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Ganglioside GM1 prevents and reverses toluene-induced increases in 
membrane fluidity and calcium levels in rat brain synaptosomes 
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The effects of exposure to ganglioside GM 1 and to toluene in vitro upon synaptosomal integrity have been examined using fluorescence 
polarization of two probes: 1-[4(trimethylamino)phenyl]-l,3,5-hexatriene (TMA-DPH) and l,6-diphenyl-1,3,5-hexatriene (DPH) to measure 
membrane anisotropy, and the fluorescent indicator fura-2 to assay levels of cytosolic calcium ([Ca2+l). The anisotropy of both TMA-DPH 
and DPH was decreased by toluene, implying increased membrane fluidity. The decrease in TMA-DPH but not in DPH anisotropy was 
prevented by pretreatment with GM1 in concentrations as low as 10 11M. This is not an additive interaction since 10 µM of GM 1 alone did 
not significantly modulate TMA-DPH anisotropy. When the GM1 treatment succeeded the addition of toluene the decrease in anisotropy of 
both probes was reversed. Toluene treatment increased [Ca2+]; in a dose- and time-dependent manner. This increase could partially be both 
prevented and reversed by treatment with 50 µM of GM1• These effects may reflect an additive interaction, since this concentration of GM1 

alone reduced [Ca2+];. The present results show that toluene increases membrane fluidity and intracellular calcium levels. These effects may 
be counteracted by the endogenous compound GM 1. 

INTRODUCTION 

The monosialoganglioside GM 1 is an endogenous 
constituent of the plasma membrane, and is concentrated 
in nerve endings29

. GM1, in contrast to polysialoganglio­
sides, has been implicated in synaptic transmission 1. 

3
•
21.36 .44 .45 and behavior23

. Thus, gangliosides have been 
demonstrated to affect adenylate cyclase7

·
33 and protein 

kinase C7
•
24

. Furthermore, GM1 can bind calcium in 
vitro20

•
35 .4°, and may thus be involved in the control of 

calcium flux over the nerve cell membrane46
. Treatment 

with GM1 has by some authors been implicated to 
decrease membrane fluidity2 .42

, while others have found 
increases of membrane fluidity31

• GM1 has frequently 
been reported to increase neural regenerative capacity22

· 

28
·
32.41

. More specifically, this ganglioside can decrease 
synaptosomal vulnerability to chemical injury4

. 

The organic solvent toluene has been suggested to 
induce its effects on chemical neurotransmission in the 
nervous system by altering membrane fluidity 13

·
15 and 

calcium flux9
•
10

. In view of the above, GM1 may thus 
interfere with the actions of toluene. In line with this 
hypothesis, treatment with GM1 antagonizes the effects 
of toluene on central dopamine 0 2 receptors11

. 

Therefore, we have investigated the effects of GM1 in 
vitro on toluene-induced changes in membrane fluidity 

parameters and changes in synaptosomal calcium levels. 

MATERIALS AND METHODS 

Adult male rats (CRlCD), 3-4 months old, weighing 290-340 g 
were used. 

Synaptosomal preparation 
Brains were rapidly removed and the forebrain was dissected out 

on ice, weighed and homogenized in 10 vols. of 0.32 M sucrose at 
0 °C. The homogenate was centrifuged (1500 g, 10 min) to give a 
post nuclear supernatant which was layered over 1.2 M sucrose and 
centrifuged for 25 min (250,000 g). The interphase band was 
removed and layered over 0.8 M sucrose and centrifuged again for 
25 min at 250,000 g8

•
16

. The purified synaptosomes were resus­
pended in HEPES buffer (pH 7.4) at 0.15 g-equiv/ml corresponding 
to a final concentration of 120-140 µg protein/ml5. The HEPES 
buffer was composed of (in mM): NaCl 125, KCl 5, NaH2P04 1.2, 
MgCl2 1.2, NaHC03 5, Glucose 6, CaCl2 1, HEPES 25; and 
adjusted with NaOH to pH 7.4. 

Membrane order 
Synaptosomal membrane order was evaluated by fluorescence 

polarization studies using two probes. 1,6-Dipbenyl-1,3,5-hexa­
triene (DPH) is a no-polar lipophilic molecule capable of penetrat­
ing into and through inner lipid-rich membrane layers38

. 1-
[4(trimethylamino)phenyl}-l,3,5-hexatriene (TMA-DPH) is a re­
lated compound with a polar-constituent that causes the molecule to 
be aligned at the outer surface of limiting membranes with the polar 
head at the hydrophilic surface, while the non-polar body penetrates 
the lipid interior26

•
34

. 

Synaptosomes were prepared as described above and were 
incubated at 37 °C in the presence of TMA-DPH (30 min) or DPH 
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(15 min) added in tetrahydrofuran (Fisher Scientific, Pittsburgh, 
PA, U.S.A). The final concentrations of the probes were 10 µM. 
The synaptosomes were reprecipitated (13,000 g, 2 min) using a 
microfuge (235B, Fisher Scientific), resuspended in HEPES buffer 
and allowed to equilibrate for 10 min at 37 °C prior to measuring of 
fluorescence intensity and polarization in a water-jacketed cuvette 
holder maintained at 37 °C (Aminco SPF-500 spectrofluorometer, 
American Instrument Co., Urbana, IL, U.S.A.). An excitation 
wavelength of 360 nm (bandwidth 10 nm) was used with a 
determination of emission at 430 nm (bandwidth 10 nM). Correc­
tions for light scattering (membrane suspension minus probe) and 
for fluorescence in the ambient medium (after pelleting membranes) 
were made. 

Fluorescence anisotropy (r) was determined by the formula r = 

lvv-lvHl(lvv + 2(/vH)]. lvv is the fluorescence intensity with 
excitation and emitted light polarized vertically and lvH is the 
intensity obtained with a vertical orientation of the exciting polarizer 
with the emitted fluorescence passing through a horizontal pola­
rizer. Total fluorescence intensity F = lvv + 2(/vH). Relative 
microviscosity is proportional to rjr-1, where r 

0 
is the maximal 

limiting anisotropy of the probe; 0.362 for DPH37 and 0.39 for 
TMA-DPH34

. A correction factor (G) for instrument asymmetry 
was also made using G = 111vll1rn where /Hv is fluorescence 
intensity with horizontal excitation light and emitted light read 
vertically, and /HH is the corresponding value with the entire light 
path horizontally aligned. This compensates for the sensitivity of the 
detection system toward vertically and horizontally polarized light. 
All values of fvu were multiplied by G in the calculation of r. All 
corrections made amounted to less than 6% of the original 
unmodified readings. 

lntrasynaptosomal calcium levels 
Synaptosomes were prepared as described above and were 

incubated at 37 °C in the presence of fura-2 dissolved in DMSO for 
10 min25

. They were then diluted 10 times in HEPES buffer and 
incubated for another 5 min. The final concentration of fura-2 was 
5 µM. The synaptosomes were centrifuged for 8 min at 3000 g and 
the pellet was resuspended in HEPES buffer. 

For each assay, 0.5 ml of synaptosomes was rapidly centrifuged (2 
min, 13,000 g) and the resulting pellet was resuspended in 1 ml 
HEPES buffer at 37 °C. The buffer was as described above without 
NaHC03 and NaH2P04 to prevent the precipitation of calcium at 
elevated pH (required during the determination of minimal fluo­
rescence). The tube was rinsed with another 1 ml of HEPES buffer 
and the total 2 ml sample was placed in a quartz cuvette at 37 °C 
and left to equilibrate for 10 min. Excitation of fura-2 was at 340 and 
380 nm (bandwidth 3 nm) and emission determinations were made 
at 510 nm (bandwidth 20 nm). Corrections for light scattering 
(membrane suspension minus probe) and fluorescence in the 
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Fig. 1. The effect of toluene on TMA-DPH and DPH anisotropy in 
synaptosomal membranes. The synaptosomes, preloaded with the 
respective fluorescent indicator, were incubated for 30 min at 37 °C 
with varying amounts of toluene. Data represents mean ± S.E.M. 
of 4 individual determinations. 
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TABLE I 

Anisotropy (r) of TMA-DPH and DPH in synaptosomal membranes 
incubated for 30 min with or without various concentrations of 
ganglioside GM1 

Data represent mean± S.E.M. of 5-7 individual determinations. 
~-------- ---- -------

Treatment Anisotropy (r) 

TMA-DPH DPH 
-----

Control 0.288 ± 0.003 0.239 ± 0.003 
GM 1 (lOµM) 0.284 ± 0.003 0.232 ± (J.005 
GM 1 (50µM) 0.297 ± 0.002* 0.246 ± 0.002* 

* P < 0.05 that value differs from that of untreated controls. 

ambient medium (after pelleting membranes) were made. 
Extrasynaptosomal fura-2 was quenched by 4 µM MnC12 n The 

ratio (R) between the fluorescence excitation at 340 and 380 nm was 
used. [Ca2 +], was calculated using the formula [Ca2

' ], = K" (R -
Rmin)/(Rmax - R) x (Sf2/Sb2]. where Kd is the dissociation constant 
of the fura-2-Ca 2+ complex, taken to be 224 nM 17

, Rmin is the ratio 
in the presence of excess amounts of EGTA (10 mM) and Rmax the 
ratio in excess amounts of calcium (18 mM). S12 and Sb2 denote 
fluorescence of fura-2 at zero calcium concentration and full calcium 
saturation, respectively, at an excitation wavelength of 380 nm. 

Dye leakage into the extracellular compartment was calculated 
after the addition of MnC12 to a final concentration of 4 µM. The 
resulting depression in emitted fluorescence when excitation was at 
340 nm, was expressed as a percentage of the difference between the 
corresponding value prior to MnC12 addition and the value at zero 
calcium conditions (EGTA and 0.1 o/r sodium dodecyl sulfate being 
present). 

Incubations 
After initial determinations, toluene (0.06-6 ,ul) or ganglioside 

GM1 (Hl-50 µ1) were added to the synaptosomal suspension and 
values were measured after a 10-min incubation for calcium 
determinations. or after a 30-min equilibration for fluorescence 
polarization assays. Toluene was mixed with the synaptosomes by 
vortexing (5 s) in 10 ml polypropylene test tubes. Following this, any 
further additions were made and the fluorescence was read again 
following a further 10 or 30 min, respectively, of incubation. 
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Fig. 2. Anisotropy changes of TMA-DPH and DPH within 
synaptosomal membranes exposed to 2 µ1 toluene for 30 min at 
37 °C. The synaptosomes were pretreated for 30 min with varying 
amounts of ganglioside GM 1 before exposure to toluene. Data 
represent mean ± S.E.M. of 5-7 individual experiments. * P < (J.05 
that value differs from that of untreated controls. 
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Fig. 3. Anisotropy changes of TMA-DPH and DPH within brain 
synaptosomal membranes exposed to 2 µI toluene for 30 min at 
37 °C. After this treatment, synaptosomes were incubated together 
with varying amounts of ganglioside GM1 for a further 30 min. Data 
represent mean ± S.E.M. of 4-5 individual experiments. • P < 0.05 
that value differs from that of untreated controls. 

Statistical analysis 
Differences between groups were assessed by Fisher's Least 

Significant Difference Test after one-way analysis of variance. The 
acceptance level of significance was P < 0.05 using a two-tailed 
distribution. 

RESULTS 

Studies on membrane fluidity 
Toluene was found to decrease the anisotropy (r) of 

TMA-DPH and DPH in a dose-dependent way (Fig. 1). 
At 2 µ1 of toluene the change in r-value (L'.lr) of 
TMA-DPH and DPH were -0.017 ± 0.003 and-0.033 ± 
0.002, respectively. Absence of vortexing did not allow 
toluene (2 µl) to act on TMA-DPH anisotropy (L'.lr = 0.001 
± 0.003) or DPH anisotropy (L'.lr = 0.001 ± 0.003). 
Ganglioside GM1 (50 µM but not 10 µM) was found to 
increase anisotropy of both TMA-DPH and DPH (Table I). 

Pretreatment with 10 µM of GM1 completely abolished 
the reduction of TMA-DPH anisotropy induced by 2 µI 
toluene, without affecting the toluene-induced reduction 
in DPH anisotropy (Fig. 2). Following pretreatment with 
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Fig. 4. Levels of synaptosomal cytosolic calcium following a 10 min 
treatment at 37 °C with varying amounts of toluene. The leakage of 
fura-2 into the incubation medium is also presented. Data present 
mean ± S.E.M. of 6 individual determinations. 
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Fig. 5. Levels of synaptosomal cytosolic calcium following incuba­
tion for 10 and 20 min with either 2 µI of toluene or with varying 
concentrations of ganglioside GM1. Data represent mean± S.E.M. 
of 5-10 individual determinations. 

50 µM GM1, the inhibition by toluene on TMA-DPH 
anisotropy remained, whereas the toluene-induced de­
crease in DPH anisotropy was reduced by 50%. 

The toluene-induced decrease in TMA-DPH and DPH 
anisotropy was reversed by subsequent treatment with 
GM1. Ten µM of GM1 counteracted the decrease in 
TMA-DPH and DPH anisotropy by 50%, and 50 µM of 
GM1 reversed the decrease completely (Fig. 3). The 
anisotropy of treated and non-treated synaptosomes did 
not change over time (last measurement made after 60 
min of incubation, data not shown). 

Studies on [Ca2+ ]; 
Toluene was found to increase the levels of intrasy­

naptosomal calcium in a concentration- and time-depen­
dent way without affecting membrane leakage (Figs. 4 
and 5). At 2 µI of toluene the [Ca2+]; was close to the 
upper limit of the assay capacity of fura-2, and at 6 µl of 
toluene the synaptosomes clumped together. Absence of 
vortexing did not allow toluene to act on synaptosomal 
calcium levels (data not shown). This time-dependent 
increase in [Ca2+]; by toluene contrasted with the 

TABLE II 

Increase in cytosolic calcium levels in synaptosomes incubated for JO 
min with GM 1 or toluene and then for another 10 min after addition of 
toluene or GM 1' respectively 

Results represent the increase (mean ± S.E.M.) of 5-10 individual 
determinations corrected for baseline values . 

--------------- ----------- --- ···---·---------

First addition Second addition LJ[Ca2+ }; (nM) 
----- ------------------- - -----------------

None Toluene (2µ1) 801±201 * 
GM 1 (10µM) Toluene (2µ1) 628 ± 83 
GM, (50µM) Toluene (2µ1) 179 ± 136 

Toluene (2µ1) None 1463 ± 256* 
Toluene (2µ1) GM1 (lOµM) 1546 ± 552* 
Toluene (2µ1) GM1 (50µM) 642 ± 213 

• P < 0.05 that value differs from that of untreated controls. 



GMi-induced reduction in calcium levels (Fig. 5). Under 
control conditions, the [Ca2+]; increased slowly. 

Pretreatment with GM 1 was found to prevent the 
toluene-induced increase in calcium levels (Table II). The 
effect was most pronounced at 50 µM of GM1, at which 
concentration GM1 almost completely blocked the tolu­
ene effects. Addition of GM1 (50 µM but not 10 µM) 
subsequent to toluene treatment was found to reverse the 
toluene-induced increase of [Ca2+]i by 50% (Table II). 

DISCUSSION 

It was found that toluene in vitro reduces the aniso­
tropy of both TMA-DPH and DPH in synaptosomal 
membranes. Our study directly shows that toluene affects 
and increases membrane fluidity as earlier postulated15

. 

These actions may have neurotoxic consequences in vivo, 
and are paralleled by effects of other organic solvents19

· 

30
•
39

. Although statistically significant, the observed 
changes in anisotropy are relatively small in absolute 
terms. However, as is clear from enzyme studies, even 
minor variations in the physical form of proteins can have 
major functional effects. Thus changes in biological 
activity often have a greater magnitude than the struc­
tural alterations of the molecules that underlie such 
changes43

. However, intraperitoneal injections with tol­
uene in vivo had no effect on membrane fluidity as 
measured by fluorescence polarization27

. 

The present results confirm that GM1 increases the 
rigidity of the cell membrane2 .42 rather than decreases 
it31

• Already at 10 µM, a concentration at which GM1 by 
itself has no effect on membrane fluidity, GM1 is able to 
completely antagonize the toluene-induced reduction in 
TMA-DPH anisotropy. However, GM1 is unable to 
prevent the actions of toluene on DPH anisotropy, 
perhaps due to the exclusive localization of GM1 to the 
external surface of the cell membrane18

. However, GM 1 

reversed the toluene-induced reductions of both TMA­
DPH and DPH anisotropy. 
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This may be the first example where treatment with 
GM1 after a neurotoxic insult can block potentially 
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Other studies have shown that toluene increases calcium 
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•
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protein phosphorylation 12
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cium levels may be another mechanism underlying 
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potential therapeutic use of this ganglioside. 
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