Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title

DESCRIPTION OF THE THREE-DIMENSIONAL TWO-PHASE SIMULATOR SHAFT78 FOR USE IN
GEOTHERMAL RESERVOIR STUDIES

Permalink

https://escholarship.org/uc/item/257048r|

Author
Pruess, K.

Publication Date
1979

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/257048rf
https://escholarship.org
http://www.cdlib.org/

MI\STER

Presented at’ the 1979 Society of Petroleum :
Engineers ‘of AIME 5th Symposium on Reservoir - -
- S1mulation Denver,1Colorado February 1 2, 1979 L,DMF' "\"\6 l (Gl
o ] :rws\ : L _ |

DESCRIPTION'OF THE THREE-DIMENSIONAL
_“TWO-PHASE- SIMULATOR SHAFT78 FOR USE -
N GEOTHERMAL RESERVOIR STUDIES

R U P Karsten Pruess. J.- Mike. Zerzan, ‘,
Rl e Ron C Schroeder and Paul A N1therspoon

- January 1979

R 'Pf‘eDared for the U. S. Department of Energy
’ under Contract w 7405 ENG 48

13

'DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED - © "



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.



DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.



LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United, States nor the Depart-
ment of Energy, nor any of their employees, nor any of their con-
tractors, subcontractors, or their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness or usefulness of any information, appa-
ratus, product or process disclosed, or represents that its use would
not infringe privately owned rights.

e

i



NOTICE
This report was prepared as an account of work
sponsored by the United States Government. Neither the
United States nor the United States Department of
Energy, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal
liability or responsibility for the NS !
or usefulness of any information, apparatus, product or

DESCRIPTION OF THE THREE-DIMENSIONAL s vy e O
TWO-PHASE SIMULATOR SHAFT78 FOR USE
IN GEOTHERMAL RESERVOIR STUDIES

by Karsten Pruess, J. Mike Zerzan, and
- Ron C. Schroeder, Paul A. Witherspoon,
Members SPE-AIME, Lawrence Berkeley Lab.

In recent years, a number of numerical
ABSTRACT simulators for geothermal reservoirs have been

The algorithm of SHAFT78 is based on mass and dgveloped.3flo Tpe gene?al purpose o? Fhese is to
energy-balance equations for two-phase flow in a aid reservoir engineers in (1) determining character-

c < 1s . istic parameters of reservoirs (most important among

porous medium. We convert the basic differential those being the re f fluid and heat) and (2)
equations into integrated finite-difference form. 105 being Lhe reserves o w .
This allows regular and irregular reservoir shapes slmulat}ng the Peffor@ance of reservoirs upon
to be handled with the same ease. The equations are production and injection.

solved semi-implicitly for discrete time steps. The . . . R .
" . The various simulators differ in the approxima-
present version of SHAFT78 trgats the.coupl}ng tions made in the underlying physical modelp?e.g.,
gezz§:; missi:ggnZHZ§§ym§éZwt§nc:mnﬁzzteﬁzgive way. dependence of rock and fluid properties on thermo-
toereatione with Lidh acourac pute p dynamic variables), in the geometrical definition of
g oo the reservoir (one-, two—,)or three—dimensional,
s oz . regular or irregular shape), in the choice of
We have verified the program by computing a thermodynamic variables, and in the mathematical
number of sample problems that previously had been techniques used for solving the coupled mass and

investigated by other authors. Our model studies

reveal that two-phase geothermal reservoirs are

capable of a.great variety of pressure responses . Criteria for desirable performance of numerical

upon production. We show that the standard technique . . .

of estimating reserves by extrapolating a plot of p/2 simulators depend in part on the particular problems
g v P € ap P to be investigated. Different problems often will

energy transport equations.

vs cumulative production is not applicable to two- : . . .
phase eothermgl reservoirs. We ggvelop a bulk differ in the ?equ1red lgvel of detail to be
model %lumped parameters) for a two-phase reservoir resolved, and in the.optlmum balance of speed and
that admits an analytical solution for pressure accuracy of computatlon. Mu?h can be learned ?bout
decline upon production. From this we conclude that Fwo-p@ase flow in porous medxg from model studies for
in many cases pressure will be a linear function of 1§eallzed systems. Su?h stgdles can be performed
cumilative production, with the slope allowing an with less-than-three-dimensional models and
estimate of total reservoir volume. Reserve algorithms that are based on regular gr}d spacings.

; For modeling natural geothermal reservoirs, on the

assessment requires knowledge of average porosity and sy s . _
vapor saturation, which cannot be obtained from gzg:gsggﬁgi 1§o;Zt;g§zr;antb:h§:né§z§g2§§§l;hree
pressure decline curves. g ay y

In comparison with other two-phase simulators

- INTRODUCTION that have been discussed in the literature, the main
distinctive feature of SHAFT78 is that it uses an
integrated finite~difference method (IFD).1l We
solve finite-difference equations that are obtained

Geothermal reservoirs are distinguished by the
fact that, in contrast to oil and gas reservoirs,
fluid flow, in general, is not isothermal. The . R ; .
processes of water boiling and steam condensation by formally integrating the basic partial
involve exchange of large quantities of heat between d1f§erent1al equations for mass and energy flow over
the fluid and the rock matrix. The flow of steam arbitrary polyhedral volume elements. This method is
and water alters both th% distribution of mass and Z:t§:i1izs:§$§;§gbi: ;: ;griguigzafizzgt:223125
energy in the reservoir.! A theoretical description geometries; yet the relative simplicity of the

of two-phase geothermal reservoirs, thené must . - . : :
R : finite—difference method is retained in the theory
consider both mass and energy transport. end algorithms.
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Another advantage of SHAFT78 is that all fluid
properties are obtained through interpolation from
tables.1? No reference to the equation of state of
water is built into the algorithm, which therefore
also can be applied for studying two-phase porous
flow of fluids other than water.

The version of SHAFT78 discussed in Chapters 1
and 2 of this paper is not to be considered final.-
Future development will allow rock properties to
vary with temperature and pressure, such variations
being neglected at present. Also, we intend to
implement an iterative solution of the coupled mass
and energy transport equations in order to overcome
limitations of time step size inherent in our
present noniterative treatment of the coupling.

The present version of SHAFT78, however, is
fully operative and is being used extensively. In
Chapter 3, we discuss results of calculations for
idealized systems, which verify the program and give
insight into the pressure response of two-phase
reservoirs during production.

Similations of "'real" reservoirs also have
been carried out. Work on simulating reinjection
into the highly irregular-shaped geothermal field
near Serrazzano (Italy) is in progress.

1. PHYSTICAL AND MATHEMATICAL MODEL

Mass and Energy Balances

Following the customary procedure, we describe
the flow of (two-phase) fluid and heat in a porous
medium in terms of balance equations for mass and

energy. We have the density equation,
390 _ i
3t Aiv F 4+ g, ¢ o o o ¢ o 0 e oo (1)
and the energy equation,
3 /volume) e
energy/vo.ume - div G + (X 4+ ZHVp+ 0.
at ~ p
v 2
T )

Thelmomentum balance is approximated with Darcy's
law

k k

Q

Ha

z F
a=v,L "a

F Py (VP - 0,9).

e e e e e (3)

The energy flux G is taken to be the sum of conduc-
tive heat fluxes in rock and fluid, plus the
enthalpy fluxes of vapor and liquid:

Hov v o o oo (&)

[

L F
a=v,L ~a

G - KVT +

Eqs. 2 and 4 are straightforward statements of the
first law of thermodynamics, with viscous dissipa-
tion being neglected. Other approximations made in
defining the physical model are: (1) we assume all
rock properties—porosity, density, specific heat,
thermal conductivity, absolute permeability—to be
independent of temperature, pressure, or vapor
saturation; (2) we neglect capillary pressure

Pc = P, -Pyi (3) we assume that liquid, vapor, and
rock matrix are in local thermodynamic equilibrium,

" up into a number of arbitrary elementary polyhedrons,

i.e., at the same temperature and pressure, at all
times; (4) we neglect the (F/p)Vp - terms in Eq. 2.

With liquid and vapor in thermodynamic equili-
brium, the state of the two-phase fluid can be
specified completely in terms of specific energy, u,
and specific density, p. For the rock/fluid mixture
we have :

energy
volume

N €))

dup + (1-9) u_ o

R R’

Because of thermodynamic equilibrium, the specific

energy, up, of the rock is a function of fluid

temperature, T, which in turn is a function of (u,p):
Ju

(), k()
h du at
p

3t ).
with Egs. 5, 6, 1 and the above stated approximations

Eq. 2 can be -written
Ju f du
; - _R _R ap/at
pp + (1-¢) OR{(QU >p +(_ap )u 'au/at}

SQVGHUdIVE 4 (Q-ug)., ... .. (7)
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For the solution of Egs. 1 and 7, different
sets of variables can be used. The formally most
elegant choice is (u,r), which also appears to be
advantageous with regard to ensuring over—all mass
and energy conservation. This is the method adopted
in the present work. A difficulty associated with
the (u,p)-formulation is that liquid subcooled water
has a very small compressibility. Very small density]
changes translate into large variations in pressure.
Extreme accuracy is required in computing liquid
densities in order to get reliable values for the
flow terms (Egs. 3 and 4). For this reason,
alternative sets of variables such as pressure and
enthalpy may be preferable for problems involving
liquid subcooled water. :

Integrated Finite-Difference Method

In order to be able to handle one-, two- or
three-dimensional, regular or irregular geometries
with the same ease, we rewrite Egs. 1 and 7 in
integrated form. The reservoir volume, V, is broken

Vnr Vpr Yoy » - ., which are connected by polygonal
inter?aces with area Apg, Apyg, . - . The interfaces
between elements must be perpendicular to the line

connecting their centers (see Fig. 1). Integrating
Eq. I gives
Ny by o
= atp = v —2 = .
nat v P nn ot {v )da Frn+ Vg,
n
= o Fam ¥ Vadp - ... (8)

Here we have introduced volume and surface averages.
(Note that these are averages of macroscopic quanti-
ties and should not be confused with microscopic
averaging used to derive the differential Eqgs. 1
and 2.) Note that in contrast to the usual conven-
tion, we take n to be the inward normal (into Vp)
for surface element da. The sum over m extends over
all elements Vj that have an interface App in common
with V,. Proceeding with Eg. 7 in an analogous way,




we obtain the integrated density and energy equationsg
for elementary volume, Vy,

3 z .
LY L (9)
3 e e e e e e
£ ¢n vn ¢n
du
_n _
t
1}1:1 Anm(Gnm‘ unan) M vn(Qn_ unqn)

du ou :
- R R} 3p/3t
Vnénpn + Vn(l $n) pR{<")u >p + (f)p >u du/at }"1

B & (o))

e s e s s s & e e o o'

The flux terms an and G are computed from the
finite-difference forms 8? Egs. 3 and 4.

ka Pm— Pn
knm (E;) (Da) 3i+a - (pa) Inn

(F ) =
Qa
nm nm n m nm
N 50
Tm_ Tn
Gnm = Knm 5;4 dm + g (Fa)nm(ha)nm'

T -3
In order to define completely our mathematical
model, we need to complement Egs. 9 through 12 with
prescriptions for computing interface quantities
from volume averages. Demanding continuity for con-
ductive heat flux gives
dn + dm
Knm=g—‘——d—r
D,
K
n

e e e e e e e (13)

7
3" |3

where thermal conductivities may take a jump at the
interface, and in general, K, 4 K.

An analogous equation holds for the absolute
permeability at the interface, if we demand con~
tinuity of mass flux

dn + dm
ko= g
o, .n
k Kk
n m

e e e e e (18)

where again k may take a finite jump at the inter-
face, kX # k- To derive Egs. 13 and 14, we have
assumed that temperature and pressure are con-
tinuous at the interface. :

The fluid density at the interface is inter-
polated spatially from that of the adjacent
elements:

dmpn * dnpm

pnm = d

'.”.“””.(15)

+ 4
m

Energies and mobilities at interfaces are weighted
toward those of the upstream element:

u_ = Au__+ (1-M) .. (18)

u
nm up down

(ka/ua)nm - K(ka/ua)up * (I—K)(ku/ua)down

N ¢ V2

The values to be chosen for the weighting parameters
A and x depend on the problem studied. Typically,
we take A = 2/3; k = 1 is required for problems
involving sharp phase fronts.

We want to emphasize again the main advantages
of using an integrated finite-difference method.
Namely, all computations are done directly from a
list of interfaces Apy, distances dp, dy, and
element volumes V., V. There is no reference to
the dimensionality of the problem except in the
numerical values assigned to the Ap,n, dj, dp, Vp,
and V. This scheme handles irregular geometries
such as occur in actusl reservoirs as easily as
idealized regular geometries. Elements and inter-
faces can be modified, appended, or deleted as
desired without affecting unmodified parts of the
system. Also, volumes, interface areas, and dis-
tances can be assigned "artificial" values that do
not correspond to any possible geometry in real
space in order to model special effects, e.g.,
boundary conditions. For example, assigning a very
large value to the volume of an element will ensure
that the element always will remain at (almost) the
same temperature, pressure, and vapor saturation.

2. SOLUTION METHOD

Time Discretization

To solve Egs. 9 and 10, we discretize time as
a first-order forward finite difference,

l'zl':lAnmEm q_n
Aon=At—¢—v————+$——,.......(18)

nn n

and expand the time average an to first order,

F o= r £+ 60
nm

nm

oF
nm

at

Q

F (tk) + 8At
nm

" Ban oF
= an(t ? +8 [(55;—/ Apn + (30 ) Apm]v

R SRR €1-)

nm

where © is a parameter between O and 1, to be dis—

cussed below, and k is the time-step index. With
Eq. 19 we can rewrite Eq. 18 as
bp_ = (Aon_)exp+ e (Apn)imp ) e e e e e« (20)

where exp refers to time tk, and imp refers to time
tX + 8At. (Note that tX + eat-—> tX + ot = t*1 as
8->1.) The explicit part of Ao can be computed
from quantities known at the beginning of a time
step. The implicit part depends on the changes
occurring during At. The solution algorithm
computes (Apn)exp first, and then uses these values
as zero-order approximatign in an iterative scheme
to compute the full Apn.l 117 A gimilar approach is




taken for the time-discretization and mixed
explicit-implicit solution of the energy equation

(Eq. 10).

An overview of the solution procedure employed
in SHAFT78 is given in Fig. 2. We first solve the
energy equation for a time step At.. Then the
density equation is solved for a time step Aty £ At
Often the rate of (relative) energy change is
considerably smaller than that of (relative) density
change, and SHAFT78 takes longer energy time steps,
requiring a number of density steps per energy step.
After the density step, a correction to the rock/'
fluid equilibration is performed (see below). If
the correction cannot be done with a preset accuracy,
the density step is repeated with half the time
step. After an accepted density step, the program
either proceeds to the next density step (if the
total time I At, of all density steps is less than
the energy time step Atu), or tegins another energy
step (if I Aty = Aty,). .

We have not yet performed a detailed stability
analysis of the solution algorithm used in SHAFT78.
Note that for every time step the basic nonlinear
Egs. 9 and 10 are replaced with linearized equations
with constant coefficients (Egs. 18, 19, and
analogous for the energy equation). These are
stable with respect to large time steps for
©>0.5.18 The rock/fluid equilibration introduces
a damping of energy changes, which should enhance
stability. Thus it appears that stability is not so
much a problem as accuracy. In order for the
linearized equations to be good approximations, we
need "good" values for the derivatives (QFpm/den),
etc. SHAFT78 estimates "expected" density and
energy changes by extrapolating from time tK to
tk+1 and computes the derivatives (OFp,/pn), etc.,
as averages over expected changes. This method
obviously will be accurate only for not "too large"
time steps, with what is too large depending on the
particular problem. In order to accommodate larger
time steps, we presently are investigating a fully
iterative approach, in which the energy and density-
equations will be solved repeatedly for a time step
until expected and computed energy and density
changes agree to within narrow limits.

Equilibration Between Rock and Fluid

For geothermal problems, the energy and density
equations are coupled in two distinct ways, namely,
across elements and within elements. The coupling
across elements arises because pressure gradients,
which in turn drive mass and energy flow, depend on
both fluid energy and density. Therefore, a change
in fluid density modifies the flow of energy (and
vice versa). This coupling is usually not very
strong. It presently is treated in SHAFT78 by
solving uncoupled energy and density equations in
each time step, but limiting the maximum permissible
changes in important variables (such as pressure,
temperature, and vapor saturation) to a small per- .
centage (1% defaultg?

The coupling between energy and density equa-
tions within elements is very strong. It arises fron
the presence of the rock matrix in thermal equili-
brium with the fluid and from the fact that fluid
temperature depends on both energy and density. In
Eq. 10 this coupling is represented by the term

(after equilibration)

apn/ac
Rn=Bun/—a_to-............(Zl)

i.e., the ratio of density to energy change. This
term is needed to solve the energy equation, but it
is known only after both energy and density equations]
are solved in a completely self-consistent way. The
present version of SHAFT78 does not solve iteratively]
the energy and density equations until self-
consistency is achieved. Our simpler method consists
of making a good guess for R, at the beginning of a
time step, and then correcting for inaccuracies

after the energy and density equations have been
solved.

Generally speaking, we take as our estimate for
R, the value computed for element n in the last time.
step, tk. Occasionally, for a nearly isothermal
situation, this will lead to substantial cancella-
tions between the large rock terms in the denominaton
of Eg. 10, giving rise to numerical inaccuracy.
SHAFT78 checks for cancellation effects, and if they
are significant, it replaces the extrapolated value
of By, with the isothermal 1imit,
(ou_/du_)
isothermal _ _ Rone,
n (BuR/Bpn)u
n
corresponding to dug/dt = O (cf. Eq. 6). The iso-
thermal limit is also used for the initialization of
a simulation.

R e e .. (22)

’

After the energy step, then, rock and fluid are
equilibrated at a temperature

T. = T(u +Au, p + R - Au ).

1 n n n n n
However, the subsequent density step usually will
yield a density change £p, # Ry * Auy, leaving the
fluid at the somewhat different temperature
Tf = T(un + Aun, o+ Apn).
Equilibrating rock and fluid will leave both at the
temperature T(un + Aw!, ppy + &pp). During equilib-
ration,. the energy per volume remains constant, from
which condition the correction to the energy transfer
between rock and fluid can be computed:

.energy _ _

¢(un +Bu)(p + Bp )+ (1-p)u(u

volume
+ Aun,pn + RnAun)*pR
(before equilibration)
= ¢(un + Aun)(on + Aon) + (l—¢)uR(un
* Aun'pn * Apn)*pR
e e e e e e e e e . (23)

From this we obtain to first—order

(1~ DR(BuR/BDn)un (R Au - p)

Au' = Au +
n n ¢(on +8p ) + (1-0)p (Bu /du )

n
N 18

During phase transitions the derivatives in Eq. 24
undergo a finite jump. To ensure a high accuracy
in the calculation, fluid energy changes during
rock/fluid equilibration are computed twice, with




derivatives taken both: (1) forward, and (2) back-
ward in time (see Figs. 2 and 3). Time steps are
chosen such as to guarantee an absolute error smallen
than some preset value.

Equation of State

Before each time step and for- each volume
element, we need to compute a number of parameters
as functions 6f fluid energy and density (see Table
1). The calculational effort involved in this
process can be quite substantial. SHAFT78 uses a
method that is both flexible and efficient. We
tabulate the parameters given in Table 1 as functiond
of u and p over a rectangular grid (u,, ep) (n = 1,
eeey Ny m =1, ..., M). Parameters for the desired
values of (u, p) then are "looked up" through
bivariate interpolation. Special provisions are madg
(1) to avoid interpolating across the saturation
line, at which parameters change slope; and (2) to
tabulate the 1liquid region (subcooled water), which
is very much compressed in an (u, p)-diagram.

The tabulation of fluid properties as functions
of (u, p) is handled by two preprocessor programs.
The first of these computes the analytical steam
table equations, as given by the International
Formulation Committee, 12 whereas the second inverts
these tables into functions of (u, p), and appends
parameters other than T,p,S.

3. RESULTS OF CALCULATION

Details of the choice of parameters and time
steps in the calculations to be presented below
can be found in Ref. 26.

Verification of SHAFT78

We have made careful checks of the accuracy of
the various components of SHAFT78, as well as of the
program as a whole. Typical accuracies obtained in
interpolating the equation of state for water from
given values of energy and density are better than
0.1% for temperatures, better than 0.2% for pres-—
sures, and about 0.01% for vapor saturations. An
exception to this are pressures for sukcooled water,
which have an inaccuracy of typically - 0.5 bars due
to the extremely small compressibility of liquid
water. o

Calculations for one—dimensional gas flow and
for radial flow to a line source in subcooled
liquid water were made and found to agree well with
analytical solgtions published in the :
literature. 19— 1_ These examples involve little
energy flow and check only the algorithm for
solving the density Eq. 9 and the flow terms in Eq.
11. . .

In order to check both energy and density equa- |

tions as well as the rock/fluid equilibration, we.

performed a number of two-phase- calculations. .The }Jb

first example involves production from a two-
dimensional aerial reservoir with an initial liquid
saturation of 20%. This system was investigated
initially by Toronyi and Farouq Ali, with their
calculation subsequently verified by other
workers.3:15 A complete specification of the problem
can be found in these references. Table 2 compares
our results for liquid saturation after producing
19% of the reservoir fluid with those computed by

-production,

* . and permeability.
- -tion shown in Fig. 6 is for a reservoir that was

‘formulation by Brigham and Morrow.

Toronyi. The discrepancies are of the order of 1%
and probably can be attributed to different
weighting procedures.

A more severe test is afforded by a radial
production problem as investigated by Garg.22 The
problem, which is defined in Table 3, involves with—
drawal from a reservoir initially filled with sub-
cooled water. As production proceeds, water begins
to boil and several elements cross the saturation
line. Fig. 4 shows that our calculation agrees well
with the results obtained by Garg.

Total Kinematic Mobility

It was recently discovered by Garg that for a
line source problem the equations governing two-
phase flow can be approximately reduced to a single
diffusion equation for pressure. This equation
holds for "early" times (production or injection
small compared with fluid mass in place) near the
wellbore. It admits an analytical solution,
according to which pressure decline at the wellbore
is approximately a linear function of log (time),
with the slope inversely proportional to the "total
kinematic mobility,"

X k koo . k kvpv.

v T He H

e e s 0 e o . (25)

v

We have performed calculatiornis”for different satura-
tions and different relative and absolute permea-—
bilities, the results of which confirm Garg's

theory. Fig. 5a shows, as an example, a pressure
drawdown in a reservoir with an absolute permeability
of 1013 m? (100 md) and an initial saturation of
50%, with relative permeabilities as given in Ref.
27. (A1l other parameters are identical to those
given in Table 3.) p vs log (time) is indeed a

linear function, and from the slope we find (k/V)p =
1.16 x 107 sec to be compared with an average value
of (k/V)p = 1.14 x 107 sec computed frgm Eq. 25.

In Fig. 5b we have plotted p vs log(t/r<) for the
same simulation, but including all elements, not

‘ust the wellblock. Again a straight line results,
#ith slope almost identical to that of Fig. 5a. This
result, which is outside the scope of Garg's theory,
seems to indicate that total kinematic mobilities
also could be obtained from observation well data
rather than just from flowing wellbore data.

Pressure Drawdown in Two-Phase Reservoirs

Two-phase reservoirs are capable of a great

variety of gressure responses for constant-rate
depending mainly on (1) the initial

amount and distribution of pore water, (2) residual
immobile water saturation, and (3) rock porosity
' An example of more unusual
pressure drawdowns is given in Fig. 6. The simula-
investigated some time ago using a lumped parameter
The system

is-defined in Table 4. Our results differ greatly

*We investigate constant rate production at present
rather than a practically more realistic constant
pressure boundary condition for the well, The reason
is that for the former we can obtain approximate
analytical ‘solutions with which to compare our
simulation calculations.




from those of Ref. 23, the main reason being that
the drawdown is dominated by mobility effects that
are not accounted for by a lumped parameter formula-
tion. (Besides this, the results of Ref. 23 appear
to have an error in the energy balance, as tempera-
tures and pressures drop far below the limiting
values corresponding to evaporation of all pore
water. )

The mechanism leading to the curious pressure
drawdowns, as exhibited in Fig. 6, is interesting
and warrants a more detailed discussion. Initially,
pressure decline is governed by depletion of the
steam above the water table. After a while the
pressure drop reaches the water table, at which time
water begins flowing upward and flashes into the
steam zone. This causes a temperature drop near the
bottom of the steam zone such that soon a small two-
phase region develops above the water table. 'The
flow of water also causes a pressure drop below the
water table, which gives rise to in-situ boiling and
an upward movement of water from below the water
table. Because liquid water transmits pressure
decline very rapidly, the pressure drop.spreads
quickly below the water table, distributing the rock
heat loss in the subsequent boiling over a large
volume. Thus, two boiling fronts emerge from the
initial water/steam interface: The upward moving
front moves slowly and has a relatively low tempera-
ture, whereas the downward moving front moves
quickly and remains close to the initial rock
temperature. After a while the steam saturation in
the lower boiling region is large enough for
significant quantities of steam to flow upward.

This steam increases the temperatures and pressures
at the two-phase front above the water table, giving
rise to a slowing in pressure decline or even an
increase in average reservoir steam pressure as well
as steam pressure in the wellblock. The phenomenon
depends critically on the value of the residual
immobile water saturation, S,.q, and on absolute

and relative permeabilities in the steam and water
regions. If Speg is decreased, the flash front
initially will move more readily upward above the
water table, causing less initial decline of temperad
ture and pressure. Increasing the absolute perme-
ability in the liquid region (in comparison with

the steam region) accelerates the downward moving
two-phase front relative to the upward moving one.
Then initial pressure decline is enhanced, but
pressure recovery is more pronounced once the

entire liquid region is boiling. This is the reason
for the (local) maximum in one of the curves in

Fig. 6.

For the reservoir of Table 4 with a uniform
initial steam saturation of S = 0.5, we obtain
results qualitatively similar to those of Brigham
and Morrow (except that their pressure and tempera-
ture declines are too large in absolute magnitude
presumably due to numerical error). Fig. 7 gives
the drawdown histories for three reservoirs that
are identical except that the rock porosity is 5%,
10%, and 20%, respectively. Thus, the initial
masses of fluid in place differ by a factor of 2
between reservoirs. Pressure drawdowns are virtu-
ally the same for these reservoirs for a consider-
able length of time. Obviously, pressure decline
curves cannot be used for reserve assessment. Note
that after the pore water is depleted, pressure
falls to zero rapidly, because of rapid depletion
of an all-steam phase. The standard technique of

inferring reserves from pressure decline curves in
(one-phase) gas or steam reservoirs is based on the
fact that pressure is proportional to density (when
corrections are made for real-gas behavior). 1In a
two-phase geothermal reservoir, however, pressure is
a function of temperature alone, with density being
an independent variable. The mass of fluid in place
depends on density, not on pressure. Pressure and
temperature decline because of the heat loss of the
rock to the boiling water. For reservoirs with small
spatial variations in parameters, average pressure
decline depends only on the total amount of water
evaporated. This simple fact appears to have been
overlooked in the literature. In Refs. 23 and 3,
pressure is plotted as a function of mass fraction
produced, which results in different decline curves
for different porosities. However, if pressure were
plotted as function of total mass produced, the
curves for different porosities would very nearly
coincide. The initial close coincidence of pressure
decline curves for the three reservoirs shown in
Fig. 7 is due to the fact that the rate at which
water boils is virtually the same for all, being
approximately equal to the rate of steam production.

If rock volumetric heat capacity and initial
average reservoir temperature are known, pressure
decline curves can be used to estimate the total
volume of a two-phase reservoir, as we shall show
presently. Only if this information is supplemented
by values for average porosity and average saturation
can reserve estimates be made.

Reservoirs with small spatial variations in
fluid and rock properties can be analyzed with the
bulk model developed in the Appendix. Eq. A-13 shows
that pressure drawdown at early times is a linear
function of produced mass (we assume that liquid
water is immobile at the well and only steam is

produced). The slope of p(t) is inversely propor-
tional to the reservoir volume (cf. Eq. A-13):
2
p_ (h - h)
1 M v v 2
V{l-9) = - 5 p.cC { T+ 273.15 4 oo (26)
: R'R o

For the three reservoirs calculated in Fig. 7, the
slopes are virtually the same. Inserting this value
into Eq. 26 we obtain an estimate for the reservoir
rock volume,

9.4x10°m3. v e e e ... (2])

X 108 m3

v(i-¢) =

This compares with values of 9.5, 9. and 8.
for the three cases investigated. -

Field observation of an initially linear depen-—
dence of pressure on time such as in Fig. 7 might
be taken erroneously as an indication that the
reservoir contains pure steam.24128 if the standard
technique for estimating gas or steam reserves from
a straight-line extrapolation then were used, large
errors would be committed. A correct reserve
estimate would be purely coincidental. . This state-
ment can be made more quantitative. Using Eq. A-13
we obtain for the ratio of mass reserves as estimated
from a p/Z vs t-plot to true reserves (oVp),

C

_ 10 P PRR
¢ - 20 - -
P, Og(hv hz) i1 (1 DV/DZ) S]

(T + 273.15)

(]

S )




All parameters are to be evaluated at the initial
reservoir temperature and pressure. Values of w for
the reservoir of Table 4 (S = 0.5) are given in
Table 5 for a range of porosities and saturations.
Note that the p/Z—technique overestimates reserves
for small porosity by large factors, especially when
the vapor saturation is large. On the other hand,
for large porosities and small saturations reserves
are underestimated.

CONCLUSION -

The simulator SHAFT78 has been verified for a
number of one- and two-phase flow problems involving
subcocled water, water/steam mixtures, and super-
heated steam. The flow of water and steam in porous
media, boiling and condensation phenomena, and heat
exchange between rock and fluid are all described
properly.

A completely self-consistent iterative treat-
ment of mass and energy flow currently is being
implemented to overcome existing limitations of
permissible size of time steps.

Model
geothermal
variety of
tion. The

simulations revealed that two-phase
reservoirs are capable of a large
pressure responses during fluid produc-
main factor that determines pressure
decline is the amount and distribution of pore water
in the reservoir. Two-phase geothermal reservoirs
often will exhibit a linear dependence of p/Z on
cumilative production, similar to that observed in
gas reservoirs. However, the standard gas reservoir
technique of predicting reserves from the slope of
p/Z-vs cumilative production is not applicable for
two-phase geothermal reservoirs, except under
fortuitous circumstances. Reserve assessment
requires knowledge of average porosity and vapor
saturation, which cannot be obtained from pressure
decline curves.

Apart from idealized model studies, SHAFT78
also has been used for a three-dimensional simula-
tion of production and recharge in the Krafla
geothermal field (Iceland), which is reported else-
where. At present, a history match for production
and injection in_the Serrazzano field (Italy) is
being developed.

NOMENCLATURE
Anm = interface area between volume elements n
and m, m 2
a = general element of area, m
Cg = specific heat of rock, J/°C kg
d, { . . -
d = distance of interface from center of volume
m 5 elements, m a
F = mass flux, kg/hzs
F, = flux of liquid, kg/m“s

F_ = flux of vapor, kg/m23

sV
Fpm = mass f%ux between volume elements n, m,
kg/mvs 2
G = energy flux, J/m“s
Gy = energg flux between volume elements n, m,
J/m s 5
g = vector of gravitational acceleration, m/s
gn;'= component of gravitational acceleration

perpendicular to the interface between-
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‘time step for energy equation, s

2
elements n, m, m/s
enthalpy of fluid, J/kg
enthalpy of liquid, /J{kg

J N

volume
specific
specific
specific enthalpy of vapor, g
specific enthalpy of rock, J/kg
integrand of pressure equation, ms“ °C/J
the;mal conductivity of rock/fluid mixture,
J/ms

average thermal conductivity in volume
elements n, m, J/ms

average thermal conductivity at interface
between volume elements n, m, J/msoC
thermal conductivity of rock, J/ms®C

absolute permeability, m?2

average absolute permeability in volume
elements n, m, m

absolute permeability at interface between
volume elements n, m, m

relative permeability of liquid, fraction

relative permeability of wvapor, fraction

total kinematic mobility, s »
rate of fluid production, kg/s
unit normal on aerial element
pressure, N/m?

average pressure in volume elements n, m,

N/m

pressure at initial time, N/m2

slope of pressure vs time, N/m“s 3

volumetric rate of mass generation, kg/m’s

average volumetric rate of mass generation
in volume element n, kg/m3s

volumetric rate of energy generation, J/hBS

average volumetric rate of energy generation
in volume element n, J/h s 3

ratio of density to energy change, (kg/m’)/
(9/xg)

average ratio of density to gnergy change
in volume element n, (kg/m3)/(J/kg)

radial length of volume element i of radial
grid, m

volumetric vapor saturation, fraction

residual immobile volumetric liquid satura-
tion, fraction

temperature, °C

average temperature in volume elements n,
o
m, °C

time, s

time step for density equation, s
initial time, s
specific energy of fluid, J/kg

average specific energy of fluid in volume
elements n,:m, J/kg

average specific energy of fluid at inter-
face between volume elements n, m, J/kg

specific energy of liquid, J/kg

specific. energy of vapor, J/kg

specific energy of rock, J/kg

average specific energy of upstream volume
element, J/kg

average specific energy of downstream
volume element, J/kg




V = volume-of reservoir, m3
Yn| 3
v g = volume elements of reservoir, m
m
(V,) = surface of volume element Vp, m?
Z = gas law compressibility factor, dimension-
less
A = increment
& = fluid energy per volume, J/m
Kk = weighting factor for mobilities, dimension-
less
A = weighting factor for energies, dimension-
. less
p = fluid den51ty, kg/m
P
N { < average fluid density in volume elements
Pm n, m, kg/m
Ppm = average fluid density at interface between
volume elements n, m, k
P, = initial fluid density, kg/m3
pg = density of liquid, k m3
Py = density of vapor, k
pq = density of phase a, Eg/
pr = density of rock, kg/
T = general volume element, m
© = time weighting factor, dimensionless
Hp = viscosity of liquid, Ns/m
Hy = viscosity of vapor, Ns/m
Hg = viscosity of phase &, Ns/m
¢ = porosity, dimensionless
6, = porosity of volume element n, dimensionless
w = ratio of (p/Z)—estimate to true reserves,
dimensionless
Subscripts
down = downstream
exp = explicit
£ = liquid
g $= volume elements
R = rock
res = residual
p = referring to density
u = referring to energy
up = upstream
v = vapor
@ = liquid or vapor phase
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APPENDIX ~ DULK MODEL FOR TWO-PHASE RESERVOIR

Consider a two-phase reservoir with initial
conditions and rock properties independent of
position, and a constant volumetric rate of steam
production, q < O. For this system the mass and
energy-balance equations (Egs. 1 and 2) reduce to

$dp = @t v 4 v w e e e e e e e e .. (A1)
energy -
4G oToms) ab, dt, ... (A-2)

with (energy/volume) given by Eq. 5. We have
a(shergy,

volume ¢de + (1-9) pRCR at, . . . (A-3)

where we have introduced the specific volumetric
energy € = up of the fluid. The usefulness of
formulating in terms of € rather than u is that e
can be written explicitly in a way that separates
the p-— and T-dependence, namely,

u,” Yy UoPp™ UyPy

v
€ = up = p,p = + —~ p.
Ly Py™ Py Pe ™~ Py
e (=8
A1l quantities except p depend on T only. From Egs.

A-1 through A-L follows

ap = (1 - pv/ol) ar .

The only term on the right-hand side that depends
on p is (de/dT)p, i.e., the volumetric specific heat
of the (two-phase) fluid at constant density. In
all practical cases, with porosity considerably less
than 1, this will be negligible in comparison with
the rock contribution (1—®§1pRpR/o. Neglecting
(3&/0T)p, we achieve a separation of variables in
Eq. A-5, which admits a closed-form solution,

)
Aar
(1—pv/o£) T -

1-¢
p-p = —tpcC s
¢ hv— 'S

R R
[o]
pO

e e e e et e e e s e e e e e e (A6)

To obtain the pressuré drawdown with time, we use
Eq. A~1 to write p as function of time, and express
T as a function of p:

(Dg= P ) (T + 273.15)

ar = (&5, dp = dp .

dp’sat OQDV
B 1

(hv- hl)

Away from the critical point we may neglect pv/pe <<
1, so that

(T + 273.15)

e d
_ 2 P
pv(hv hﬁ)

t-t

= 1 t
o = 3 (1-¢) o Co ﬁ

o}
N ¢ X))

This formula gives the pressure drawdown as an
implicit function of time. To invert it to explicit
form, we expand the integrand to first order.
Abbreviating

(T(p) + 273.15) ., , , . .... (A-9)

I(p) 5
o, (h - hy)
we have
Ip = 1) + &L (p-p) (A-10)
p P, By PR e .. e(a-

(o]

from which, after performing the integration,

1

(afn1/dp)
pO

i (1_¢)ORCR(dI/dP)pO (dﬂ,nI/dp)g

o}

S .S

plt) = P,

(Note that dsni/dp < O).
At early times, defined by

(1-¢) PR (dI/dp)p
(o]

> y o e o (A-12)
2q (dJLnI/dp)p
[o)

we can expand the square root and obtain a linear

‘pressure drawdown:

2
pv(hv- hg)
(T + 273.15)

T
o

A . 0.

plt)y = p_ - - Lol

t -t ),
o (1—¢)oRcR ( ©
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Table 1

Fluid parameters

Parameter Meaning Units
o
T temperature C
2
P pressure N/m = Pa
S vapor saturation [volumetric fraction]
K heat conductivity J/ms °c
X,/uU rel. permeability/
2778 - L S
viscosity for liquid P
s g s N
k /u rel. permeability/ m /Ns
v v . .
viscosity for vapor
Py density of liquid kg/m3
pv density of vapor
up energy of liquid l J/kg
u, energy of vapor s
Table 2

Percentage of Liquid Water Saturations for Toronyi's Problema)

a .
)The lower numbers are Toronyi's results,

whereas the upper ones were computed from

SHAFT78.

-10-



Table 3

Garg's Problem

Rock properties: - [ 2.65 x 103 kg/m3
' CR = 1 kJ/kg
K_ = 5.25 w/m’C
R ~14 2
k = 10 m
¢ = 20%

Reservoir geometry: The reservoir is a 5.625°—sector of a
cylindrically symmetrical reservoir, subdivided into 50 elements

with radial increments as follows:

Ar, = A2 = ... = Arll =1 m; Ar12 =1.2 Arll,

Ar13= 1.2 Ar1 Ar =1.2 Ar4

27" 50 9°

Mass is withdrawn from element 1 at a rate of .14 kg/s-m

The boundary conditions at the outer sector are "no flow.

Initial conditions are T = 300 oc, p = 90 bars for the
simulation shown in Figure 4, and T = 300 °c, S = 50% for

the simulation shown in Figure 5a,b.

Table 4

Brigham/Morrow Problem

Rock properties: pR = 2000 kg/m3
CR = 1232 J/kg
K_ = 0.
R
k = 10713 p?
¢ = 5, 10, 20%

The reservoir is a cube with 1 km3 volume. For the case studied
in Figure 7 it was subdivided into 10 equal-sized elements with a
vertical spacing of 100 m. For the problem of Figure 6 the top 3
and bottom 2 elements have a vertical spaéing of 100 m, with the
500 m between them divided into 20 §qualfsized elements of 25 m
vertical separation. All outer boundaries are "no flow." Mass is
withdrawn at the top at a rate of SOng/s. Initial conditions

are:

T p S elements

Figure 6 252 ¢C 41 bars 1.0 top 500 m
252 C 41.1 bars 0.001 bottom 500 m

Figure 7 252 °C 41.1 bars 0.5 all

-11-




Table S

Ratio of (p/z) - Estimates to True
Reserves in a Two-Phase Reservoir

a)

)

a
values of w

¢ .01 .02 .05 .10 .20 .30
S
.05 11.6 5.7 2.2 1.1 .47 27
10 12.2 6.0 2.3 1.1 .49 .29
.20 13.7 6.8 2.6 1.2 .55 .32
+ 30 15.5 7.7 3.0 1.4 .63 .37
.40 18.0 8.9 3.5 1.6 .73 .42
.50 21.4 10.6 4.1 1.9 .87 .51
.60 26.5 13.1 5.1 2.4 1.1 .62
.70 34.5 17.1 6.6 3.1 1.4 .81
.80 49.8 24.6 9.6 4.5 2.0 1.2
.90 89.1 44.1 17.1 8.1 3.6 2.1
.95 147 72.8 28.2 13.4 5.9 3.5
The table is computed from eq. (28). It shows the factors w

by which application of the

p/Z vs.

t-me thod would over-

estimate mass reserves for the reservoir of Table 4 (initial

temperature: T =

somewhat different numerical values holds for different

2

52%).

The same general pattern with

rock parameters and initial temperatures.

Explicit energy

changes (aUplexp

Implicit energy
changes (aUp)imp

XBL7811-12743

Fi6, 1 - TLLUSTRATION OF ELEEENTS,
INTERFACES, AND DISTANCES., ELE-
MENTS N AND M ARE SHOWN AS TWO-
DIMENSIONAL POLYGONS WITH INTER-
FACE AREA Ay, AND ELEMENT CENTERS

BEING AT A DISTANCE DN AND DMI
RESPECTIVELY, FROM THE INTERFACE.

Update Up, aU,/at,

set a1, for next step

Update

Aup
Uns atp Pa s atp
set a1p for next step

B8Py
Yes

Fie. 2 - FLow CHART oOF

Halve at,

repeat

step

PROGRAM EXECUTION.

No

Explicit density
changes (AP, ) exp

implicit
changes

density
(&P, }imp

‘ Rock /fluid equilibration
backwo(rzd) in time

Rock/fiuid equilibration
“"|forward in time
auy’™
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Fra, 3 - Rock/FLUID EQUILIBRATION, LET ELEMENT N BE AT (uN,oN) AT THE BEGIN-
NING OF TIME STEP TX (POINT 1), SOLVING ENERGY AND DENSITY EQUATIONS IT WILL
MOVE TO (UN AL UWRCR AoN) (poINT 4), THE ROCK/FLUID EQUILIBRATION WITH
DERIVATIVES AVERAGED OVER 1-2 AND 1-3, RESPECTIVELY (SEE EQ. 24), WILL GIVE
(uy * Aué(l), oy * 85} (POINT 6), REPEATING ROCK/FLUID EGUILIBRATION WITH

DERIVATIVES AVERAGED OVER b6-5 AND 6-3, RESPECTIVELY, WILL GIVE (uy + Aué(Z),

oy ¥ 20 ) (POINT 7). IF Aug(1) AnD 4ug(2) DIFFER BY MORE THAN A PRESCRIBED

AMOUNT, THE DENSITY STEP 1S REPEATED WITH HALF THE TIME INCREMENT. LARGE
RELATIVE CHANGES IN AU& OCCUR IF THE SATURATION LINE WAS CROSSED (POINTS 1
AND 6 BEING ON OPPOSITE SIDES OF THE SATURATION LINE), THEN SMALL TIME

STEPS ARE TAKEN WITH SMALL ABSOLUTE ERRORS UPON CROSSING THE SATURATION LINE.
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XBL 78112168
F16., 4 - SIMULATED PRESSURE DRAWDOWN FOR RADIAL WATER RESERVOIR, THE
RELATIVE PERMEABILITIES ARE TAKEN FROM (OREY'S EQUATION, WITH S;. +
ch = ,35, THE OTHER PARAMETERS OF THE PROBLEM ARE DEFINED IN TABLE 3.
THE RESULTS OF THE SHAFT78-siMULATION (CIRCLES) COMPARE WELL WITH
GARG 'S RESULTS (CROSSES).
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kK = 100 MILLIDARCY (10~1 M%), RELATIVE PERMEABILITIES USED

WERE THOSE OF REF., 27.
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Fig. 6 - Simulated pressure drawdowns in a one-dimensional
two-phase reservoir with a water/steam interface. The re-
lative permeabilities were obtained from Corey's equation
as given in ref. 5, with SgC +ch + 7. The circles are
for a simulation as specified in Table 4, with porosity
® = 10%. The rectangles are for the same system but the
bottom 500 m have been taken to be one element; this cor-
responds to a very large absolute permeability in this re-

gion.
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Fi6. 7 - SIMULATED PRESSURE DRAWDOWN IN ONE-DIMENSIONAL_TWO-PHASE RESERVOIRS WITH
HE PROBLEM IN DEFINED IN TABLE 4,

UNIFORM INITIAL SATURATION.
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