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Abstract

Structure-Property Relationships in Semiconducting Polymers and Small Molecules

Probed by Synchrotron X-ray Methods

by

Gregory M. Su

Organic semiconductors are an exciting class of materials that have potential to pro-

duce low-cost, printable, and flexible electronic devices. Moving to the next generation

of organic semiconductors that will result in greater efficiency requires advancements in

the areas of materials chemistry, molecular assembly, predictive modelling, and device

optimization. Here, we focus on morphology and demonstrate how it is linked to each of

these areas. Understanding the connections among chemistry, thin film microstructure,

and charge transport remains a major challenge in the field. We examined materials

systems relevant to organic solar cells, memory devices, and transistors, with a focus on

synchrotron-based X-ray techniques. For a blend of a polymer and small molecule, ap-

plicable to solar cells, control of molecular orientation in the small molecule is especially

important for non-fullerene based molecules that exhibit anisotropic charge transport.

In ferroelectric-semiconductor polymer blends used in organic memory, improved control

over phase separation length scales is achieved by altering the chemistry of the semi-

conducting polymer to tune polymer-polymer interactions. Complementary simulations

can facilitate characterization of organic semiconductors. First-principles predictions of

X-ray absorption spectroscopy are applied to semiconducting polymers, and prove crit-

ical for understanding complex experimental data related to molecular orientation and

electronic structure in general. Overall, these studies provide insights into key factors

that should be considered in the development of new organic semiconductors.

viii



Contents

Curriculum Vitae v

Abstract viii

List of Figures xi

1 Introduction 1
1.1 Importance of Morphology in Organic Electronics . . . . . . . . . . . . . 2
1.2 Overview of Synchrotron X-ray Techniques . . . . . . . . . . . . . . . . . 3
1.3 Permissions and Attributions . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Linking Morphology and Performance of Organic Solar Cells Based on
Decacyclene Triimide Acceptors 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Phase Separated Ferroelectric-Semiconductor Polymer Blends for Or-
ganic Memory 30
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 First-Principles Predictions of X-ray Absorption Spectroscopy for Char-
acterization of Semiconducting Polymers 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2 Experimental and Computational Methods . . . . . . . . . . . . . . . . . 63
4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Conclusions 90

ix



A Supporting Information Chapter 2 92
A.1 Experimental Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
A.2 Molecular Geometry of DTI . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.3 Effect of Annealing on Device Performance . . . . . . . . . . . . . . . . . 95
A.4 Surface Topography with Atomic Force Microscopy . . . . . . . . . . . . 97
A.5 Photoluminescence Quenching . . . . . . . . . . . . . . . . . . . . . . . . 98
A.6 Near Edge X-ray Absorption Fine Structure (NEXAFS) . . . . . . . . . . 100
A.7 Electron-Only and Hole-Only Diodes . . . . . . . . . . . . . . . . . . . . 106
A.8 Additional GIWAXS Studies . . . . . . . . . . . . . . . . . . . . . . . . . 108
A.9 Thermal Transitions Probed by DSC . . . . . . . . . . . . . . . . . . . . 117

B Supporting Information Chapter 3 119
B.1 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
B.2 UV-Vis Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
B.3 P3EPT Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
B.4 Atomic Force Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
B.5 Grazing Incidence Wide Angle X-ray Scattering . . . . . . . . . . . . . . 123
B.6 Differential Scanning Calorimetry . . . . . . . . . . . . . . . . . . . . . . 123
B.7 Additional Data for Resistive Switches . . . . . . . . . . . . . . . . . . . 124
B.8 Determining Mass Absorption for Composition Analysis via STXM . . . 124
B.9 Transmission Soft X-ray Scattering . . . . . . . . . . . . . . . . . . . . . 126
B.10 Wide Angle X-ray Scattering . . . . . . . . . . . . . . . . . . . . . . . . . 127
B.11 In situ Thermal Annealing and Wide Angle X-ray Scattering . . . . . . . 133
B.12 Water Contact Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

C Supporting Information Chapter 4 137
C.1 Additional Information for Experimental and Computational Methods . . 137
C.2 Simulated and Experimental Spectra of Donor-Acceptor Polymers . . . . 138

Bibliography 143

x



List of Figures

1.1 Anisotropic transport in semiconducting polymers . . . . . . . . . . . . . 3
1.2 Transitions involved in NEXAFS spectroscopy . . . . . . . . . . . . . . . 6
1.3 Experimental geometry of STXM and RSoXS . . . . . . . . . . . . . . . 7
1.4 Experimental geometry of GIWAXS . . . . . . . . . . . . . . . . . . . . . 8

2.1 Molecular structure of DTI . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 P3HT:DTI-based solar cells . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Depth profiling DSIMS of P3HT:DTI blends . . . . . . . . . . . . . . . . 19
2.4 Surface orientation of P3HT:DTI blends from NEXAFS . . . . . . . . . . 21
2.5 GIWAXS images of DTI and P3HT:DTI blends . . . . . . . . . . . . . . 23
2.6 Crystallite correlation lengths and SAXS of P3HT:DTI . . . . . . . . . . 25
2.7 In-situ GIWAXS during thermal annealing of P3HT:DTI . . . . . . . . . 27
2.8 Morphology schematic of as-cast vs. annealed P3HT:DTI thin films . . . 28

3.1 Chemical structures of P3EPT and PVDF-TrFE . . . . . . . . . . . . . . 31
3.2 Schematic of vertical domain structure of P3EPT:PVDF-TrFE blends . . 33
3.3 Surface topography of P3EPT:PVDF-TrFE blends . . . . . . . . . . . . . 36
3.4 GIWAXS of P3EPT, PVDF-TrFE and blends . . . . . . . . . . . . . . . 42
3.5 Resistive switching devices based on P3EPT:PVDF-TrFE . . . . . . . . . 44
3.6 Carbon K edge NEXAFS of P3EPT and PVDF-TrFE . . . . . . . . . . . 45
3.7 Transmission X-ray microscopy of P3EPT:PVDF-TrFE blends . . . . . . 49
3.8 Resonant soft X-ray scattering of P3EPT:PVDF-TrFE . . . . . . . . . . 51
3.9 Surface vs. bulk composition of P3EPT:PVDF-TrFE . . . . . . . . . . . 54
3.10 Surface-sensitive vs. bulk GIWAXS of P3EPT:PVDF-TrFE . . . . . . . . 56

4.1 Evolution of simulated carbon K edge NEXAFS as a function of unit size 69
4.2 Evolution of nitrogen K edge NEXAFS of PCDTPT with unit size . . . . 72
4.3 Effect of attached side chains on predicted NEXAFS spectra . . . . . . . 75
4.4 Identifying NEXAFS transitions via calculatiosn of PDPP2FT . . . . . . 77
4.5 Simulated angle-dependent NEXAFS of nitrogen K edge of PCDTPT . . 80
4.6 Simulated and experimental angle-dependent NEXAFS of thiophene polymer 82
4.7 PCDTPT molecular structure . . . . . . . . . . . . . . . . . . . . . . . . 85

xi



4.8 PCDTPT nitrogen edge individual atoms . . . . . . . . . . . . . . . . . . 86
4.9 PCDTPT nitrogen edge E field direction . . . . . . . . . . . . . . . . . . 86
4.10 PCDTPT angle-dependent nitrogen K edge data . . . . . . . . . . . . . . 87

A.1 DFT optimized geometry of DTI . . . . . . . . . . . . . . . . . . . . . . 96
A.2 P3HT:DTI solar cell performance at different temperatures . . . . . . . . 97
A.3 AFM height images of P3HT and DTI . . . . . . . . . . . . . . . . . . . 98
A.4 UV-Vis of P3HT and DTI . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.5 Photoluminescence spectra of P3HT:DTI . . . . . . . . . . . . . . . . . . 100
A.6 Carbon K edge NEXAFS of pristine P3HT and DTI . . . . . . . . . . . . 101
A.7 NEXAFS surface composition of P3HT:DTI blends . . . . . . . . . . . . 102
A.8 NEXAFS schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.9 NEXAFS orientation of pristine DTI . . . . . . . . . . . . . . . . . . . . 104
A.10 Fluorescence yield NEXAFS P3HT and DTI . . . . . . . . . . . . . . . . 105
A.11 Fraction of DTI in NEXAFS π∗ peaks . . . . . . . . . . . . . . . . . . . 107
A.12 P3HT:DTI hole-only and electron-only diodes . . . . . . . . . . . . . . . 108
A.13 DTI GIWAXS intensity vs. polar angle . . . . . . . . . . . . . . . . . . . 109
A.14 In situ GIWAXS of P3HT:DTI during heating . . . . . . . . . . . . . . . 110
A.15 In situ GIWAXS of P3HT:DTI over time at 120 ◦C . . . . . . . . . . . . 111
A.16 In situ GIWAXS of DTI various temperatures . . . . . . . . . . . . . . . 112
A.17 In situ GIWAXS of DTI at 120 ◦C over time . . . . . . . . . . . . . . . . 113
A.18 GIWAXS peak fits of P3HT:DTI . . . . . . . . . . . . . . . . . . . . . . 115
A.19 Crystallite orientation at different temperatures for DTI and P3HT . . . 117
A.20 DSC of P3HT and DTI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

B.1 UV-vis of P3EPT and P3HT . . . . . . . . . . . . . . . . . . . . . . . . . 122
B.2 P3EPT mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
B.3 AFM height images of ferroelectric-semiconductor blends . . . . . . . . . 124
B.4 GIWAXS and crystallite orientation of P3EPT:PVDF-TrFE . . . . . . . 125
B.5 DSC of P3EPT and PVDF-TrFE . . . . . . . . . . . . . . . . . . . . . . 126
B.6 Resistive switching data for various P3EPT:PVDF-TrFE ratios . . . . . . 127
B.7 Cycling data for resistive switching device . . . . . . . . . . . . . . . . . 128
B.8 Retention time for P3EPT:PVDF-TrFE device . . . . . . . . . . . . . . . 129
B.9 Fluorine K edge NEXAFS of PVDF-TrFE . . . . . . . . . . . . . . . . . 129
B.10 STXM of 50 wt % P3EPT blends . . . . . . . . . . . . . . . . . . . . . . 130
B.11 STXM images of 25 wt % and 35 wt % P3EPT blends . . . . . . . . . . 130
B.12 Mass absorption near carbon K edge for P3EPT . . . . . . . . . . . . . . 131
B.13 Composition line cute of P3EPT domains . . . . . . . . . . . . . . . . . . 131
B.14 Transmission RSoXS and fits of P3EPT:PVDF-TrFE . . . . . . . . . . . 132
B.15 GIWAXS penetration depth . . . . . . . . . . . . . . . . . . . . . . . . . 132
B.16 Surface vs. bulk GIWAXS of 50 wt % P3EPT blend . . . . . . . . . . . . 133
B.17 P3EPT crystallite orientation . . . . . . . . . . . . . . . . . . . . . . . . 134
B.18 Reduced scattering profiles taken during heating and cooling . . . . . . . 135

xii



B.19 2D GIWAXS images duing heating and cooling . . . . . . . . . . . . . . 136
B.20 Static water contact angle for P3EPT and PVDF-TrFE . . . . . . . . . . 136

C.1 P3HT unit cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
C.2 NEXAFS simulations carbon K edge PCDTPT . . . . . . . . . . . . . . 138
C.3 Angle-dependent simulations PCDTPT carbon K edge . . . . . . . . . . 139
C.4 Experiment vs. calculations PCDTPT 51◦ . . . . . . . . . . . . . . . . . 140
C.5 Angle-dependent simulations of P(NDIOD-T2) . . . . . . . . . . . . . . . 141
C.6 Experiment vs. calculation for PDPP2FT and P(NDIOD-T2) . . . . . . 142

xiii



Chapter 1

Introduction

Organic-based semiconducting materials, including polymers and small molecules, are

attractive building blocks for a variety of electronic applications as they provide the

potential for inexpensive and flexible devices that can be fabricated via large-area pro-

cessing methods such as roll-to-roll printing. Efforts in recent years have focused on

developing organic semiconductors to be the active component in light-emitting diodes

(LEDs), transistors, solar cells, thermoelectrics, and memory elements, and significant

progress has been made on many of these fronts [1, 2, 3, 4, 5, 6, 7]. Typical organic

semiconductors consist of a carbon-based conjugated core, which imparts semiconduct-

ing properties, and pendant side chains that improve solubility, and affect intermolecular

packing. One advantage of these materials is that synthetic procedures allow them to be

easily functionalized to tune optoelectronic and physical properties for specific applica-

tions.

The development and advancement of organic semiconductor materials involves efforts

from many scientific angles, including synthesis of new materials, computational theory

and modelling, characterization of morphology and microstructure, and device fabrication

and optimization. Each of these areas is very involved in its own right, and progress in

1



Introduction Chapter 1

advancing organic semiconductors requires a multidisciplinary approach. Although each

of these aspects is important, this work focuses on characterizing and understanding the

thin film morphology of semiconducting polymers, small molecules, and their complex

blends, which is critically linked to charge transport and device performance.

1.1 Importance of Morphology in Organic Electron-

ics

Semiconducting polymers, polymer:polymer, and polymer:small molecule blends tend

to form complicated morphologies in solid-state thin films, often consisting of multiple

phases, amorphous and crystalline regions, and vertical stratification. The final blend

morphology of these solution-cast thin films is affected by many parameters, from molec-

ular aspects such as conjugation length, planarity, and side chain architecture [8], to

processing conditions including spin-coating parameters, substrate surface properties,

and solvents [9, 10, 11]. Nevertheless, in order for devices to function properly, charge

carriers must travel long distances between electrodes, for example, laterally in a tran-

sistor geometry or vertically through the film thickness for solar cells. It is well known

that various aspects of the microstructure, for example, crystallinity and crystallite ori-

entation, phase separation, and surface segregation can have a significant impact on the

ability of charges to separate and/or transport through the film [12]. The ability to char-

acterize, understand, and control the morphology of organic semiconductor thin films

has remained one of the main challenges in the field.

Most organic semiconductors exhibit anisotropic charge transport properties, both

for a single molecule or polymer chain and within ordered or crystalline domains [13].

As a result, the ability to probe and control molecular orientation is essential. Charge

2



Introduction Chapter 1

Figure 1.1: Model structure and packing in a thiophene-based polymer reveals that
charge transport is good along the conjugated backbone and the π−π stacking direc-
tion, but blocked along the side chain stacking extent.

transport is typically best along the conjugated backbone (for the case of polymers),

or between adjacent molecules via cofacial π − π stacking. Side chains are typically

insulating hydrocarbons, so charge transport is effectively blocked along the side chain

stacking extent. An example for a thiophene-based polymer is shown in Figure 1.1.

For polymers of sufficiently high molecular weight, tie-chains are thought to be critical

for allowing charges to travel among separated aggregated domains [13]. Blends of two

components are required for certain organic electronic devices, adding complexities to

the active layer morphology, including phase separation length scales, domain purity

and connectivity, and interfacial segregation. All of these aspects also impact charge

transport and device performance.

1.2 Overview of Synchrotron X-ray Techniques

It is important to be able to non-invasively characterize the microstructure and molec-

ular ordering over a large range of length scales (from Angstroms to many micrometers).

3
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Synchrotron-based X-ray spectroscopy, microscopy, and scattering provide a suite of com-

plimentary techniques that can probe this span of length scales [14]. The work presented

here focuses on how synchrotron X-ray methods, in combination with other characteriza-

tion, device properties, and first-principles methods, can reveal important insights that

link together molecular structure, morphology, and charge transport. The main tech-

niques employed in this work are near edge X-ray absorption fine structure, scanning

transmission X-ray microscopy, resonant soft X-ray scattering, and grazing incidence

X-ray scattering.

1.2.1 Near Edge X-ray Absorption Fine Structure (NEXAFS)

Near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is a technique

based on transitions of core-shell electrons to unoccupied molecular orbitals. It is sensitive

not only to specific elements in a sample, but also the local structure and bonding.

In the soft X-ray regime (∼50 to 2000 eV), light can either scatter or undergo pho-

toabsorption/ionization with atoms. These two major interactions are represented by

the complex atomic scattering factor: f = f1 + if2, and in this energy range, absorption

(f2) is much more likely. Both f1 and f2 undergo large changes near the absorption

edges of different elements [15]. However, besides the obvious change in absorption due

to the photo-ionization threshold of a specific element, electrons can undergo many other

transitions to empty states near the ionization edge, resulting in a highly featured energy-

dependant absorption spectra.

NEXAFS spectroscopy probes transitions of core electrons to antibonding orbitals.

A transition to an unoccupied state will occur if the incoming photon has an energy

that exactly matches the energy difference between the two states. For these many-

atom molecules, there are numerous unoccupied states near the ionization threshold.
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The peaks in NEXAFS spectra essentially correspond to transitions of a core electron

to these empty states, as shown in Figure 1.2. For most organic semiconductors, the

lowest energy feature in the carbon K edge regime corresponds to a transition to a

π* anitbonding orbital, which sits below the ionization potential due to electron-hole

Coulomb interaction [16]. Transitions to σ* states are found at higher energies, often

above the vacuum level.

For surface-sensitive NEXAFS measurements, absorption is determined by detection

of either a fluorescence photon or an Auger electron. When the incident X-ray beam

hits the sample, a core electron is excited out of its original energy level (photoelectron).

This produces a core hole. An electron at a higher occupied level can drop down to fill

the core hole, releasing energy radiatively in the form of a fluorescence photon or non-

radiatively as an Auger electron. Both the fluorescence photon and Auger electron are

direct measures of X-ray absorption. In fluorescence yield (FY) mode, the fluorescence

photons are detected. This detection mode is better suited for looking at liquid samples

and into the bulk, up to about 100 nm below the surface. Due to the limited kinetic

energy of emitted Auger electrons, only those near to the surface are able to escape and

be picked up by the detector. In the total electron yield (TEY) mode, all electrons that

emerge from the surface are detected. Alternatively, in partial electron yield (PEY), a

screening bias is placed in front of the detector to repel lower kinetic energy electrons,

meaning only those emerging from the outermost surface layer (∼2 nm) are detected.

Degree of surface sensitivity can be tuned by changing the bias [17].

NEXAFS can probe molecular orientation due to the inherent polarization of the

X-ray beam and the tunability of the incident angle. Organic semiconductors often have

anisotropic molecular orbitals and transitions to these orbitals can have dipole moments

in a specific direction [18, 19]. A π* transition can typically be described by a vector that

is perpendicular to the conjugated ring plane. The intensity of this peak will be greatest
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Figure 1.2: Schematic showing how peaks in a NEXAFS spectra correspond to tran-
sitions of core electrons to unoccupied orbitals.

when the electric field vector of the incoming X-ray is directionally aligned with the

transition dipole moment vector of the π* transition, and lowest when these two vectors

are perpendicular. Hence, overall molecular orientation can be probed by observing the

change in intensity of a specific peak as a function of incident angle.

1.2.2 Transmission Soft X-ray Microscopy and Resonant Scat-

tering

Resonant soft X-ray scattering (RSoXS) is a relatively novel technique for probing

structure of organic materials. RSoXS combines the abilities of small-angle scattering and

the energy-dependent absorption properties obtained from NEXAFS to enhance contrast

and selectivity when studying organic semiconductors [20, 21, 14]. Hard X-rays probe

differences in electron density, which makes studying blends of similar systems, such as a
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Figure 1.3: Schematic showing the experimental geometry for (a) scanning transmis-
sion X-ray microscopy and (b) transmission resonant X-ray scattering.

polymer/polymer blend, difficult. RSoXS utilizes soft X-rays, where the scattering con-

trast factor, ∆f 2
1 + ∆f 2

2 , is typically dominated by the absorptive part, f2. Furthermore,

since the incident X-ray energy is tunable, one can select an energy that allows for either

greatest overall contrast or scattering dominated by one component in a blend. Since

NEXAFS tells how f2 of a material depends on energy, it is essential to have NEXAFS

data of the different components in a blend to better understand RSoXS data at a given

energy. It is important to note that RSoXS does not probe just crystalline regions, but

amorphous ones as well. At certain transition resonances, RSoXS is sensitive to molecu-

lar orientation, allowing for contrast even in a single component film [22]. The enhanced

contrast attainable with soft X-rays allows samples to be studied in transmission, which

can ease data analysis.

In scanning transmission X-ray microscopy (STXM), the incoming X-ray beam is

focused down to a small point (∼30 nm diameter) with a Fresnel zone plate and scanned

through the sample and the transmitted intensity recorded (Figure 1.3) [23, 24]. If

the sample is translated, then a spatial map can be achieved. By tuning the X-ray

energy to where absorption is dominated by one component, in-plane spatial composition

maps of blends can be achieved.[25] Since this technique is done in transmission, vertical

7



Introduction Chapter 1

Figure 1.4: Schematic showing the experimental geometry for grazing incidence X-ray
scattering with a two-dimensional detector

composition changes are difficult to attain, although three-dimensional reconstruction

with tomography is possible.[26]

1.2.3 Grazing Incidence Wide Angle X-ray Scattering

Grazing Incidence Wide Angle X-ray Scattering (GIWAXS) is one of the most com-

mon X-ray techniques to probe order and crystallinity in organic semiconductor thin films

[14, 12]. GIWAXS is typically done with hard X-rays, and probes length scales from a few

Angstroms to a few nanometers within crystalline regions. WAXS can be done with point

detectors, usually to obtain in-plane or out-of-plane information, but it is common to use

a two-dimensional (2D) area detector which allows for rapid data collection over a range

of scattering angles allowing for simultaneous viewing of scattering that originates from

both out-of-plane and in-plane periodicities. However, 2D data collection comes at the

expense of reduced accuracy and resolution. Incident X-rays are diffracted by periodic

planes of atoms or molecules, which cause periodicities in electron density. For semicrys-

talline organic semiconductors, these length scales are relevant to probing the distances

between adjacent molecules in the crystalline regions. 2D GIWAXS is typically used to
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obtain information on periodic spacings from the peak positions, correlation lengths or

crystallite size from the peak widths, and crystallite orientation, or texture, based on

intensity distributions [14, 27].
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Chapter 2

Linking Morphology and

Performance of Organic Solar Cells

Based on Decacyclene Triimide

Acceptors

2.1 Introduction

Photovoltaics based on conjugated organic polymers and small molecules have been

the focus of intense study in recent years. Technological progress has resulted in organic

photovoltaics (OPVs) with high power conversion efficiencies (PCEs). To date, nearly

all OPVs utilize a fullerene derivative such as [6,6]-phenyl-C61-butyric acid methyl ester

(PCBM) as the electron accepting material, and these acceptors have been the champion

performers resulting in PCEs greater than 10% [28]. Acceptors such as PCBM have the

advantages of large electron affinity and good electron mobility [29]. However, they suffer

from weak absorption in the visible region of the solar spectrum compared to many donors
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and a large electron affinity that limits the open circuit voltage (VOC). Therefore, there

is an impetus to develop non-fullerene based materials that are simpler to synthesize and

have a more tunable energy bandgap to complement fullerenes as acceptor molecules.

Although there has been significant progress in non-fullerene based bulk heterojunc-

tion (BHJ) solar cells [30], non-fullerene polymer:small molecule OPVs still typically

have PCEs of about 1% - 2% [31, 32, 33, 34], and have only recently reached ∼4% [35].

All-polymer based solar cells have also seen noticeable improvements reaching efficiencies

of about 4% as well [36, 37, 38, 39]. Geometrically, these materials are different from

fullerenes because they are not nearly spherically symmetric molecules. Therefore, the

self-assembly and transport properties of non-fullerene acceptors are fundamentally dif-

ferent. This provides unique opportunities to study charge generation originating from

light absorption in the acceptor and charge transfer to the donor [40, 41, 42]. In order

to fabricate more efficient devices, it is essential to better understand the assembly and

morphological properties of this class of materials, and to date, there is a very limited

understanding on the link between variation in photovoltaic performance and structural

changes in non-fullerene acceptors compared to the extensive number of reviews focusing

on the P3HT:PCBM system [12, 43, 29, 44, 45].

Here, we show how performance in non-fullerene based solar cells is closely linked

to molecular orientation and organization. The acceptor in this study is based on a

decacyclene triimide core functionalized with octyl side groups, which will be referred

to as DTI. The molecular structure is shown in Figure 2.1. The synthesis and initial

performance of a BHJ solar cell consisting of a blend of DTI and the well-studied polymer,

poly(3-hexylthiophene) (P3HT), were recently reported [31]. Decacyclene and DTI have

been shown to form stacked columns with the π-π stacking direction down the length

of the column [31, 46, 47]. Large steric interactions that lead to significant twisting of

the molecular core can disrupt packing, as shown recently for truxenone-based acceptors
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Figure 2.1: Molecular structures and approximate highest occupied molecular orbital
and lowest unoccupied molecular orbital energy levels for P3HT and DTI.

[34]. However, both decacyclene and DTI have a gently twisted propeller geometry (see

Figure A.1) that maintains good π-π stacking among molecules. It is expected that

there is sufficient orbital overlap and charge conduction in the π-π stacking direction,

but limited conduction perpendicular to the π-π stacking direction. These anisotropic

transport properties of DTI make it an ideal material to study the interplay between

molecular orientation and solar cell performance.

It is known that polycyclic aromatic hydrocarbons and discotic columnar liquid crys-

tals, similar to decacyclene, often pack into columns that can arrange hexagonally [48, 49].

Techniques including thermal treatment and altering growth kinetics have been used to

impart control over the orientation of columns between homeotropic (columns perpen-

dicular to the substrate) and planar (columns in-plane with the substrate) arrangements

[50, 51, 52]. Further studies have shown that discotic liquid crystals have the capability

for high time-of-flight mobilities on the order of 10−1 cm2V −1s−1 [53, 54].
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In order for such discotic materials to properly transport charge in OPVs, they must

maintain satisfactory orientation and charge carrier properties when blended with a sec-

ond material. Blending a columnar discotic liquid crystalline material with an amorphous

polymer can lead to geometric confinement that alters the spatial correlation lengths of

the columnar structures, hence changing their optical and electronic transport properties

[55]. Although blends with amorphous polymers reveal interesting physics, OPVs require

these discotic materials to be mixed with semiconducting polymers or small molecules and

maintain proper electrical function. This has been shown for a hexabenzocoronene based

discotic liquid crystal that self-assembles into vertical stacks when blended with a pery-

lene dye and exhibits a photovoltaic response with a power efficiency maximum of 1.95%

and an external quantum efficiency over 34% at 490 nm [48]. Also, solar cells consist-

ing of a trisubstituted decacyclene acceptor and poly[2-methoxy-5-(2’-ethylhexyloxy)-1,4-

phenylenevinylene] (MEH-PPV) as the donor have been demonstrated [56]. These devices

attained a high VOC (1.3 V), but the overall PCE of 0.14% under 500 nm monochromatic

light was limited due to a poor short circuit current (JSC) of 3.6 µAcm−2 and a fill factor

(FF) of 0.22.

DTI also shows promise as a successful discotic-based photovoltaic material. The

P3HT:DTI solar cells studied here exhibit good as-cast performance (PCE = 1.6%) with

high FF. Interestingly, the efficiency degrades significantly when thermally annealed.

P3HT:PCBM-based devices, on the other hand, can reach efficiencies up to ∼5% with

thermal treatment [29, 57]. Soft X-ray spectroscopy and grazing incidence scattering

reveal that thermal annealing induces DTI to orient and assemble such that vertical

charge transport is hindered, limiting solar cell performance. These results provide insight

into the fundamental relations between morphology and electronic performance in non-

fullerene acceptors and the subtleties and important parameters involved in designing

such materials.
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2.2 Experimental

DTI was synthesized as reported previously [31], and P3HT obtained from Rieke Met-

als (Sepiolid P200). All solutions were prepared with a total concentration of 20 mg mL−1

in o-dichlorobenzene and stirred at 80 ◦C. Thin films were prepared by spin-casting at

1000 rpm for 60 s and then 2000 rpm for 10 s. Near edge X-ray absorption fine structure

(NEXAFS) spectroscopy was performed at beamling U7A at the National Synchrotron

Light Source (NSLS), grazing incidence wide angle X-ray scattering (GIWAXS) at beam-

line 11-3 at the Stanford Synchrotron Radiation Lightsource (SSRL), and resonant soft

X-ray scattering (RSoXS) at beamline 11.0.1.2 at the Advanced Light Source (ALS). Fur-

ther experimental details on device fabrication and testing and characterization methods

are provided in Appendix A.

2.3 Results and Discussion

2.3.1 Thermal Annealing Reduces Solar Cell Performance

Many organic solar cells require thermal annealing to improve efficiency, however,

thermal annealing greatly reduces the performance of P3HT:DTI-based solar cells. Here,

we focus on how this can be understood through changes in blend morphology. First, it is

of interest to determine directly how thermal treatment influences solar cell performance.

Conventional P3HT:DTI-based BHJ solar cells consisting of a PEDOT:PSS hole trans-

port layer and LiF/Al top contacts exhibited a respectable PCE of 1.6% resulting from a

JSC of 4.87 mA cm−2, a VOC of 0.58 V, and a FF of 0.57. Interestingly, annealing at 120

◦C, a temperature chosen because it is above the thermal transitions of DTI but below

the melting point of P3HT, causes a detrimental decrease in performance (PCE ≈ 0.3%),

as shown in Figure 2.2a. Annealing at various other temperatures in the range of 50 ◦C
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Figure 2.2: (a) Current density vs. voltage plot for an as-cast P3HT:DTI solar cell
(blue curve) and a solar cell annealed at 120 ◦C for 20 min (red curve). The dark
current curves for the as-cast and annealed devices are shown with the dotted and
dotted-dashed lines, respectively. (b) Current density vs. voltage plot taken in the
dark for a P3HT:DTI electron-only device. The as-cast device is given by the blue
circles, and the annealed device by the red triangles.

to 120 ◦C also results in significant drops in PCE (Figure A.2). This is in contrast to

P3HT:PCBM solar cells which typically require thermal annealing to optimize efficiency

[58, 29]. In fact, many of the previously reported non-fullerene acceptors require thermal

annealing to optimize efficiency with P3HT [59, 60, 32, 61]. Additionally, the current-

voltage (J-V) characteristics of an electron-only device (Al/P3HT:DTI/Ca/Al) show that

the electron current is much lower, about one order of magnitude, in the annealed device

(Figure 2.2b). Also, the electron mobility dropped from about 4.1× 10−6 cm2V −1s−1 in

the as-cast film to about 1.8× 10−7 cm2V −1s−1 in the annealed film. However, no such

decrease in the hole current is observed (Figure A.12). This suggests that it is changes in

the morphology of DTI acceptor molecules that are mostly responsible for the decreased

performance upon annealing.

Despite the drastic decrease in the performance of thermally annealed solar cells,

photoluminescence (PL) quenching experiments suggest no appreciable decrease in charge

transfer from P3HT to DTI upon annealing, and even a significant improvement in charge
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transfer from DTI to P3HT (greater degree of PL quenching) after annealing (Figure

A.5). The small decrease in charge transfer from P3HT to DTI upon annealing is likely a

result of slightly larger P3HT crystallites and suggests no extensive change in the exciton

diffusion length within P3HT. Conversely, the drastic improvement in charge transfer

from DTI to P3HT after annealing indicates a potential change in the exciton diffusion

length in DTI, which has been shown to be quite large in ordered discotic liquid crystals

along the transport direction [62]. Energy transfer is also possible since the emission of

DTI overlaps with the absorption of P3HT. Furthermore, it is reasonable to expect good

exciton splitting at a P3HT-DTI interface if the molecules adopt a cofacial alignment

to maximize electronic interactions, and these interfacial interactions may improve in

annealed films. Nevertheless, these PL results also point toward changes in morphology

as the main reason for hindered charge transport and reduced efficiency in annealed solar

cells.

2.3.2 Thermal Annealing has Limited Effect on Vertical Strat-

ification

Considering the severe decrease in photovoltaic performance upon thermal annealing,

it is important to determine if significant changes in the vertical segregation of P3HT:DTI

blends occurs. For blends of flexible polymers, surface segregation depends strongly

on the surface energy of the polymers [63, 64, 65]. It is known that vertical phase

segregation can occur in polymer-small molecule blends with a preference of one material

to segregate to the film/air or film/substrate interface. Recent studies have shown that in

a blend of a semiconducting small molecule and a binder polymer, the segregation of the

small molecule to either the film/air, the film/substrate or both interfaces can be tuned.

This depends on the polymer molecular weight and the type of polymer, where effects
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such as confinement entropy, interaction energy, and solidification could all play a role

[66, 67]. Furthermore, the presence of an insulating polymer does not necessarily reduce

the charge transport capabilities of a semiconducting polymer, and can even enhance it

[68, 69]. Vertical segregation could potentially be harmful to charge collection in solar

cells. An excess of the electron transport material near the hole-collecting interface may

reduce device characteristics. An excess of the hole transport material at the electron-

collecting interface may also limit performance, but is potentially less detrimental [70].

However, the overall effects of vertical phase segregation in BHJ solar cells are not very

well understood, and in some cases may not result in significant changes in performance

[71, 72].

To examine the vertical profile in these materials, depth profiling dynamic secondary

ion mass spectrometry (DSIMS) was performed on as-cast and annealed P3HT:DTI

blends. P3HT can be tracked in the active layer through the 34S− (m/z = 34) mass

fragment, since sulfur is not present in DTI, and DTI is tracked with the CN− (m/z

= 26) ion. Figure 2.3 shows the vertical profile of the P3HT:DTI active layer region

and underlying Si/PEDOT:PSS substrate. A 150 nm polystyrene films was floated on

top of the active layer to allow the O+
2 beam to establish a steady-state damage profile

before the top interface of the blend is reached. The etch rate is estimated to be ∼0.45

nm/s based on the initial thickness of the polystyrene film. It should be noted that the

absolute intensity of the CN− signal and the 34S− signal are not directly related since the

formation probability of CN− is much higher than 34S−.

The DSIMS data do not reveal extensive changes in the vertical composition profile

between as-cast and annealed films. Looking at the as-cast film, there is a very slight

excess of P3HT at the film surface relative to the amount of P3HT in the interior of the

film. There also is a greater excess of P3HT at the buried interface between the active

layer and the PEDOT:PSS layer. Interestingly, the profile of DTI suggests that it is
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Figure 2.3: Depth profiling DSIMS data for as-cast and annealed (120 ◦C) P3HT:DTI
blend films. The 34S− signal (triangles) corresponds to P3HT and its intensity is
plotted on the right axis. DTI is tracked through the CN− signal (circles) with corre-
sponding intensity plotted on the left axis. The boxed regions indicate approximately
where the P3HT:DTI film and underlying Si/PEDOT:PSS substrate reside.

mostly concentrated in the bottom half of the film, without significant excess close to

either interface relative to the bulk.

The annealed film exhibits an overall similar profile as the as-cast one. There is still a

very slight excess of P3HT at the film/air interface, however there is less of an excess at

the BHJ/PEDOT:PSS interface. Correspondingly, there is a slight shoulder in the DTI

profile toward the BHJ/PEDOT:PSS interface suggesting there is some additional DTI

at the bottom of the film compared to the as-cast case. As alluded to earlier, this vertical

segregation profile may reduce charge extraction, but the change in vertical composition

is not significant enough for it to be a major cause for the limited performance in annealed

devices.

The surface topography of the blend films determined from atomic force microscopy

(AFM) shows little change with annealing besides a slight increase in root mean squared

(rms) roughness from about 2.1 nm to 2.8 nm for the as-cast and annealed films, respec-

tively (Figure A.3). However, the tendency of the alkyl side chains of both components
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to inhabit the film/air interface to minimize surface energy could lead to similar film

surface structures.

Previous work on polymer-small molecule blends suggests that small molecules tend

to segregate to interfaces. However, this can be suppressed by using a semicrystalline

polymer with fast crystallization [66]. It is possible that a similar phenomenon is oc-

curring in the P3HT:DTI system where P3HT crystallizes before DTI. This is evident

because the crystallization onset temperature of P3HT does not increase when DTI is

introduced (Figure A.20), which would be expected if DTI acted as a nucleating agent

[73].

2.3.3 Changes in Molecular Orientation and Domain Size Re-

duce Solar Cell Performance

Considering the geometry and stacking motif of DTI, where good charge transport is

possible in the π-π stacking direction, it is reasonable to expect that the orientation of

these columnar structures would have a direct impact on electron transport and efficiency.

Here, we use a combination of near edge X-ray absorption fine structure (NEXAFS) spec-

troscopy and X-ray scattering to elucidate the effects of thermal annealing on molecular

orientation and order. NEXAFS utilizes polarized soft X-rays where the incident energy

can be tuned to specific atomic transitions [15]. Overall molecular orientation can be

determined by examining the intensity dependence as a function of incident angle for a

specific transition [15, 16, 74, 75, 76, 77, 17]. The application of NEXAFS to examine

the tilt of the conjugated core in organic semiconductors has proven to be successful

[78, 79, 14, 80, 81].

Here, we focus on molecular orientation of as-cast and annealed P3HT:DTI blends,

relevant to photovoltaic devices. Similar trends in molecular orientation were observed for
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Figure 2.4: Partial electron yield carbon 1s NEXAFS spectra taken at various incident
angles for a) an as-cast P3HT:DTI film and b) a P3HT:DTI film annealed at 120 ◦C.
The insets depict a zoom-in of the π* transitions near 285 eV. The value of the
orientation order parameter, S, is indicated.

the bulk of the film, determined from the fluorescence yield (FY) data, as for the surface-

sensitive partial electron yield (PEY) data presented here. FY data and orientation

analysis for pristine DTI films are shown in Figures A.9 and A.10. PEY data for as-cast

and annealed (120 ◦C) films of P3HT:DTI blends taken at various incident angles are

shown in Figure 2.4. In both cases, it is evident that the intensity of the C 1s → π*

transition near 285 eV increases and is greatest at an incident angle of 90◦. However, this

effect is stronger in the annealed film. In this experimental geometry, 90◦ corresponds

to the electric field vector in-plane with the substrate surface (incident X-ray normal to

the substrate surface). This result suggests that the 1s → π* transition vector is mostly

parallel to the substrate. The average orientation of the conjugated plane of the molecules

can be quantified by an orientation order parameter, S, which ranges from +1 for a

vertical transition (face-on) to -1/2 for a horizontal transition (edge-on) [17]. S decreases

from -0.093 in the as-cast sample to -0.15 in the annealed sample (Figure 2.4), suggesting

more edge-on character in the annealed blend. It is difficult to separate the contributions

from P3HT and DTI to this overall orientation change. NEXAFS analysis on a pristine
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DTI film shows that DTI has little orientation preference as-cast (S = −0.0038), but is

very edge-on after thermal annealing (S = −0.33), as shown in Figure A.9. DTI becomes

significantly more edge-on after annealing than what is expected for P3HT, and this is

supported by X-ray scattering data discussed later. Therefore, it is suspected that the

DTI molecules are the main contributor to the observed overall orientation change in the

blends. If this is true, then the increase in the amount of DTI character in the π* peak

when going from 30◦ to 90◦ should be greater for the annealed blend compared to the

as-cast blend. Indeed, this trend is observed (Figure A.11).

A simple conclusion that can be drawn is that the molecules, especially DTI, adopt

a more edge-on orientation after thermal annealing. The anisotropic charge transport of

DTI suggests that this reorientation is a culprit for the reduced performance in thermally

annealed solar cells.

Crystallinity is a critical component in organic solar cells, and the ability to probe the

crystalline regions in the film and distinguish between changes occurring in both DTI and

P3HT is essential. Grazing incidence wide angle X-ray scattering (GIWAXS) is able to

probe order and orientation of the crystalline regions of organic semiconductor thin films

[14, 12, 82, 83]. GIWAXS experiments were performed on pristine DTI and P3HT:DTI

films to further examine the formation and orientation of ordered DTI structures. Figure

2.5a and 2.5b show 2D GIWAXS patterns of as-cast and thermally annealed DTI films.

A broad, diffuse scattering ring at ∼1.5 Å−1, typical for amorphous scattering, is clearly

visible and suggests low overall crystallinity. There is also a strong reflection at ∼0.3 Å−1.

Since it is quite broad (FWHM ≈ 0.07 Å−1) and the intensity is relatively distributed

over all polar angles, it is most likely due to small DTI aggregates or crystals with no

preferred orientation.

Scattering reveals noticeable changes in DTI films with thermal annealing, as shown

in Figure 2.5b. The broad amorphous ring has mostly disappeared, suggesting greater
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Figure 2.5: Two-dimensional GIWAXS images of pristine DTI a) as-cast and b) an-
nealed, and P3HT:DTI blend films c) as-cast and d) annealed. The characteristic
reflections for P3HT are labelled in (c). The missing wedge along qz represents the
inaccessible region of the Ewald sphere in grazing incidence geometry [84].

relative crystallinity. A unique feature of the annealed films is the appearance of a

reflection centered at 1.8 Å−1, with greatest intensity in-plane with the substrate, along

qxy. This corresponds to a d -spacing of 0.35 nm, typical of a π-π stacking distance in

conjugated organics [14]. The fact that the intensity of this reflection is concentrated

along qxy reveals that stacks of DTI molecules are predominantly oriented with the π-π

stacking direction parallel to the substrate, i.e. most molecules in crystalline regions are

edge-on to the substrate. Furthermore, in the annealed film, the main reflection, centered

at qz = 0.29 Å−1, has become narrower, indicative of larger crystallites. Interestingly,

the intensity distribution for this reflection is not constant. There is a spot of enhanced

intensity in the nearly out-of-plane direction and another 60◦ from the surface normal.

Considering the gentle propeller geometry of a DTI molecule, it is expected that they

would stack one on top of the other, with adjacent molecules rotating to reduce steric

interactions. DTI has been observed to stack into long columns when drop-cast from
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tetrahydrofuran [31]. The hexagonal pattern seen in GIWAXS suggests that annealing

causes separate DTI columns to adopt a hexagonal packing motif and lie parallel to the

substrate, a morphology that has been observed for discotic hexagonal columnar liquid

crystals [48, 49, 51]. Based on the reflection at 0.29 Å−1, the hexagonal lattice can

be described by a parameter, ahex = 2.47 nm, which is the distance between adjacent

columns.

It is important to see if the packing of DTI is disrupted when blended with P3HT.

The scattering from P3HT:DTI blends reveals the characteristic reflections for P3HT,

as seen in Figure 2.5c and 2.5d. The as-cast blend film exhibits the typical out-of-plane

(100), (200), and (300) reflections of P3HT located close to the qz axis at 0.38, 0.77, and

1.17 Å−1, respectively, that correspond to stacking along the hexyl side chain extent.

There is also an in-plane peak at 1.65 Å−1 corresponding to the π-π stacking distance

[85]. The as-cast film shows noticeable amorphous scattering, and an isotropic reflection

at 0.29 Å−1 originating from the DTI molecules. Similar to the NEXAFS data, GIWAXS

results show that upon casting, DTI has little preferred orientation, even when mixed

with P3HT. The annealed P3HT:DTI film shows a qualitatively similar scattering from

P3HT, but the main DTI reflection at 0.29 Å−1 reveals a hexagonal pattern once again,

and the in-plane π-π stacking peak for DTI appears as well. This suggests that annealing

mostly affects the formation and assembly of DTI crystallites, as the scattering pattern

from P3HT remains qualitatively similar. The GIWAXS data is in agreement with the

NEXAFS results indicating that thermal annealing leads to an increased degree of edge-

on orientation of DTI that hinders electron transport.

Wide angle X-ray scattering can be used to estimate crystallite sizes. Crystallite

correlation lengths, which are related to crystallite size, were determined from the width

of the diffraction peaks using Scherrer analysis [27, 86]. Correlation lengths along the

alkyl chain stacking direction were determined in the nearly out-of-plane (close to qz)
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Figure 2.6: a) Crystallite correlation lengths in the nearly out-of-plane direction de-
termined for the hexagonal reflection of DTI and the (100) reflection of P3HT. b)
Transmission RSoXS scattering profile taken at 284.4 eV of P3HT:DTI blend film
both as-cast (purple circles) and annealed (gold squares) at 120 ◦C. The data is plot-
ted with a Lorentz correction (I × q2).

direction for the low-q reflections of P3HT and DTI. For the as-cast P3HT:DTI blend, the

out-of-plane correlation length of DTI is relatively small (∼14 nm), suggesting aggregates

of only several molecules high. The vertical correlation length for P3HT crystallites

is about 21 nm determined from the (100) alkyl stacking reflection. In the annealed

P3HT:DTI blend, the correlation length for P3HT remained somewhat similar. However,

the correlation length for DTI crystallites increased noticeably to nearly 45 nm (Figure

2.6a). This is significant considering the film thickness is ∼100 nm. This suggests

that thermal annealing leads to separate parallel columns of DTI that stack quite high.

It is likely that the thermally induced reorientation allows multiple nearby columnar

aggregates to stack together, hindering vertical electron transport in annealed films.

Less dramatic changes were observed for the in-plane (π-π stacking reflection) correlation

lengths (Figure A.18).

Periodicities on a larger length scale, often relevant to domain size or phase separa-

tion, can be accessed with small angle X-ray scattering. However, the similar electron

density between P3HT and DTI make typical hard X-ray small angle scattering experi-

ments difficult. To overcome this, we utilized transmission resonant soft X-ray scattering

(RSoXS), which takes advantage of the absorption difference near elemental edges (e.g.
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carbon K edge) between materials to enhance scattering contrast [15]. RSoXS data on

as-cast and annealed P3HT:DTI blends suggest that the average in-plane separation be-

tween DTI-rich domains increases with thermal annealing. As shown in Figure 2.6b, the

main peak in the scattering curve shifts from about 0.015 Å−1 (∼40 nm) in the as-cast

blend to about 0.0033 Å−1 (∼190 nm) in the annealed blend. This indicates an increase in

the overall domain separation distance and agrees with the large DTI crystallites formed

in annealed films.

Morphological characterization reveals significant changes in P3HT:DTI blend films

with thermal annealing. Cross-sections of as-cast and annealed films are shown schemat-

ically in Figure 2.8. In as-cast films, aggregates of DTI are relatively small and have

little preferential orientation, providing potential pathways for electrons to travel to the

electrodes. In thermally annealed films, larger stacks of DTI crystallites pack hexago-

nally with the π-π stacking direction mostly in-plane. This orientation hinders vertical

electron transport and reduces solar cell performance. Furthermore, a larger separation

distance between DTI domains also limits charge transport.

2.3.4 In Situ Experiments Reveal Cold Crystallization of DTI

It is clear that annealing at 120 ◦C leads to significant changes in the assembly of

DTI molecules and the corresponding solar cell performance. However, it was found that

annealing at lower temperatures (50 ◦C) also resulted in greatly diminished performance.

This brings to question what temperature is required to cause DTI to form the planar

columnar structures that limit charge extraction. Differential scanning calorimetry (DSC)

was performed on P3HT:DTI blends and is shown in Figure 2.7a. DSC data on pristine

P3HT and DTI is provided in Figure A.20. Upon heating the blend, there is a subtle

exothermic peak around 50 ◦C which appears right before an endothermic transition at
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Figure 2.7: a) Differential scanning calorimetry data for a P3HT:DTI blend. In situ
GIWAXS data collected at b) 60 ◦C and c) 80 ◦C during heating.

57 ◦C. This exothermic peak is probably due to cold crystallization of DTI, or ordering

that occurs due to heating. Interestingly, no other melting-type transitions occur even far

above 120 ◦C until the melting temperature of P3HT at about 230◦C. On cooling, there

is a characteristic crystallization peak for P3HT at 200 ◦C, and an additional exothermic

transition at 25 ◦C. The main endothermic transition during heating at 57 ◦C is likely not

a melting transition of DTI to an isotropic liquid since GIWAXS scans taken at elevated

temperatures well above 57 ◦C show diffraction patterns of ordered structures, as seen

in Figures A.14 and A.15. This peak, and the corresponding exothermic transition at 25

◦C, could be due to disordering and reordering of the octyl side chains of DTI.

In order to better understand the structural transitions of DTI, in situ GIWAXS

experiments were performed at various temperatures during heating. In this way, the

sample was heated to a specific temperature and a GIWAXS scan taken. The sample was
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Figure 2.8: Schematic representation of cross sections of (a) an as-cast P3HT:DTI film
and (b) a thermally annealed P3HT:DTI film. Stacks of DTI molecules are represented
as green pillars, and P3HT crystallites as stacked purple rectangles. The panels in
the middle depict close-ups of the hexagonal packing among separate stacks of DTI
and how each of the pillars represents a stack of multiple DTI molecules.

then incrementally heated to higher temperatures where additional scattering patterns

were obtained at temperature. After starting at room temperature (RT), where the

GIWAXS pattern is very similar to that shown in Figure 2.5c, the hexagonal pattern and

in-plane π-π stacking start to become visible at 60 ◦C (Figure 2.7b). This becomes more

clear at 80 ◦C (Figure 2.7c), and even sharper at higher temperatures (Figure A.14). This

in situ study is in agreement with the GIWAXS data in Figure 2.5, which indicates that

annealing leads to hexagonally packed DTI columns with a predominantly in-plane π-π

stacking direction. Furthermore, in situ scattering reveals that this critical reorientation

can occur at a much lower temperature than 120 ◦C. In fact, for a pristine DTI film, the

characteristic pattern of an annealed film is seen even at 40 ◦C (Figure A.16). P3HT

only marginally inhibits the thermally-induced ordering of DTI, and it is likely that the

softening of P3HT allows DTI to have reasonable mobility in the blend. These results

suggest that the exothermic peak at about 50 ◦C in the DSC is likely cold crystallization,

which is where the DTI molecules have enough thermal energy to order and orient. The

in situ experiments bring to light the importance of controlling the ordering transitions

in these types of discotic columnar materials.
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2.3.5 Conclusion

Morphology and molecular orientation are critically important for efficient charge ex-

traction and operation of organic photovoltaics based on non-fullerene acceptors due to

their anisotropic charge transport properties. Our study here of a model BHJ with a de-

cacyclene triimide-based acceptor clearly demonstrates how morphological changes upon

annealing can be directly related to the PCE. Using a combination of X-ray scattering

methods, spectroscopy and device measurements, we find that thermal processing leads

to an increase in DTI crystallite size, molecular reorientation, and an increase in overall

domain separation distance at relatively low temperatures and short annealing times.

The reorientation of DTI molecules to a predominantly edge-on orientation with the π-π

stacking direction in-plane with the substrate inhibits electron transport in solar cells.

The results highlight the importance of control over thermal transitions and molec-

ular orientation of novel materials for successful use in BHJ photovoltaic devices. As

evident here, the possibility for non-fullerene molecules to change orientation and influ-

ence electron transport at relatively low temperatures (∼60 ◦C) is a potential disadvan-

tage in real-world solar cells that could reach such temperatures under ambient sunlight.

Molecular design becomes critical in tailoring the thermodynamics and kinetics of such

structural rearrangements associated with these transitions to improve the properties of

photovoltaics based on future decacyclene-based or other non-fullerene acceptors.
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Chapter 3

Phase Separated

Ferroelectric-Semiconductor

Polymer Blends for Organic Memory

3.1 Introduction

Polymers offer a unique platform for creating low-cost, solution-processable, and flex-

ible electronics [1, 2, 3, 4, 5]. Semiconducting polymers are essential for these electronics,

but ferroelectric polymers have also proven to be useful components in some applications.

For example, ferroelectric polymers have been shown to increase the power conversion

efficiency of organic photovoltaics [87, 88, 89, 90, 91]. One application in particular

that has been of recent interest is organic-based non-volatile memory devices [6, 92, 93],

including ferroelectric transistors and diodes [7, 94].

The working mechanism of organic ferroelectric devices relies on the fact that cer-

tain polymers, such as those based on poly(vinylidene fluoride), have intrinsic permanent

dipole moments that can be oriented by an applied electric field, leading to ferroelectric
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Figure 3.1: Chemical structures of (a) P3EPT and (b) PVDF-TrFE.

behavior [95, 96]. Ferroelectric resistive switches can be fabricated by blending a ferro-

electric polymer and a semiconducting polymer, first demonstrated by Asadi et al [97].

Because dissimilar polymers phase separate, thin film blends have distinct ferroelectric

and semiconducting regions. Understanding how this phase separation occurs during so-

lidification and subsequent processing is important because the morphology defines the

pathways for charge transport and the switching characteristics.

Blends of ferrorelectric polymers and semiconducting polymers provide an interest-

ing opportunity to examine fundamental processes of phase separation in thin films of

semicrystalline polymers from solution. Here, we examine the effects of altering the side

chain structure of the semiconducting polymer on the phase separation and molecular

order in a ferroelectric-semiconductor polymer blend. We find that modification of side

chains is a useful route to achieve reliable nanoscale phase separation in thin films while

maintaining ferroelectric switching behavior.

The operation of ferroelectric diodes depends critically on the morphology of the phase

separated ferroelectric-semiconductor blend film. Charge carriers only travel through the

semiconducting polymer and the ferroelectric polymer determines the switching behav-

ior of the device. It is believed based on experimental data and device models that the

stray field of the positively (negatively) poled ferroelectric polymer lowers (increases) the

barrier to charge injection into the semiconductor phase resulting in greater (decreased)

current in the ON (OFF) state [98, 99]. The charge carriers travel predominantly near
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the semiconductor-ferroelectric domain interfaces [100]. Semiconductor domains that are

too large will reduce domain interfacial area and overall current. On the other hand, the

stray field lines of the poled ferroelectric act against the direction of charge transport,

and this can reduce the current if semiconductor domains are too small. A competition

between these two effects results in an optimum lateral size for the semiconductor do-

mains, suggested to be about 50-100 nm [99]. Therefore, an optimal device would have

as large a volume fraction as possible of ∼50 nm size domains of semiconducting poly-

mer surrounded by ferroelectric polymer domains (the minimum size of the ferroelectric

domains has not yet been studied).

It is important to understand the morphology and phase separation of ferroelectric-

semiconductor polymer films both at the surface and in the bulk. Charges need to travel

through the vertical extent of the film via semiconducting pathways, but differences in

morphology between the surface (or buried interface) and bulk could play an important

role in charge carrier transport and overall device performance. An idealized structure of

these polymer blends is one where the semiconducting polymer forms straight, cylindrical

domains through the vertical extent of the film, as shown in Figure 3.2a. However, in

reality, the semiconducting domains may deviate from this simplified picture. Previous

studies with techniques such as atomic force microscopy (AFM) have revealed that semi-

conducting polymer domains can form either convex protrusions from the film surface, or

concave depressions [100]. Moreover, AFM experiments conducted on blend films where

either the semiconducting or ferroelectric component was removed by washing with a se-

lective solvent show that some domains do not go through the entire film thickness, and

these partial height domains are undesirable because they do not contribute to overall

current [101]. Furthermore, it is difficult to predict the spreading of domains near the

film interfaces, and an example of spreading near the film surface is shown schematically

in Figure 3.2b. It is expected that a layer rich in the insulating ferroelectric polymer
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a) b)

vs.

semiconductor ferroelectric

Figure 3.2: Schematic of the cross-section of a semiconductor:ferroelectric polymer
blend thin film. An idealized structure with straight, columnar semiconductor do-
mains that extend through the vertical extent of the film is shown in (a). A more
realistic structure may consist of features such as semiconductor domains of partial
height and/or spreading at the film interface, as shown in (b). This could lead to
differences in composition between the surface and bulk, as indicated by the dotted
region.

(PVDF-TrFE) at either the film surface or buried interface could be detrimental to de-

vice performance since it would block the injection of charges into the semiconducting

P3EPT, and/or the collection of charges at the top electrode. On the other hand, an

interface layer rich in semiconductor (P3EPT) should be less harmful. However, an ex-

cess of semiconducting domains that may result from spreading at an interface could be

problematic to efficient charge transport, since parasitic charges may need to traverse

laterally through the film before being transported vertically. There is still a need to

properly characterize the bulk and surface of ferroelectric-semiconductor polymer thin

films, and these differences have not been studied in detail for the P3EPT:PVDF-TrFE

system. Soft X-ray based methods can be used to probe both the bulk and surface of

P3EPT:PVDF-TrFE thin films.

Soft X-rays can be used to attain materials contrast and chemical sensitivity needed

for noninvasive characterization of polymer blend thin films [15, 20, 25, 102]. Most poly-

mers have similar electron densities, making it difficult for hard X-ray small angle scatter-

ing and electron microscopy to achieve high scattering contrast [15]. Neutron scattering
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can provide useful information on polymers, but chemical modification such as deutera-

tion is typically required. Energy-tunable soft X-rays can overcome many of these issues.

Soft X-rays span an energy range (about 100 eV to 5 keV) that includes the core-level

absorption energies of many of the elements that comprise most polymers, for example,

carbon, nitrogen, oxygen, and fluorine [103]. By tuning the incident X-ray to specific

energies near the appropriate elemental absorption edge, large absorption differences and

high scattering contrast can be attained between different polymers. This enables the use

of characterization methods in addition to soft X-ray absorption spectroscopy, including

transmission X-ray microscopy [104, 25] and soft X-ray small angle scattering [102]. In

combination with hard X-ray wide angle scattering that is sensitive to the crystalline

regions of the polymer film, this collection of techniques can probe length scales ranging

from Angstroms to microns, allowing for thorough morphology characterization.

3.2 Experimental Methods

Solutions of a concentration of 20 mg/mL were made by dissolving P3EPT (Rieke

Metals) or PVDF-TrFE (Piezotech LLC) in 2-methyl-tetrahydrofuran, and mixing at

appropriate ratios to form polymer blend solutions. Thin film samples were fabricated by

spin coating solutions at 2000 rpm for 60 s onto silicon or glass/ITO substrates. Samples

were thermally annealed at 135 ◦C for 3 hours and slowly cooled to room temperature.

Thermal annealing near the melting point of PVDF-TrFE is required to stabilize the

ferroelectric β-phase. For transmission experiments, spun cast films were floated off in

water and transferred onto Si3N4 windows or copper TEM grids.

Soft X-ray absorption spectroscopy experiments were conducted at beamline 11.0.1.2

at the Advanced Light Source, or beamline U7A at the National Synchrotron Light

Source. Transmission soft X-ray scattering was performed at beamline 11.0.1.2 and X-
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ray mircoscopy at beamline 5.3.2.2 at the Advanced Light Source. Two-dimensional

hard X-ray grazing incidence wide angle scattering was performed at beamline 11-3 at

the Stanford Synchrotron Radiation Lightsource or beamline 7.3.3 at the Advanced Light

Source.

Additional experimental details are given in Appendix B.

3.3 Results and Discussion

3.3.1 Modifying Side Chain Chemistry Alters Phase Separation

at the Film Surface

A well-defined phase separated structure with easily tunable domain sizes is required

for better understanding of fundamental links between morphology and electrical proper-

ties. It is difficult to predict polymer-polymer interaction parameters, making it challeng-

ing to reduce the domain size of polythiophene based blends well below even a micron

when relying on spontaneous phase separation [105], and previous work that utilized

regio-irregular poly(3-hexylthiophene) (rir-P3HT) blended with the typical ferroelectric

polymer, poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE), showed large-scale

phase separation between polymers [105]. Top-down physical patterning methods such

as nanoimprint lithography can be used to achieve higher storage densities and smaller

switching voltages [106], however such additional processing steps would complicate large-

scale production of these devices using printing methods. Semiconducting polymers other

than polythiophenes can also be used, and proper choice of solvent and deposition method

can produce smoother, thinner films with reduced switching voltages [107]. Incorpora-

tion of an insulating, amorphous polymer can also improve the ferroelectric and dielectric

performance of ferroelectric polymers [108].
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Figure 3.3: AFM phase images of (a) a 10:90 P3HT:PVDF-TrFE blend and (b) a
10:90 P3EPT:PVDF-TrFE blend which shows much smaller phase separation length
scales. Additionally, P3EPT based blends result in much smoother films as shown in
(c). P3EPT domain size is tunable through variation of P3EPT content, examples of
(d) 10 wt%, (e) 20 wt%, and (f) 35 wt% P3EPT are shown. The linear dependence
of P3EPT domain size with P3EPT content is shown in (g).
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In order to tune the phase separation of ferrelectric-semiconductor polymers blends,

we sought to modify the polymer-polymer interactions. It is important to choose a

polymer that has a low surface interaction energy with PVDF-TrFE, because a thermal

annealing step is required after deposition of the polymer blend film that could lead

to coarsening. There is a certain degree of phase separation that occurs during solvent

evaporation and solidification of the films during the spin coating process. However, good

working devices cannot be made from as-cast films because the paraelectric α-phase of

PVDF-TrFE is more stable at room temperature. In order to achieve this, we looked

to use a semiconducting polymer that would potentially have more favorable polymer-

polymer interactions with PVDF-TrFE. It is known that PVDF has a compatible Flory-

Huggins interaction parameter with poly(methyl methacrylate) (PMMA) [109, 110]. In

an effort to alter polymer-polymer interactions but maintain semiconducting and charge

transport properties, a side chain structure was chosen that is similar to PMMA, while

keeping the semiconducting thiophene backbone. The polythiophene used in this study

is poly[3-(ethyl-5-pentanoate)thiophene-2,5-diyl], which will be referred to as P3EPT,

shown in Figure 3.1. P3EPT is expected to have relatively similar electronic properties

to P3HT, and thin film UV-Vis absorption shows a slight blue shift compared to P3HT

(Figure B.1).

Blending P3EPT with PVDF-TrFE leads to small domain sizes. Morphology char-

acterization was performed on blends of P3EPT and PVDF-TrFE that were dissolved

together in a common solvent (ranging from 10-50 wt% P3EPT) and spin coated into

thin films, followed by post-deposition thermal annealing at 135 ◦C, close to the crys-

tallization temperature of PVDF-TrFE [111], for three hours and subsequent slow cool-

ing to room temperature. This annealing step is required to stabilize and enhance the

crystallinity of the ferroelectric β-phase of PVDF-TrFE. P3EPT based blends exhibit

much smaller polythiophene domain sizes for a given blend ratio compared to blends
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of PVDF-TrFE and other semiconducting polymers such as regioregular P3HT (Figure

3.3), rir-P3HT [105] or Poly[(9,9-din-octylfluorenyl-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-

4,8-diyl)] (F8BT) [100]. The phase separation at the film surface can be probed by

atomic force microscopy (AFM), and it is clear that P3EPT-based films not only have

smaller domains for a given weight fraction of polythiophene, but also a much smoother

film surface compared to blends based on P3HT, as shown in Figure 3.3a-c. These are

already notable advancements since the ideal semiconductor domain size is thought to be

on the order of ∼50-100 nm, and it is often difficult to form smooth films of PVDF-TrFE

via spin coating due to the large crystallites that can form, typically requiring more in-

volved strategies such as rapid thermal treatment or blending with PMMA to reduce film

roughness [67, 112].

To examine the origin of the observed domain structure, thin films of P3EPT:PVDF-

TrFE were spun cast from solutions of varying weight % of P3EPT. AFM images clearly

show that increasing the fraction of P3EPT results in an increase in domain size at

the film surface, and this is shown in Figure 3.3d-f. The linear dependence of P3EPT

domain size with P3EPT weight % (Figure 3.3g) suggests that the phase separated

structure may form due to spinodal decomposition as opposed to nucleation and growth,

similar to what has been observed in other PVDF-TrFE:semiconducting polymer blends

[105, 107]. It is assumed that the regions of higher phase angle correspond to P3EPT

domains since they increase in size with P3EPT content. A similar trend is seen in the

AFM height topography as shown in Appendix B. AFM height profiles reveal that some

P3EPT domains are convex, and protrude out from the film surface, while others are

concave depressions. This may have an important impact on electrical properties. It

has been shown in an F8BT:PVDF-TrFE system that convex semiconductor domains

contribute much less current compared to concave domains, and convex domains are

therefore undesirable. This is possibly due to a thin layer of PVDF-TrFE that may form
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on the bottom, buried interface of convex semiconductor domains, blocking charges from

being injected into the semiconductor [100].

P3EPT and PVDF-TrFE are not completely miscible because a distinct phase sep-

arated structure forms in the blend, but interactions between the polymers could affect

crystallite formation, and can be probed through thermal analysis. Differential scanning

calorimetry (DSC) thermograms reveal the main melting and crystallization transitions

for P3EPT and PVDF-TrFE (Figure B.5). P3EPT has an endothermic melting transi-

tion at around 188 ◦C, and an exothermic crystallization transition at 149 ◦C. Both of

these transitions have two distinct peaks close together, and this is commonly seen for

polythiophene derivatives and may be a result of ordering/disordering of two coexisting

semicrystalline microstructures that could form during heating and cooling [113, 114].

PVDF-TrFE has a main melting endotherm at 151 ◦C and a crystallization exotherm

at 131 ◦C. There is a noticeable shift in the peak position of the crystallization tem-

peratures for both polymers when blended together (Figure B.5). For example, in a

50:50 P3EPT:PVDF-TrFE blend, the crystallization temperature of P3EPT is lowered

by about 7 ◦C to 142 ◦C, and the transition for PVDF-TrFe is raised by about 2 ◦C

to 133 ◦C. A similar trend is seen for other blend ratios. This suggests that mixing

makes it more difficult for P3EPT to crystallize (more undercooling required), but once

it does crystallize the domains may promote the formation of PVDF-TrFE crystallites.

This differs from both regioregular P3HT and rir-P3HT. Regioregular P3HT has a higher

crystallization temperature, around 200 ◦C [115], compared to P3EPT, whereas rir-P3HT

does not crystallize.
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3.3.2 Semicrystalline P3EPT Exhibits Unique Crystallite Ori-

entations

Semiconducting polymers are typically semicrystalline, and this crystallinity can have

an impact on charge transport. Therefore, it is important to determine the structural

order of P3EPT and to determine if changes in the crystallites occur when it is mixed

with PVDF-TrFE, which is also a semicrystalline polymer. Grazing incidence wide an-

gle X-ray scattering (GIWAXS) was used to probe the crystalline nature of thin films

of PVDF-TrFE, P3EPT, and their blends. The 2D GIWAXS pattern of PVDF-TrFE

reveals a main scattering reflection at q = 1.41 Å−1, corresponding to a spacing of ∼4.5

Å, similar to previous reports [105, 116]. The typical hexagonal structure of the PVDF-

TrFE crystallites is also evident in the intensity distribution as a function of polar angle

of the scattering peak (Figure B.4). GIWAXS of P3EPT has not been reported previ-

ously, and the scattering pattern indicates a relatively crystalline polymer. We assume a

similar crystallographic assignment as commonly used for other semiconducting polymers

where the a axis is along the side chain stacking and the b axis along the π-π stacking

direction. The 2D GIWAXS of P3EPT shown in Figure 3.4a depicts three orders of

reflections along the side chain stacking direction, which are the (100), (200), and (300)

peaks located at 0.34 Å−1 (18.8 Å), 0.67 Å−1 (9.3 Å), and 1.0 Å−1 (6.3 Å), respectively.

The d -spacing in the side chain stacking direction is greater than P3HT [115], as ex-

pected, but about 1.5 Å smaller than what has been reported for poly(3-octylthiophene)

[117, 118, 119]. There is a (010) reflection located at 1.71 Å−1, corresponding to a π-

π stacking distance of ∼3.7 Å, about 0.2 Å shorter than typically observed in P3HT,

but similar to other thiophene based polymers such as poly[5,5’-bis(3-dodecyl-2-thienyl)-

2,2’-bithiophene] (PQT-12) [120]. The intensity distribution of the side chain stacking

(h00) peaks suggests a bimodal distribution of crystallite orientations, in this case two
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main populations of crystallites that are either edge-on or face-on. This is seen based

on the enhancement of intensity in both the nearly out-of-plane direction (along qz) and

the in-plane direction (along qxy) for all three side chain stacking reflections. The (010)

reflection shows the greatest intensity in the nearly out-of-plane direction, suggesting a

relatively greater amount of face-on crystallites compared to other orientations. However,

it is expected that the crystallite orientations determined from the π-π stacking reflec-

tion should match that of the side chain stacking reflection, i.e. the (010) peak should

also show a bimodal distribution of orientations. This discrepancy could be a result of

imperfect registry, e.g. slight changes in tilt angle, among molecules composing edge-on

crystallites that disrupt π-π stacking but do not affect the side chain stacking distance.

In the P3EPT:PVDF-TrFE blend films, scattering features from both components

are present and similar to their respective scattering patterns in the single component

films. This trend persists for blends of varying P3EPT composition, as shown in both the

2D GIWAXS images (Figure 3.4c-d) and the line cuts along the nearly out-of-plane and

in-plane directions (Figure 3.4e). The two regions of high intensity in the (h00) peaks

of P3EPT that indicate bimodal crystallite distribution are also seen in the blend films,

especially at higher P3EPT fraction, e.g. a 35:65 P3EPT:PVDF-TrFE blend, as shown

in Appendix B.4. This suggests that the two polymers maintain their crystallinity when

blended together, and the crystallites in the blend film are composed of either P3EPT or

PVDF-TrFE. This is not surprising assuming that the polymers phase separate and form

relatively distinct semicrystalline P3EPT and PVDF-TrFE domains, which is needed for

functioning resistive switches. However, it is possible that some mixed amorphous regions

exist, but this cannot be probed with GIWAXS.

The GIWAXS results show that alteration of polythiophene side chain structure can

impact key features of the morphology, such as crystallite orientation and domain size.

This opens up new avenues to explore the effect of semiconductor crystallite orientation on
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Figure 3.4: Two-dimensional GIWAXS images of (a) pristine P3EPT, (b)
pristine PVDF-TrFE, (c) a 10:90 P3EPT:PVDF-TrFE blend and (d) a 20:80
P3EPT:PVDF-TrFE blend. The missing wedge along qz represents the inaccessi-
ble region of the Ewald sphere in grazing incidence geometry[84]. Line-cut profiles at
specific polar angles (χ) for the 20:80 blend are shown in (e). The profile at χ = 79◦
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represents scattering in the in-plane direction.
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the performance of polymer ferroelectric resistive switches, and P3EPT shows promise as

a semiconducting polymer where crystallite orientation can be tuned by changing simple

processing or deposition methods.

3.3.3 P3EPT:PVDF-TrFE Blends Create Successful Resistive

Switching Devices

In addition to the smaller phase separation length scales and high crystallinity that

can be achieved with P3EPT compared to the less crystalline, regio-irregular polythio-

phene with hydrocarbon side chains (rir-P3HT), P3EPT can be easily incorporated into

all-organic ferroelectric switches, as shown in Figure 3.5. A memory device must have

distinct ON and OFF states, and Figure 3.5 reveals that P3EPT:PVDF-TrFE results in a

much higher current density in the positively poled ON state compared to the negatively

poled OFF state. The poling voltage used was ±20 V, corresponding to a field of about

108 V/m, similar to previous work [97]. P3EPT:PVDF-TrFE devices also show reason-

able ON/OFF ratios (52 for a 10% P3EPT blend measured at 3 V). Successful devices

were fabricated out of P3EPT:PVDF-TrFE blends ranging from 10%-50% P3EPT (Fig-

ure B.6). This highlights the potential versatility of blends of P3EPT with PVDF-TrFE

and one of the benefits resulting from overall smaller dimensions of phase separation, as

previous work using rir-P3HT only reported working devices with up to 10% rir-P3HT

[97]. The current density (read at 3 V) of a device initially poled to the ON state then

held at 0 V, decreased from about 2 A/m2 shortly after poling to about 0.1 A/m2 14

hours later, demonstrating reasonable retention times for these initial devices (Figure

B.8). Future work will determine the best performing electrode layers for this materials

system to optimize the switching and retention characteristics.
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Figure 3.5: Electrical characteristics of ferroelectric resistive switches fabricated
from a 10:90 P3EPT:PVDF-TrFE polymer blend. The device structure used was
glass/ITO/P3EPT:PVDF-TrFE(∼200 nm)/Ca(10 nm)/Al(90 nm). Devices were
poled with a ±20 V pulse. The current-voltage behavior is shown and it is clear
that the positively poled ON state has greater current density compared to the neg-
atively poled OFF state. Pristine refers to the device before any poling was applied.
A semi-log plot is shown in the inset.

3.3.4 Soft X-ray Absorption Differences Provide Contrast and

Chemical Sensitivity

The unique X-ray absorption spectra (XAS) of different polymers provides the basis

for attaining contrast and successfully performing soft X-ray scattering and microscopy

experiments. Furthermore, XAS itself can reveal useful information, for example, blend

composition and molecular orientation [121, 15, 16, 74, 75, 77, 17]. The near edge X-ray

absorption fine structure (NEXAFS) spectra around a specific elemental absorption edge

reveals information about the bonding environment of each of the atoms of that type.

This means that separate polymers, even ones composed of the same atomic elements,

can have very different NEXAFS profiles. NEXAFS can be used as a way to “fingerprint”

individual polymers [122]. These specific absorption differences allow for contrast in soft

X-ray microscopy and scattering of polymer blends.
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The NEXAFS profiles near the carbon K edge of the ferroelectric (PVDF-TrFE)

and semiconducting (P3EPT) polymers studied here are noticeably different, as shown

in Figure 3.6, and this provides the ability to achieve good contrast in microscopy and

scattering experiments. The partial electron yield (PEY) NEXAFS spectra of P3EPT

reveals several dominant peaks that can be attributed to core level transitions. The

first main transition at about 285.7 eV is typical for materials with C=C bonds and

corresponds to a core level C1s → π*C=C transition. The peak near 288 eV is likely

due to C1s → σ*C−S and C1s → σ*C−H transitions and is typically seen in similar

materials like P3HT. The sharp peak at 289.2 eV arises from a C1s(C=O)→ π*C=O

transition related to the carbonyl groups in the side chain. The NEXAFS of PVDF-

TrFE reveals a very different carbon K edge absorption spectra. There is no peak in

the 285 eV region, and this is expected since PVDF-TrFE does not contain C=C bonds.

The first features in the profile of PVDF-TrFE (near 289-290 eV) result from the C1s→

σ*C−H resonance. The next two prominent features occurring at around 293.5 eV and

296 eV, respectively, are due to the C1s → σ*C−F resonances. Moreover, PVDF-TrFE

contains fluorine atoms so X-ray absorption near the fluorine edge (around 685-730 eV)

is selective to PVDF-TrFE (Figure B.9). The differing X-ray absorption profiles between

P3EPT and PVDF-TrFE make this an ideal system to utilize complementary soft X-ray

microscopy and scattering for morphology characterization.

3.3.5 Transmission X-ray Microscopy and Scattering Reveal

Phase Separation in the Bulk

A well-defined phase separated structure of ferroelectric and semiconductor domains

is required for operation of organic ferroelectric resistive switches. It has been suggested

with techniques such as AFM that noticeable phase separation occurs at the film surface
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for the P3HT:PVDF-TrFE system. The altered side chain structure of P3EPT tunes

polymer-polymer interactions and results in smaller semiconductor domain sizes at the

film surface compared to the P3HT-based system, making it potentially a more ideal

polymer blend for organic memory applications. AFM and grazing incidence wide angle

X-ray scattering (GIWAXS) suggest that P3EPT:PVDF-TrFE films phase separate to

form relatively distinct domains [123]. Additionally, in situ GIWAXS experiments con-

ducted during thermal annealing of a P3EPT:PVDF-TrFE thin film reveal changes in

crystallinity that suggest thermal transitions, for example the melting points, occur at

similar temperatures both in the bulk material and the thin film (Figure B.18). Phase

separation that persists through the bulk is necessary for charge carriers to travel through

the vertical extent of the film via pathways dictated by the semiconducting polymer. Pre-

vious work has demonstrated that soft X-ray scanning transmission microscopy (STXM)

can successfully probe bulk morphology of P3HT:PVDF-TrFE blends [124]. Although

the side chain chemistry of P3EPT alters domain sizes at the film surface, it is important

to determine if this morphology is maintained in the bulk, and soft X-ray microscopy

and scattering have not yet been done on P3EPT:PVDF-TrFE polymer blends.

STXM images of P3EPT:PVDF-TrFE blends reveal that a phase separated structure

exists through the bulk of the film and circular domains are relatively pure in P3EPT.

These general features are similar to what has been observed by STXM for P3HT:PVDF-

TrFE [124]. Figure 3.7 shows STXM images of a P3EPT:PVDF-TrFE blend with 50 wt.%

P3EPT. The 50 wt.% P3EPT blend forms larger domains that are easier to see in STXM

images. A similar domain pattern is seen for blends with lower fractions of P3EPT (Figure

B.11). By tuning the incident X-ray to energies where absorption is dominated by either

P3EPT or PVDF-TrFE, chemical specificity can be achieved. Figure 3.7a shows an image

taken at 287.4 eV, where absorption is highly dominated by P3EPT, and it is evident

that the circular domains appear dark, corresponding to relatively greater absorption
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(less transmitted intensity) compared to the surrounding matrix. This verifies that the

circular domains are composed primarily of P3EPT. On the contrary, at an energy of

691 eV (Figure 3.7b), which is near the fluorine edge where absorption is dominated by

PVDF-TrFE, an inverse image is revealed. That is, the circular regions are now bright,

corresponding to low absorption (high transmitted intensity) and the surrounding matrix

is relatively darker. This confirms that the matrix polymer is rich in PVDF-TrFE and the

circular domains are rich in P3EPT. Furthermore, separate STXM images of the same

region of a film at two different energies, one where the materials have different mass

absorption and another where they have similar mass absorption, can be used to estimate

the composition (wt.%) of the two components [24, 125]. Figure 3.7c and 3.7d reveal that

P3EPT domains can be quite pure, about 90-95 wt.% P3EPT in the central region of

the polythiophene domains (Figure B.13). This is indicative of good phase separation

between the distinct P3EPT and PVDF-TrFE polymers. Previous work based on STXM

and transmission NEXAFS of a P3HT:PVDF-TrFE system revealed that P3HT domains

were less pure (about 78 wt.% P3HT) [124] than the P3EPT domains considered here.

However, because STXM probes the average composition through the thickness of the

film, it is difficult to determine vertical changes in composition. Morphological effects

mentioned earlier, for example, domain spreading at the surface or partial height domains,

could effect the STXM composition values which correspond to an average through the

film thickness. Evidence for this can be seen in Figure 3.7c, where some of the P3EPT

domains have a reduced P3EPT composition at the edges compared to the central region.

Considering the thickness of these films (about 200 nm), interface layers of about 5-10

nm rich in one component would still give vertically-averaged composition values similar

to what was estimated. Differences between surface and bulk in P3EPT:PVDF-TrFE

thin films are discussed more in the following section.

Transmission resonant soft X-ray scattering (RSoXS) provides information on charac-
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Figure 3.7: Transmission X-ray microscopy images of a P3EPT:PVDF-TrFE blend
with 50 wt.% P3EPT taken at (a) 287.4 eV where absorption is dominated by P3EPT,
and (b) near the fluorine edge at 691 eV, where absorption is dominated by PVD-
F-TrFE. Estimated film composition (wt.%) maps are shown in (b) and (c) for the
same region of the 50 wt.% P3EPT blend film. The STXM images are 5 X 5 µm.
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teristic length scales in the sample and supports the phase separated structure revealed by

STXM. RSoXS takes advantage of differences between the complex index of refraction

near absorption edges for separate polymers to attain good scattering contrast. This

allows soft X-ray scattering to be done in a transmission geometry even for very thin

polymer films [20]. Transmission RSoXS profiles of P3EPT:PVDF-TrFE blends with

varying fraction of P3EPT are shown in Figure 3.8. It is evident even in the 2D scatter-

ing patterns (Figure 3.8a) that there is a ring of intensity that shifts to lower q values

with increasing P3EPT content. The peak in scattering intensity is more easily seen in

the circularly averaged, Lorentz corrected I q2 vs. q plots shown in Figure 3.8b. The

clear peak in the scattering profiles is indicative of a characteristic spacing in the sam-

ples, which occurs at about 200 nm, 300 nm, and 440 nm for the 10 wt.%, 20 wt.%, and

35 wt.% P3EPT blends, respectively. This length scale likely is related to the average

separation distance between P3EPT domains, and it is in reasonable agreement with

what is seen in STXM and previously found on the film surface with AFM [123]. The

broad, more subtle feature at higher q suggests the presence of order at smaller length

scales. These higher q peaks correspond to length scales of about 80 nm, 150 nm, and

360 nm for the 10 wt.%, 20 wt.%, and 35 wt.% P3EPT blends, respectively (Figure

B.14). These smaller length scale features do not seem to be higher order peaks since

the length scale is not half that of the corresponding lower q peaks. The higher q peaks

may correspond to length scales related to the lateral diameter of P3EPT domains. The

images in Figure 3.8 were taken at 284.6 eV, an energy where absorption is dominated

by P3EPT, as shown in Figure 3.6, and there is good contrast between the two polymers.

Transmission RSoXS verifies that a periodicity, corresponding to separated domains, ex-

ists through the bulk of P3EPT:PVDF-TrFE films, and this separation increases with

increasing P3EPT content. The relatively well-defined and tunable length scales afforded

by the P3EPT:PVDF-TrFE system are advantageous for fabricating ferroelectric resis-

50



Phase Separated Ferroelectric-Semiconductor Polymer Blends for Organic Memory Chapter 3

a)

b)

0.001

0.01

0.1

In
te

n
si

ty
 *

 q
2
 (

a
.u

.)

6 7
0.001

2 3 4 5 6 7
0.01

q (Å
-1

)

 10% P3EPT
 20% P3EPT
 35% P3EPT 284.6 eV

q
x 

(Å
-1

)

qy (Å
-1

)

q
x 

(Å
-1

)

qy (Å
-1

)

q
x 

(Å
-1

)

qy (Å
-1

)

Figure 3.8: Soft X-ray transmission scattering profiles for P3EPT:PVDF-TrFE blends
taken at 284.6 eV. (a) 2D scattering images of blends with 10 wt.%, 20 wt.% and 35
wt.% P3EPT, from left to right, respectively. (b) Circularly averaged data reveals
a clear peak in the scattering profile that shift to lower q with increasing P3EPT
content.

tive switches, and previous work has shown that successful memory devices can be made

with a variety of P3EPT fractions [123].

3.3.6 Overall Fraction of Semiconducting Polymer Enhanced at

the Film Surface

Differences between surface and bulk composition in these ferroelectric-semiconductor

polymer blends may exist, and this could play an important role in charge carrier trans-

port and overall device performance as discussed earlier. These differences are difficult to

distinguish with transmission experiments, and surface-sensitive techniques are needed

to probe film composition near the interface. Surface segregation of one component in

a blend of two semiconducting polymers has been observed previously [126, 127, 128].
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Furthermore, earlier work using STXM to characterize P3HT:PVDF-TrFE blends ac-

knowledged the likelihood of a vertically dependent morphology, but this was not stud-

ied in detail [124]. A more comprehensive understanding of the surface composition of a

thin film blend of a polythiophene and a ferroelectric polymer is still needed. Success-

ful resistive switches can be fabricated with P3EPT:PVDF-TrFE blends for a variety of

blend ratios [123], and this suggests it is unlikely that there is a large enhancement, or

skin layer, of the insulating PVDF-TrFE at the interfaces to cover the semiconducting

domains and block charge injection or collection. Additionally, it has been shown that

when P3HT is cast from a solvent selective to the polythiophene (toluene) onto a pat-

terned PVDF-TrFE substrate, the resulting P3HT film wets the PVDF-TrFE substrate

[106]. The surface energies of PVDF and polythiophene (P3HT) thin films are reported

to be very similar, both around 30 mJ m−2 [129, 130], suggesting that intricate polymer-

polymer interactions can make it difficult to easily predict surface/interface segregation

in these types of semicrystalline polymer blends.

Surface-sensitive PEY NEXAFS spectroscopy reveals a potential enhancement of

P3EPT composition at the surface of P3EPT:PVDF-TrFE blend thin films. Figure 3.9a

shows bulk-sensitive transmission NEXAFS data of P3EPT:PVDF-TrFE thin films cast

from solutions containing 10 wt.%, 35 wt.%, or 50 wt.% P3EPT, or about 14.7 vol.%,

45.5 vol.%, or 60.8 vol.% P3EPT, assuming P3EPT and PVDF-TrFE densities of 1.15 g

cm−3 and 1.78 g cm−3, respectively. The overall composition of the blends can be esti-

mated by fitting these spectra to a linear combination of transmission NEXAFS spectra

of pure P3EPT and PVDF-TrFE films (Figure 3.9a). This method estimates composi-

tions of 10%, 44%, and 64% P3EPT, similar to expected values of 14.7%, 45.5% and

60.8%, which are based on the approximate volume fractions of P3EPT in the solutions

used for film casting. However, a similar composition analysis for the surface-sensitive

PEY NEXAFS, which probes only the top 1-3 nm of the film [131], reveals surface com-
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positions of about 51%, 79%, and 86% P3EPT. This is significantly higher than the bulk

composition determined from transmission data, and suggests a tendency of P3EPT to

inhabit the film surface. Although preferential orientation of molecules can affect the

intensity of certain transitions, the spectra of the pure components and blends used

for composition estimates were taken at the same incident angle, and it was assumed

that the general molecular orientation distribution was the same between pure compo-

nent and blend films. Additionally, preliminary water contact angle measurements on

P3EPT, PVDF-TrFE and P3EPT:PVDF-TrFE blend films also imply an enrichment of

P3EPT on the surface of the blend films, as shown in Figure B.20. These differences be-

tween surface and bulk could result in hindered vertical charge carrier transport and are

important to consider for device performance. Taking into account the surface-sensitive

and bulk characterization, it is evident that for the P3EPT:PVDF-TrFE system stud-

ied here, the morphology through the film is better represented by the schematic shown

in Figure 3.2b, as opposed to the simplified view of straight, columnar semiconducting

domains depicted in Figure 3.2a.

NEXAFS is useful to estimate film composition, but it cannot distinguish between

amorphous and crystalline polymeric regions. Differences in the molecular order at the

surface and in bulk are important due to the influence on charge transport. Grazing

incidence wide angle X-ray scattering (GIWAXS) is a versatile technique used to probe

crystalline regions in polymer thin films [14, 12], and the degree of surface or bulk sensi-

tivity can be tuned by varying the incident angle [132, 133, 134]. For polymer thin films

at the energy used for these experiments (12.7 keV), the critical angle for total external

reflection (αc) is close to 0.11◦ [134]. The penetration depth of X-rays remains small

at angles below αc, increases rapidly near αc, and slowly grows with incidence angles

well above αc. An estimation of penetration depth as a function of incidence angle for

a P3EPT:PVDF blend is shown in the Figure B.15. It is clear that at an incident angle
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Figure 3.9: Carbon K edge NEXAFS spectra of P3EPT:PVDF-TrFE blends with
varying P3EPT content. The graphs in (a) and (b) show experimental data for films
cast from solutions with P3EPT contents of 10 wt.% (14.7 vol.%), 35 wt.% (45.5
vol.%), and 50 wt.% (60.8 vol.%), from top trace to bottom trace, respectively. The
black fit curves to estimate composition were determined by a linear combination of
the pure component spectra. Bulk sensitive transmission NEXAFS is shown in (a),
and highly surface sensitive partial electron yield data is shown in (b).
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of 0.08◦ the penetration depth is still very shallow (about 60 Å) and scattering results

from near the film surface. An incident angle of 0.12◦ (greater than αc) is considered

bulk sensitive since it is in a region where the penetration depth is much greater and

past the critical region where penetration depth varies extremely rapidly with incident

angle. The inflection point in penetration depth and the maximum in transmittivity

occur at αc. However, the maximum scattered intensity of a structural feature depends

on the electric field within the film and the film thickness, and it does not necessar-

ily occur at αc [133]. Figure 3.10 shows azimuthally integrated GIWAXS data of a 20

wt.% P3EPT blend film taken at 0.08◦ and 0.12◦. The data was fit to a combination

of peaks corresponding to the individual reflections of P3EPT and PVDF-TrFE, and a

broad feature located at about 1.7 Å−1, which is attributed to scattering from disordered

regions of the film and side chains. As expected, the overall intensity of the 0.08◦ trace

is noticeably lower since only the surface of the film is probed. The relative fraction of

PVDF-TrFE crystallites to P3EPT crystallites can be estimated from the ratio of the

area of the PVDF-TrFE reflection, located at 1.4 Å−1, to the area of the P3EPT (100)

reflection, located around 0.33 Å−1 (both shown in Figure 3.10). This ratio is about 5 for

the 0.08◦ and 0.12◦ incident angles. Although NEXAFS reveals that there is an overall

greater fraction of P3EPT at the film surface compared to the bulk, the relative amount

of P3EPT crystallites to PVDF-TrFE crystallites does not change significantly between

surface and bulk. This suggests that the excess P3EPT at the film surface may be more

disordered. Furthermore, the GIWAXS reveals that the contribution to scattering from

the broad, amorphous peak is significantly higher at the surface sensitive 0.08◦ angle

compared to the more bulk sensitive 0.12◦. This result refers to relative differences in the

amount of scattering from crystallites of P3EPT compared to PVDF-TrFE in the blend

film, and does not correspond to the overall crystallinity of each respective homopolymer.

Charge transport and the resulting device performance may be affected by both the
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Figure 3.10: GIWAXS of a P3EPT:PVDF-TrFE blend film with 20 wt.% P3EPT at
different incident angles. The top trace is at a surface sensitive incident angle of 0.08◦,
and the bottom trace at 0.12◦ where the penetration depth is much greater. The in-
dividual peaks of the P3EPT (100) reflection, PVDF-TrFE reflection, and amorphous
scattering that contribute to the overall fit curve are shown.

differences in composition between the surface and bulk, which were discussed earlier

and suggested by NEXAFS experiments, and differences in the molecular order of the

semiconductor. It is known that crystallization reduces the ionization energy of P3HT by

a few tenths of an eV relative to amorphous domains [135, 136]. Therefore, a decrease in

the amount of crystallinity near the film surface could result in an effective energy barrier

for extraction of holes near the interface for P3EPT. This surface layer is relatively thin

(∼10 nm) and did not impede the operation of P3EPT:PVDF-TrFE diodes [123]. Further

study of the details of the operation of transport within these devices will reveal the role

of this interfacial region.

Differences between surface and bulk morphology can be expected to affect other

materials systems with different semiconducting polymers, especially those containing

similar polymers such as other functionalized polythiophenes. However, further work

is required to better understand the universality of this trend as polymers with signifi-

cantly different chemistries cannot be assumed to adopt a similar nanostructure as the
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P3EPT:PVDF-TrFE system. Furthermore, the relatively well-defined phases formed in

P3EPT:PVDF-TrFE blends provides opportunities to understand the competition be-

tween natural phase separation and directed assembly through, for example, patterned

substrates to further optimize morphology for organic memory diodes.

3.4 Conclusion

Our work has shown that side chain modification of a semiconducting polymer can

drastically change the phase separation of semiconductor-ferroelectric polymer blends.

Specifically, compared to a polythiophene with a hydrocarbon side chain such as P3HT,

a polythiophene with a side chain structure containing an ester functional group, P3EPT,

results in smaller domain sizes and excellent domain size tunability when blended with the

common ferroelectric polymer PVDF-TrFE. This is a significant improvement in realizing

an ideal morphology for all-polymer ferroelectric resistive switches. P3EPT shows signa-

tures of strong crystallinity, and its crystallites adopt a relatively bimodal distribution

of edge-on and face-on orientations when spun cast. Furthermore, P3EPT:PVDF-TrFE

blends produce working ferroelectric resistive switches over a range of P3EPT weight frac-

tions with good ON/OFF ratios. This material provides a potential model system to un-

derstand fundamental effects of semiconductor domain size, crystallinity, and crystallite

orientation on electrical properties for organic resistive switches. These studies provide in-

sights into the subtleties of the effects of polymer side chain structure on polymer-polymer

interactions, applicable to both the physics of ferroelectric-semiconductor polymer blends

in general and the improvement of organic memory devices.

P3EPT:PVDF-TrFE polymer blends form a phase separated structure in the thin

film that persists through the bulk. Soft X-ray spectroscopy reveals that P3EPT and

PVDF-TrFE have distinct absorption profiles near the carbon K edge. Transmission soft

57



Phase Separated Ferroelectric-Semiconductor Polymer Blends for Organic Memory Chapter 3

X-ray microscopy shows that P3EPT:PVDF-TrFE blend thin films consist of relatively

well-defined regions of P3EPT surrounded by a matrix rich in PVDF-TrFE. Additionally,

transmission soft X-ray scattering demonstrates a clear domain separation distance that

increases with increasing P3EPT content. Furthermore, surface sensitive NEXAFS and

grazing incidence X-ray scattering suggest a potential enhancement of P3EPT content at

the film surface relative to the bulk, and that this surface region may be more amorphous

in character. These results reveal the importance of both bulk and surface characteriza-

tion of ferroelectric-semiconductor polymer blend thin films, especially with a semicrys-

talline polythiophene with a functionalized side chain structure. This opens the door for

understanding how the three-dimensional microstructure of ferroelectric-semiconductor

polymer blends influences the performance of ferroelectric resistive switches, and the

important morphological features to control when designing organic memory devices.
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Chapter 4

First-Principles Predictions of X-ray

Absorption Spectroscopy for

Characterization of Semiconducting

Polymers

4.1 Introduction

Semiconducting polymers are promising materials for a variety of low-cost, solution-

processable, and flexible organic electronic applications [3, 5, 2, 12, 1, 4]. The unique

electronic structure of these conjugated materials allows for charge carriers to travel

within a single polymer chain and also between adjacent chains. An understanding of

the electronic structure, especially the unoccupied molecular orbtials, is needed to better

understand and tailor the chemical structure for improved properties. Furthermore, most

semiconducting polymers have a relatively rigid backbone and solubilizing side chains

which results in anisotropic charge transport [13]. Charge carriers can typically travel
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more easily along the backbone direction and between separate polymers via cofacial

π-π stacking, but transport is hindered through the insulating side chains. The intrinsic

electronic properties and the packing and orientation of assemblies of semiconducting

polymers in solid thin films is critical to charge transport on length scales ranging from

the molecular level to device dimensions. Therefore, the ability to characterize both the

electronic structure specific to a given material and the morphology of semiconducting

polymer thin films is required.

Near edge X-ray absorption fine structure (NEXAFS) spectroscopy provides rich in-

formation on the electronic structure of materials, and it can be used to probe detailed

morphological parameters, for example, molecular orientation in thin films of semicon-

ducting polymers [137, 21, 138, 139, 140]. NEXAFS utilizes X-rays with energies close to

the absorption edge of a specific element, and it probes transitions of core level electrons

to unoccupied molecular orbitals. This makes NEXAFS unique in that it is sensitive

to electronic structure not only due to the types of atoms present in a material, but

also the bonding environment and specific chemical structure of a compound. The elec-

tronic structure information probed by NEXAFS is important for conjugated polymers,

as the excited state electronic structure may reveal reasons for variations in device perfor-

mance among these materials. Understanding of NEXAFS spectra could help elucidate

connections between excited state delocalization and the formation of free charges versus

excitons, which is still not well understood [141, 142, 143]. Additionally, polarized X-rays

allow for determination of molecular orientation in thin films, and NEXAFS is critical

in gaining contrast and interpreting data from techniques such as scanning transmission

X-ray microscopy and resonant X-ray scattering [15]. NEXAFS has the ability to probe

either through the bulk of organic thin films or be selective to the film surface depending

on the type of detection mode used, for example, transmission or electron yield. This

allows NEXAFS the ability to elucidate differences in certain parameters, e.g. molecular
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orientation or blend film composition, between the surface and bulk.

A general interpretation of the peaks observed in experimental NEXAFS spectra is of-

ten based on the so-called building block model, where complex molecular compounds are

regarded as being composed of diatomic subunits [144, 145] that are summed together to

understand the overall NEXAFS spectra. However, the building block model can be dif-

ficult to apply in larger, more complex molecules [146]. In these more intricate molecules,

the specific bonding environment can result in noticeable X-ray absorption shifts, making

the overall spectra challenging to decompose with the building block model. An addi-

tional factor to consider in semiconducting polymers is that despite the localization of a

core hole, unoccupied molecular orbitals are often very delocalized. Some more compli-

cated theoretical models have been developed and applied to polymers that show quali-

tative agreement with experiment [147, 148, 149]. Nevertheless, a deeper understanding

of the exact transitions present requires proper calculations to complement experiment.

Here, we show that first-principles predictions based on constrained-occupancy density

functional theory (DFT) can be used to simulate core-level X-ray absorption spectra

of semiconducting polymers. This is advantageous for understanding various aspects

of experimental data, including the nature of specific transitions and details of angle-

dependent measurements for orientation analysis.

Experimental NEXAFS has been applied extensively to polymers in general, and it

has proven useful in determining surface composition and surface segregation in thin films

[150, 151], domain composition in phase separated blends [24, 124], and the overall orien-

tation, or tilt angle, of the backbone of semiconducting polymers [137, 21, 138, 139, 140].

For many of these typical analyses, experimental data is sufficient. However, more in-

tricate analysis can be difficult based on experimental data alone. For example, certain

semiconducting polymers have a twist angle between separate moieties in the backbone,

and estimating the specific tilt angle of each subunit relative to the substrate is very
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challenging [139]. The absorption properties of polymers at energies near certain ele-

mental edges, e.g. carbon, nitrogen, and oxygen, can be combined with microscopy or

scattering to obtain spatial and morphological information. Scanning transmission X-

ray microscopy (STXM) utilizes the absorption differences between distinct polymers to

achieve high contrast real-space images that are useful for visualizing domain distribu-

tion [21, 25]. Polarized soft X-ray scattering (PSoXS) also takes advantage of the unique

absorption spectra of polymers to gain good contrast between materials that have simi-

lar electron densities and would otherwise have low scattering contrast for hard X-rays

[15, 20]. Moreover, PSoXS is sensitive to the direction of specific transition dipole mo-

ments and numerous factors, for example, domain separation distances in blend films and

fluctuations in molecular orientation [22], can all contribute to the complex scattering

patterns.

Efforts to calculate the NEXAFS spectra of polymers have shown to be helpful in

understanding effects such as the number of subunits, core hole location, and molecular

orientation [152, 153, 149, 147, 148], relevant when considering macromolecules. However,

there are only very few reports of using simulations to estimate core-level spectroscopy of

semiconducting polymers [143, 154, 138], and typically only fragments of a full polymeric

chain are used in these calculations. An enhanced fundamental understanding of the

proper models required to reliably predict NEXAFS transitions of conjugated polymers

would greatly improve the ability to conduct and interpret experimental results. This

is especially important with the recent growth in the use of techniques such as PSoXS

to characterize semiconducting polymer films where a detailed understanding of X-ray

absorption is required for proper analysis.

In this study, we demonstrate first-principles predictions of core-level X-ray absorp-

tion spectra of semiconducting polymers using the eXcited electron and Core Hole (XCH)

approach [155] based on constrained-occupancy DFT methods. XCH has already been
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shown to work well for systems containing small organic molecules or periodic systems

such as graphene [156, 157, 158, 159, 160]. We are specifically interested in simulation

tools that are accessible and tractable to experimentalists and can be beneficial for im-

proved data analysis. Thiophene is used as a model system considering its relatively

simple structure and the breadth of work focused on poly(alkylthiophene)s experimen-

tally. Many recent studies have focused on using the donor-acceptor class of semicon-

ducting polymers, and poly[4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b‘]dithiophen-2-

yl)-alt-[1,2,5]thiadiazolo[3,4-c]pyridine] (PCDTPT) is used here as one model system for

a donor-acceptor polymer. We show how predicted NEXAFS evolve as a function of the

number of polymer repeat units and the length of attached side chains. These simula-

tions are also used to demonstrate how to identify the nature of specific transitions in

complicated spectra and the important effects of preferred orientation on relative peak

intensities. Overall, we hope to reveal important aspects that should not be overlooked

when dealing with NEXAFS spectra of conjugated polymers.

4.2 Experimental and Computational Methods

4.2.1 Computational Methods

Polymer fragments were modelled as an oligomer containing a specific number of

repeat units. Typically, methyl groups replaced full hydrocarbon side chains to reduce

computational time. The geometry of these fragments were optimized using density

functional theory (DFT) with the B3LYP level of theory and a 6-31G(d) basis set using

the Gaussian 09 package.

To create repeating segments that were used for periodic boundary conditions along

the polymer chain axis direction, geometry was optimized for fragments consisting of the
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desired repeat structure with additional repeat units added to each end. The distance

between the ends of the desired repeat unit were measured, and the additional end

units removed. This distance was then used as the length of the unit cell when running

XCH calculations. An example for a thiophene based polymer is shown in Figure C.1.

Fragments used as unit cells for periodic boundary conditions were about 20 Å or greater

in the direction along the chain axis. For example, a sexithiophene-based unit was used

as the repeating unit cell for poly(thiophene) (Figure C.1), even though an identical

repeating structure can be obtained based on a bithiophene unit cell. This was done

because in the calculations, the specified atoms (typically in the center of the unit cell)

are excited in every unit cell, and a critical unit size is needed to avoid simultaneously

exciting atoms very close to each other. For simulations on isolated polymer fragments,

the desired fragment, or oligomer, size was used, and the dimensions of the unit cell box

persisted significantly beyond the extent (by about 5-10 Å) of the molecular dimensions

to avoid interactions between neighboring molecules.

The resulting atom coordinates of the geometry-optimized molecular models were

used as inputs for the XCH calculations that predict NEXAFS spectra. For this study,

the atom coordinates remained fix during computations. Simulated NEXAFS spectra

were calculated based on approximations to Fermi’s golden rule. This study employed

the eXcited electron and Core-Hole (XCH) approach [155, 158] based on constrained-

occupancy DFT. In the XCH method, the lowest-energy excited state core-hole is ac-

counted for by replacing the pseudopotential of the core-exicted atom with a core level

potential that explicitly includes a core excitation. The screening presence from the ex-

cited electron is also included. Higher-energy states are estimated relative to the lowest

core-excited reference state based on the unoccupied portion of the Kohn-Sham DFT

eigenspectrum. Energy alignment was determined based on a previous method that ref-

erences excited states to theoretical isolated atoms [161, 162]. In this case, simulated
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carbon K edge spectra were shifted by a value of 284.5, and nitrogen K edge spectra by

a value of 396.5 to align calculated spectra with the units (eV) of experimental data.

DFT within the Perdew-Burke-Ernzerhof (PBE) [163] generalized-gradient approxima-

tion is known to underestimate band gaps [164, 165], resulting in XAS calculations that

are compressed with respect to the energy axis. Therefore, a dilation factor of 1.1 was

applied to all carbon K edge simulations, and a dilation factor of 1.2 to the nitrogen

K edge simulations. Simulated transitions are represented as Gaussian peaks with peak

widths of 0.2 eV and heights proportional to the calculated oscillator strength of a given

transition.

4.2.2 NEXAFS Spectroscopy Experiments

Samples for NEXAFS experiments were fabricated by basic spin coating of polymer

solutions onto silicon substrates. Aligned PCDTPT samples were fabricated by blade-

coating onto a nanogrooved substrate, as previously reported [166].

Samples for electron yield NEXAFS were prepared by spin-coating onto Si substrates.

Partial electron yield NEXAFS experiments were performed at beamline U7A at the

National Synchrotron Light Source (NSLS). The incident X-ray beam was elliptically

polarized (polarization factor = 0.85) with the electric field vector predominantly in the

plane of the storage ring. The incident angle, θ, was varied. 90◦ refers to an incident X-

ray beam that is perpendicular to the substrate. A spherical grating monochromator was

used to select soft X-rays in the energy range from 280 eV to 420 eV, corresponding to the

carbon and nitrogen K edges. The partial electron yield (PEY) data was collected with a

channeltron electron multiplier with an adjustable entrance grid bias that was set to -150

V. All experiments were done in a UHV chamber. Energy calibration is typically done

by comparing to a polystyrene standard, where the π∗
C=C for polystyrene is set to 285.5
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eV. Carbon edge PEY data was normalized by subtracting a linear pre-edge baseline and

setting the edge jump to unity at 320 eV. Additional electron yield NEXAFS experiments

were performed at beamline 11.0.1.2 at the Advanced Light Source [23]. Total electron

yield was determined based on the neutralization current.

4.3 Results and Discussion

4.3.1 Polymers Can be Approximated by Appropriately Sized

Fragments for NEXAFS Simulations

Polymers are long chain molecules, and the wavefunctions in conjugated oligomers

and polymers are delocalized over many repeat units [167]. It is therefore of underlying

importance to know what size polymeric fragment is best suited for proper NEXAFS

calculations. Due to the localized nature of the core hole formed in NEXAFS excita-

tions, it is reasonable to expect that NEXAFS spectra can be adequately simulated from

a molecular model of just a single or several polymer repeat units. However, the delocal-

ized unoccupied states in semiconducting polymers could affect these transitions, which

is important to consider when deciding the size of molecular models for predicting NEX-

AFS spectra. It is known that the excitation energies of π∗ or non-bonding electrons to

antibonding orbitals in conjugated systems depends on the chain length, and the band

gap decreases with increasing conjugation length [168, 167]. The photoluminescence of

single conjugated polymer chains depends strongly on chain conformation [169], and it

is suggested that non-radiative decay processes following excitation of an electron in the

valence band become more efficient with increasing conjugation length [170]. The unique

features of semiconducting polymers related to conjugation length and orbital delocal-

ization make it necessary to understand the effect of oligomer size (or full polymer) on
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predicted core level transitions. To provide insight into the effects of molecular size, XCH

calculations were performed on small fragments (one or two repeat units), intermediate

oligomers, and infinitely long chains.

We examined the evolution of XCH-predicted spectra as a function of chain length

for a common conjugated polymer based on poly(thiophene) and found that intermediate

sized fragments are suitable for simulating experimental NEXAFS spectra. The predicted

carbon K edge spectra for a thiophene based system is shown in Figure 4.1. XCH calcula-

tions were performed using planar thiophene-based models containing methyl side chains

(Figure 4.1b). Unless otherwise indicated, the first-principles results assume no specific

orientation, and equal contributions are taken for an electric field vector pointed along

the x, y, or z directions (see coordinate system in Figure 4.5a). Each calculated core level

transition is represented as a Gaussian lineshape at that energy with a full width at half

maximum of 0.2 eV and a peak height proportional to the predicted oscillator strength.

The sum of all of the Gaussian peaks is what is depicted as the overall simluated spectra.

It is evident that the predicted NEXAFS spectra for bi(3-methylthiophene) differs notice-

ably from that of sexi(3-methylthiophene) and poly(3-methylthiophene), both in terms

of peak positions and relative intensities. This difference is likely related in part to the

presence of carbon atoms on the edge positions, which are a significant contribution in the

bithiophene model. These edge atoms have a different bonding environment than carbon

atoms bonded directly to other thiophene units, and corresponding changes in the spectra

are expected. Furthermore, certain unoccupied molecular orbitals (MOs), for example π∗

MOs shown in Figure 4.1b, are quite delocalized and the limited size of the bithiophene

unit limits the ability of these MOs to delocalize to the extent possible on a polymer

chain, and this could change the energy of the MO. The altered simulated spectra of the

bithiophene-based model relative to the spectra from larger fragments demonstrates that

in certain cases, molecular models that are too small may not adequately approximate a
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polymer.

The predicted spectra of sexi(3-methylthiophene) and poly(3-methylthiophene) are

very similar, suggesting that the intermediate sized sexithiophene-based model is ade-

quate to approximate a very long polymer chain for this system. For calculations of

sexi(3-methylthiophene) and poly(3-methylthiophene), only carbon atoms on the two

central thiophene units were excited, avoiding contributions from edge atoms and inter-

actions with excited atoms in adjacent unit cells. As seen in the MOs shown in Figure

4.1b, the larger size of these units allows the π∗ orbitals more space to delocalize. The C

1s→ π∗ transitions, which are the peaks between 284 and 286 eV, show highest intensity

around 285.8 eV, with reduced intensity features at lower energy. These characteristics

in the π∗ region are also evident in the experimental spectra of poly(3-hexylthiophene)

(P3HT), as seen in Figure 4.6, indicative that both of these models approximate real

polymers quite well. These separate π∗ peaks arise from excitations of distinct carbon

atoms on the thiophene unit. It is especially important to be able to simulate the π∗

transitions in semiconducting polymers since π∗ peaks are typically used for orientation

analysis, which is a critical parameter related to charge transport.

Many recent semiconducting polymers are in the class of low-bandgap donor-acceptor

polymers [171], which typically have more intricate structures than polythiophenes. It

is important to be able to predict X-ray absorption spectra of this class of polymers not

only at the carbon K edge, but also other relevant absorption edges such as the nitrogen

K edge, as they often contain additional elements such as nitrogen, oxygen, and sulfur.

Experimental and simulated nitrogen K edge NEXAFS of PCDTPT is shown in Figure

4.2 (carbon K edge spectra shown in Figure C.2). Initial XCH-based calculations of

PCDTPT were first shown in a recent contribution [166]. Evolution of calculated spectra

is shown from a single donor(CDT)-acceptor(PT) unit, to an intermediate sized CDT-

PT-CDT-PT fragment, and a fully periodic PCDTPT based on a unit cell containing
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Figure 4.1: Evolution of XCH-predicted carbon K edge NEXAFS as a function
of number of repeat units for a 3-methylthiophene based system. Simulated spec-
tra of small bi(3-methylthiophene), intermediate sized sexi(3-methylthiophene), and
infinitely long poly(3-methylthiophene) models are shown in (a). Structures of
the different molecular models are shown in (b). Bi(3-methylthiophene) (bot-
tom), sexi(3-methylthiophene) (middle) and a poly(3-methylthiophene) based on a
sexi(3-methylthiophene) unit cell (top). Electron density distributions of the lowest
unoccupied molecular orbitals overlay the molecular models. The excited atom is
shown in green.
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four CDT and four PT units (Figure 4.2b). The simulated nitrogen K edge NEXAFS

for all three model sizes are very similar, especially the CDT-PT-CDT-PT model and

the PCDTPT model. Differences in the relative peak intensities are noticeable in the

smaller CDT-PT system. The relative peak positions of the experimental data compared

to each of the calculated spectra agree quite well. The experimental NEXAFS shows

that the first two most obvious peaks are at around 400 eV and 403 eV. However, there

is noticeable absorption intensity between these two peaks, suggesting the presence of

additional transitions between them. The simulations reveal that there are two additional

peaks, at about 401.5 eV and 402 eV, between the main features at 400 eV and 403 eV.

These distinct transitions are present in the simulations for all three different models of

different lengths, however the relative intensities of these peaks vary slightly among the

different models. The discrepancy in relative peak intensities between the experiment

and the simulated spectra is likely due to preferred orientation of the PCDTPT sample.

This is not taken into account for the simulated spectra shown in Figure 4.2, and will be

discussed later.

Donor-acceptor polymers may have more localized MOs that tend to reside either

mostly on the donor unit or the acceptor unit [143]. This may partly explain why

smaller molecular fragments, in terms of number of repeat units, are sufficient for reason-

able calculations compared to a polymer like a poly(3-alkylthiophene). As we previously

reported, PCDTPT is interesting in that the degree of delocalization of the lowest unoc-

cupied molecular orbital (LUMO) depends on which nitrogen atom is excited [166]. For

PCDTPT, all of the nitrogen atoms reside on the PT acceptor subunit. Furthermore, the

side chains are only attached to the CDT donor unit, and there are no nitrogen atoms

on the side chains. These factors help simplify considerations with regards to nitrogen K

edge spectra of PCDTPT, making this polymer a good model system for demonstrating

the ability of the XCH method to handle nitrogen K edge simulations of donor-acceptor
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polymers. The XCH method shows the potential to properly simulate the NEXAFS

spectra of a variety of donor-acceptor polymers. Additional examples of PDPP2FT and

P(NDIOD-T2) are shown in Appendix C.

Considering the localized nature of a core hole, but the often highly delocalized MOs

in semiconducting polymers, NEXAFS spectra can be modelled by appropriately sized

molecular fragments using the XCH approach. Moreover, the pseudopotential-based DFT

and planewave basis sets employed in XCH render this method suitable for efficiently

modelling X-ray absorption spectroscopy of full polymer chains. This is advantageous

since using periodic boundary conditions itself does not incur much additional compu-

tational expense. If the appropriate unit cell for periodic boundary conditions has a

similar number of atoms as an oligomer, for example sexithiophene vs. poly(thiophene),

then similar computational efficiency can be achieved. If the repeating unit cell requires

many more atoms, such as for PCDTPT as shown in Figure 4.2b, then periodic boundary

condition simulations will be significantly more expensive.

4.3.2 Side Chain Atoms Bonded Directly to the Conjugated

Backbone Affect π∗ Transitions

Semiconducting polymers typically contain hydrocarbon side chains that impart sol-

ubility in common organic solvents and can affect intermolecular packing. These side

chains do not strongly affect intramolecular charge transport along the conjugated core,

and are often removed when performing calculations to improve computational efficiency.

However, it is important to understand the effect side chain atoms have on NEXAFS spec-

tra, especially with regards to the important C 1s→ π∗ transitions that are associated

with the conjugated backbone and often used to probe molecular orientation.

The presence of a substituent side chain alters the bonding environment of the back-
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Figure 4.2: Comparison of experimental nitrogen K edge NEXAFS data of the
donor-acceptor polymer PCDTPT to simulated spectra of a single CDT-PT fragment,
CDT-PT-CDT-PT fragment, and an infinitely long PCDTPT model is shown in (a).
Structures of the different molecular models are shown in (b). CDT-PT (top left),
CDT-PT-CDT-PT (top right) and a PCDTPT model based on a CDT-PT-CDT-PT
unit cell (bottom). Electron density distributions of the lowest unoccupied molecular
orbitals overlay the CDT-PT and CDT-PT-CDT-PT molecular models. The excited
atom is shown in green.
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bone carbon atom it is directly bonded to, and this can affect NEXAFS spectra in the π∗

region. It is important to include at least the first atom of the side chain (e.g. a methyl

group) in the molecular model to achieve more accurate simulations. An example for

sexithiophene with hydrocarbon side chains of varying length is shown in Figure 4.3. Fo-

cusing on the C 1s→ π∗ region from 284.7 eV to 286 eV, it is clear that the overall spectra

(black solid traces) of sexithiophene has a split π∗ feature with at least two pronounced

peaks. Multiple peaks in the π∗ region are also observed experimentally in the NEXAFS

of sexithiophene [172]. When methyl, ethyl or hexyl substituents are attached to form

sexi(3-methylthiophene), sexi(3-ethylthiophene), or sexi(3-hexylthiophene), the overall

spectra in the π∗ region shows less splitting, and a more subtle low-energy shoulder that

more closely resembles the π∗ region in experimental NEXAFS of poly(3-hexylthiophene)

(P3HT), as seen in Figure 4.6. To better understand the origin of this change, contri-

butions from individual carbon atoms at different positions on the thiophene unit are

plotted (filled color traces) in Figure 4.3. It is clear that for the the carbon atom in the

3-position, when an alkyl group is bonded to it, the energy of its lowest-lying transition

increases noticeably. This may be a result of the electron donating nature of the alkyl

group that could raise the energy of the LUMO. The π∗ manifold is similar in appearance

for methyl, ethyl, and hexyl substituents (note all the carbon atoms on the attached side

chains were excited). These results reveal the importance of including the first atom

on a substituent side chain in models for semiconducting polymers to better reproduce

NEXAFS spectra, even in the lower energy π∗ region.

The probing depth of NEXAFS experiments can vary, ranging from the entire thick-

ness of a thin film in a transmission experiment to just the top couple nanometers for

electron yield, and this can affect relative peak intensities, especially for polymers with

pendant side chains. Experimental studies suggest that the electron escape depth near

the carbon K edge is only about 2-2.5 nm from the surface in electron yield experiments
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[173, 131]. The crystalline packing distance along the side chain extent is typically a

similar length scale for many conjugated polymers, for example, about 1.7 nm in P3HT

[14, 12], suggesting that potentially up to only a few layers of the conjugated backbone

are detected in surface sensitive NEXAFS. The side chains on these polymers, which

are typically saturated hydrocarbons that are sometimes very long and/or branched in

character, are expected to preferentially segregate to the film surface to minimize free

energy. These surface chains are likely to be folded over and not well extended as they

may alternatively be within the crystallites of the film. The prevalence of side chains at

the surface means that the signal from these atoms will be enhanced in surface sensitive

electron yield experiments relative to bulk measurements. Differences in relative peak

intensities, for example between π∗
C=C and σ∗

C−H transitions, may arise when comparing

electron yield to transmission or fluorescence yield detection modes. Although these sur-

face segregation effects are not accounted for in the simulations here, they are important

to consider when looking at experimental data.

4.3.3 NEXAFS Simulations Help Identify Transitions

The NEXAFS spectra of many semiconducting polymers, espeically donor-acceptor

polymers, can be very intricate. This is further complicated by the fact that some conju-

gated polymers exhibit a twist angle between subunits in the backbone. This is important

because conjugated polymers tend to preferentially orient in solid state thin films, and this

orientation is a critical morphological parameter to understand. In order to probe molec-

ular orientation with polarized X-ray spectroscopy, it is first important to understand

the spectra and identify specific transitions, as transitions typically used for orientation

analysis have a relatively well defined transition dipole moment direction. Simulations

can be very useful for understanding the nature of transition(s) represented in experimen-
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Figure 4.3: Simulated spectra of a sexithiophene model with varying side chain
lengths, designated by the R group in the schematic. Predicted spectra from bot-
tom to top are no side chain (R = H), methyl side chain (R = CH3), ethyl side chain
(R = C2H5), and hexyl side chain (R = C6H13), respectively. All of carbon atoms on
the attached side chains were excited if present. The filled traces show the individual
contributions from the four different carbon atoms on the thiophene units. It is clear
that the lowest energy transition of the carbon atom bonded directly to the R group
shifts to higher energy in the presence of an alkyl side chain.

75



First-Principles Predictions of X-ray Absorption Spectroscopy for Characterization of
Semiconducting Polymers Chapter 4

tally observed peaks of the NEXAFS spectra. XCH calculations can reveal contributions

from individual atoms, and show electron density distributions of unoccupied molecular

orbitals in the presence of specific excited atoms. An example based on the predicted

carbon K edge NEXAFS of the monomer of a furan-containing, diketopyrrolopyrrole-

thiophene low-bandgap polymer, PDPP2FT [174], is shown in Figure 4.4.

PDPP2FT contains many distinct carbon atoms with various bonding environments.

This results in numerous peaks in the experimental NEXAFS spectra, and is also repro-

duced in the simulated spectra in Figure 4.4a. Contributions from four different carbon

atoms to the overall spectra, and their relative positions in the chemical structure, are

shown in Figure 4.4a. The peaks between 284 eV and 286 eV are C 1s→ π∗
C=C transitions.

An example for a transition of C10 that occurs at 284.6 eV is shown in Figure 4.4b. The

molecular orbital involved in this transition exhibits electron density above and below

the conjugated plane, indicative of π∗ character. Similarly, a significant contribution to

the peak at about 287 eV is from a C 1s→ π∗
C=O. However, in the simulated spectra, it

is apparent that the peak at 287 eV is also largely due to a C 1s→ σ∗
C−S transition from

the C-S bond in the thiophene unit. This is seen from the molecular orbital that points

along the C-S bond (Figure 4.4b). At higher energies, σ∗
C−H transitions are evident near

289 eV. This example shows the utility of NEXAFS predictions to help identify specific

transitions involved in complicated NEXAFS spectra.

In general, it is expected that the higher the number of distinct atoms, the greater the

number of observed peaks since unique bonding environments result in X-ray absorption

shifts. Certainly, this seems to be the case for the materials studied here and this also

applies to anticipating the number of peaks of a particular nature, e.g. π∗
C=C . Unique

energy levels, for example degenerate MOs in organic semiconductors like phenyl-C61-

butyric acid methyl ester [175], may also result in multiple π∗
C=C peaks. Having the

ability to predict whether a single or multiple distinct peaks should be present is very

76



First-Principles Predictions of X-ray Absorption Spectroscopy for Characterization of
Semiconducting Polymers Chapter 4

a) b)
C8

C10

C20

C29
O

S

N

284.6 eV 287.1 eV

286.9 eV 288.7 eV

π*
C=C

π*
C=O

σ*
C-S

σ*
C-H

X
A

S
 I

n
te

n
s
it
y
 (

a
.u

.)

292288284

Energy (eV)

 Average
 C8
 C10
 C20
 C29

 Experiment

Figure 4.4: Simulated and experimental carbon K edge NEXAFS spectra of
PDPP2FT. For the XCH-predicted absorption profile, contributions from four spe-
cific carbon atoms are shown in addition to the overall spectra (a). These specific
atoms are labelled and color coded on the molecular structure. Electron density dis-
tributions of different unoccupied molecular orbitals with corresponding core level
excitation energies are shown in (b). These allow for understanding the types of
transitions involved in various peaks in the overall spectra.

advantageous to understand acquired data and quickly screen for unexpected results. For

example, contamination could cover a sample but result in spectra that still resembles a

polymer, as observed in a previous study [166]. This could be diagnosed by knowing the

general trends to expect and simulating NEXAFS spectra ahead of time.

4.3.4 Predictions of Angle-Dependent Spectra Reveal Oriented

Polymers

Semiconducting polymers due not typically form isotropic thin films. Polymers orient

with their chain axis predominantly in-plane with the substrate, and the conjugated plane

either mostly edge-on or face-on to the substrate. This is especially apparent in ordered

or crystalline regions of the film, as revealed by wide angle X-ray scattering [14]. This
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preferred orientation means polarized NEXAFS spectra must be carefully considered,

especially with regards to relative peak intensities which are affected by transition dipole

moments that have a preferred direction. Due to the inherent anisotropic charge transport

properties in most semiconducting polymers, the orientation of the polymer chains and

backbones are critically linked to charge transport in thin films, making it an important

parameter to control. Angle-dependent NEXAFS experiments using polarized X-rays

is a common approach to studying molecular orientation in semiconducting polymers.

Although general information regarding molecular orientation is typically achievable, the

detailed chemical structures of many semiconducting polymers can result in complicated

spectral features that can be difficult to assign with NEXAFS experiments alone. The

twist angle between subunits of certain low-bandgap polymers makes accurate determi-

nation of the tilt angle much more challenging [139]. The ability to predict trends in

intensity as a function of incident angle for relevant transitions, especially π∗ transitions,

is a necessary first step to better understanding intricate experimental results.

The XCH method can reproduce angle-dependent nitrogen K edge spectra for a model

system of a highly oriented and aligned PCDTPT thin film. Previous work has shown

that PCDTPT thin films cast via blade-coating onto nanogrooved susbstrates produces

oriented polymers that are highly edge-on and aligned along the chain axis (or blade

coating) direction [166]. Figure 4.5 shows experimental and calculated angle-dependent

NEXAFS spectra for the nitrogen K edge of aligned PCDTPT. For the simulated data, an

idealized system was assumed where the PCDTPT molecules are perfectly edge-on and

perfectly aligned along the chain axis. Furthermore, the electric field vector was restricted

to reside in the y-z plane, as shown in Figure 4.5a. This replicates the experimental traces

shown in Figure 4.5b where the aligned PCDTPT sample was placed such that the

incoming X-ray and electric field vector were perpendicular to the alignment or blade-

coating direction. As we have previously shown, the first three peaks in the nitrogen
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K edge spectra correspond to 1s→ π∗ transitions [166]. The experimental data shows

the intensity of these peaks increases with increasing incident angle, indicative of overall

edge-on orientation, and this is well-reproduced in the simulated angle-dependent spectra

shown in Figure 4.5b. Similar qualitative agreement for angle-dependent spectra near the

carbon K edge of PCDTPT is achieved (Figure C.3). Comparison of data and calculated

spectra at a given incident angle, for example 51◦, reveals good agreement in relative

intensities of the lower energy peaks, as shown in Figure C.4.

Simulated angle-dependent spectra also can reproduce experimental trends near the

carbon K edge. P3HT is known to be oriented with respect to the backbone tilt, of-

ten adopting a mostly edge-on orientation, or a bimodal distribution between edge-on

and face-on. Figure 4.6 shows angle-dependent PEY data for a spin coated P3HT thin

film, and an overall edge-on orientation is evident by the increasing intensity of the π∗

manifold (284-286 eV) with increasing incident angle. The intensity of the feature (σ∗
C−S

and σ∗
C−H) near 288 eV also shows overall increasing intensity with incident angle as

typically seen in P3HT [137]. The XCH-predicted angle-dependent spectra, although it

assumed a perfectly edge-on and aligned geometry similar to that shown in Figure 4.5a,

is able to recreate angle-dependent trends quite well. Simulated spectra are of a sexi(3-

hexylthiophene) model in this case. The overall peak shape and intensity changes for the

π∗
C=C region are reproduced very well, supporting the idea of edge-on P3HT backbones.

The angle-dependence of the σ∗
C−S/σ∗

C−H features near 288 eV is much stronger in the

calculated NEXAFS compared to the experimental data. Since much of the contribution

to this feature is from the C-H bonds on the side chains, the stronger angle-dependence

in the DFT results is presumably a result of the perfectly extended and oriented side

chains in the model. Side chains are likely much more disordered, especially near the

surface, in the actual thin film sample as discussed earlier. This diminished preferred ori-

entation of the side chains would result in reduced changes in intensity vs. incident angle
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Figure 4.5: Simulated and experimental angle-dependent data for the nitrogen K
edge of a model PCDTPT sample. For the calculations, the PCDTPT molecules
(CDT-PT-CDT-PT) were assumed to be perfectly aligned and perfectly edge-on, as
shown in (a), and the electric field vector direction changed within the y-z plane.
Experimental and predicted angle-dependent spectra are shown in (b). Experimental
plots shown are surface sensitive partial electron yield data for a PCDTPT sample that
was aligned using blade-coating[166], which mimics the model system and geometry
used for the calculations.

80



First-Principles Predictions of X-ray Absorption Spectroscopy for Characterization of
Semiconducting Polymers Chapter 4

experimentally. Angle-dependent predictions also illustrate the importance of molecular

orientation on relative peak intensities. A clear separation between the σ∗
C−S (287.0 eV)

and σ∗
C−H (287.9 eV) transitions is evident in the simulated 30◦ trace, but the intensity

of the σ∗
C−H dominates at angles of 55◦ and higher, making these transitions harder to

distinguish. The predicted spectra at higher incident angles qualitatively match experi-

mental results better. Closer inspection of these peaks in the simulated results show that

for this orientation and aligned geometry, the σ∗
C−S transition shows the opposite trend

with incident angle, i.e. its intensity decreases with increasing incident angle, compared

to the σ∗
C−H transition. Again, keep in mind that a peak width of 0.2 eV was applied to

all transitions in the simulations. This level of detail is difficult to see in the experimental

spectra alone, especially since the σ∗
C−S and σ∗

C−H transitions are relatively close together

and the greater intensity of the σ∗
C−H peak dominates, and this exemplifies the utility of

combining complementary simulations with experimental data.

Orientation analysis is even more troublesome for semiconducting polymers that ex-

hibit a tilt angle between subunits in the backbone [139], and the ability to simulate angle-

dependent data will also prove useful for these more complicated molecules. [N,N-9-bis(2-

octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]- alt-5,59-(2,29-bithiophene),

P(NDIOD-T2), is a well-studied donor-acceptor polymer that is known to have a dihe-

dral angle between the NDI donor unit and thiophene acceptor unit, thought to be about

47◦ [176, 177]. Experimental investigations of P(NDIOD-T2) show an overall angle-

dependent intensity of the π∗ peaks in the carbon K edge, and it is expected that the two

outer peaks in the π∗ region correspond to the NDI units, while the middle peak is due

to the thiophene units [139]. NEXAFS calculations on a single repeat unit of P(NDIOD-

T2) suggest that there are likely transitions in the entire π∗ energy range that arise from

various carbon atoms on the NDI unit, and similarly for the thiophene units (Figure C.5).

Furthermore, due to the dihedral angle, transition intensities in the π∗ region originating
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Figure 4.6: Simulated and experimental angle-dependent data for carbon K edge of
P3HT. Experimental plots shown are surface sensitive partial electron yield data.
Simulated spectra are for a sexi(3-hexylthiophene) model with perfect edge-on and
chain axis alignment.

from atoms residing on the NDI unit will have a different angle-dependence compared

to the spectra from the thiophene atoms (Figure C.5). Experimentally, these differences

in angle-dependent intensities may be hard to distinguish since polymers in a sample

may not have perfectly uniform alignment, and there can be a significant contribution

to NEXAFS spectra from amorphous material. This emphasizes the challenges present

in complicated orientation analysis with experimental data alone and the potential for

complimentary simulations to help understand polymer microstructure.

The propensity of conjugated polymers to orient in the solid state demands judi-

cious attention to polarized NEXAFS studies. Angle-dependent NEXAFS experiments

are certainly a valuable tool for probing molecular orientation, and complementary sim-

ulations are integral to gaining a more complete picture. However, it is important to

consider the main tendencies of semiconducting polymers, e.g. chain axis in-plane with
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the substrate, when comparing experiment and theory. Calculations on even highly ide-

alized models can provide useful feedback relevant to experimental results, especially in

terms of relative peak intensities. Many organic electronic applications, for example or-

ganic photovoltaics, consist of blends of organic semiconductors, and NEXAFS can be

very useful in estimating composition in thin films [150, 151]. Appreciating the effects

of molecular orientation, especially if polarized X-rays are used, it is also important to

consider if overall orientation changes for a specific material when comparing pristine,

single component samples to blend films. A change in orientation could affect analysis

when spectra of pristine samples are used to estimate blend composition.

4.3.5 NEXAFS Spectroscopy Reveals the Molecular Orienta-

tion in Blade-Coated Pyridal[2,1,3]thiadiazole-Containing

Conjugated Polymer Thin Films

In semiconducting polymers, transport along a conjugated polymer backbone is effi-

cient because of the strong electronic coupling between monomers. However, it is non-

trivial to align films where the fast transport direction is oriented along the direction

of charge transport. Many techniques have been applied to obtain aligned films where

the charge carrier mobility is maximized. Some of these methods include using a rubbed

polyimide surface as an alignment layer [178, 179], directional crystallization [180], high

temperature rubbing [181], and zone-casting or blade-coating methods [182, 140].

Uniaxial nanogrooved substrates can be used as a topographic guide for the alignment

of polymers. Rubbing a substrate (Si/SiO2) with a diamond lapping paper generates

uniaxial nanogrooves, which are approximately 50-100 nm in width and a few nm in

depth [183]. Recent work has focused on the alignment of regioregular PCDTPT [184],

a donor-acceptor copolymer of a cyclopenta[2,1-b:3,4-b]dithiophene (CDT) donor unit
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and a [1,2,5]thiadiazolo[3,4-c]pyridine (PT) acceptor unit. In this work, a more rapid

blade coating method (doctor blading) was employed to generate aligned thin-films of

PCDTPT using nanogrooved substrates. We quantify the resulting alignment at both the

buried substrate (bottom-side) and air (top-side) interfaces of these films using NEXAFS

spectroscopy.

Charge transport in thin film transistors occurs in a thin interfacial region, on the or-

der of one to two molecular layers, at the gate dielectric [185]. It is therefore important to

study molecular orientation at such interfaces as well as the bulk. Polarization-dependent

NEXAFS spectroscopy is a useful tool to probe the molecular orientation at the surface

of conjugated polymer thin films [137].

In this work, we present carbon and nitrogen K edge NEXAFS spectra for PCDTPT

and theoretical calculations of the spectra that help facilitate assignment of the exper-

imental data. Using polarization-dependent NEXAFS data, we calculated the order

parameters S, describing the out-of-plane orientation of the conjugated plane relative to

the surface normal (i.e. “edge-on” or “face-on”), and η, describing the extent of in-plane

orientation of the conjugated polymer-chain axis relative to the alignment direction).

This is described in detail by Patel et al [166]. We observe that in all films the con-

jugated plane has a preferential “edge-on” orientation. In addition, we find significant

in-plane orientation in these films demonstrating the utility of the nanogroove method

to induce alignment of solution processed semiconducting polymers.

As discussed earlier, it can be difficult to assign transitions in NEXAFS spectra based

on experimental data alone. The most common elemental edge used for polymers is the

carbon K edge due to the large number of carbon atoms. However, the many distinct

carbon atoms present in polymers can lead to complicated carbon K edge spectra that

is difficult to understand. Other elemental edges can be especially useful and simpler

to interpret. PCDTPT also contains nitrogen atoms, and there are only three distinct

84



First-Principles Predictions of X-ray Absorption Spectroscopy for Characterization of
Semiconducting Polymers Chapter 4

Figure 4.7: (a) Chemical structure of regioregular PCDTPT. (b) DFT-optimized
structure showing PT-CDT-PT-CDT repeat unit (with methyl side chains). Each
unique carbon is labeled for both the CDT unit (D1-D5) and PT unit (A1-A5). PT
= [1,2,5]thiadiazolo[3,4- c]pyridine acceptor unit, and CDT = cyclopenta[2,1-b:3,4-b]-
dithiophene donor unit.

nitrogen atoms on the PT acceptor unit (Figure 4.7). Due to this inherent simplicity,

focus is placed on understanding contributions and transitions of the nitrogen K edge of

PCDTPT, which is the basis for understanding polymer chain alignment in the blade-

coated films.

Theoretical predictions of the nitrogen K edge of PCDTPT using the XCH method do

a good job of reproducing the experimental data, as shown in Figure C.4. The simulated

spectra can be broken down to determine which specific nitrogen atoms contribute the

most to certain peaks, as shown in Figure 4.8. Furthermore, it is clear that the degree of

delocalization of the unoccupied molecular orbital involved in the lowest energy transition

varies significantly depending on which nitrogen atom is excited.

To help identify the nature of the transitions involved in certain peaks (e.g. π∗ or σ∗),

knowledge of contributions to the intensity as a function of direction of the electric field

vector of the incoming X-ray is needed. This is shown in Figure 4.9. Since it is known

that π∗
C=C transitions point perpendicular to the conjugated plane (± z-direction in this
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Figure 4.8: Simulated nitrogen K edge NEXAFS of PCDTPT and contributions from
the three distinct nitrogen atoms on the PT acceptor unit. Molecular orbitals for
the excited state corresponding to the first π-resonance of each nitrogen atom (N1 =
pyridal unit, N2 and N3 = thiadiazole unit) are shown on the right.

Figure 4.9: Simulated nitrogen K edge NEXAFS of PCDTPT and contributions to
the intensity assuming the electric field vector points along the polymer chain axis
(x), along the side chain stacking extent (y), or perpendicular to the conjugated plane
(z).
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Figure 4.10: Schematics show the geometry of the perpendicular and parallel sample
configurations with respect to the incoming X-ray. Angle-dependent data at the ni-
trogen K edge for each configuration reveals that PCDTPT polymers are edge-on and
aligned along the blade-coating direction at the buried interface.

case), it is expected that the first three peaks are in fact π∗
C=C transitions. Additionally,

the higher energy peak around 403.5 eV seems to have a transitions dipole moment

pointed primarily along the polymer chain axis.

Experimental angle-dependent NEXAFS results confirm the alignment of polymer

chains at the buried interface of blade-coated PCDTPT thin films, and support the

assignments determined from the predicted spectra. Angle-dependent data was collected

in two sample orientation, perpendicular and parallel. In the perpendicular configuration,

the electric field vector is always perpendicular to the alignment (chain axis) direction.

In the parallel configuration, the electric field vector is parallel to the alignment direction

at an incident angle of 90 ◦, and perpendicular to the alignment direction at 0 ◦. This
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is depicted schematically in Figure 4.10. In the perpendicular geometry, it is clear that

the intensity of the first three peaks increases with increasing incident angle. Since these

are π∗ transition, this confirms that PCDTPT adopts an overall edge-on orientation.

However, the higher energy backbone direction peak shows no angle-dependent change

in intensity. This is expected if the polymer chains are primarily pointed along the

alignment direction. In the parallel configuration, the opposite trends are seen. The

π∗ peaks do not change in intensity as a function of incident angle, but the intensity

of the backbone direction peak increases with increasing incident angle. These results

verify a high degree of polymer orientation and alignment as a result of blade-coating

on nanogrooved substrates, and showcase the utility of NEXAFS simulations to assist in

understanding experimental results.

4.4 Conclusion

NEXAFS spectroscopy has become an important technique to probe electronic struc-

ture and reveal morphological information, for example molecular orientation, in semi-

conducting polymers. Predictive power using computational methods is critical for

understanding details that cannot easily be determined based on experimental data

alone, allowing for improved materials characterization. However, only limited work

has been done to simulate NEXAFS spectra of semiconducting polymers. Here, we have

shown that the eXcited electron and Core Hole (XCH) approach, based on constrained-

occupancy density functional theory, is well-suited to predict X-ray absorption spectra

of semiconducting polymers at multiple elemental edges, including the carbon and nitro-

gen K edges. This approach takes advantage of periodic boundary conditions and can

model infinitely long polymer chains, however, NEXAFS spectra are reasonably well re-

produced based on models of appropriately sized molecular fragments. When modelling
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semiconducting polymers, it is important to include at least the first atom of the side

chains bonded directly to the conjugated core, as the presence of the these substituents

can noticeably shift the energy of low-lying, but very important, C 1s→ π∗ transitions.

In general, the number of distinct peaks in an observed NEXAFS spectra, even for a

given type of transition such as π∗
C=C , depends on the number of distinct atoms with

unique bonding environments. Simulations make it possible to readily identify the na-

ture of these transitions by examining contributions from individual atoms and electron

density distributions of molecular orbitals. Furthermore, the preferred orientation that

semiconducting polymers tend to adopt in thin films necessitates the ability to calculate

angle-dependent spectra on model aligned polymers. This reveals important trends in

relative angle-dependent peak intensities, and is essential for a better understanding of

molecular orientation, especially in systems that exhibit complicated spectral features

and/or a dihedral angle between subunits in the backbone. Looking ahead, the enhanced

understanding of X-ray absorption spectroscopy afforded by complementary computa-

tion will enable improvements in characterization with X-ray microscopy and resonant

X-ray scattering, which are becoming increasingly popular for organic semiconductors.

We hope to provide groundwork of important parameters to consider when dealing with

NEXAFS data. Overall, the ability to simulate NEXAFS spectra using a method like

the XCH approach that is tractable by experimentalists is essential in improving the

ability to determine important electronic and structural parameters and allow for more

efficient and focused synchrotron experiments on semiconducting polymers and polymers

in general.
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Conclusions

The ability to understand and control the microstructure and morphology in the ac-

tive layer of organic electronic devices is critical for further improving performance and

creating the next generation of advanced materials. Proper characterization of organic

semiconductor thin films requires the ability to probe a large range of length scales.

Synchrotron X-ray methods are able to elucidate important morphological features, and

when combined with other characterization tools, simulations, and device data a thor-

ough understanding can be gained.

First, we examined a complex blend of a polymer (P3HT) and small molecule (DTI)

applicable to solar cells that demonstrates how structure in the thin film, specifically

molecular orientation, directly impacts device performance. Thermal annealing results

in a significant decrease in solar cell efficiency for this material system. This is attributed

to a drastic reorientation of DTI molecules in the blend upon annealing. DTI exhibits

preferred directions for charge transport, and thermal annealing results in highly edge-on

molecules that block vertical electron transport and limits solar cell performance.

Second, we provide an example of how the chemistry of a semiconducting polymer

impacts phase separation in a polymer blend. A model polymer blend consisting of a
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ferroelectric polymer (PVDF-TrFE) and a semiconducting polymer (P3EPT) that can be

used to form resistive switches for non-volatile memristors was studied. One of the goals

for improving these types of devices is to reduce the phase separation length scales and

understand the three-dimensional morphology in these thin films. By tuning the chemical

structure of the side chain of the semiconducting polymer, smaller and more controllable

domain sizes were achieved. Furthermore, potential enhancement of semiconducting

polymer at the film surface was observed, and this is an important parameter that should

be considered in the design of organic ferroelectric resistive switches.

Finally, an example of how computational modelling can characterization fo semi-

conducting polymers was demonstrated. First-principles simulations of X-ray absorption

spectroscopy of semiconducting polymers were shown to be essential in improving under-

standing of experimental data and characterization abilities. The eXcited electron and

Core Hole (XCH) approach, based on constrained-occupancy density functional theory,

can predict X-ray absorption spectra of semiconducting polymers, make use of periodic

boundary conditions, and is tractable by experimentalists. We examined a system of a

blade-coated donor-acceptor polymer, and the ability to calculate the absorption spectra

proved critical in identifying the nature of specific transitions to probe the alignment in

these films.

Many aspects of the thin film morphology of organic semiconductors, including molec-

ular orientation, phase separation length scales, and surface segregation, are important

to understand and control to further improve the efficiency of relevant devices. This

work reveals certain morphological parameters that need to be taken into account when

designing the next generation of materials, and how these parameters are affected by

aspects such as chemical structure and processing conditions. Furthermore, the abil-

ity to complement experimental characterization with proper simulations is critical for

advancing materials discovery and development.
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A.1 Experimental Procedures

A.1.1 Fabrication of Photovoltaic Devices

Poly(3-hexylthiophene) (P3HT) was obtained from Rieke Metals (Sepiolid P200).

DTI was synthesized as reported by Pho et al [31]. Pre-patterened ITO-coated glass

substrates were cleaned by sonicating in alconox:water, water, acetone, and isopropanol

sequentially for 20 mins each. The substrates were dried with a stream of N2 and exposed

to oxygen plasma for ∼5 mins. PEDOT:PSS (Clevios PVP Al 4083) was spin coated at

4000 rpm for 45 s onto the cleaned glass/ITO substrates, and dried at 160 ◦C for 20 min.

The P3HT:DTI solutions (1:1 by weight) were prepared with a total concentration of 20

mg mL−1 in o-dichlorobenzene with 1-chloronaphthalene (2% by volume) and stirred at

80 ◦C overnight. The P3HT:DTI solution was filtered (0.45 µm PTFE filter) directly

onto the substrate in a N2 filled glove box, and the substrate was spun at 1000 rpm for

60 s and then 2000 rpm for 10 s, yielding an active layer thickness of ∼100 nm. The

wet films were allowed to dry at room temperature for 20 mins. A 1 nm thick layer of

92



Supporting Information Chapter 2 Chapter A

LiF followed by ∼90nm of Al was thermally evaporated on top of the active layer under

vacuum (¡10−6 torr). The active area of the devices was 0.06 cm2, and current-voltage

(J-V) characteristics were measured at 1 sun (AM 1.5G) in a N2 filled glove box with a

Xenon lamp (Newport) and a Keithley 2408 Source Measure Unit (SMU).

Electron-only diodes were fabricated in a similar way as the OPV devices. ITO-coated

glass substrates were cleaned in the same way, but instead of PEDOT:PSS, a 90 nm layer

of Al was thermally evaporated onto the glass/ITO substrates, followed by spin casting

of the P3HT:DTI active layer. Finally, a 25 nm layer of Ca and a 90 nm layer of Al were

evaporated on top of the active layer. Current-voltage measurements were performed in

the dark. Hole-only diodes were fabricated similarly to the OPV devices, except a 90 nm

layer of Au was evaporated onto the active layer instead of LiF/Al.

A.1.2 Differential Scanning Calorimetry (DSC)

DSC measurements were carried out on a TA Instruments DSC 2920 differential

scanning calorimeter. About 4 mg of material was loaded into a Tzero aluminum pan.

Each samples was first equilibrated at 25 ◦C, then heated to 270 ◦C, cooled to 0 ◦C, and

heated again to 270 ◦C. All of the heating and cooling cycles were done at a rate of 10

◦C/min. An empty Tzero pan was used as a reference.

A.1.3 Grazing Incidence Wide Angle X-ray Scattering (GIWAXS)

Samples were prepared for GIWAXS by spin-coating solutions of DTI or P3HT:DTI

blends onto PEDOT:PSS coated Si substrates using the same deposition conditions as

for the photovoltaic devices. GIWAXS experiments were performed at the Stanford

Synchrotron Radiation Lightsource (SSRL) at beamline 11-3. A MAR 2300 area detector

was used for 2D diffraction pattern collection. The energy of the incident beam is 12.7
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keV. The angle of incidence used was 0.11◦ and the sample-to-detector distance was 40 cm.

Samples were kept in a helium atmosphere to minimize X-ray damage and background

scattering. Exposure times were typically bewteen 30 s and 120 s. Beamline 11-3 is

equipped with a heating stage that allows for GIWAXS scans to be taken at temperature

for in situ studies.

A.1.4 Near Edge X-ray Absorption Fine Structure (NEXAFS)

Samples for NEXAFS were prepared by spin-coating onto Si/PEDOT:PSS substrates,

just as for GIWAXS. NEXAFS experiments were performed at beamline U7A at the

National Synchrotron Light Source (NSLS). The incident X-ray beam was elliptically

polarized (polarization factor = 0.85) with the electric field vector predominantly in the

plane of the storage ring. The incident angle, θ, was varied between 30◦ and 90◦, where

90◦ refers to an incident X-ray beam that is perpendicular to the substrate. A spherical

grating monochromator was used to select soft X-rays in the range from 280 eV to 440

eV, corresponding to the carbon and nitrogen K edges. The partial electron yield (PEY)

data was collected with a channeltron electron multiplier with an adjustable entrance grid

bias that was set to -150 V. All experiments were done in a UHV chamber. Carbon edge

PEY and fluorescence yield (FY) data were normalized by subtracting a linear pre-edge

baseline and setting the edge jump to unity at 325 eV.

A.1.5 Resonant soft X-ray scattering (RSoXS)

RSoXS was performed at beamline 11.0.1.2 at the Advanced Light Source (ALS).

Samples were prepared by spin coating P3HT:DTI blends onto Si/SiO2/PEDOT:PSS

substrates, using the same conditions as for devices, and then floating onto 1.5 mm

x 1.5 mm, 100 nm thick Si3N4 membranes supported by a 5 mm x 5 mm Si frame
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(Norcada Inc.). 2D scattering was collected in a transmission geometry with a sample-

to-detector distance of 160 mm. Data was collected on an in-vacuum CCD camera

(Princeton Instrument PI-MTE) cooled to -45 ◦C. 2D scattering data was then reduced

by azimuthal averaging of the scattering data over all q values. The RSoXS profiles

shown in the manuscript were taken at 284.4 eV, an energy where there is a significant

absorption difference between P3HT and DTI. Details of the specifics of this beamline

have been reported elsewhere [23].

A.1.6 Dynamic secondary ion mass spectrometry

Experiments were performed on a Physical Electronics 6650 Quadropole dynamic

SIMS. A 2 kV O2+ primary ion beam at ∼45 nA was used and rastered over a 200µm ×

200 µm area and secondary ions were only collected from the middle 15% of this area.

Si/SiO2 substrates were used with a final sample geometry of Si/SiO2/PEDOT:PSS/P3HT:DTI/PS.

A.2 Molecular Geometry of DTI

Similar to decacyclene, DTI is found to have a gently twisted propeller geometry, as

shown in Figure A.1. Considering this, it is reasonable to expect DTI molecules to stack

one on top of the other. However, adjacent molecules may need to twist to reduce steric

interactions.

A.3 Effect of Annealing on Device Performance

As discussed in the manuscript, thermal annealing leads to significant decreases in

power conversion efficiency (PCE) of P3HT:DTI devices when annealed at 120 ◦C for
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Figure A.1: Molecular geometry of DTI calculated with DFT using the
B3LYP/6-31G* level of theory. The octyl side chains were replaced by methyl groups.
A top-down view is shown in (a), and a side-view in (b).
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Figure A.2: Current density vs. voltage curves for P3HT:DTI solar cells annealed at
50 ◦C (green squares), 80 ◦C (purple triangles), and 120 ◦C (orange diamonds).

20 minutes, as shown in Figure 1. Furthermore, devices annealed at lower temper-

atures also exhibited diminished PCEs. For devices fabricated with a geometry of

ITO/PEDOT:PSS/P3HT:DTI/Al (which has an overall lower efficiency), PCEs of 0.37%,

0.05%, and 0.03% were measured for annealing temperatures of 50 ◦C, 80 ◦C, and 120

◦C, respectively (Figure A.2)

A.4 Surface Topography with Atomic Force Microscopy

AFM experiments were performed on an Asylum Research MFP 3D AFM using

NanoWorld Pointprobe Al-coated noncontact mode Si cantilevers with a spring constant

of 48 N/m and a resonant frequency of 190 kHz. Surface topography of pristine DTI films

and P3HT:DTI blends were investigated. Height images are shown in Figure A.3. Large

crystals are evident after thermal annealing of pristine DTI. However, blend films show

relatively little difference in height topography beyond a slight increase in rms roughness
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Figure A.3: AFM height images of (a) an as-cast P3HT:DTI blend film, (b) an an-
nealed (120 ◦C) P3HT:DTI blend film, (c) an as-cast pristine DTI film, and (d) an
annealed pristine DTI film.

from ∼2.1 nm to ∼2.8 nm for as-cast and annealed blends, respectively.

A.5 Photoluminescence Quenching

Photoluminescence (PL) quenching is commonly used to estimate the degree of charge

transfer between materials in a blend upon photoexcitation. PL (Horiba FluoroMax-4

Spectrofluorometer) of as-cast and annealed P3HT:DTI blends excited at 430 nm (where

absorption is dominated by DTI) and 570 nm (absorption dominated by P3HT) is shown

in Figure A.5.

It is clear that the PL intensity is much less in the annealed film excited at 430 nm,

suggesting improved charge transfer from DTI to P3HT upon annealing. Based on the

PL spectra of the blend films and pristine P3HT and DTI, it is estimated that the PL
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Figure A.4: UV-Vis absorption of DTI and P3HT thin films.

from DTI is 76% and 90% quenched for the as-cast and annealed P3HT:DTI blends,

respectively. Although DTI crystallite size increases with annealing, enhanced charge

transfer from DTI to P3HT is suggested from the increased PL quenching. This could be

due to a large exciton diffusion length along the column direction of ordered columnar

liquid crystals (up to about 60 nm) [62], or energy transfer from DTI to P3HT. The PL

quenching of P3HT (excited at 570 nm) did not change significantly, decreasing from

60% P3HT quenching in the as-cast blend film to 53% in the annealed film. It is not

surprising that charge transfer from P3HT to DTI is marginally reduced with annealing

since P3HT domains become slightly larger (see Figure A.18).

A higher degree of PL quenching is typically linked to improved solar cell performance

due to enhanced charge transfer. However, the annealed P3HT:DTI solar cells have

much lower efficiencies. This suggests that annealing does not reduce charge transfer

and separation between P3HT and DTI, but rather these separated charges cannot be

extracted to the contacts due to morphological aspects including molecular orientation

and domain separation.
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Figure A.5: Photoluminescence spectra of as-cast and annealed P3HT:DTI thin films
excited at (a) 430 nm and (b) 570 nm.

A.6 Near Edge X-ray Absorption Fine Structure (NEX-

AFS)

A.6.1 Carbon K Edge Spectra for P3HT and DTI

Organic semiconductors, which contain mainly carbon atoms and have many double

bonds, exhibit rich spectra around the carbon K edge. The PEY spectra around the car-

bon K edge for pristine DTI and pristine P3HT is shown in Figure A.6. Clear transitions

from core electrons to π* antibonding orbitals are visible as peaks near 285 eV. Higher

energy peaks correspond to transitions to σ* antibonding orbitals.

A.6.2 Surface Composition

An estimate of the surface composition of the P3HT:DTI blends can be determined

by fitting the NEXAFS spectra of the blend film with a linear combination of the spectra

from individual components. Estimates on surface composition are shown in Figure A.7.

There is no drastic change in surface composition between as-cast and annealed blends,

considering that the π* peak of P3HT overlaps with one of the π* peaks of DTI, which
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Figure A.6: PEY NEXAFS spectra for P3HT (red curve) and DTI (blue curve) at
energies near the carbon K edge. The incident angle was 55◦.

can complicate the fitting. Nevertheless, the result suggests the possibility that there is

a slight excess of P3HT on the surface of the as-cast film, and the relative amount of

P3HT on the surface decreases with annealing, as indicated in the DSIMS.

A.6.3 Probing Molecular Orientation with NEXAFS

NEXAFS experiments can probe molecular orientation due to the inherent polariza-

tion of the X-ray beam and the tunability of the incident angle. Organics often have

anisotropic molecular orbitals and transitions to these orbitals can have dipole moments

in a specific direction [18, 19]. A π* transition can typically be described by a vector

that is perpendicular to the conjugated ring plane. The intensity of this peak will be

greatest when the electric field vector of the X-ray is aligned with the direction of the

π* transition vector, and lowest when these two vectors are perpendicular, as depicted

schematically in Figure A.8.

Overall molecular orientation can be probed by changing the incident angle and track-

ing the total intensity of a specific transition. For different angles of the X-ray relative
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Figure A.7: Surface composition fits for (a) an as-cast P3HT:DTI blend and (b) an
annealed (120 ◦C) P3HT:DTI blend. Fits are based on a linear combination of the
spectra of pure components. The incident angle was 60◦.

Figure A.8: Schematic depicting the effect of incident angle on the intensity of a
specific transition. Molecules that have a well defined transition dipole vector (in this
case a π* transition) will have the greatest intensity of that transition at an angle when
it is in-line with the electric field vector, E. Here, we see that an edge-on molecule
with a π* transition parallel to the substrate surface will have a high π* transition
intensity when (a) the incident X-ray is perpendicular to the substrate (θ = 90◦) and
lower when (b) the incident beam is more parallel to the substrate. The opposite
would be true for a face-on molecule.
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to the substrate plane, θ, the PEY intensity of an X-Y bond is expected to vary linearly

with sin2(θ) , as given by,

IXY (θ) = aXY + bXY sin
2(θ).

Hence, molecular orientation can be quantified by plotting the total intensity vs. sin2(θ).

Based on a linear fit to this data, an orientation order parameter, S, can be determined

as follows [17],

S = − P−1bxy
3axy + (3− P−1)bxy

,

where P is the polarization factor of the X-ray beam, in this case 0.85. S ranges from

+1 for a transition dipole moment along the surface normal (face-on for a π* transition)

to -1/2 for a transition dipole moment in the plane of the substrate (edge-on for a π*

transition). Since S is based on the linear best fit, it is important to have at least a few

angles between 0◦ and 90◦. An example of this type of analysis for as-cast and annealed

(120 ◦C) DTI films is shown in Figure A.9. It is clear that the annealed DTI film has an

overall much more edge-on orientation with its orientation order parameter of S = −0.33

compared to S = −0.0038 for the as-cast film.

The fluorescence yield (FY) detection mode of NEXAFS analyzes fluorescence pho-

tons that are emitted as a result of an absorption process, and relative to PEY, it is

more bulk sensitive, probing about 100 nm into the film [74]. FY data was collected for

pristine DTI and P3HT:DTI films. Similar to the PEY data, orientation analysis reveals

that generally, the molecules become more edge-on with thermal annealing, as shown in

Figure A.10. The FY spectra show a much greater intensity of the π* transitions relative

to the higher energy σ* transitions as compared to the PEY spectra. This is likely to

occur because the alkyl chains of both DTI and P3HT populate the surface of the film

103



Supporting Information Chapter 2 Chapter A

Figure A.9: PEY carbon K edge spectra taken at different incident angles for a) an
as-cast DTI film and c) an annealed DTI film. The area under the π* peaks is plotted
vs. sin2(θ) and fit to a line for b) the as-cast film and d) the annealed film.

104



Supporting Information Chapter 2 Chapter A

Figure A.10: FY carbon K edge spectra taken at different incident angles for a) an
as-cast DTI film, b) an annealed DTI film, c) an as-cast P3HT:DTI blend, and d)
an annealed P3HT:DTI blend. The values of the orientation order parameter are
indicated.

to minimize surface energy. Since Auger emission is enhanced over fluorescent photon

emission for carbon by over two orders of magnitude, the signal-to-noise ratio of the FY

data is much less than the PEY data [186]. Overall, the values of S are more negative

for the annealed and blend films based on FY compared to PEY. It is possible that the

molecules have more edge-on character in the bulk compared to the surface. However,

the noisier FY data means that the linear fits of Iπ∗ vs. sin2(θ) were not as good.
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A.6.4 Contribution from DTI to Overall Orientation of Blend

Films

The orientation order parameter for as-cast and annealed blend films indicated a

greater degree of edge-on character in the annealed blend. However, the π* peak in the

PEY data of the blends is a composite of the π* peaks from DTI and P3HT. It is difficult

to separate the contributions from P3HT and DTI since they overlap significantly. To get

a sense of the relative contribution from DTI to the overall blend orientation in as-cast and

annealed films, the composition, or % DTI, of the π* peak in the blends was determined

based on a linear combination of π* peaks of the pure DTI and P3HT components.

Highly edge-on molecules exhibit a large difference in total π* intensity between incident

angles of 30◦ and 90◦, as seen in Figure A.9 for annealed DTI. Therefore, if DTI is much

more edge-on relative to P3HT in the annealed film compared to the as-cast film, then

the increase in % DTI of the composite π* peaks from 30◦ to 90◦ should be greater in the

annealed film. Figure A.11 shows the % DTI for different incident angles of the as-cast

and annealed blends. It is clear that the annealed blend has an overall greater fraction of

DTI and the increase in % DTI from 30◦ to 90◦ (35% to 55%) is greater than the as-cast

blend (28% to 40%). This supports the claim that the thermally induced reorientation

in the blends is mostly a result of changes in DTI.

A.7 Electron-Only and Hole-Only Diodes

Thermal annealing leads to a significant decrease in the electron current as expected

based on the reorientation of the DTI molecules. However, since P3HT does not undergo

the same type of reorientation, and possibly becomes more crystalline with annealing,

the hole current is not expected to decrease significantly with annealing since holes travel
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Figure A.11: % DTI as a function of incident angle for as-cast (blue circles) and
annealed (red open squares) P3HT:DTI blend films. The % DTI was determined
based on a linear combination of the π* peaks of the pure P3HT and DTI components.
The lines represent linear fits to the data.

predominantly through P3HT domains. Figure A.12 shows the dark J-V behavior of as-

cast and annealed electron-only and hole-only diodes. It is clear that annealing leads to

a significant drop in the electron current, but not in the hole current. The experimental

data was fit with a Mott-Gurney relation, J =
9

8
µε0εr

V 2

L3
, where µ is the mobility, ε0 is

the permittivity of free space, εr is the dielectric constant of the material, assumed to be

3.8, and L is the film thickness which was set to 100 nm. Using this relation, the electron

and hole mobilities can be estimated. For the electron-only diode, the electron mobility

decreased from µe = 4.1×10−6 cm
2

V · s
to µe = 1.8×10−7 cm

2

V · s
for the as-cast and annealed

devices, respectively. Alternatively, the mobility in the hole-only devices did not change

significantly, with a mobility of µh = 3.7 × 10−5 cm
2

V · s
and µh = 6.9 × 10−5 cm

2

V · s
for the

as-cast and annealed devices, respectively.
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Figure A.12: J-V curves taken in the dark for (a) an electron-only and (b) a hole-only
diode. Device geometry for the electron-only diode was glass/Al/P3HT:DTI/Ca/Al,
and glass/ITO/PEDOT:PSS/P3HT:DTI/Au for the hole-only diode. Data was fit
with a Mott-Gurney relation.

A.8 Additional GIWAXS Studies

A.8.1 Hexagonal Packing

The GIWAXS pattern of annealed DTI films shows a pattern indicative of hexagonal

packing. The reciprocal space pattern of a hexagon is another hexagon that is rotated

by 30◦. Therefore, a hexagonal structure oriented with one of its flat sides parallel to the

substrate would have a scattering pattern that includes a reflection nearly out-of-plane

(close to the qz axis), and another reflection at an angle 60◦ from the vertical axis. To

visualize this, the 2D GIWAXS patterns can be plotted as q vs. polar angle. This is

shown in Figure A.13. It is clear that the spots of high intensity for the reflection at 0.29

Å−1 are at polar angles near 0◦ and 60◦, as expected for hexagonal packing.

A.8.2 In Situ Experiments

In situ GIWAXS experiments were done to examine the temperatures and time scales

required for DTI reorientation. In situ experiments where the sample was incrementally
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Figure A.13: (a) A typical 2D GIWAXS pattern of an annealed pristine DTI film
showing intensity as a function of the in-plane and out-of-plane components of the
scattering wave vector. (b) This can be transformed to show q as a function of polar
angle (◦).

heated, allowed to equilibrate, and then a scattering pattern taken were performed on the

P3HT:DTI blend (Figure A.14). Additionally, an isothermal experiment was performed

where the sample was heated to 120 ◦C and GIWAXS data taken over time. This is

shown for a P3HT:DTI blend in Figure A.15. Note that it does take several minutes

for the sample to reach 120 ◦C when heated from room temperature. It is clear that

in the time it takes the hot plate to reach 120 ◦C, the characteristic hexagonal pattern

and in-plane π-π stacking of annealed DTI is already apparent, and this pattern becomes

more well defined with time.

Similar in situ GIWAXS studies, both at temperature during incremental heating

and as a function of time at 120 ◦C, were done for pristine DTI films. In situ scattering

at incremental temperatures reveals that, similar to the blend, the typical hexagonal

pattern begins to form in the reflection at 0.29 Å−1 even at 40 ◦C, as shown in Figure

A.16. This is close to the temperature where the exothermic peak on heating is observed

in the DSC, suggesting again that this is a cold crystallization peak. Further heating

leads to the pattern becoming more well-defined and the intensity of the π-π stacking

peak becomes more concentrated in-plane. When pristine DTI is heated to 120 ◦C and
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Figure A.14: In situ GIWAXS patterns of a P3HT:DTI blend film taken during
heating at a) 60 ◦C, b) 70 ◦C, c) 80 ◦C, and d) 120 ◦C.
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Figure A.15: In situ GIWAXS patterns of a P3HT:DTI blend film at a) room tem-
perature, b) once the sample reached 120 ◦C, c) 6 minutes after reaching 120 ◦C, and
d) 20 minutes after reaching 120 ◦C.
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Figure A.16: In situ GIWAXS patterns of a pristine DTI film taken during heating
at a) 40 ◦C, b) 60 ◦C, c) 80 ◦C, and d) 120 ◦C.

examined as a function of time (Figure A.17), it is again observed that by the time the

sample temperature reaches 120 ◦C, the hexagonal reflection at 0.29 Å−1 and in-plane

π-π stacking is already observed. Again, this pattern becomes more defined with time.

In situ data on the pristine DTI film is similar to the P3HT:DTI blend, however, it

seems that the characteristic annealed scattering pattern evolves at lower temperatures

and shorter annealing times. This is suggestive that blending P3HT and DTI somewhat

inhibits the kinetics of reorientation and ordering of DTI.
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Figure A.17: In situ GIWAXS patterns of a pristine DTI film at a) room temperature,
b) once the sample reached 120 ◦C, c) 10.5 minutes after reaching 120 ◦C, and d) 20
minutes after reaching 120 ◦C.
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A.8.3 Correlation Lengths

X-ray scattering experiments also provide a way to probe changes and development in

crystallite correlation lengths that result from annealing. The width of diffraction peaks

can provide information on correlation lengths within the sample and potentially grain

or crystallite sizes. The simplest way to extract information on the coherence length, Lc

is through the Scherrer equation [86, 27],

Lc =
2πK

∆q

,

where K is the shape factor (typically 0.8 - 1) and ∆q is the full width at half-maximum

(FWHM) of a diffraction peak. However, care must be taken when using the Scherrer

formula as it assumes that only crystalline size contributes to peak width, and ignores

disorder. The results of Scherrer analysis should be considered more as correlation lengths

between regions of disorder as opposed to true crystallite sizes. Nevertheless, this still

provides a useful way to track changes in correlation lengths.

Peak width analysis was performed on as-cast and annealed (120 ◦C for 20 min)

P3HT:DTI blends to estimate changes in correlation lengths and crystallite size. Scat-

tering peaks were fit with either a Gaussian or Lorentzian line-shape in order to determine

the peak position and FWHM. Fits were performed for scattering in the nearly out-of-

plane direction (along qz) for the alkyl stacking extent of DTI (centered at ∼ 0.29 Å−1)

and the (100) reflection of P3HT (centered at ∼ 0.38 Å−1). This provides information on

the vertical height of stacked DTI aggregates and P3HT crystallites. Additionally, the

extent of in-plane π-π stacking was determined by fits along the in-plane portion (along

qxy) of the π-π stacking reflections. Representative fits are shown in Figure A.18a and

A.18b. Changes in correlation lengths in the out-of-plane extent are shown in Figure

A.18c, and the in-plane π-π extent in Figure A.18d.
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Figure A.18: Representative example of peak fitting for (a) the nearly out-of-plane
scattering and (b) in-plane scattering near the π-π stacking distance for an annealed
P3HT:DTI blend. Correlation lengths in the nearly out-of-plane direction determined
from Scherrer analysis are shown in (c) for the hexagonal reflection of DTI and the
(100) reflection of P3HT. (d) shows the in-plane π-π stacking correlation lengths for
DTI and P3HT.
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The most significant change in correlation length is for the out-of-plane alkyl stacking

extent of DTI with thermal annealing. This suggests that annealing leads to aggregates of

separate DTI columns that in total may be quite high, nearly 50 nm. On the contrary, the

length of these DTI columns does not seem to change much based on the width of the π-π

stacking peak, as it only varies from ∼8 nm to ∼15 nm for as-cast and annealed blends,

respectively. It is possible that charge transport through separate stacks of DTI molecules

can occur even if their π-π stacking directions are not perfectly parallel. Charges may

still find pathways for transport in an as-cast film that consists of stacks of DTI with

no preferential orientation. Peak width data suggests that annealing does not lead to a

large increase in the lengths of DTI columns, so the reduced performance of annealed

devices is likely mostly due to reorientation and stacking of separate DTI columns.

A.8.4 Crystallite Orientation

Crystallite orientation can be determined from 2D GIWAXS patterns based on the

intensity distribution over polar angle (◦) of a given reflection. Crystallites with no

preferred orientation will appear as a ring of scattering in 2D scattering patterns. Figure

A.19 shows the intensity distribution as a function of polar angle for the (100) reflection

of P3HT and the alkyl stacking reflection for DTI located at ∼0.29 Å−1 as a function

of temperature during annealing. It is clear that the intensity distribution of P3HT

remains relatively constant with annealing, indicating there is little reorientation of P3HT

crystallites. The characteristic hexagonal pattern of annealed DTI shows up very clearly

by 70 ◦C.
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Figure A.19: Intensity distribution as a function of polar angle (◦) for (a) the alkyl
stacking reflection of DTI and (b) the (100) reflection for P3HT taken at various
temperatures during annealing.

A.9 Thermal Transitions Probed by DSC

Additional DSC data on pristine DTI and pristine P3HT is shown in Figure A.20a.

Also, a closer look at the crystallization peak of P3HT during cooling (around 200 ◦C)

reveals that when mixed with DTI, P3HT crystallizes at a lower temperature, as seen

in Figure A.20b. This suggests that DTI may also slightly inhibit the crystallization of

P3HT.
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Figure A.20: (a) DSC scans of pristine P3HT (red curve), pristine DTI (green dashed
curve), and a 1:1 by mass P3HT:DTI blend (blue dotted-dashed curve). A zoom in of
the crystallization peak of P3HT is shown in (b). The heating and cooling rate was
10 ◦C/min.
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B.1 Experimental Methods

Poly[3-(ethyl-5-pentanoate)thiophene-2,5-diyl] (P3EPT) and poly(3-hexylthiophene)

were purchased from Rieke Metals, Inc (Lincoln, NE). PVDF-TrFE (70:30) was pur-

chased from Piezotech LLC. P3EPT, PVDF-TrFE, and P3EPT:PVDF-TrFE blend so-

lutions were made by dissolving in 2-methyl-tetrahydrofuran at a concentration of 20

mg/mL. Thin films were fabricated by spin coating solutions at 2000 rpm for 60 s. Ther-

mally annealed samples were heated at 135 ◦C for 3 hours and slowly cooled to room

temperature.

Samples for GIWAXS were prepared by spin-coating solutions onto Si substrates or

glass/ITO substrates using the deposition conditions stated above. GIWAXS experiments

were performed at the Stanford Synchrotron Radiation Lightsource (SSRL) at beamline

11-3. A MAR 2300 area detector was used for 2D diffraction pattern collection. The

energy of the incident beam is 12.7 keV. The angle of incidence used was 0.10-0.12◦ and

the sample-to-detector distance was 40 cm. Exposure times were typically bewteen 120

s and 240 s. In situ GIWAXS experiments during thermal annealing were performed at
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beamline 7.3.3 at the Advanced Light Source (ALS). A Pilatus 2M silicon hybrid pixel

detector was used for 2D data collection. The X-ray energy at beamline 7.3.3 is 10 keV,

and sample-detector distance was 30 cm. An incident angle of 0.16◦ and a 5 s exposure

time were used for the in situ studies. For all GIWAXS experiments, samples were

placed in a helium atmosphere environment to minimize X-ray damage and background

scattering.

RSoXS was performed at beamline 11.0.1.2 at the ALS. Samples were prepared by

floating P3EPT:PVDF-TrFE thin films onto 1.5 mm x 1.5 mm, 100 nm thick Si3N4

membranes supported by a 5 mm x 5 mm Si frame (Norcada Inc.). 2D scattering was

collected in a transmission geometry with a sample-to-detector distance of 160 mm. Data

was collected on an in-vacuum CCD camera (Princeton Instrument PI-MTE) cooled to

-45 ◦C. 2D scattering data was then reduced by azimuthal averaging of the scattering

data over all q values. The RSoXS profiles shown were taken at 284.6 eV. Details of the

specifics of this beamline have been reported elsewhere [23].

Samples for electron yield NEXAFS were prepared by spin-coating onto Si substrates.

Partial electron yield NEXAFS experiments were performed at beamline U7A at the

National Synchrotron Light Source (NSLS). The incident X-ray beam was elliptically

polarized (polarization factor = 0.85) with the electric field vector predominantly in the

plane of the storage ring. The incident angle, θ, was 55◦ near the magic angle. 90◦ refers

to an incident X-ray beam that is perpendicular to the substrate. A spherical grating

monochromator was used to select soft X-rays in the range from 280 eV to 340 eV,

corresponding to the carbon K edge. The partial electron yield (PEY) data was collected

with a channeltron electron multiplier with an adjustable entrance grid bias that was set

to -150 V. All experiments were done in a UHV chamber. Carbon edge PEY data was

normalized by subtracting a linear pre-edge baseline and setting the edge jump to unity

at 320 eV. Transmission NEXAFS experiments were performed at beamline 11.0.1.2 at
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the ALS on thin films floated onto Si3N4 membranes.

Scanning transmission X-ray microscopy was carried out at beamline 5.3.2.2 at the

Advanced Light Source. Samples were prepared by floating P3EPT, PVDF-TrFE or

P3EPT:PVDF-TrFE films onto Cu TEM grids. Samples were mounted in a sample

chamber that was evacuated to low pressure and refilled to about 0.3 atm of helium.

The transmitted intensity was monitored using a scintillator and a photomultiplier tube.

Specifics of the beamline are reported elsewhere [187, 188, 24].

AFM experiments were performed in tapping mode on an Asylum Research MFP

3D AFM using NanoWorld Pointprobe Al-coated noncontact mode Si cantilevers with a

spring constant of 48 N/m and a resonant frequency of 190 kHz.

DSC measurements were carried out on a TA Instruments DSC 2920 differential

scanning calorimeter. About 5 mg of material was loaded into Tzero aluminum pans. A

blank Tzero pan was used as a reference. Samples were heated and cooled from 0 ◦C to

250 ◦C with a heating a cooling rate of 10 ◦C/min. Only one of the heating and cooling

cycles is shown in the figures.

Resistive switching devices were fabricated in a nitrogen atmosphere with the fol-

lowing geometry: glass/ITO/P3EPT:PVDF-TrFE/Ca/Al. The polymer blend layer was

deposited on the glass/ITO substrates via spin coating using the same conditions stated

above. The Ca/Al top contact was thermally evaporated with thicknesses of 10 nm (Ca)

and 90 nm (Al). Samples were thermally annealed at 135 ◦C for 3 hours. Devices were

studied under vacuum in a probe station at ∼10−5 Torr. Current-voltage testing was

performed by grounding the top contact and applying a bias to the bottom ITO contact.

Poling was carried out by applying +/-20 V to the ITO contact for 2 s, where positive

poling refers to a device state after +20 V were applied, and vice versa for negative

poling. Devices characteristics were determined by collecting current-voltage data at a

typical rate of 130 mV/s. For cyclic testing, poling at +/-20 V was applied for 10 s,
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Figure B.1: UV-vis spectroscopy of thin films of (a) as-cast P3EPT, (b) P3EPT
annealed at 135 ◦C, and (c) P3HT on glass/ITO substrates.

followed by reading at +3 V for 10 s.

B.2 UV-Vis Spectroscopy

B.3 P3EPT Mobility

B.4 Atomic Force Microscopy

AFM height images show a similar phase separated structure as seen in the phase

images. Height images reveal that some of the circular P3EPT regions seem to be convex

(protrude from film surface), while others are concave. These protrusions and depressions

are relatively small in the 10% P3EPT blends (∼5 nm), but increase to about 15 nm

and 25 nm for the 20% and 35% P3EPT blends, respectively. The total film thickness is

about 200 nm for these blends.
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Figure B.2: Current-voltage data for a P3EPT diode and corresponding fit to a Mot-
t-Gurney relation, J = 9

8µε0ε
V 2

L3 , where ε0 is the permittivity of free space, ε is the
dielectric constant of the material, assumed to be 4, and L is the film thickness, 190

nm. The mobility, µ, is estimated to be 1.8×10−4 cm
2

V s
. The geometry of these diodes

was glass/ITO/P3EPT/Ca/Al.

B.5 Grazing Incidence Wide Angle X-ray Scattering

Crystallite orientation can be probed by examining the intensity distribution as a

function of polar angle for a given scattering peak. Using the (200) peak from pristine

P3EPT, it is clear that there is enhanced intensity in the nearly out-of-plane direction

(along qz) and the in-plane direction (along qxy) suggesting a bimodal distribution of

edge-on and face-on P3EPT crystallites. The intensity vs. polar angle plot does not

exclude the scattering in the wedge near qz, which is shown in the 2D image.

B.6 Differential Scanning Calorimetry

DSC data of pure P3EPT (Figure B.5a) reveals an endothermic melting type tran-

sition upon heating at around 188 ◦C and an exothermic transition during cooling at

about 149 ◦C. PVDF-TrFE (Figure B.5b) shows a melting transition at 151 ◦C, and
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Figure B.3: 10 µm × 10 µm AFM height images of (a) 10:90 P3HT:PVDF-TrFE and
(b) a 10:90 P3EPT:PVDF-TrFe blend. Zoomed in height images of (c) 10:90, (d)
20:80 and (e) 35:65 P3EPT:PVDF-TrFE blend ratios.

a main crystallization peak at 131 ◦C. Furthermore, the phase transitions between the

ferroelectric and paraelectric phases of PVDF-TrFE occur at around 99 ◦C and 60 ◦C

during heating and cooling, respectively. A 50:50 blend of P3EPT:PVDF-TrFE shows

thermal transitions from both components.

B.7 Additional Data for Resistive Switches

B.8 Determining Mass Absorption for Composition

Analysis via STXM

The procedure for estimating composition (wt.%) from STXM images at two different

energies of the same region of the film were done as previously reported[24, 125]. The
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Figure B.4: (a) 2D GIWAXS pattern of a 35:65 P3EPT:PVDF-TrFE blend. (b)
Intensity vs polar angle plots for a P3EPT (200) reflection and the main (110)/(200)
reflection of PVDF-TrFE. These intensity distribution taken from the 2D GIWAXS
patterns of the pure components.

NEXAFS spectra of the pure components need to be converted from optical density

(OD), OD = ln(I0/I), to mass absorption, and this can be done by scaling the NEXAFS

data to the ”bare atom” mass absorption coefficient[24]. The bare atom spectrum is the

mass average of the imaginary part of the measured atomic scattering factors, f2, which

are available for each element on the CXRO database. The mass absorption of the bare

atom is given by

µ(E) = 2reλ(E)NA

∑
i xif2,i(E)∑
i xiAi

, (B.1)

where re is the classical electron radius, λ the photon wavelength, NA Avogadro’s number,

xi is the number of atoms of type i, and Ai is the atomic weight. The sum in the

denominator is chosen to be the molecular weight of the compound or the monomer

molecular weight for a polymer. The NEXAFS data of the sample was scaled so that a

post-edge value (340 eV) matched that of the mass absorption of the bare atom, as shown

for P3EPT in Figure B.12. The STXM composition image was determined based on two

images of the same region of the film, one at an energy where mass absorption of P3EPT

and PVDF-TrFE are somewhat similar (280 eV), and another where the mass absorptions

are very different (287.4 eV). This procedure is described in previous work[125].
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Figure B.5: Differential scanning calorimetry data for (a) pure P3EPT, (b) PVD-
F-TrFE and (c) and 50:50 P3EPT:PVDF-TrFE blend. A close up of the crystalliza-
tion peaks plotted in (d) shows a shift in crystallization temperature for the blends
relative to the pure components.

B.9 Transmission Soft X-ray Scattering

Radially averaged, Lorentz corrected (I × q2 vs. q) RSoXS profiles were fit to a

combination of log-normal distribution functions to determine peak positions [189]. A

representative example for the 10:90 P3EPT:PVDF-TrFE blend is shown in Figure B.14b.

The raw I vs, q data is also shown in Figure B.14a.
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Figure B.6: P3EPT:PVDF-TrFE based resistive switches show ON and OFF poling
characteristics over a variety of P3EPT ratios, including (a) 20%, (b) 35%, and (c)
50% P3EPT. Pristine refers to devices before any poling was applied.

B.10 Wide Angle X-ray Scattering

Penetration depth and intensity transmittivity were determined using well-known

Fresnel equations[190, 191]. The densities, ρ, of P3EPT and PVDF-TrFE were assumed

to be 1.15 g/cm3 and 1.78 g/cm3, respectively. The mass absorption was determined

based on the tabulated values of f2 from the CXRO database as discussed earlier and

interpolated to 12.7 keV. The mass absorption of P3EPT was estimated to be 4.88 cm2

g−1 and 2.6 cm2 g−1 for PVDF-TrFE.

Reduced intensity vs. q plots shown in Figure B.16 were determined by integrating

the intensity from the 2D scattering patterns for polar angles (χ) from 2◦ to 79◦, where

0◦ corresponds to scattering along the qxy direction and 90◦ corresponds to scattering

along the qz direction. It is known that in the grazing incidence geometry using a flat

area detector, there is an inaccessible region of the Ewald sphere along qz, so intensity

along qz cannot be considered as specular diffraction[84].

Intensity distribution as a function of χ (◦) for a given reflection reveals information

about crystallite orientation distribution. The Intensity vs. χ for the (200) peak of

P3EPT in a P3EPT:PVDF-TrFe blend with 50 wt.% P3EPT is shown in Figure B.19.

The (200) peak for 0.08◦, 0.10◦, and 0.12◦ incident angles have FWHM values of 31◦,
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Figure B.7: Current density and corresponding applied voltage to the bottom ITO
contact of a 10:90 P3EPT:PVDF-TrFE resistive switch. Devices were poled with a
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Figure B.8: Change in current density over time for a 10:90 P3EPT:PVDF-TrFE
device initially positively poled (+20 V) into the ON state, then held at 0 V. The
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Figure B.9: Transmission NEXAFS spectra near the fluorine K edge for PVDF-TrFE.
Absorbance is in optical density (OD). Absorption near these energies is selective to
PVDF-TrFE since P3EPT does not contain any fluorine atoms.
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Figure B.10: STXM images of a P3EPT:PVDF-TrFE blend with 50 wt.% P3EPT
taken at (a) a pre-edge energy (280 eV) where mass absorption is more similar between
polymers, and (b) at 285.3 eV near the π∗C=C transition of P3EPT where absorption
is dominated by P3EPT.
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Figure B.11: STXM images of (top) a 20 wt.% P3EPT blend and (bottom) a 35
wt.% P3EPT blend. Scans at 285.3 eV (left column) are at an energy where P3EPT
absorption dominates, and 691 eV (right column) is where PVDF-TrFE absorption
dominates. A phase separated structures similar to the 50 wt.% P3EPT blend is
evident.
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Figure B.12: The mass absorption of the materials was determined by scaling the
NEXAFS spectra of each component at a post-edge value (340 eV) to match the mass
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Figure B.14: (a) Intensity vs q scattering profiles P3EPT:PVDF-TrFE blends with
10 wt.%, 20 wt.% and 35 wt.% P3EPT taken at 284.6 eV. (b) Representative fit to
Lorentz corrected data to determine peak positions.
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Figure B.15: Tuning the incident angle in GIWAXS experiments can be used to probe
either the surface region of a thin film or more in the bulk. Estimated penetration
depth as a function of incident angle for a P3EPT:PVDF-TrFE blend film is shown in
(a), with the intensity transmittivity shown in the inset. The critical angle is 0.11◦,
similar to most polymers at this energy (12.7 keV).
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Figure B.16: Reduced intensity vs. q data for a P3EPT:PVDF-TrFE blend with 50
wt.% P3EPT at incident angles of 0.08◦ (top) and 0.12◦ (bottom). Peaks were fit using
a Gaussian or Lorentzian lineshape. An exponentially modified Gaussian was used
to fit the PVDF-TrFE peak as it is noticeably asymmetric in character. A constant
background (not shown) was assumed. The peaks corresponding to reflections from
P3EPT are shown in gold, PVDF-TrFE in purple, and amorphous scattering in green.
The ratio of the area of the PVDF-TrFE peak to that of the P3EPT (100) peak is
about 0.9 for both 0.08◦ and 0.12◦ incident angles.

32◦ and 30◦, respectively. This suggests that the orientation distribution of crystallites

close to the film surface (0.08◦) is not significantly different than crystallite orientation

through the bulk of the film (0.12◦).

B.11 In situ Thermal Annealing and Wide Angle

X-ray Scattering

GIWAXS patterns were collected at temperature for a 50 wt.% P3EPT blend film

that was heated from room temperature to 200 ◦C then cooled back down. A heating and

cooling rate of 10 ◦C/min was used. Clear changes in the crystalline nature of the film

occurs at temperatures corresponding to thermal transitions in PVDF-TrFE and P3EPT.

During heating, these transitions include a ferroparaelectric transition in the range of 80-
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Figure B.17: Intensity vs. polar angle (◦) of the P3EPT (200) peak for a
P3EPT:PVDF-TrFE blend with 50 wt.% P3EPT at different incident angles shows
orientation distribution for crystallites closer to the surface vs. in the bulk. Peaks
were fit to Lorentzian line shapes.

100 ◦C, melting of PVDF-TrFE at around 152 ◦C, and melting of P3EPT near 180 ◦C.

Recrystallization of P3EPT and PVDF-TrFE occur during cooling at around 142 ◦C and

133 ◦C, respectively, and another ferroparaelectric transition in the 70-50 ◦C range.

B.12 Water Contact Angle

Preliminary static water contact angle experiments were performed on annealed P3EPT,

PVDF-TrFE, and P3EPT:PVDF-TrFE thin films. Droplet volumes used were 10 µL. As-

suming the contact angle of a P3EPT:PVDF-TrFE blend film varies linearly between the

values of the pure components, the fraction of P3EPT at the film surface was estimated

based on the contact angle of the blends. The surface P3EPT content was estimated to

be 71%, 75%, 79%, and 88% for the 10 wt.% (14.7 vol.%), 20 wt.% (27.9 vol.%), 35 wt.%

(45.5 vol.%) and 50 wt.% (60.8 vol.%) P3EPT blend films, respectively. This is relatively

similar to the surface composition values determined by PEY NEXAFS.
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Figure B.18: Reduced Intensity vs. q GIWAXS data for the temperatures shown in
Figure B.19. A corresponding differential scanning calorimetry (DSC) curve for a
P3EPT:PVDF-TrFE blend with 50 wt.% P3EPT is shown in (a), and arrows indicate
approximate points where scattering patterns were taken. Scattering profiles of a 50
wt.% P3EPT thin film at various temperatures are shown (b) during heating and (c)
during cooling.
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Figure B.19: Two-dimensional GIWAXS patterns of a P3EPT-PVDF-TrFE blend
thin film with 50 wt.% P3EPT taken at various temperatures during annealing and
cooling of the same sample. Several scattering patterns during heating are shown:
(a) at 34.9 ◦C, (b) 83.2 ◦C near a phase transition of PVDF-TrFE, (c) 116.2 ◦C,
(d) 148.3 ◦C close to the melting point of PVDF-TrFE, and (e) 180.9 ◦C near the
melting point of P3EPT. Scattering images shown during cooling are (f) 69.9 ◦C
reveals the reformation of crystallites of P3EPT and PVDF-TrFE, (g) 51.4 ◦C near a
phase transition of PVDF-TrFE, and (h) cooled further to 37.1 ◦C.
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Figure B.20: Representative static water contact angle images for (a) P3EPT, (b)
PVDF-TrFE, (c) a 10 wt.% P3EPT blend, (d) a 20 wt.% P3EPT blend, (e) a 35
wt.% P3EPT blend, and (f) a 50 wt.% P3EPT blend. The measured contact angles
(indicated on the images) are 78◦, 102◦, 85◦, 84◦, 83◦, and 81◦ for (a) through (f),
respectively.
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Appendix C

Supporting Information Chapter 4

C.1 Additional Information for Experimental and Com-

putational Methods

Polymer fragments were modelled using Gaussian 09 [192]. An example of the

sexithiophene-based unit cell used for simulations of poly(thiophene) is shown in Fig-

ure C.1.

23.54 Å

Figure C.1: Schematic of determining unit cell lengths for XCH calculations of in-
finitely long polymer chains. Example shown is for a thiophene chain.
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Figure C.2: Comparison of experimental carbon K edge NEXAFS data of the
donor-acceptor polymer PCDTPT to simulated spectra of a single CDT-PT fragment,
CDT-PT-CDT-PT fragment, and a PCDTPT model.

C.2 Simulated and Experimental Spectra of Donor-

Acceptor Polymers

Additional NEXAFS data and simulations for PCDTPT, P(NDIOD-T2), and a furan-

containing, diketopyrrolopyrrole-thiophene low-bandgap polymer PDPP2FT [174] are

shown below.
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Figure C.3: Experimental and simulated (CDT-PT-CDT-PT fragment) carbon K
edge data for PCDTPT is shown in (a). The qualitative trend in angle-dependent
dependent data in the π∗ region can be reproduced with calculations, as shown in (b).
Experimental partial electron yield angle dependent data for an aligned PCDTPT
sample is shown in the top portion of the graph, and simulated angle-dependant
spectra assuming perfectly edge-on and aligned PCDTPT molecules is shown in the
lower region.
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Figure C.4: Experimental vs simulated nitrogen K edge spectra at an incident angle
of 51.2◦ of an aligned PCDTPT sample. Good agreement in relative intensities of the
first few peaks is evident.
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Figure C.5: DFT-optimized structure of P(NDIOD-T2) reveals a twist, or dihedral
angle, between the NDI unit and the thiophene units. Simulated angle-dependent
spectra in the C 1s→ π∗ region are shown in the plot. The NDI unit was assumed
to be perfectly edge-on, i.e. aligned with the y-axis. The angle-dependent spectra of
carbon atoms only on the NDI unit are shown in the blue traced in the middle region
of the plot. Angle-dependent spectra of thiophene atoms are shown as the orange
traces in the lower region of the plot.
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Figure C.6: Comparison of experimental and simulated spectra for donor-acceptor
polymers. The carbon K edge spectra of PDPP2FT (structure shown in inset) is
shown in (a). Nitrogen K edge spectra of P(NDIOD-T2) is shown in (b).
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