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DESCR I P T  I ON OF THE THREE-D I MENS I ONAL 
TWO-PHASE SIMULATOR SHAFT78 FOR USE 
I N GEOTHERMAL RESERVO I R STUD I E S  

by Karsten Pruess, J .  Mike Zerzan, and 
- Ron C.  Schroeder, Paul A.  Witherspoon, 

Members SPE-AIME,  Lawrence Berkeley Lab. 

ABSTRACT 

The algorithm of SHAFT78 i s  based on mass and 
energy-balance equations f o r  two-phase flow i n  a 
porous medium. We convert the basic d i f fe ren t ia l  
equations in to  integrated f ini te-difference form. 
This allows regular and i r regular  reservoir shapes 
to  be handled with the same ease. The equations are  
solved semi-implicitly f o r  discrete  time steps. The 
present version of SHAFT78 t r e a t s  the coupling 
between mass and energy flow i n  a noniterative way. 
Special provisions a re  made t o  compute phase 
t ransi t ions with high accuracy. 

We have ver i f ied the program by computing a 
number of sample problems tha t  previously had been 
investigated by other authors. 
reveal tha t  two-phase geothermal reservoirs a re  
capable of a great var ie ty  of pressure responses 
upon production. We show tha t  the standard techniquc 
of estimating reserves by extrapolating a plot  of p/; 
vs cumulative production i s  not applicable t o  two- 
phase eothermal reservoirs. W e  develop a bulk 
model 7 lumped parameters) f o r  a two-phase reservoir 
tha t  admits an analyt ical  solution €or pressure 
decline upon production. 
i n  many cases pressure will be a l inear  function of 
cumulative production, with the slope allowing an 
estimate of t o t a l  reservoir volume. Reserve 
assessment requires knowledge of average porosity an( 
vapor saturation, which cannot be obtained from 
pressure decline curves. 

Our model studies 

From this we conclude tha t  

1N"IU)DUC TION 

Geothermal reservoirs a re  distinguished by the 
f a c t  tha t ,  i n  contrast  t o  o i l  and gas reservoirs,  
f l u id  flow, i n  general, i s  not isothermal. The 
processes of water boi l ing and steam condensation 
involve exchange of large quant i t ies  of heat between 
the f lu id  and the rock matrix. The flow of steam 
and water a l t e r s  both the dis t r ibut ion of mass and 
energy i n  the reservoir. 
of two-phase geothermal reservoirs,  then must 

A theoret ical  description 

consider both mass and energy transport .  2 

References and i l l u s t r a t ions  a t  end of paper. 
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I n  recent years, a number of numerical 

The general purpose of these i s  t o  
simulators f o r  geothermal reservoirs have been 
developed.3-10 
a id  reservoir engineers in (1) determining character- 
i s t i c  parameters of reservoirs (most important among 
those being the  reserves of f lu id  and heat)  and (2) 
simulating the performance of reservoirs upon 
production and injection. 

t ions  made in the underlying physical model (e.g., 
dependence of rock and f l u i d  properties on thermo- 
dynamic variables),  i n  the geometrical def ini t ion of 
the  reservoir (one-, two-, o r  three-dimensional, 
regular o r  i r regular  shape), i n  the choice of 
thermodynamic variables,  and in the  mathematical 
techniques used f o r  solving the  coupled mass and 
energy transport  equations. 

The various simulators d i f f e r  i n  the approxima- 

Cr i te r ia  f o r  desirable performance of numerical 
simulators depend i n  par t  on the par t icular  problems 
t o  be investigated. 
differ i n  the required leve l  of de t a i l  t o  be 
resolved, and in the optimum balance of speed and 
accuracy of computation. 
two-phase flow i n  porous media from model studies fo r  
idealized systems. 
with less-than-three-dimensional models and 
algorithms tha t  are  based on regular gr id  spacings. 
For modeling natural  geothermal reservoirs,  on the 
other hand, it is  important t ha t  i r regular  three- 
dimensional geometries may be handled easily. 

Different problems often w i l l  

Much can be learned about 

Such s tudies  can be performed 

I n  comparison with other two-phase simulators 
tha t  have been discussed i n  the  l i t e r a tu re ,  the main 
d is t inc t ive  feature  of SHAFT78 i s  tha t  it uses an 
intevrated f ini te-difference method (IFD). l1 
solve f ini te-difference equations tha t  are  obtained 
by formally integrat ing the basic p a r t i a l  
d i f f e ren t i a l  equations f o r  mass and energy flow over 
a rb i t ra ry  polyhedral volume elements. 
a s  eas i ly  applicable t o  irregular geometries of 
actual  reservoird as it i s  t o  idealized regular 
geometries; yet  the r e l a t ive  simplicity of the 
finite-difference method i s  retained i n  the theory 
end algorithms. 

We 

This method i s  



Another advantage of SHAFT78 i s  tha t  all f l u i d  

No reference t o  the equation of s t a t e  of 
properties are obtained through interpolation from 
tables.I2 
water i s  bui l t  into the algorithm, which therefore 
also can be applied fo r  studying two-phase porous 
flow of f lu ids  other than water. 

The version of SHAFTl8 discussed i n  Chapters 1 
and 2 of this paper i s  not t o  be considered f inal .  
Future development wi l l  allow rock properties to 
vary with temperature and pressure, such variations 
being neglected a t  present. 
implement an i t e r a t i v e  solution of the coupled mass 
and energy transport equations i n  order t o  overcome 
l imitat ions of time s tep s i ze  inherent i n  our 
present noniterative treatment of the coupling. 

Also, we intend t o  

The present version of SHAF"78, however, i s  
f u l l y  operative and i s  being used extensively. 
Chapter 3 ,  we discuss r e s u l t s  of calculations f o r  
idealized systems, which ver i fy  the program and givf 
insight into the pressure response of two-phase 
reservoirs during production. 

I n  

Simulations of *'real" reservoirs also have 
been carried out. 
into the highly irregular-shaped geothermal f i e l d  
near Serrazzano ( I t a l y )  is  i n  progress. 14 

Work on simulating reinject ion 

1. PKYSICAL AND MATHEMATICAL MODEL 

Mass and Energy Balances 

Following the customary procedure, we describe 
the flow of (two-phase) f lu id  and heat i n  a porous 
medium i n  terms of balance equations f o r  mass and 
energy. We have the density equation, 

and the energy equation, 

. . . . . . . . . . . . . . . . . . . . . (  2) 

The momentum balance i s  approximated with Darcy's 
l aWl5  

. . . . . . . . . . . . . . . . . . . . .  (3) 

The energy f lux  G, i s  taken t o  be the sum of conduc- 
t i v e  heat f luxes i n  rock and f lu id ,  plus the 
enthalpy fluxes of vapor and liquid: 

Eqs. 2 and 4 are straightforward statements of the 
f i r s t  law of thermodynamics, with viscous dissipa- 
t i on  being neglected. 
defining the physical model are: 
rock properties-porosity, density, specif ic  heat, 
thermal conductivity, absolute permeability-to be 
+dependent of temperature, pressure, o r  vapor 
saturation; (2) we neglect capiUary pressure 
pc = pg -pv; (3 )  we a s m e  t h a t  l iquid,  vapor, and 
rock matrix are in loca l  thermodynamic equilibrium, 

Other approximations made in 
(1) we assume all 

i .e . ,  a t  the same temperature and pressure, a t  a l l  
times; ( 4 )  we neglect the (F/p)Vp - terms in Eq. 2. 

With l iquid and vapor i n  thermodynamic equili-  
brium, the s t a t e  of the two-phase f lu id  can be 
specified completely in terms of specific energy, u, 
and specific density, p .  For the rock/fluid mixture 
we have 

Because of thermodynamic equilibrium, the specific 
energy, uR, of the rock i s  a function of f lu id  
temperature, T, which i n  turn i s  a function of ( u , ~ )  

a UR - a t  . ($)p +(>)u . . . . .  (6) 
with Eqs. 5, 6, 1 and the above s ta ted approximation 
Eq. 2 can be writ ten 

_ -  - 

For the solution of Eqs. 1 and 7, different  

d i v  G ~ + U d i b  F - + (Q . u q )  . . . . . . .  (7) 

s e t s  of variables can be used. The formally most 
elegant choice i s  ( u , ~ ) ,  w h i c h  also appears t o  be 
advantageous with regard to ensuring over-all mass 
and energy conservation. This is the  method adopted 
i n  the present work. A d i f f i c u l t y  associated with 
the ( u , ~  )-formulation i s  that l iquid subcooled water 
has a very s m a l l  compressibility. Very s m a l l  densit  
changes t ranslate  into large variations i n  pressure. 
Extreme accuracy i s  required i n  computing l iquid 
densi t ies  i n  order t o  get r e l i ab le  values fo r  the 
flow terms (Eqs. 3 and 4) .  
al ternat ive s e t s  of variables such as pressure and 
enthalpy may be preferable f o r  problems involving 
l i qu id  subcooled water. 

For this reason, 

Intenrated Finite-Difference Method 

I n  order to be able t o  handle o n e ,  two- o r  
three-dimensional, regular o r  i r regular  geometries 
with the same ease, we rewrite Eqs. 1 and 7 i n  
integrated form. The reservoir volume, V,  i s  broken 
up in to  a number of arbi t rary elementary polyhedrons 
Vn, V?, VJ, . . .  , which are connected by polygonal 

between elements must be perpendicular to the l i n e  
connecting t h e i r  centers (see Fig. 1). 
Eq. 1 gives 

i n t e r  aces with area A,, A d ,  . . .  The interfaces 

Integrating 

= 1 Anm Fnm + V n q n .  . . .  (8) 
m 

Here we have introduced volume and surface averages. 
(Note t h a t  these are averages of macroscopic quanti- 
t i e s  and should not be confused with microscopic 
averaging used to derive the d i f f e ren t i a l  Eqs. 1 
and 2.) 
t ion,  we take 5 to be the inward normal ( into Vn) 
f o r  surface element da. The sum over m extends over 
all elements V, that have an interface A, i n  common 
with Vn. Proceeding with Q. 7 in an analogous way, 

Note tha t  in contrast  to the usual conven- 

-2- . .  



we obtain the integrated density and energy equatiox 
f o r  elementary volume, Vn, 

- =  a t  

. . . . . . . . . . . . . . . . . . . . . .  (10) 

The f lux  terns  F, and G 
finite-difference forms 3 Eqs. 3 and 4. 

a re  computed from the 

L 

. . . . . . . . . . . . . . . . . . . . . (  11) 

Grim 
. . , . . . . . . . . . . . . . . . . . . (  12) 

T - T  m n  

n m  
= K + a ( F a ) m ( h a ) n m *  n m d + d  

I n  order t o  define completely our mathematical 
model, we need to  complement Eqs. 9 through 12 with 
prescriptions fo r  computing interface quant i t ies  
from volume averages. 
ductive heat f l ux  gives 

Demanding continuity f o r  con- 

n Km 
K 

where thermal conductivit ies may take a jump a t  the 
interface,  and i n  general, Kn + K,,,. 

An analogous equation holds f o r  the absolute 
permeability a t  the interface,  i f  we demand con- 
t inu i ty  of mass f lux  

where again k may take a f i n i t e  jump a t  the inter-  
face, kn + k,. To derive Eqs. 13 and 14, we have 
assumed tha t  temperature and pressure are  con- 
tinuous a t  the interface.  

The f lu id  density a t  the interface i s  inter-  
polated spa t ia l ly  from that of the adjacent 
elements : 

Energies and mobili t ies a t  interfaces  are  weighted 
toward those of the upstream element: 

u = xu + (1-A) Udown . . . .  (16) 
nm U P  

(ka/pa), = K(ka/Ua)up + ( 1 - K )  ( ka /P  a ) down 

. . . . . . . . . . . . . . . . . . . . . . (  1; 
The values to be chosen f o r  the  weighting parameter: 
h and  depend on the  problem studied. 
we take h = 2/3; IC = 1 i s  required f o r  problems 
involving sharp phase fronts.  

Typically, 

We want to emphasize again the main advantages 
of using an i n t e a a t e d  finite-difference method. 
Namely, all computations are  done d i rec t ly  from a 
l i s t  of interfaces  A,, distances dn, h, and 
element volumes Vn, V,. There i s  no reference t o  
the dimensionality of the  problem except in the 
numerical values assigned t o  the A,, k, G, vn, 
and V,. This scheme handles i r regular  geometries 
such as occur i n  actual reservoirs as eas i ly  as  
idealized regular geometries. 
faces can be modified, appended, o r  deleted as 
desired without affect ing unmodified pa r t s  of t he  
system. Also, volumes, interface areas,  and dis- 
tances can be assigned "a r t i f i c i a l "  values that do 
not correspond to any possible geometry in r e a l  
space in order to model special  effects ,  e.g., 
boundary conditions. For example, assigning a very 
large value t o  the  volume of an element will ensure 
tha t  the element always w i l l  remain a t  (almost) the 
same temperature, pressure, and vapor saturation. 

Rements and inter-  

2. SOLUTTON METHOD 

Time Discretization 

To solve Eqs. 9 and 10, we d iscre t ize  time as  
a f i rs t -order  forward f i n i t e  difference,  

and expand the time average I?, t o  f i r s t  order, 
- 
F = F  (tk + e a t )  nm nm 

aFnm 
a t  

z ~ ~ ( t  k ) + ea t  - 

k aFnm aFnm 
=z F (t + e [(-; AP + (-) A P , ~  9 

nm n apm . . . . . . . . . . . . . . . . . . . . . . . .  ( 1 9 )  

where 0 i s  a parameter between 0 and 1, to be dis- 
cussed below, and k i s  the time-step index. With 
Eq. 19 we can rewrite Eq. 18 as 

APn = 8 ( A q i m p  . . . . . . .  (20) 
k 

where exp re fers  t o  time t , and imp re fers  t o  time 
tk + @At.  
0 --+ 1. ) 
from quant i t ies  known a t  the begvlning of a time 
step. 
occurring during A t .  
computes (&n)exp f i r s t ,  and then uses these values 
as  zero-order approximati n i n  an i t e r a t ive  scheme 
t o  compute the f u l l  apn.1X,17 A similar approach i s  

(Note tha t  tk + @At-+ tk + A t  = tk+l as 
The expl ic i t  par t  of &, can be computed 

The implici t  par t  depends on the changes 
The solution algorithm 

- 3- 



taken f o r  the time-discretization and mixed 
explicit- implicit  solution of the energy equation 
(Eq. 10). 

An overview of the solution procedure employed 
i n  SHAFT78 i s  given i n  Fig. 2. 
energy equation f o r  a time step At,. 
density equation i s  solved f o r  a tune stepA$, 5 A t  
Often the r a t e  of ( re la t ive)  energy change i s  
considerably smaller than tha t  of ( re la t ive)  densit, 
change, and SHAFT78 takes longer energy time steps,  
requiring a number of density s teps  per energy s tep 
After the density step,  a correction to the rock/ 
f l u id  equilibration i s  performed (see below). If 
the correction cannot be done with a preset  accurac; 
the density s tep i s  repeated with half the  time 
step. After an accepted density step,  the program 
e i ther  proceeds to the next density s tep ( i f  the 
t o t a l  time C A t p  of all density s teps  i s  l e s s  than 
the energy time s tep A h ) ,  o r  begins another energy 
s tep  ( i f  c A t p  = A%). 

We have not yet performed a detai led s t a b i l i t y  
analysis of the solution algorithm used i n  SHAFT78. 
Note tha t  f o r  every time s tep the basic nonlinear 
Eqs. 9 and 10 are  replaced witin l inear ized equation: 
with constant coeff ic ients  (Eqs. 18, 19, and 
analogous fo r  the energy equation). 
s table  with respect to large time s teps  f o r  
0 > 0.5.18 
a damping of energy changes, which should enhance 
s tab i l i ty .  
much a problem as  accuracy. I n  order f o r  the 
l inear ized equations t o  be good approximations, we 
need tfgoodlf values f o r  the derivatives (aF&pn), 
etc. SHAFT78 estimates tfexpectedqf density and 
energy changes by extrapolating from time tk to 
tk+l and computes the derivatives (aF&pn), etc. ,  
as averages over expected changes. This method 
obviously w i l l  be accurate only f o r  not "too large" 
time s teps ,  with what i s  too large depending on the 
par t icu lar  problem. I n  order t o  accommodate larger  
time steps,  we presently are  investigating a f u l l y  
i t e r a t ive  approach, i n  which the energy and density- 
equations w i l l  be solved repeatedly f o r  a time s tep 
until expected and computed energy and density 
changes agree t o  within narrow limits. 

We f i r s t  solve the 
Then the 

These are 

The rock/fluid equi l ibrat ion introduces 

Thus it appears tha t  s t a b i l i t y  i s  not sc 

Equilibration Between Rock and Fluid 

For geothermal problems, the energy and density 
equations are  coupled i n  two d i s t inc t  ways, namely, 
across elements and within elements. The coupling 
across elements a r i ses  because pressure gradients,  
which i n  turn drive mass and energy flow, depend on 
both f lu id  energy and density. Therefore, a change 
i n  f l u id  density modifies the flow of energy (and 
vice versa). 
strong. 
solving uncoupled energy and density equations i n  
each time step,  but l imit ing the m a A m u m  permissible 
changes i n  important variables (such as  pressure, 
temperature, and va r saturat ion)  to a s m a l l  per- 
centage (1% default!? 

 his coupling i s  usually not very 
It presently i s  t reated i n  SHAFT78 by 

The coupling between energy and density equa- 
t ions  within elements i s  very strong. 
the presence of the rock matrix i n  thermal equili-  
brium with the f lu id  and from the f a c t  tha t  f l u i d  
temperature depends on both energy and density. 
Eq. 10 this coupling i s  represented by the term 

It ar i ses  fro,  

I n  

-4- 

i .e . ,  the r a t i o  of density t o  energy change. This 
term i s  needed t o  solve the energy equation, but it 
i s  known only a f t e r  both energy and density equatio. 
are  solved in a completely self-consistent way. Thl 
present version of SHAFT78 does not solve i te ra t ive :  
the energy and density equations u n t i l  se l f -  
consistency i s  achieved. Our simpler method consis  
of making a good guess f o r  R, at  the beginning of a 
time step,  and then correcting f o r  inaccuracies 
a f t e r  the energy and density equations have been 
solved. 

Generally speaking, we take as our estimate fo: 
R, the value computed f o r  element n i n  the l a s t  t i m i  
s tep,  tk. 
s i tuat ion,  this w i l l  lead to  substant ia l  cancella- 
t ions  between the large rock terms in the denominatc 
of Eq. 10, giving r i s e  to numerical inaccuracy. 
SHAFT78 checks f o r  cancellation e f fec ts ,  and if the: 
are  s ignif icant ,  it replaces the extrapolated value 
of R, with the isothermal limit, 

Occasionally, fo r  a nearly isothermal 

corresponding to d u f i t  = 0 (cf.  Fq. 6). 
thermal limit i s  also used f o r  the in i t i a l i za t ion  ol 
a simulation. 

The iso- 

After the  energy s tep,  then, rock and f lu id  a r t  
equilibrated a t  a temperature 

T. = T(u + Au , pn + Rn- Au,). 

However, the subsequent density s tep usually w i l l  
yield a density change &I, + R, Au,,, leaving the 
f lu id  a t  the somewhat difyerent temperature 
T, = T(u- + Au-, p- + Ap-). 
E&ilibr&.ing ;ock%nd f l u i d  will leave both a t  the 
temperature T(Un + AI+!,, pn + Dpn). During equi l ib-  
ra t ion,  the energy per volume remains constant, fron 
which condition the correction t o  the energy transfc 
between rock and f lu id  can be computed: 

+ Au , p  + R AU ) * p  
n n  n n  R 

(before equilibration) 

( a f t e r  equilibration) . . . . . . . . . . . .  (23) 

From this we obtain t o  f i r s t 4 r d e r  
(1-4) p,(auR/apn)u (R,Au~- pn) 

. . . . . . . . . . . . . . . . . . . . . (  24)  

During phase t rans i t ions  the derivatives i n  4. 24 
undergo a f i n i t e  jump. To ensure a high accuracy 
i n  the calculation, f l u i d  energy changes during 
rock/fluid equilibration are computed twice, with 

L 



derivatives taken both: (1) forward, and (2) back- 
ward i n  time (see Figs. 2 and 3). 
chosen such as to  guarantee an absolute error  s m a l l  
than some preset  value. 

Time steps are  

Eauation of S ta te  

Before each time s tep and f o r  each volume 
element, we need to compute a number of parameters 
as functions of f lu id  energy and density (see Table 
1). The calculational e f fo r t  involved i n  this 
process can be qui te  substantial .  
method tha t  i s  both f l e d b l e  and eff ic ient .  We 
tabulate the parameters given i n  Table 1 as  functioi 
of u and p over a rectangular gr id  (s, p,) (n = 1, ..., N ;  m = 1, ..., M). Parameters f o r  the desired 
values of (u, P) then are  "looked up" through 
bivar ia te  interpolation. Special provisions are  ma( 
(1) to avoid interpolating across the saturation 
l i ne ,  a t  which parameters change slope; and (2) to 
tabulate the l iqu id  region (subcooled water), which 
i s  very much compressed i n  an (u, p)-diagram. 

of (u, P )  i s  handled by two preprocessor programs. 
The f i r s t  of these computes the analyt ical  steam 
table  equaLms,  as  given by the International 
Formulation Commlttee, l2 whereas the second inverts  
these tables  in to  functions of (u, p ) ,  and appends 
parameters other than T,p,S. 

SHAFT78 uses a 

The tabulation of f lu id  properties as function: 

3 .  RESULTS OF CALCULATION 

Details of the choice of parameters and time 
s teps  i n  the calculations to be presented below 
can be found i n  Ref. 26. 

Verification of SHAFT78 

We have made careful  checks of the accuracy of 

Typical accuracies obtained i n  
the various components of SHAFT78, as well as of the 
program as a whole. 
interpolat ing the equation of s t a t e  f o r  water from 
given values of energy and density are  be t te r  than 
0.15 f o r  temperatures, be t te r  than 0.8 f o r  pres- 
sures, and about 0.01% f o r  vapor saturations. An 
exception to  this are pressures f o r  supooled water, 
which have an inaccuracy of typical ly  - 0.5 bars due 
t o  the  extremely s m a l l  compressibility of l iqu id  
water. 

Calculations f o r  one-dimensional gas flow and 
fo r  rad ia l  flow t o  a l i n e  source i n  subcooled 
l iqu id  water were made and found t o  agree well with 
analyt ical  sol t ions published i n  the 
l i t e r a tu re .  19-31 These examples involve l i t t l e  
energy flow and check only the algorithm f o r  
solving the density Q. 9 and the flow terms in &. 
11. 

I n  order t o  check both energy and density equa- 
t ions  as well as the rock/fluid equilibration, we 
performed a number of two-phase calculations. The I-. 

f i r s t  example involves production from a two- 
dimensional ae r i a l  reservoir with an initial l iqu id  
saturation of 2%. 
i n i t i a l l y  by Toronyi and Farouq A l i ,  with t h e i r  
calculation subsequently ver i f ied by other 
workers.395 A complete specification of the problem 
can be found i n  these references. 
our r e su l t s  fo r  l iqu id  saturation a f t e r  producing 1s of the reservoir f l u id  with those computed by 

This system was investigated 

Table 2 compares 

Toronyi. 
and probably can be at t r ibuted t o  different  
weighting procedures. 

production problem as investigated by Garg.22 The 
problem, which i s  defined i n  Table 3, inwlves  with- 
drawal from a reservoir i n i t i a l l y  f i l l e d  with sub- 
cooled water. 
to bo i l  and several  elements cross the saturation 
l ine.  Fig. 4 shows that our calculation agrees well 
with the r e su l t s  obtained by Garg. 

The discrepancies are of the order of 1% 

A more severe t e s t  i s  afforded by a radial 

A s  production proceeds, water begins 

Total Kinematic Mobility 

It was recently discovered by Garg tha t  fo r  a 
l i n e  source problem the equations governing two- 
phase flow can be approximately reduced t o  a single 
diffusion equation f o r  pressure. 22  his equation 
holds f o r  llearlytl times (production o r  inject ion 
s m a l l  compared with f lu id  mass i n  place) near the 
wellbore. 
according t o  which pressure decline a t  the wellbore 
i s  approximately a l inear  function of log (time), 
with the slope inversely proportional t o  the " to ta l  
kinematic mobility, 

It admits an analyt ical  solution, 

We have performed calculation r different  satura- 
t ions  and different  re la t ive  absolute permea- 
b i l i t i e s ,  the r e su l t s  of which confirm Garg's 
theory. Fig. 5a shows, as an example, a pressure 
drawdown in a reservoir with an absolute permeabilit; 
of lO-I3 m2 (100 md) and an initial saturation of 
5%, with re la t ive  permeabilities as given i n  Ref. 
27. (All other parameters are  ident ica l  to those 
given i n  Table 3.) p vs log (time) i s  indeed a 
l inear  function, and from the slope we f ind (k/v)T = 
1.16 x 10-7 sec to be compared with an average value 
Of (k/V)T = 1.a x 10-7 sec computed f m &. 25. 
I n  Fig. 5b we have plot ted p vs log(t / r  9 ) fo r  the 
same simulation, but including all elements, not 
ius t  the wellblock. 
d t h  slope almost ident ica l  t o  t ha t  of Fig. 5a. Thir 
resu l t ,  which i s  outside the scope of Garg's theory, 
seems t o  indicate that  t o t a l  kinematic mobil i t ies  
a lso could be obtained from observation w e l l  data 
ra ther  than just from flowing wellbore data. 

Again a s t ra ight  l i ne  resu l t s ,  

Pressure Drawdown in Two-Phase Reservoirs 

Two-phase reservoirs are capable of a great 
var ie ty  of 
production,' depending mainly on (1) the i n i t i a l  
amount and dis t r ibut ion of pore water, (2) residual 
immobile water saturation, and (3) rock porosity 

pressure drawdowns i s  given in Fig. 6. The simula- 
tion- shown i n  Fig. 6 i s  fo r  a reservoir t ha t  was 
investigated some time ago using a lumped parameter 
formgation by Brigham and M0rrow.~3 The system 
i s  defined in Table 4. 

ressure responses f o r  constant-rate 

permeability. An example of more unusual 

Our r e su l t s  d i f f e r  great ly  

*We investigate constant r a t e  production a t  present 
ra ther  than a pract ical ly  more r e a l i s t i c  constant 
pressure boundary condition f o r  the well. 
i s  tha t  f o r  the former we can obtain approximate 
analyt ical  solutions with which t o  compare 0-m- 
simulation calculations. 

The reason 
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from those of Ref. 23, the main reason being tha t  
the drawdown i s  dominated by mobility e f fec ts  tha t  
are  not accounted f o r  by a lumped parameter formula 
tion. (Besides this, the resu l t s  of Ref. Q appear 
t o  have an e r ror  i n  the energy balance, as  tempera- 
tures  and pressures drop f a r  below the l imit ing 
values corresponding t o  evaporation of a l l  pore 
water. ) 

The mechanism leading t o  the curious pressure 
drawdowns, as exhibited i n  Fig. 6 ,  i s  interest ing 
and warrants a more detai led discussion. 
pressure decline i s  governed by depletion of the 
steam above the water table. After a while the 
pressure drop reaches the water table ,  a t  which tim 
water begins flowing upward and f lashes  in to  the 
steam zone. This causes a temperature drop near t h  
bottom of the steam zone such tha t  soon a small  two 
phase region develops above the  water table.  
flow of water a lso causes a pressure dmp below the 
water table ,  which gives r i s e  t o  in-situ boiling ani 
an upward movement of water from below the  water 
table. Because l iqu id  water transmits pressure 
decline very rapidly,  the pressure drop spreads 
quickly below the water table ,  d i s t r ibu t ing  the  roc1 
heat loss i n  the subsequent boil ing over a large 
volume. Thus, two boiling f ronts  emerge from the 
i n i t i a l  water/steam interface: The upward moving 
f ront  moves slowly and has a re la t ive ly  low tempera. 
tu re ,  whereas the downward moving front  moves 
quickly and remains close t o  t he  i n i t i a l  rock 
temperature. After a while the steam saturation in 
the lower boiling region i s  large enough f o r  
s ignif icant  quant i t ies  of steam t o  flow upward. 
This steam increases the temperatures and pressures 
a t  the two-phase front  above the water table ,  givinl 
r i s e  t o  a slowing i n  pressure decline o r  even an 
increase i n  average reservoir steam pressure a s  wel: 
as  steam pressure i n  the wellblock. The phenomenon 
depends c r i t i c a l l y  on the value of the residual  
immobile water saturation, Sres, and on absolute 
and re la t ive  permeabilities i n  the  steam and water 
regions. If SreS i s  decreased, the f lash  f ront  
i n i t i a l l y  will move more readi ly  upward above the  
water table ,  causing l e s s  i n i t i a l  decline of temper: 
tu re  and pressure. 
a b i l i t y  i n  the liquizE:!:?fin comparison with 
the steam region) accelerates the downward moving 
two-phase front  re la t ive  t o  the  upward moving one. 
Then i n i t i a l  pressure decline i s  enhanced, but 
pressure recovery i s  more pronounced once the 
en t i re  l iqu id  region i s  boiling. 
fo r  the ( local)  m a x i m u m  i n  one of the curves i n  
Fig. 6. 

I n i t i a l l y  

The 

the absolute perme- 

This i s  the reasor 

For the reservoir of Table 4 with a uniform 
initial steam saturation of S = 0.5 ,  we obtain 
resu l t s  qual i ta t ively similar t o  those of Brigham 
and Morrow (except tha t  t h e i r  pressure and tempera- 
ture  declines a re  too la rge  i n  absolute magnitude 
presumably due t o  numerical error) .  Fig. 7 gives 
the drawdown h is tor ies  f o r  three reservoirs t ha t  
are  ident ica l  except t ha t  the rock porosity is $, 
l@, and 2%, respectively. 
masses of f lu id  i n  place d i f f e r  by a fac tor  of 2 
between reservoirs.  Pressure drawdowns are  virtu- 
a l l y  the same f o r  these reservoirs f o r  a consider- 
able length of time. 
curves cannot be used fo r  reserve assessment. Note 
tha t  a f t e r  the pore water i s  depleted, pressure 
f a l l s  t o  zero rapidly,  because of rapid depletion 
of an all-steam phase. The standard technique of 

Thus, the i n i t i a l  

Obviously, pressure decline 

- 

in fer r ing  reserves f r o m  pressure decline curves i n  
(one-phase) gas or  steam reservoirs i s  based on the  
f ac t  t h a t  pressure i s  proportional to density (when 
corrections a re  made fo r  real-gas behavior). 
two-phase geothermal reservoir,  however, pressure i 
a function of temperature alone, with density being 
an independent variable. The mass of f lu id  i n  placi 
depends on density, not on pressure. Pressure and 
temperature decline because of the  heat loss of the 
rock to the  boiling water. For reservoirs  with s m i  
spa t ia l  var ia t ions i n  parameters, average pressure 
decline depends only on the total amount of water 
evaporated. This simple f ac t  appears t o  have been 
overlooked i n  the l i t e ra ture .  I n  Refs. 23 and 3,  
pressure is plotted as a function of mass f rac t ion  
produced, which resu l t s  i n  different  decline curves 
fo r  different  porosit ies.  However, i f  pressure werc 
p lot ted as function of t o t a l  mass produced, the  
curves fo r  different  porosi t ies  would very nearly 
coincide. 
decline curves f o r  the three reservoirs shown i n  
Fig. 7 i s  due t o  the f ac t  t ha t  the r a t e  a t  which 
water bo i l s  i s  v i r tua l ly  the same fo r  all, being 
approximately equal to the r a t e  of steam production. 

In  a 

The initial close coincidence of pressurc 

I f  rock volumetric heat capacity and i n i t i a l  
average reservoir temperature are  known, pressure 
decline curves can be used t o  estimate the  t o t a l  
volume of a two-phase r e s e m i r ,  as  we sha l l  show 
presently. Only i f  this information i s  supplementec 
by values for average porosity and average saturatic 
can reserve estimates be made. 

Reservoirs with s m a l l  spa t ia l  var ia t ions i n  
f l u i d  and rock properties can be analyzed with the 
bulk model developed i n  the  Appendix. Eq. A-13 shot 
t ha t  pressure drawdown a t  ear ly  times i s  a l inear  
function of produced mass (we assume tha t  l iquid 
water i s  immobile a t  the well and only steam i s  
produced). 
t iona l  to the reservoir  volume (cf.  Eq. A-13): 

The slope of p ( t )  is  inversely propor- 

V ( 1 - 4 )  = - 7 1 - M 
'v (hv- h g ) L  1 . . . (2t p PRCR ' T + 273.15 

to 

For the  three reservoirs calculated i n  Fig. 7, the 
slopes are  v i r tua l ly  the same. Inser t ing this value 
in to  4. 26 we  obtain an estimate f o r  the reservoir 
rock volume, 

8 3  ~(1-4) = 9 . 4  x 10 m . . . . . . . . . . (27 
8 7  This compares with values of 9.5, 9. and 8. x 10 m' 

f o r  the three cases investigated. 

Field observation of an i n i t i a l l y  l inear  depen- 
dence of pressure on time such as  i n  Fig. 7 might 
be taken erroneously as  an indication tha t  the 
reservoir  contains pure steam.%28 i f  the standard 
technique f o r  estimating gas o r  steam reserves from 
a straight-l ine extrapolation then were used, large 
e r rors  would be committed. A correct reserve 
estimate would be purely coincidental. This state- 
ment can be made more quantitative. Using E q .  A-13 
we obtain f o r  the r a t i o  of mass reserves as  estimate! 
from a p/z vs t-plot  to t rue  reserves ( O V ~ ) ,  

. . . . . . . . . . . . . . . . . . . . . .  (28 
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A l l  parameters are  to be evaluated a t  the i n i t i a l  
reservoir temperature and pressure. Values of W f 
the reservoir of Table 4 (S = 0.5) are given i n  
Table 5 fo r  a range of porosi t ies  and saturations. 
Note tha t  the p/Z-technique overestimates reserves 
f o r  s m a l l  porosity by large factors ,  especially whl 
the vapor saturation is  large. On the  other hand, 
fo r  large porosi t ies  and s m a l l  saturations reserve; 
a re  underestimated. 

CONCLUSION 

The simulator SHAFT78 has been ver i f ied fo r  a 
number of one- and two hase flow problems invo1vi.1 
subcooled water, waterzteam mixtures, and super- 
heated steam. The flow of water and steam in poroi 
media, boil ing and condensation phenomena, and heat 
exchange between rock and f lu id  a re  all described 
properly. 

A completely self-consistent i t e r a t ive  t reat-  
ment of mass and energy flow currently i s  being 
implemented to overcome ex5sting l imitat ions of 
permissible s ize  of time steps. 

Model simulations revealed tha t  two-phase 
geothermal reservoirs are  capable of a large 
var ie ty  of pressure responses during f lu id  produc- 
t ion.  
decline i s  the amount and dis t r ibut ion of pore wate 
i n  the reservoir.  Two-phase geothermal reservoirs 
often W i l l  exhibit  a l i nea r  dependence of p/Z on 
cumulative production, similar t o  tha t  observed i n  
gas reservoirs.  However, the  standard gas reservoi 
technique of predicting reserves from the slope of 
p/Z vs cumulative production i s  not applicable fo r  
two-phase geothermal reservoirs,  except under 
for tui tous circumstances. Reserve assessment 
requires knowledge of average porosity and vapor 
saturation, which cannot be obtained from pressure 
decline curves. 

The m a i n  f ac tor  t ha t  determines pressure 

Apart from idealized model studies,  SHAFT78 
also has been used f o r  a threedimensional simula- 
t ion  of production and recharge i n  the Krafla 
geothermal f i e l d  (Iceland),  which i s  reported else- 
where. 13 A t  present, a his tory match f o r  productior 
and inject ion i n  the Serrazzano f i e l d  ( I t a ly )  i s  
being developed. 

NOMZNCLATURE 

A, = interface area between volume elements n 
and m, m2 ,. 

L a = general element of area, m 
CR = specif ic  heat of rock, J/OC kg 

dn 

dm elements, m 
= distance of interface from center of volume 

2 F = mass flux, kg/m s 
= f lux  of l iquid,  kg/m s 
= f lux  of vapor, kg/m s 2 F -V  

F, = mass f ux between volume elements n, m, 

2 
G, = en;mmgsflux between volume elements n, m, 

g = vector of gravi ta t ional  acceleration, m / s  
g, = component of gravi ta t ional  acceleration 

kg/m 3 s 
= energy f lux,  J /m s 

2 - 
perpendicular to  the interface between 

2 volume elements n, m, m/s 
h = specif ic  enthalpy of f lu id ,  

h, = specific enthalpy of l iquid,  
h, = specific enthalpy of vapor, 
hR = specific enthalpy of rock, J 
I = integrand of pressure equation, ms2 OC/J 
K = thermal conductivity of rock/fluid mixture 

J/ms @C 

average thermal conductivity in volume 
Km = elements n, m, J/ms % 

KN, = average thermal conductivity a t  interface 
between volume elements n, m, J/msOC 

KR = thermal conductivity of rock, J/ms°C 
k = absolute permeability, m2 

= average absolute permeability i n  volume 

k, = absolute permeability a t  interface between 

kd = re la t ive  permeability of l iqu id ,  f ract ion 
kv = re la t ive  permeability of vapor, f rac t ion  

elements n, m, m2 

volume elements n,  m, m 2  

(k/tr)T = total kinematic mobility, s 
M = r a t e  of f l u id  Froduction, kg/s 
n = u n i t  normal on ae r i a l  element 

2 = pressure, N/m 

avera e pressure i n  volume elements n, m, 
Pm pn 1 = N/m$ 

2 po = pressure a t  initial time, N/m 
2 

3 fi = slope of pressure vs time, N/m s 
q = volumetric r a t e  of mass generation, kg/m s 

qn = average volumetric r a t e  of mass generation 

Q = volumetric r a t e  of energy generation, J/m3: 
Qn = average volumetric r a t e  of energy generatic 

R = r a t i o  of density t o  energy change, (kg/m3)/ 

% = average r a t i o  of density t o  
i n  volume element n, (kg/m5)/(J/kg) 

ri = radial length of volume element i of radial 
gr id ,  m 

i n  volume element n, kg/m3s 

i n  volume element n, J/m3s 

(J/kg) 
nergy change 

S = volumetric vapor saturation, f ract ion 

T = temperature, OC 

= residual immobile volumetric liquid satura- 
'res t ion ,  f rac t ion  

= average temperature i n  volume elements n, 

t -- time, s 
tu = time step f o r  energy equation, s 
t p  = time s tep f o r  density equation, s 
to = initial time, s 
u = specif ic  energy of f lu id ,  J/kg 

= average specif ic  energy of f l u i d  i n  volume 

L+,,,, = average specif ic  energy of f lu id  a t  inter-  
elements n, . m ,  J /kg 

face between volume elements n, m, J/kg 
u4 = specif ic  energy of l iquid,  
+ = specific energy of vapor, 
uR = specif ic  energy of rock, J 

\p = average specif ic  energy of upstream volume 

= average specif ic  energy of downstream 
element, J/kg 

volume element, J/kg 
U 
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3 V = volume.of reservoir. m Annual F a l l  Technical Conference and Exhibition 
Denver, Oct. 9-12, 1977. 
Garg, S. K., Pr i tchet t ,  J. W., Rice, M. H., and 
h e y ,  T. D.: TJ.S. G u l f  Coast Geopressured 
Geothermal Reservoir Simulation," Report SSS-R- 
77-3147, Systems, Science and Software, La 
J o l l a ,  CA (1977). 
Mercer, J. W. and Faust, C. : "Progress Report 
on Multiphase Geothermal Modeling," pToc., 
Third Stanford Workshop on Geothermal Reservoi 
Ehgineering, Stanford, CA (1977) 185-187. 
Moench, A. F. and Atkinson, P. G.: "Transient 
Pressure Analysis in Geothermal Steam Reser- 
voirs  with an Immobile Vaporizing Liquid Phase 
Summary Report," E., Third Stanford Worksho; 
on Geothermal Reservoir Engineering, Stanford, 
CA (1977) 64-69. 
Huyakorn, P. S., Pinder, G. F., Faust, C. R., 
and Mercer, J. W.: 
of Two-Phase Flows in Porous Media," preprint  
t o  be presented a t  the ASME Winter Annual 
Meeting (Dec. 1978). 
Narasimhan, T. N. and Witherspoon, P. A.: "An 
Integrated Fini te  Difference Method f o r  
Analyzing Fluid Flow i n  Porous Media," Water 
Resources Research (Feb. 196) 2, 57-64. 
International Formulation Committee: "The 196' 
IF'C Formulation f o r  Industr ia l  Use, A Formula- 
t i on  of the Thermodynamic Properties of 0rdina1 
Water Substance" (Feb. 1967). 
Jonsson, V.: '*Simulation of the Krafla Geo- 
thermal Field,  Lawrence Berkeley Laboratory 
Rept. LBL-7076, Berkeley, CA (1978). 
Weres, 0.: "A Model of the Serrazzano Zone," 
E., Third Stanford Workshop on Geothermal 
Reservoir Ehgineering, Stanford, CA (1977) 

Hubbert, M. K. : llDarcy's Law and the Field 
Equations of the Flow of Underground Fluids," 

Evans, G. W . ,  Brousseau, R. J., and Keirstead, 
R. : 
Difference Equations Derived from the Diffusior 
EquBtion," Lawrence Livennore Lab. Rept. UCRG- 
4476, Livermore, CA (1954). 
Lasseter, T. J., Witherspoon, P. A. ,  and 
Lippmann, M. J.: "Multiphase Multidimensional 
Simulation of Geothermal Reservoirs," e., 
Second United Nations Symposium on the Develop- 
ment and Use of Geothermal Resources, San 
Francisco. CA (1975) 3. 1715-1723. 

*'Finite FLement Simulation 

2 14-2 19. 

 wan^., AIME (1956) 9, 222-239. 

"Instabi l i ty  Considerations f o r  Various 

vn 
v." \ = volume elements of reservoir,  m 3 

2 111 

(v,) = surface of volume element vn, m 
Z = gas law compressibility factor ,  dimension- 

A = increment 
6 = f lu id  energy per volume, J / m  
K = weighting factor  f o r  mobili t ies,  dimension 

X = weighting factor  f o r  energies, dimension- 

p = f l u i d  density, kg/m 

n, m,  kdm3 

l e s s  

3 

l e s s  

l e s s  3 

= average f l u i d  density i n  volume elements 
Pm pn I 

P, = average f l u i d  density a t  interface between 
volume elements n, m, 

po = initial f l u i d  density, k 
pA = density of l iquid,  
pv = density of vapor, 
pa = density of phase 
p~ = density of rock, 

pA = viscosity of l iquid,  
pV = viscosity of vapor, 

3 7 = general volume element, m 
0 = time weighting factor ,  dimensionless 

= viscosity of phase a ,  Ns/m 
@ = porosity, dimensionless 

9, = porosity of volume element n, dimensionles: 
U) = r a t i o  of (p/Z)-estimate t o  t rue reserves, 

dimensionless 

Subscripts 

down = downstream 
exp = exp l i c i t  

4 = l i qu id  
n I= volume elements 

R = rock 

p = referr ing t o  density 
u = referr ing t o  energy 

v = vapor 
a = l iquid o r  vapor phase 

res  = residual 

up = upstream 
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"low of Gas-Liquid Mixtures 

. . . . . . . . . . . . . . . . . . . . . (  A - 6 )  

To obtain the pressure drawdown with time, we use 
4. A-1 t o  write P as  function of time, and express 
T as  a function of p: 

( O R -  p ) (T + 273.15)  
dT V 

dT = (;i;;)sat d p  = PQPv (hv- h Q )  d P  * 

. . . . . . . . . . . . . . . . . . . . .  (A-7) 

Away from the c r i t i c a l  point we may neglect pV/pL <( 
1, so tha t  

. . . . . . . . . . . . . . . . . . . . . (  A - 8 )  

This formula gives the pressure drawdown as  an 
implici t  function of time. 
form, we expand the integrand t o  f i r s t  order. 
Abbreviating 

To invert  it t o  exp l i c i t  

APPESJDIX - 1"JLK MODEL FOR TWO-PHASE R F S W O I R  

Consider a two-phase reservoir with i n i t i a l  
conditions and rock properties independent of 
posit ion,  and a constant volumetric r a t e  of steam 
production, q < 0. For this system the mass and 
energy-balance equations (Eqs. 1 and 2) reduce t o  

$dp = q d t  . . . . . . . . . . . . . . .  (A-1; 

e n e r g y  
volume 

d(-------) = 4 hv d t  . . . . . . . . . .  (A-2) 

with (energy/volume) given by Eq. 5 .  We have 

where we have introduced the specific volumetric 
energy 6 = up of the f luid.  
formulating i n  terms of c ra ther  than u i s  that  & 
can be writ ten expl ic i t ly  i n  a way tha t  separates 
the p- and T-dependence, namely, 

The usefulness of 

P .  
uv- + uI1pQ- uvpv 

PI1 - 0" PRPv 
t : = u p =  

. . . . . . . . . . . . . . . . . . . .  (A-4) 

A l l  quantit ies except p depend on T only. From 4 s .  
A- 1 through A-4 f O l l O W S  

. . . . . . . . . . . . . . . . . . . . .  (A-5) 

The o n l y  term on the right-hand side tha t  depends 
on p is  (&/dT),, i .e . ,  the volumetric specific heat 
of the (two-phase) f lu id  a t  constant density. I n  
all p rac t i ca l  cases, with porosity considerably l e s s  
than 1, this will be negli  ble  in comparison with 
the rock contribution ( l - @ ? ~ $ R / m .  Neglecting 
(a&/aT)~, we achieve a separation of variables in 
Eq. A-5, which admits a closed-form solution, 

1 /t (T + 273 .15)  
Pv(hv  - h E ) 2  dp t - t = - (1-4) PRCR 

0 q 

from which, a f t e r  performing the integration, 

1 
( d Q n I /  d p )  

P ( t )  = Po - 

1 

. . . . . . . . . . . . . . . . . . . .  . (A-11)  

( N o t e  that d ld /dp  4 0). 

A t  ear ly  times, defined by 

t - t  0 << . . .  .(A-12) 

we can expand the square root and obtain a l i nea r  
pressure drawdown: 

. . . . . . . . . . . . . . . . . . . .  .(A-13) 
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Table 1 

Fluid parameters 

1 9  
1 8 . 3  
1 8 . 3  

2 5  
1 8 . 3  
1 8 . 3  

3 1  
1 8 . 3  
1 8 . 3  

~ ~. 

Parameter 

2 0  2 1  2 2  2 3  
1 7 . 2  1 5 . 2  1 2 . 2  1 4 . 8  
1 7 . 3  1 5 . 2  11.8 1 4 . 9  

2 6  27 2 8  29 
1 7 . 2  1 5 . 2  1 2 . 3  1 4 . 8  
1 7 . 3  1 5 . 2  1 2 . 0  1 4 . 9  

3 2  3 3  34 3 5  
1 7 . 2  1 5 . 2  12.3 1 4 . 8  
1 7 . 3  1 5 . 2  1 2 . 0  1 4 . 9  

~ 

Me ani ng Units 

T 

P 
S 

K 

kd% 
kv/% 

temperature 

pressure 

vapor saturation 

heat conductivity 

rel. permeability/ 

rel. permeability/ 

density of liquid 

density of vapor 

viscosity for liquid 

viscosity for vapor 

C 
0 

2 N/m = Pa 

[volumetric fraction] 

J/ms OC 

2 m /Ns 

3 
kg/m 

1 J/kg energy of liquid 

energy of vapor i 
V 

U 

Table 2 

a) Percentage of Liquid Water Saturations for Toronyi's Problem 

1 '  :::: l 2  1 7 . 2  /I 1 5 . 2  l 4  1 2 . 2  /j 1 4 . 8  
1 7 . 3  1 5 . 2  11.8 14 .9  

~ ~ 3 ~ ~ : ~  1 l k 1 7 . 2  1 1 5 1 5 . 2  1 ::12.2 1 :114.8 

1 7 . 3  15.2 1 1 . 7  1 4 . 9  

18.3 1 7 . 2  1 5 . 2  1 2 . 1  1 4 . 8  
1 8 . 3  1 7 . 3  1 5 . 2  11.8 1 4 . 9  

' 1 6 . 2  1 
1 6 . 4  

1 2  
1 6 . 2  
1 6 . 4  

I 8  
1 6 . 2  
16 .4  

2 4  

1 6 . 2  
1 6 . 4  

30 
1 6 . 2  
16 .4  

36 
16.2  
1 6 . 4  

a)The lower numbers are Toronyi's results, 

whereas the upper ones were computed from 

SHAFT78. 
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Table 3 

Garg ' s Problem 

Figure 6 

3 3 Rock properties: 0, = 2.65 x 10 kg/m 

C, = 1 kJ/kg 

T P s elements 
252 OC 41 bars 1.0 top 500 m 

252 OC 41.1 bars 0.001 bottom 500 m 

-. 
K = 5.25 W/m°C 

k = 10 -14 m2 
R 

r$ = 20% 

Reservoir geometry: 

cylindrically symmetrical reservoir, subdivided into 50 elements 

with radial increments as follows: 

The reservoir is a 5.625O-sector of a 

11' 
Ar = At = ... = Ar = 1 m; Ar = 1.2 Ar 
1 2 11 12 

ArI3= 1.2 Ar 12... Ar50 = 1.2 Ar49. 

Mass is withdrawn from element 1 at a rate of .14 kg/s-m 

The boundary conditions at the outer sector are "no flow." 

0 Initial conditions are T = 300 c, p = 90 bars for the 

simulation shown in Figure 4, and T = 300 c, S = 50% for 

the simulation shown in Figure 5a,b. 

0 

Table 4 

Brigham/Morrow Problem 

Rock properties: 3 
pR = 

2000 kg/m 

CR = 
1232 J/kg 

K = 0. 
R 

= m2 

@ = 5, 10, 20% 

3 The reservoir is a cube with 1 km volume. For the case studied 

in Figure 7 it was subdivided into 10 equal-sized elements with a 

vertical spacing of 100 m. For the problem of Figure 6 the top 3 

and bottom 2 elements have a vertical spacing of 100 m, with the 

500 m between them divided into 20 equal-sized elements of 25 m 

vertical separation. All outer boundaries are "no flow." Mass is 

withdrawn at the top at a rate of 50 kg/s. Initial conditions 

are : 

Figure 7 1 252 OC 41.1 bars 0.5 all 

-11- 



Table 5 

Ratio of (p/z) - Estimates to True 
Reserves i n  a mo-Phase Re~ervoir 

- values of wa) - 

4 .01 .02 .05 .10 .20 .30 

.05 

.10 

.20 
i 30 
.40 
.50 
.60 
.70 
, RO 
.90 
.95 

11.6 
12.2 
13.7 
15.5 
18.0 
21.4 
26.5 
34.5 
49.8 
89.1 
147. 

5.7 2.2 1.1 .47 
6.0 2.3 1.1 .49 
6.8 2.6 1.2 .55 
7.7 3.0 1.4 .63 
8.9 3.5 1.6 .73 
10.6 4.1 1.9 .87 
13.1 5.1 2.4 1.1 
17.1 6.6 3.1 1.4 
24.6 9.6 4.5 2.0 
44.1 17.1 8.1 3.6 
72.8 28.2 13.4 5.9 

.27 

.29 

.32 

.37 

.42 

.51 

.62 

.81 
1.2 
2.1 
3.5 

I I 

XBL7811-12743 
a)The table is computed from eq. (28). It shows the factors W 

by which application of the p/Z v5. t-method would over- 

estimate mass reserves for the reservoir of Table 4 (initial 

temperature: T = 252OC). The same general pattern with 

somewhat different numerical values holds for different 

rock parameters and initial temperatures. 

MENTS N AND M ARE SHOWN AS TWO- 
D~MENSIONA- POLYGONS WITH INTER- 
FACE AREA )INM AND ELEMENT CENTERS 

RESPECTIVELY, CROM THE INTERFACE.  

B E I N G  AT A DISTANCE DN AND DM, 

Init ial ize 7 
changes (AUnkXp 

-1 

No 

changes ( A P ,  ) exp 
t I 

Implicit density 
changes ( A P ,  ) imp 

forward in time 

FIG, 2 - FLOW CHART OF PROGRAM EXECUTION, (FOR AN EXPLANATION SEE T E X T , !  ‘BL”liiz”2 
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P 

pn 

1 I WU 

\ 

XBL7811-12744 
FIG. 3 - POCK/FLUID EQUILIBRATION, LET ELEMENT N BE AT (uN,pN) AT THE BEGIN- 

NING O F  TIME STEP T~ (POINT I), SOLVING ENERGY AND DENSITY EQUATIONS I T  WILL 

D E R ~ V A T I V E S  AVERAGED OVER 1-2 AND 1-5, RESPECTIVELY (SEE EO,  241, WILL GIVE 

(u, + *u;(l), cN + A ~ ~ ) ( P O I N T  6 ) .  
DERIVATIVES AVERAGED OVER 6-5 AND 6-3, RESPECTIVELY, WILL GIVE (u, + AuA(2), 

AMOUNT, THE DENSITY STEP IS REPEATED WITH HALF THE TIME INCREMENT. LARGE 
RELATIVE CHANGES IN OCCUR IF THE SATURATION LINE WAS CROSSED (POINTS 1 
AND 6 BEING ON OPPOSITE SIDES OF THE SATURATION LINE), THEN SMALL TIME 

YOVE TO (U, + *UN, ON + ADN) ( P O I N T  4 ) .  THE ROCK/FLUID E Q U I L I B R A T I O N  W I T H  

REPEATING ROCK/FLUID EPUILIBRATION WITH 

n N  + C ~ * ~ ~ ) ( P O I N T  7 ) .  I F  A U A ( 1 )  AND A U h ( 2 )  D I F F E R  BY MORE THAN A PRESCRIBED 

STEPS ARE TAKEN W I T H  SMALL ABSOLUTF ERPORS UPON CROSSIN(: THE SATURATION L I N E .  

90 

80 

," 70 
m 
U - 
W 
LL 
3 
a 
2 60 
z- 
a 

50 

" 0  0 1 0  I I I I 

0 "  
O OX O o x o o o a  

0 S H A F T  78 

, G A R G  

10 
0 

0 
0 

P O  

0 

b 
ox 
0 

I 

0 

0' 

o x  
0 

0 
o x  
o x  
o x  

o x  
0 

0 10 102 103 IO' I 

T I M E  (SECONDS)  

XBL7811-2168 
FIG, 4 - SIMULATED PRESSURE DRAWDOWN FOR RADIAL WATER RESERVOIR. THE 
RELATIVE PERMEABILITIES ARE TAKEN FROM C O R E Y ' S  EQUATION, WITH sGc + 

S,, - ,35. 

G A R G ' S  RESULTS ( C R O S S E S )  I 

THE OTHER PARAMETERS OF THE PROBLEM ARE DEFINED I N  TABLE 3 ,  
THE RESULTS OF THE ?b1f iFT78-SIMULATION ( C I R C L E S )  COMPARE WELL WITH 
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. 8 4  

. 8 3  

.82  

h 

U a 

.&1 
r( v 

W 
CL 
2 
v) Vl 

g .80 
a 

.79 

. 7 a  
3.00 4.00 5 .00  

LOG ( T I M E )  
SAT' . 5  

XBL 7811-13174 
FIG. 5A - SIMULATED PRESSURE DRAWDOWN kOR A RADIAL TWO-PHASE 

WEQE THOSE OF R E F ,  27. 
8f4 

. a 3  

- a . 8 2  
a - 
0 
r( v 

W a 2 .81 
0) 

W 
CL 0 

.80 

.79 

78, 
3 . 0 0  4 . 0 0  

LOG ( T / R Z )  
SAT' . 5  

XBL 7811-13173 
FIG. 5 B  - SIMULATED PRESSURE DRAWDOWN FOR A RADIAL TWO-PHASE 

WERE THOSE OF REF.  27. 

-14- 



I 

4c 

h 

2 
n 

2 

0 

Y 

3 
v) In 
35 

a 

30 

Mass fraction produced ( '/o 1 
IO 20 3 

4 

h 

1 I 

Time (years) 
2 4 6 

XBL7811- 12720 

Fig. 6 - Simulated pressure drawdowns in a one-dimensional 
two-phase reservoir with a water/steam interface. The re- 
lative permeabilities were obtained from Corey's equation 
as given in ref. 5, with S The circles are w 
for a simulation as specified in Table 4, with porosity 
4 = 10%. 
bottom 500 m have been taken to be one element; this cor- 
responds to a very large absolute permeability in this re- 
gion. 

tS,, t 7. 

The rectangles are for the same system but the 
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50 I I I I I I I I I I - - 
- - 
- - 

Time (years) 
xeL 781i -1~721 

F I G ,  7 - SIMULATED PRESSURE D AWDOWN I N  ONE-DIMENSIONAL TWO-PHASE RESERVOIRS W I T H  
U N I F O R M  I N I T I A L  SATURATION,  HE PROBLEM I N  DEFINED I N  TABLE 4 ,  
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