOT, including the model space
(Tables S2.2-3). Alternate presets available in Automatminer can be explored in the
source code.

Table S2.1 Automatminer “Express” preset featurizers. The following set of
Matminer featurizers was used for all Automatminer results in the main text.

Featurizer Name Featurizer type Description

AtomicOrbitals composition HOMO/LUMO orbitals
estimated from atomic orbital
energies of the composition6

ElementProperty (“matminer”
preset)

composition Weighted elemental statistics
from pymatgen properties7

ElementProperty (“deml” preset) composition Weighted elemental statistics
from Deml et al. properties8

ElementProperty (“matscholar”
preset)

composition Weighted elemental embeddings
from Tshitoyan et al. Word2Vec
algorithm9

ElementProperty (“magpie” preset) composition Weighted elemental statistics
from Ward et al.10

ElementFraction composition Fractions of elements in a
composition

Stoichiometry composition Lp (0 ≤ # ≤ 10) norms of
stoichiometric attributes based

on Ward et al.10

TMetalFraction composition Stoichiometric fraction of
magnetic transition metal in a
composition

BandCenter composition Electronegativity estimate of
absolute band center position
using method from Butler and
Ginley11

DensityFeatures structure Density, volume per atom, and
packing fraction

GlobalSymmetryFeatures structure Spacegroup and crystal system
determination

EwaldEnergy structure Energy computed from Coulomb
interactions using method from
Ewald12

SineCoulombMatrix structure A Coulomb matrix13 variant
developed for periodic systems
using method from Faber et al.14
and vectorized using
eigenvalues

Table S2.2 Automatminer regression model space. The following table
contains the list of classes (containing a scikit-learn BaseEstimator API15,16) used in
the Automatminer regression model space. Note that many models included in the
table are typical preprocessing steps rather than machine learning models; TPOT is
capable of stacking these preprocessing steps and ML models into pipelines in a
loosely structured tree hierarchy. Hyperparameter grids are defined using the
arguments in the “Variable hyperparameter” column. Ranges for each
hyperparameter can be found in the Automatminer source code.

BaseEstimator (model) Variable hyperparameters

sklearn.linear_model.ElasticNetCV l1_ratio, tol

sklearn.ensemble.ExtraTreesRegressor n_estimators, max_features,
min_samples_split, min_samples_leaf,
bootstrap

sklearn.ensemble.GradientBoostingRegresso
r

n_estimators, loss, learning_rate,
max_depth, min_samples_split,
min_samples_leaf, subsample,
max_features, alpha

sklearn.tree.DecisionTreeRegressor max_depth, min_samples_split,
min_samples_leaf

sklearn.neighbors.KNeighborsRegressor n_neighbors, weights, p

sklearn.linear_model.LassoLarsCV normalize

sklearn.svm.LinearSVR loss, dual, tol, C, epsilon

sklearn.ensemble.RandomForestRegressor n_estimators, max_features,
min_samples_split, min_samples_leaf,
bootstrap

sklearn.linear_model.RidgeCV None

xgboost.XGBRegressor n_estimators, max_depth, learning_rate,
subsample, min_child_weight, nthread

sklearn.preprocessing.Binarizer threshold

sklearn.decomposition.FastICA tol

sklearn.cluster.FeatureAgglomeration linkage, affinity

sklearn.preprocessing.MaxAbsScaler None

sklearn.preprocessing.MinMaxScaler None

sklearn.preprocessing.Normalizer norm

sklearn.kernel_approximation.Nystroem kernel, gamma, n_components

sklearn.decomposition.PCA svd_solver, iterated_power

sklearn.preprocessing.PolynomialFeatures degree, include_bias, interaction_only

sklearn.kernel_approximation.RBFSampler gamma

sklearn.preprocessing.RobustScaler None

sklearn.preprocessing.StandardScaler None

tpot.builtins.ZeroCount None

tpot.builtins.OneHotEncoder minimum_fraction, sparse, threshold

sklearn.feature_selection.SelectFwe alpha, score_func

sklearn.feature_selection.SelectPercentil
e

percentile, score_func

sklearn.feature_selection.VarianceThresho
ld

threshold

sklearn.feature_selection.SelectFromModel threshold, estimator

Table S2.3 Automatminer classification model space. The following table
contains the list of classes (containing a scikit-learn BaseEstimator API15,16) used in
the Automatminer classification model space. Hyperparameter grids are defined
using the arguments in the “Variable hyperparameter” column. Ranges for each
hyperparameter can be found in the Automatminer source code.

BaseEstimator (model) Variable hyperparameters

sklearn.naive_bayes.GaussianNB None

sklearn.naive_bayes.BernoulliNB alpha, fit_prior

sklearn.naive_bayes.MultinomialNB alpha, fit_prior

sklearn.tree.DecisionTreeClassifier criterion, max_depth, min_samples_split,
min_samples_leaf

sklearn.ensemble.ExtraTreesClassifier n_estimators, criterion, max_features,
min_samples_split, min_samples_leaf,
bootstrap

sklearn.ensemble.RandomForestClassifier n_estimators, criterion, max_features,
min_samples_split, min_samples_leaf,
bootstrap

sklearn.ensemble.GradientBoostingClassifi
er

n_estimators, learning_rate, max_depth,
min_samples_split, min_samples_leaf,
subsample, max_features

sklearn.neighbors.KNeighborsClassifier n_neighbors, weights, p

sklearn.svm.LinearSVC penalty, loss, dual, tol, C

sklearn.linear_model.LogisticRegression penalty, C, dual

xgboost.XGBClassifier n_estimators, max_depth, learning_rate,
subsample, min_child_weight, nthread

sklearn.preprocessing.Binarizer threshold

sklearn.decomposition.FastICA tol

sklearn.cluster.FeatureAgglomeration linkage, affinity

sklearn.preprocessing.MaxAbsScaler None

sklearn.preprocessing.MinMaxScaler None

sklearn.preprocessing.Normalizer norm

sklearn.kernel_approximation.Nystroem kernel, gamma, n_components

sklearn.decomposition.PCA svd_solver, iterated_power

sklearn.preprocessing.PolynomialFeatures degree, include_bias, interaction_only

sklearn.kernel_approximation.RBFSampler gamma

sklearn.preprocessing.RobustScaler None

sklearn.preprocessing.StandardScaler None

tpot.builtins.ZeroCount None

tpot.builtins.OneHotEncoder minimum_fraction, sparse, threshold

sklearn.feature_selection.SelectFwe alpha, score_func

sklearn.feature_selection.SelectPercentil
e

percentile, score_func

sklearn.feature_selection.VarianceThresho
ld

threshold

sklearn.feature_selection.RFE step, estimator

sklearn.feature_selection.SelectFromModel threshold, estimator

3. Convolutional Graph Network Hyperparameters

Table S3.1. CGCNN hyperparameters. The training of CGCNN models is based
on its official repo (https://github.com/txie-93/cgcnn). The hyperparameters are
recommended in the CGCNN paper and are used by the authors to generate the
pretrained models placed in the repo. Identical hyperparameters were used to
generate the results for all tasks in the test suite.

Table S3.2 CGCNN full model breakdown. The number of hyperparameters in a
neural network in relation to the number of training samples can be considered a
useful metric for analyzing the networks risk of overfitting. The table contains a full
breakdown of the model including the number of hyperparameters for each network
level. In total, there are 98,185 trainable parameters.

Layer Number of parameters

embedding.weight 5,888

embedding.bias 64

convs.0.fc_full.weight 21,632

convs.0.fc_full.bias 128

convs.0.bn1.weight 128

convs.0.bn1.bias 128

CGCNN Hyperparameters Setting

Convolution layers 4

Epochs 1000 (regression) / 500 (classification)

Initial atomic feature length 92

Atomic feature length 64

Bond feature length 41

Hidden feature length 32

Batch size 128

Optimization algorithm Stochastic gradient descent

L2 hidden layers 1

Learning rate 0.02

Learning rate milestones 800

momentum 0.9

convs.0.bn1.running_mean 128

convs.0.bn1.running_var 128

convs.0.bn1.num_batches_tracked 1

convs.0.bn2.weight 64

convs.0.bn2.bias 64

convs.0.bn2.running_mean 64

convs.0.bn2.running_var 64

convs.0.bn2.num_batches_tracked 1

convs.1.fc_full.weight 21,632

convs.1.fc_full.bias 128

convs.1.bn1.weight 128

convs.1.bn1.bias 128

convs.1.bn1.running_mean 128

convs.1.bn1.running_var 128

convs.1.bn1.num_batches_tracked 1

convs.1.bn2.weight 64

convs.1.bn2.bias 64

convs.1.bn2.running_mean 64

convs.1.bn2.running_var 64

convs.1.bn2.num_batches_tracked 1

convs.2.fc_full.weight 21,632

convs.2.fc_full.bias 128

convs.2.bn1.weight 128

convs.2.bn1.bias 128

convs.2.bn1.running_mean 128

convs.2.bn1.running_var 128

convs.2.bn1.num_batches_tracked 1

convs.2.bn2.weight 64

convs.2.bn2.bias 64

convs.2.bn2.running_mean 64

convs.2.bn2.running_var 64

convs.2.bn2.num_batches_tracked 1

convs.3.fc_full.weight 21,632

convs.3.fc_full.bias 128

convs.3.bn1.weight 128

convs.3.bn1.bias 128

convs.3.bn1.running_mean 128

convs.3.bn1.running_var 128

convs.3.bn1.num_batches_tracked 1

convs.3.bn2.weight 64

convs.3.bn2.bias 64

convs.3.bn2.running_mean 64

convs.3.bn2.running_var 64

convs.3.bn2.num_batches_tracked 1

conv_to_fc.weight 2,048

conv_to_fc.bias 32

fc_out.weight 32

fc_out.bias 1

Table S3.3. MEGNET hyperparameters. The training of MEGNET models is
based on its official repo v0.2.2 (https://github.com/materialsvirtuallab/megnet). The
hyperparameters are recommended in the MEGNET paper and modified only with
correspondence from the original authors.

Table S3.4 MEGNet full model breakdown. In similar fashion to Table S3.2,
each layer and the number of trainable parameters is enumerated. The output
shape of the layer and its connection to further layers within the overall
architecture is also provided. In total, the model architecture specifies 167,761
trainable parameters. Layer types reference the syntax of the python neural
network library Keras17; output shapes reference NumPy18 NDArray
representations.

Layer (type) Output Shape

(numpy format)
Number of
Parameters

Connected to

MEGNET Hyperparameters Setting

MEGNET blocks 3

Minimum Epochs 1000 (regression) / 500 (classification)

Initial atomic feature length 95

Element embedding length 16

Bond feature length 100

Hidden units in layer 1 64

Hidden units in layer 2 32

Hidden units in layer 3 16

Batch size 128

Optimization algorithm Adam

Learning rate 0.001 (and auto-reduce if encountering nan)

Neighboring cutoff 4.0 Angstrom

input_1 (InputLayer) (None, None) 0

embedding_1
(Embedding)

(None, None, 16) 1,520 input_1[0][0]

input_2 (InputLayer) (None, None, 100) 0

input_3 (InputLayer) (None, None, 2) 0

dense_1 (Dense) (None, None, 64) 1,088 embedding_1[0][0]

dense_3 (Dense) (None, None, 64) 6,464 input_2[0][0]

dense_5 (Dense) (None, None, 64) 192 input_3[0][0]

dense_2 (Dense) (None, None, 32) 2,080 dense_1[0][0]

dense_4 (Dense) (None, None, 32) 2,080 dense_3[0][0]

dense_6 (Dense) (None, None, 32) 2,080 dense_5[0][0]

input_4 (InputLayer) (None, None) 0

input_5 (InputLayer) (None, None) 0

input_6 (InputLayer) (None, None) 0

input_7 (InputLayer) (None, None) 0

meg_net_layer_1
(MEGNetLayer)

[(None, None, 32),
…]

39,392 dense_2[0][0]
dense_4[0][0]
dense_6[0][0]
input_4[0][0]
input_5[0][0]
input_6[0][0]
input_7[0][0]

add_1 (Add) (None, None, 32) 0 dense_2[0][0]
meg_net_layer_1[0][0]

add_2 (Add) (None, None, 32) 0 dense_4[0][0]
meg_net_layer_1[0][1]

add_3 (Add) (None, None, 32) 0 dense_6[0][0]
meg_net_layer_1[0][2]

dense_7 (Dense) (None, None, 64) 2,112 add_1[0][0]

dense_9 (Dense) (None, None, 64) 2,112 add_2[0][0]

dense_11 (Dense) (None, None, 64) 2,112 add_3[0][0]

dense_8 (Dense) (None, None, 32) 2,080 dense_7[0][0]

dense_10 (Dense) (None, None, 32) 2,080 dense_9[0][0]

dense_12 (Dense) (None, None, 32) 2,080 dense_11[0][0]

meg_net_layer_2
(MEGNetLayer)

[(None, None, 32),
…]

39,392 dense_8[0][0]
dense_10[0][0]
dense_12[0][0]
input_4[0][0]
input_5[0][0]
input_6[0][0]
input_7[0][0]

add_4 (Add) (None, None, 32) 0 add_1[0][0]
meg_net_layer_2[0][0]

add_5 (Add) (None, None, 32) 0 add_2[0][0]
meg_net_layer_2[0][1]

add_6 (Add) (None, None, 32) 0 add_3[0][0]
meg_net_layer_2[0][2]

dense_13 (Dense) (None, None, 64) 2,112 add_4[0][0]

dense_15 (Dense) (None, None, 64) 2,112 add_5[0][0]

dense_17 (Dense) (None, None, 64) 2,112 add_6[0][0]

dense_14 (Dense) (None, None, 32) 2,080 dense_13[0][0]

dense_16 (Dense) (None, None, 32) 2,080 dense_15[0][0]

dense_18 (Dense) (None, None, 32) 2,080 dense_17[0][0]

meg_net_layer_3
(MEGNetLayer)

[(None, None, 32),
…]

39,392 dense_14[0][0]
dense_16[0][0]
dense_18[0][0]
input_4[0][0]
input_5[0][0]
input_6[0][0]
input_7[0][0]

add_7 (Add) (None, None, 32) 0 add_4[0][0]
meg_net_layer_3[0][0]

add_8 (Add) (None, None, 32) 0 add_5[0][0]
meg_net_layer_3[0][1]

set2_set_1 (Set2Set) (None, None, 32) 2,640 add_7[0][0]
input_6[0][0]

set2_set_2 (Set2Set) (None, None, 32) 2,640 add_8[0][0]
input_7[0][0]

add_9 (Add) (None, None, 32) 0 add_6[0][0]
meg_net_layer_3[0][2]

concatenate_1
(Concatenate)

(None, None, 96) 0 set2_set_1[0][0]
set2_set_2[0][0]
add_9[0][0]

dense_19 (Dense) (None, None, 32) 3,104 concatenate_1[0][0]

dense_20 (Dense) (None, None, 16) 528 dense_19[0][0]

dense_21 (Dense) (None, None, 1) 17 dense_20[0][0]

4. Automatminer Preset Comparison on Experimental
Metallicity Classification

For tasks where the AutoML algorithm can fit and iterate models rapidly
(i.e., the dataset is small, <104 samples), Automatminer can require increasingly
large computational effort to marginally improve predictive performance. Therefore,
for small datasets, the bulk of Automatminer’s performance can be retained using
inexpensive presets (~1-5 minute training) versus more expensive presets (24h+
training).

Here we show the performance of three presets on the Matbench
experimental metallicity classification task (sourced from Zhuo et. al19). Debug
presets use only the most inexpensive yet information-dense featurizer (MagPie4,10),
does only correlative feature reduction (based on Pearson correlation between sets
of features), and is limited to 2 minutes AutoML training time. The Express preset
uses slightly more expensive featurization and model-based feature reduction (as
explained in Supplement Section 2 and in the main text) and uses a much longer
maximum AutoML training time of 24 hours. Finally, the Heavy preset utilizes a
wide range of Matminer featurizers, many of which are computationally expensive
relative to the Express and Debug presets, and employs more expensive AutoML
training with 48-hour time limit. Note the TPOT AutoML training algorithm can
halt training early if the internal validation score does not improve over many
training epochs; this is similar to “early stopping” of neural network training. The
Express and Heavy presets marginally improve on the Debug ROC-AUC at the cost
of much (more than 1000x) higher runtimes.

While this case is not representative of all supervised materials ML tasks
even within the Matbench test suite, it illustrates that the gap between expensive
and inexpensive pipelines may significantly narrow as the dataset size decreases.

Figure S2: Comparison of Automatminer presets demonstrating diminishing
AutoML returns on the Matbench experimental metallicity classification task. The
abscissa shows three Automatminer presets – Debug, Express, and Heavy - in
ascending order of computational intensity. Points represent the mean values
among folds from a full 5-fold NCV evaluation on the metallicity task; error bars are
the standard deviation between folds (error bars are ~<1% of mean value if not
visible). ROC-AUC represents the receiver operating characteristic area under the
curve for metallicity predictions; runtime is the elapsed time from the beginning of

training to the end of prediction for each fold. The number of features is counted
following feature reduction and represents the input to the AutoML algorithm.
Debug has a much higher number of features because its preset undergoes minimal
correlation-based feature reduction only.

5. Supplement References
 1. Chen, C., Ye, W., Zuo, Y., Zheng, C. & Ong, S. P. Graph Networks as a Universal Machine

Learning Framework for Molecules and Crystals. Chem. Mater. 31, 3564–3572 (2019).

2. Xie, T. & Grossman, J. C. Crystal Graph Convolutional Neural Networks for an Accurate and

Interpretable Prediction of Material Properties. Phys. Rev. Lett. 120, 145301 (2018).

3. Breiman, L. Random Forests. Mach Learn 45, 5–32 (2001).

4. Ward, L. et al. Matminer: An open source toolkit for materials data mining. Comput. Mater. Sci.

152, 60–69 (2018).

5. Olson, R. S. et al. Automating Biomedical Data Science Through Tree-Based Pipeline

Optimization. in Applications of Evolutionary Computation (eds. Squillero, G. & Burelli, P.) vol.

9597 123–137 (Springer International Publishing, 2016).

6. Kotochigova, S., Levine, Z. H., Shirley, E. L., Stiles, M. D. & Clark, C. W. Local-density-

functional calculations of the energy of atoms. Phys. Rev. A 55, 191–199 (1997).

7. Ong, S. P. et al. Python Materials Genomics (pymatgen): A robust, open-source python library for

materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

8. Deml, A. M., O’Hayre, R., Wolverton, C. & Stevanovic, V. Predicting Density Functional Theory

Total Energies and Enthalpies of Formation of Metal-Nonmetal Compounds by Linear

Regression. ChemInform 47, (2016).

9. Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from materials

science literature. Nature 571, 95–98 (2019).

10. Ward, L., Agrawal, A., Choudhary, A. & Wolverton, C. A general-purpose machine learning

framework for predicting properties of inorganic materials. Npj Comput. Mater. 2, 16028 (2016).

11. Butler, M. A. Prediction of Flatband Potentials at Semiconductor-Electrolyte Interfaces from

Atomic Electronegativities. J. Electrochem. Soc. 125, 228 (1978).

12. Ewald, P. P. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 369,

253–287 (1921).

13. Rupp, M., Tkatchenko, A., Müller, K.-R. & von Lilienfeld, O. A. Fast and Accurate Modeling of

Molecular Atomization Energies with Machine Learning. Phys. Rev. Lett. 108, 058301 (2012).

14. Faber, F., Lindmaa, A., von Lilienfeld, O. A. & Armiento, R. Crystal structure representations

for machine learning models of formation energies. Int. J. Quantum Chem. 115, 1094–1101

(2015).

15. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 2825–

2830 (2011).

16. Buitinck, L. et al. API design for machine learning software: experiences from the scikit-learn

project. in ECML PKDD Workshop: Languages for Data Mining and Machine Learning 108–122

(2013).

17. Chollet, F. & others. Keras. (2015).

18. van der Walt, S., Colbert, S. C. & Varoquaux, G. The NumPy Array: A Structure for Efficient

Numerical Computation. Comput. Sci. Eng. 13, 22–30 (2011).

19. Zhuo, Y., Mansouri Tehrani, A. & Brgoch, J. Predicting the Band Gaps of Inorganic Solids by

Machine Learning. J. Phys. Chem. Lett. 9, 1668–1673 (2018).

