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A B S T R A C T   

Modeling energy storage for a renewables-driven grid using every hour of the year gives more insight and higher 
accuracy, but can be computationally demanding. In this study, we propose a novel and straightforward Critical 
Time Step technique, independent of the load and generation profiles, to reduce computational requirements 
with little loss in accuracy for a solar-dominated system. Using the diurnal cycle, specifically the critical times of 
an hour after sunrise and an hour before sunset, results in an excellent tradeoff of accuracy and computational 
complexity compared with fixed-time-step approaches. The accuracy and value of the technique are evaluated by 
comparing results for three weather years. The technique systematically underestimates the capacity expansion 
needed but differentiates the three weather years with results correlating well with the hourly simulations. 
Overall, the results show a high accuracy for the Critical Time Step technique in predicting the power expansion 
of the resources and the energy rating expansion of the storage system for a grid with more than 35% share of 
solar in the total operational power. The highest error occurred for storage power buildout but did not exceed 
10% relative to the 1-hr-resolution simulation for the studied case.   

1. Introduction 

As the world is replacing coal and natural-gas power plants with 
solar and wind generators, modeling of capacity expansion of electrical 
grids shifts from “how many fossil fuel plants do we need to meet peak 
demand” to “how can we couple storage with solar and wind electricity 
to have adequate power for every hour of the year?” Although some 
studies have concluded that “firm low-carbon electricity” [1] or 
“cross-sector storage” [2] may reduce need for energy storage, there is 
interest and value in understanding how energy storage may be used to 
both keep the lights on at night (“diurnal” storage) [3] and provide 
power through days, weeks, or months when solar and wind electricity 
generation are inadequate to meet demand (“long-duration” storage) 
[4]. When energy storage plays a key role, capacity expansion modeling 
evaluates energy capacity (GWh) in addition to power capacity (GW), 
resulting in the need to study what happens between times of peak de
mand, perhaps requiring study of every hour of the year [5]. 

Thus, capacity expansion modeling of energy storage may benefit 
from new strategies. Modeling every hour of the year rapidly increases 
computational requirements especially when coupled with other re
quirements for understanding the energy system. Although modern tools 

are able to complete very complex calculations, an efficient strategy 
enables modeling the evolution of the capacity expansion over decades 
[6], repeating calculations for many weather years to minimize the ef
fects of inter-annual weather variability [7,8], optimizing electricity and 
other use simultaneously [9,10], and exploring a large parameter space 
(e.g. when the cost, duration, and efficiency of storage are simulta
neously varied) [11]. 

Wang et al. [12] found that different strategies for reducing 
computational intensity could lead to significant differences in the sys
tem’s design and performance, emphasizing the need to select the 
strategy according to specific requirements carefully. The strategies may 
be categorized in two main groups (Fig. 1): the fragmented-year 
approach (often referred to as “clustering”), where specific hours 
and/or days from the 8760 h of a year are selected, and the full-year 
approach, where time steps span the year without gaps [13,14]. Such 
simplification invariably changes the calculation, resulting in error 
relative to the hourly simulation. Such errors are observed to increase 
with higher shares of variable renewable energy resources and lower 
emission targets [15–17], highlighting the importance of reduced 
computational intensity to energy storage studies [18]. 

There are many studies in the literature that deployed fragmented- 
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year approaches. Reichenberg et al. [19] found that both the 
representative-hours and representative-days approaches can predict 
renewable capacities within a 10% error margin. Frew et al. [20] also 
noted that using a representative subset of days within a full-year time 
horizon results in computational savings with a reasonable loss of ac
curacy. However, they warn that the effect of changing storage 
balancing constraints on the outputs may not be appropriately captured. 
Moreover on this deficiency, Holger Teichgraeber and Adam R. Brandt 
[21] showed that conventionally used fragmented-year approaches 
often do not perform well when there is a high intra-day variability, 
especially when the goal is to investigate the storage. Blanford et al. [22] 
mentioned this weakness for the representative-hours approaches and 
suggested that one way to address this limitation is to represent the year 
with a small number of full weeks or days, possibly at slightly less than 
hourly resolution, and examine the deployment of electricity storage, 
subject to reservoir constraints, within each of these “representative 
weeks” or “representative days.” However, Green et al. [23] showed that 
even these clustering methods are not suitable for modeling rare events 
and their consequences. The novel representative days approach by Paul 
Nahmacher et al. [24] also cannot sufficiently cover the variability of 
solar and wind energies under a very low temporal resolution. 

On the other hand, the full-year approach as per this definition has 
the advantage of keeping the chronological order. The number of time 
steps may be further reduced by prioritizing the critical hours, which 
may not align with those identified by fixed-time-step downsampling 
approaches [25]. To address this, Guibert et al. [25] proposed a 
variable-time-step approach using the residual demand (demand minus 
solar, wind, and hydropower) to identify the critical times, found great 
value in the approach, and concluded that further work could be 
beneficial. For the non-critical times, they used coarser time resolution. 
By applying their method to the DIETER energy system model, they 
obtained errors smaller than 2% for solar and wind installed capacities. 
Still, the obtained error was higher and around − 12% to − 17% for 
battery storage power and the chosen variable timesteps depended on 
the residual demand profile. 

It is possible to merge the fragmented-year and full-year approaches 
by placing representative days (fragmented time elements) in a chro
nological order (green dashed box in Fig. 1) [26,27], improving accu
racy of the results for energy storage. Tejada et al. [28] concluded that 
including consideration of the chronology to the representative days 
approach is useful though they found it difficult to simultaneously 
model short and long time scales and still found errors of 10% or more 
for some parameters for some implementations. Wogrin et al. [29] 
proposed a new approach to modeling power systems called “system 
states” which incorporates chronological information and multiple 
important system features; however, the “system states” approach may 
be more complex and require more data to be collected than the 

traditional load levels approach, as it requires defining and incorpo
rating a transition matrix between states. This data requirement may 
make it more difficult or costly to implement in practice. 

The previously mentioned studies in the literature use one or more 
outputs from the model, such as the solar, wind, or reduced load after 
subtracting the solar and wind, as the basis of defining their methods. 
For studies of energy storage interactions with a complex grid, the 
community needs a technique that is accurate, computationally effi
cient, and doesn’t use the outputs of the model as inputs. 

To satisfy this need, this paper proposes a novel variable-time-step 
approach, the Critical Time Step (CTS) technique, for modeling solar- 
dominant energy systems. The distinctive diurnal features of a solar- 
dominant grid define the CTS with a considerable decrease in compu
tational requirements. Section 2 briefly describes the code for applying 
the proposed CTS technique, input parameters, and baseline model re
sults when 1-h steps are used to model a full year (8760 h). Then, Sec
tions 2.1 and 2.2 describe how to reduce the modeled times both using 
fixed and variable time steps. Moreover, section 2.2 describes the se
lection of 2 critical times for each day and analyzes why and when these 
provide adequate accuracy based on the physics of the diurnal cycle. The 
results and discussion section compares the hourly results with those 
using fixed-time-step sampling approaches for a year in which sub
stantial solar adoption is expected. Finally, the paper tackles the chal
lenge of identifying whether the errors introduced by sampling 2 steps/ 
day instead of 24 steps/day are acceptable by modeling multiple 
weather years and seeing whether the CTS calculation can correctly 
differentiate the years (compared with the hourly simulation). To 
conclude the study, the paper seeks to determine how much solar 
electricity is needed to reduce errors in the CTS technique. To do this, 
the years 2030–2045 using policy assumptions that promote the adop
tion of solar power are simulated, and the change of the errors were 
examined as the proportion of solar electricity supplied to the grid 
increased. This identified the threshold below which the model’s accu
racy declines in solar-dominant grids. 

2. Methodology 

In order to implement the proposed CTS technique (which is elabo
rated upon in this section), a code was developed and added to the 
publicly available Python RESOLVE capacity expansion model, which 
was developed by Energy and Environmental Economics (E3) (for more 
information about RESOLVE, see Appendix). The added code replaces 
the hourly resolution of the input profiles with two-time-points-per-day 
input profiles (or more time steps, if desired, as for the fixed-time-step 
approach described below). The code removes other time points and 
replaces the values for the defined critical hours with the average of that 
critical data point and all subsequent data points that will be removed 

Fig. 1. Examples of computational-time-reduction methods for capacity expansion modeling [13].  
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before reaching the next critical hour. In the next step, the software uses 
these newly calculated profiles to do the capacity expansion modeling 
accounting for the non-hourly time steps when calculating the objective 
function. E3 plans to release the developed code and the proposed CTS 
technique in their future package. 

Load profiles that match the weather for the three years 2007, 2008, 
and 2009 were developed and have been used by the state of California 
for capacity expansion modeling [30,31]. This study used those data 
from these specific years to benefit from load profiles that reflect actual 
weather patterns. 

For all other generators than solar and wind, RESOLVE optimizes the 
dispatch using ramping and fuel availability constraints. However, for 
hydropower, fixed-generation profiles were chosen to represent a dry 
year. From data reported by Energy Information Administration (EIA) 
[32] and California Independent System Operator (CAISO) [33] for the 
years 2019, 2020, and 2021, hourly generation data were selected from 
the year with the least generation for each balancing area. These gen
eration profiles were used as fixed inputs (the model was not given the 
option to change the profile of the dispatch). 

Fig. 2 shows the operational capacities obtained for an optimization 
using 1-h time steps (8760 steps), 2045 loads/targets, and generation 
profiles reflecting 2007 weather. The “Other” resources in this figure 
include geothermal, natural gas, coal, nuclear, and biomass. The model 
constraints limit the building of new coal, nuclear, hydro, and biomass 
capacities. However, some new natural gas plants are built to provide 
adequate reserve. 

In the following, the full-year approaches for reducing computa
tional times used in this study are demonstrated. 

2.1. Fixed-time-step calculations 

This study uses two fixed-time-step, full-year, computation-time- 
reduction methods: 1) “snapshots” and 2) “averages.” For both 
methods, the length of the fixed time step was varied by 1 h, 2 h, 3 h, 4 h, 
…, 12 h. For the “snapshots” approach, the selected hourly values were 
directly extracted from the full-year input generation and load profiles 
(8760 h). This approach ignores the input data in between the selected 
time steps. For the “averages” approach, the data in each time block 
between time steps were averaged and new input profiles were created 
(for both generation and loads) for each time step using the code that 
was described for the critical-time-step technique to average the data in 
each fixed time step. For both of the fixed-time-step approaches, the 
starting hour was varied to explore all possible combinations of time- 
step lengths and start times. For example, in case of a fixed time step 
of 4 h, the starting hours were selected to be 0:00, 1:00, 2:00 or 3:00. 

2.2. Variable-time-step calculations: proposed Critical Time Step 
technique 

When reducing the computational complexity by increasing the 
length of the time steps, researchers have used many strategies, as 
described in Fig. 1. Logically, it makes sense to identify the critical times 
during the year when the system will be most stressed. The identification 
of those critical times for a grid with a high fraction of solar and wind 
generators has usually evaluated the times of peak net load (sometimes 
called residual demand) [25], where the net load is calculated by 
reducing the load by the variable (e.g. solar and wind) renewable elec
tricity generation. This is logical because the model must build enough 
storage and other generators to deliver the needed power when solar and 
wind electricity are inadequate. However, the calculation of the net load 
is an output of the model rather than an input, creating the need to es
timate the result of the calculation before selecting the critical time 
points. This study undertakes to develop a method that would work well 
without using the model outputs and that would be independent of the 
weather characteristics or extreme events in any year. 

This study uses the unique features (associated with sunrise and 
sunset) of a solar-dominant energy system to select the critical time 
points that are the key element of the proposed 2-point CTS method. 
When solar is a primary source of electricity, it is expected that surplus 
electricity during the day will charge the storage, reaching the 
maximum state of charge around sunset. As an example, Fig. 3 shows the 
total power generation, the power provided by each generator type, the 
electrical load, and the dis/charging for all storage elements for each 
hour of the solstices and equinoxes obtained using the 1-h-time-step 
calculation described in Section 2. Fig. 3 shows how the storage starts 
charging around sunrise and discharging around sunset, as could be 
expected. More precisely, roughly an hour after sunrise and an hour 
before sunset correspond to the extrema of the storage state-of-charge, 
with little variation from season to season. For modeling of CAISO, 
sunrise and sunset times for latitude 34.1 ◦ and longitude − 118.2 ◦ were 
used, representing a central California location. Each time was rounded 
to the nearest hour before adding or subtracting an hour. The state-of- 
charge curves are somewhat flat near the extrema, reducing the need 
to pinpoint the exact time of the extrema for every day of the year. 
Modeling of areas more than one time zone wide may require modifi
cation to this approach for selecting the critical time points, but the 
approach of identifying the hours of the extrema can be extended to such 
situations. As we are evaluating the implementation of CTS technique 
for designing a future grid, section 3.2.2 explores how well it may work 
starting in the year 2030. 

The two key elements of the proposed 2-point CTS technique are to 
1) use an hour after sunrise and an hour before sunset (labeled as 
“selected” in Fig. 3) as two critical time points for each day and 2) use 
the averages approach so that the charging and discharging of the 
storage will be appropriately tracked for all hours. Relative to a full- 
year, hourly optimization, using 2 time points per day reduces the 
number of time points by a factor of 12, which may reduce solving time 
by a factor of 100 or more. Using 2 time points per day could do well at 
estimating the needed size of the storage in terms of energy capacity, but 
identifying the hour at which the net load is the greatest each day in 
order to reduce errors in determining builds of the other generators may 
also be needed. Surprisingly, using 2 time points per day also did 
reasonably well at selecting the builds of all generators. Next, the reason 
why 2 time points per day give so much information will be discussed 
(see Table 1) with the intent that this understanding will help to identify 
when 2 time points per day may be adequate or inadequate. 

In addition to quantifying the total energy storage capacity, the 
model may be used to simultaneously quantify the energy storage in 
storage resources with a range of properties. Fig. 4 shows the energy 
storage system state-of-charge throughout 8760 h of the year obtained 
from running a 1-h optimization for 2045. By selecting 2 time points for 
every day of the year, it is not needed to identify which days of the year 

Fig. 2. Operational capacities for 2045 obtained using 1-hr time steps and 2007 
weather data. 
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will require the most diurnal storage, and which will require use of long- 
duration storage. Fig. 4 illustrates how capturing daily variations of the 
storage state-of-charge will define both the needed diurnal energy 
storage, and the needed long-duration storage (including seasonal and 
cross-day storage). 

As mentioned, Figs. 3 and 4 show how the choice of the 2 critical 
time points per day facilitates accurate calculation of the needed energy 
storage. Fig. 3 also shows how the selected time points separate times of 
solar generation from almost no solar generation, enabling use of the 
selected time points to facilitate the model’s selection of solar vs wind 
generators. To further aid the discussion, the reason that the very 
complex calculation done by RESOLVE may succeed in quantifying 
other elements of the capacity expansion has been analytically 

demonstrated. 
Neglecting the efficiency losses for the energy storage system, the 

discharging and charging of the storage can be estimated by the differ
ence between the load and the generation as in Eqs. (1) and (2): 

Discharging=
∑SR+1

t=SS− 1
[Load(t) − (Wind(t))

]

− (SS − SR − 2) ∗ Other D (1)  

Charging=
∑SS− 1

t=SR+1
[Wind(t) + Solar(t) − Load(t)] + (SS − SR − 2) ∗ Other C

(2)  

where Discharging and Charging are the total discharge or charge in one 

Fig. 3. Generation profiles and storage state of charge versus the daily datapoints obtained for solstices and equinoxes from a 1-h-time-step simulation of 2045.  
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daily cycle, respectively, Load(t) is the total load for each hour t, Wind(t) 
is the wind generation for each hour t, Solar(t) is the solar generation for 
each hour t, SR and SS are the hours of sunrise and sunset, respectively, 
and Other D and Other C approximate the electricity generation by the 
other generators during times of discharging and charging, respectively. 
In Eqs. (1) and (2), Other D and Other C are assumed to be independent of 
hour t, so are multiplied by the number of hours rather than being 

included inside of the summation. The equations are written in this way 
to make the point that, for the scenarios that are being explored (in 
which the generation by Other D and Other C varies little during the day) 
the choice of time points does not need to consider the profiles for Other 
D and Other C. However, strictly speaking, these are not constants, and, 
in other scenarios, Other D and Other C may be important in determining 
the critical time points, so understanding their role in determining the 
outcome is discussed next. 

The Other C generators are high-capacity-factor generators including 
nuclear, coal, geothermal, biomass, and hydropower generators. In 
general, these generators are selected by the model according to cost 
rather than according to whether they can be dispatched to meet a peak 
load. Because these generators run almost constantly (relative to solar 
and wind), their contribution is constant, and the selection of “critical” 
times is meaningless for them. In Fig. 3 the traces labeled “Other” and 
“Hydro” are fairly constant (at least compared with the solar and wind 
profiles), suggesting that for this simulation, the assumption of these 
being constant is reasonable. The Other D generators include the Other C 
generators as well as dispatchable natural gas generators. Because the 
simulation limits their total use by limiting the emissions of carbon di
oxide, the use of these generators will be determined mostly by the 
emissions restriction along with the cost. Thus, the accuracy of the 2- 
point CTS technique may be anticipated by inspecting “Other” and 
“Hydro” traces in Fig. 3. If these showed significant variability over the 
day, then it might be beneficial to add additional critical time points 
accordingly. For example, it is anticipated that a hydropower plant that 
is being used as a dispatchable generator to meet peak demands might 
benefit from adding additional time points. 

For systems that have relatively constant use of “other” generators, at 
a high level, Eqs. (1) and (2) show how the model has the needed in
formation from the 2-point aggregation to identify the optimal capacity 
expansion. The left side of Eqs. (1) and (2) are calculated as part of the 
optimization by the model. The load summation term is predefined by 
the inputs. Equation (1) then determines the model’s optimized choice 
of wind generators from the relative costs of building and operating 
wind vs Other D generators to make the right side of Eq. (1) equal the left 
side. Then the needed amount of solar generation is roughly determined 
by Eq. (2) with all other terms being either predefined or defined by Eq. 
(1). 

Equations (1) and (2) are a simplification of the full calculation; they 
are meant to give the reader insight into why and when the 2-point CTS 

Table 1 
Step-by-step analysis of information provided by 2-point CTS technique.  

Modeled element Equation or 
Figure 

Description 

Diurnal energy storage 
capacity 

Fig. 4 Sampling the extrema for energy 
storage state-of-charge for each day 
sizes the diurnal storage by 
comparing the difference between the 
state-of-charge in the morning and 
evening on adjacent days 

Long-duration energy 
storage capacity 

Fig. 4 Sampling the extrema for energy 
storage state-of-charge for each day 
sizes the long-duration storage by 
comparing the difference between the 
minima and maxima over the entire 
year 

Power capacity of 
components other than 
wind and solar 

Fig. 3 The choice to build out other 
components depends less on the 
selected time points (these other 
generators provide fairly constant 
power) and more on the cost 
optimization and emissions 
restrictions 

Wind power capacity Eq. 1 Determined by the difference 
between the nighttime load 
(predefined) and the average power 
needed from the diurnal storage 
(already determined) and other 
generators (already determined in the 
previous step) 

Solar power capacity Eq. 2 Determined by the energy needed to 
charge the storage during the day 
(already determined) after 
accounting for the difference between 
the load (predefined) and wind power 
generation (determined in the 
previous step) plus other generation 
(already determined)  

Fig. 4. State of charge of all storage for 1-hr optimization for 2045. The orange arrows show how 2 critical points per day can identify the needed diurnal, cross-day 
and seasonal storage capacities. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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technique can be fairly accurate. The success of the 2-point CTS tech
nique is evaluated in section 3. 

3. Results and discussion 

In the previous section, the performance of the CTS technique was 
analyzed analytically. This section, firstly, will compare the results ob
tained by the model using the CTS and other fixed-time-step approaches 
(methods that maintain the chronology; see Fig. 1). Then, some sensi
tivity analyses will be provided to show to what extent the CTS tech
nique is useful and could be deployed for other grids. 

3.1. Fixed-time-step temporal-resolution-reduction approaches vs the 
Critical Time Step technique 

Section 2 showed how selecting the two critical time points per day 
enables us to accurately model the energy storage rating and the power 
capacity expansion of the resources. The following will present the re
sults of these metrics for the CTS and fixed-time-step approaches. 

3.1.1. Energy storage build (GWh) 
Fig. 5 shows the selected energy storage capacity (in GWh) built for 

the 2045 simulation, comparing the CTS technique with all possible 
fixed-time-step resolution calculations using both averages and snap
shots strategies. The first and second bars in the figure are for the CTS 
technique and hourly simulation, respectively. For the bars in each 
fixed-time-step resolution group, the bars differ based on the first 
selected time point. For example, there are 3 bars for the 3-hrs snapshot 
calculations, where the first selected time point for the bars are 00:00 a. 
m., 1:00 a.m., and 2:00 a.m., respectively. According to Fig. 5, the error 
increases when the temporal resolution is coarser (right side of the 
figure). Fig. 5 exhibits more variable results for 3-hrs, 4-hrs, 6-hrs, 8-hrs, 
and 12-hrs temporal resolution cases, where the sampled hours fall at 
the same hour of the day for every day of the year. On the other hand, 
the results for those fixed-time-step calculations that capture different 
hours of the day on different days are more consistent, making the effect 

of the first selected time point less significant. 
The accuracy of each set of calculations in Fig. 5 as a function of the 

number of sampled time points can be assessed by Fig. 6. For the fixed- 
time-step calculations, the differences between the biggest and smallest 
calculated values (depending on the starting hour for the calculation) 
are indicated by uncertainty bars in Fig. 6, and the mean of the calcu
lated values are shown by circles and diamonds for the averages and 
snapshots approaches, respectively. Fig. 6 shows that the snapshots 
approach systematically overestimates the energy storage needed 
because the selected hours with high net demand will be attributed to all 
hours in the created time block, resulting in a higher effective net de
mand. In contrast, the averages approach systematically underestimates 

Fig. 5. Selected energy storage capacities (GWh) obtained for the 2045 simulation using fixed time steps ranging from 1 h to 12 h and the 2-point CTS technique (red 
bar, far left). The top black labels indicate the time interval (in hours) for each set of fixed-time-step calculations. The red labels indicate whether the averages (gray 
bars) or snapshots (blue bars) approach was used for preparing the input profiles. The horizontal red line indicates the 1-h simulation result; errors are calculated 
relative to this. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 6. Total energy storage capacity selected (GWh) versus the number of time 
points for the fixed-time-step technique and 2-point CTS approach. The un
certainty bars indicate the range of the biggest and smallest calculated values 
obtained by changing the starting time point for the fixed-time-step cases. The 
red dashed line indicates the value obtained for the 1-hr calculation. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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the needed energy storage capacity because the hours with high net 
demand will merge with the adjacent values in the created time block 
yielding a smaller net demand value for the time step [25]. Although 
decreasing the number of sampled hours leads to higher errors for the 
fixed-time-step calculations, the CTS technique predicts the energy 
storage rating with only about − 1% error relative to the 1-h time step 
calculation, despite requiring fewer than one tenth of the timepoints. 

3.1.2. Power build (GW) 
Fig. 7 shows the capacity expansion results for the generators, pre

sented in the same format as Fig. 6. Similarly, Fig. 7 shows larger vari
ations for the capacity expansions for 3-hrs, 4-hrs, 6-hrs, and 8-hrs time 
intervals calculations when changing the starting hour. In Fig. 7, the 
fixed time step approaches show a systematically increasing error for the 
total capacity expansion as the temporal resolution is being reduced. 
The snapshots approach tends to overestimate, and the averages 
approach tends to underestimate the total capacity expansion. Again, 
Fig. 7 shows smaller errors obtained from the CTS technique than the 
outcomes of the fixed-time-step approaches with similar computational 
intensity. The results show that, relative to the hourly calculation, the 
CTS approach calculates storage capacity expansion with − 6.1% error, 
wind plus other resources capacity expansion with − 3.4% error, solar 
expansion with − 0.4% error, and total power capacity expansion with 
− 2.7% error. Wind and other resources are considered together in Fig. 7, 
because they are fairly small compared to the others. 

3.2. Sensitivity analyses 

Any reduction in computation time is anticipated to change the re
sults. While the capacity expansion model can give an exact result for the 
problem it is given, the results have uncertainties that reflect the un
certainties in the model inputs as well as other limitations to the model. 
While Figs. 5–7 demonstrate that the 2-point CTS technique gives more 
accurate results than fixed-time-step approaches with similar compu
tational intensity, the question is whether the accuracy is good enough 

to be useful. The required accuracy depends on the question being 
answered. Section 3.2.1 assesses the accuracy and utility of the CTS 
technique by asking the question “What effect does the weather year 
have on the optimal capacity expansion?” Then, Section 3.2.2 considers 
the range of applicability – how solar dominant does the electricity 
generation need to be to keep errors small? 

3.2.1. Critical Time Step technique ability to detect effects of choice of 
weather data 

As mentioned before, the publicly available inputs for RESOLVE 
include load and generation profiles reflecting the 2007, 2008, and 2009 
weather years. The results in Figs. 5–7 were obtained using 2007 data. 
Here the 2008 and 2009 weather years are added to assess the accuracy 
and value of the CTS technique. Figs. 8 and 9 compare the capacity 
expansion results for the 1-h calculation and the 2-point CTS technique 
for the three weather years, showing fairly similar results. It is expected 
that the differences caused by using weather data from different years 
will have relatively small effects on the results of the simulation, but 
sometimes the goal is to study those small differences, especially 
because these differences are anticipated to increase in coming years. 
The success or lack of success of the CTS technique in detecting those 
small differences provides a useful assessment of the value of the 
technique. 

Therefore, to quantitatively assess that success, Fig. 10 plots the 
selected build outs for 2008 and 2009 relative to 2007, with the hourly 
calculation plotted on the x-axis and the CTS calculation plotted on the 
y-axis. As the figure shows, the CTS results correlate well with the 
outcomes of the hourly simulations when changing the weather data. 
For example, the hourly simulations show that the weather in 2008 and 
2009 requires more storage and generators than in 2007. While the CTS 
approach consistently underestimates the needed build out, the CTS 
results also conclude that 2008 and 2009 require more storage and 
generators, demonstrating how the CTS technique can correctly identify 
even the small differences between weather years. 

Fig. 7. Optimized capacity (GW) expansions versus number of timepoints for the 2045 simulation using the CTS technique and the fixed-time-step approaches. The 
1-h calculation is shown by the red dashed line. The uncertainty bars indicate the range of variation based on the biggest and smallest calculated values obtained by 
changing the starting time point for the fixed-time-step cases. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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3.2.2. Critical Time Step technique sensitivity to solar ratio 
Section 2.2 concluded that the accuracy of the 2-point CTS technique 

is likely to depend on the degree of the grid’s solar-dominance. Fig. 11 
shows the error of the calculated storage energy expansion using the CTS 

technique relative to the 1-hr simulation versus solar ratio, where the 
solar ratio is defined as the ratio of the solar operational power to the 
total operational power. The data were obtained using the inputs 
described in Section 2 for the target years of 2030–2050 using the three 
weather years data, i.e., 2007, 2008, and 2009. From 2030 to 2050, the 
solar ratio increases because of policy requirements to move toward 
greater use of renewable energy and reduced carbon dioxide emissions. 
Fig. 11 shows that the CTS accuracy systematically correlates with the 
solar ratio when the ratios are smaller than 35%. However, for the solar 
ratios greater than 35%, the CTS errors show no systematic trend but 
remain small (at most − 7%), where the mean value of the errors is 
− 4.1%, quantifying the systematic underestimation of the CTS tech
nique of the capacity expansion. Based on calculations not shown, a grid 
that adopts more wind is also predicted to benefit from the 2-point CTS 
technique as long as the solar is enough to cause the storage state-of- 
charge extrema around sunrise and sunset. 

4. Conclusion 

In this study, a 2-point Critical Time Step (CTS) technique was pro
posed, which uses only two daily data points, an hour after sunrise and 
an hour before sunset, to calculate the optimal capacity expansion for 
solar-dominant grids. The 2-point CTS technique demonstrates higher 
accuracy than fixed-time-step techniques with similar temporal resolu
tion and does not need any clustering algorithm to determine repre
sentative periods because it relies on solar generation to force the daily 
extrema of the energy storage system state-of-charge to times near 
sunrise and sunset. The CTS technique has the advantages of being very 
easy to use while providing an excellent tradeoff between model accu
racy and computational time. 

This tradeoff was assessed by comparing the CTS results with a set of 
calculations that varied the temporal resolution using fixed time steps 
between 1 h and 12 h and variable starting times. It was found that when 

Fig. 8. Capacity expansions (GW) obtained for 1-hr calculation and 2-point CTS technique for weather years 2007, 2008, and 2009. Estimated load growth and 
policy constraints for 2045 were used. 

Fig. 9. Energy storage expansion (GWh) obtained for 1-hr calculation and 2-point CTS technique for weather years 2007, 2008, and 2009. Estimated load growth and 
policy constraints for 2045 were used. 

Fig. 10. New build capacities selected by the model for 2008 and 2009 divided 
by those selected for 2007, comparing the hourly calculation (x axis) with the 
CTS calculations (y axis). 
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the selected timepoint data were used without consideration of the 
points in between (snapshots approach), the needed capacity expansion 
was overestimated relative to the hourly simulation, with the amount of 
the overestimation increasing as the length of the time step increased. In 
contrast, if the data for the selected time points were taken as an average 
of the data in that time interval, the capacity expansion requirements 
were underestimated by a similar amount. For both approaches, simu
lations using 3-h, 4-h, 8-h, or 12-h time steps showed large variations in 
the results, depending on the starting hour. For example, sampling 6:00 
and 18:00 each day gave results that varied by a factor of 2 (or 3 in some 
cases) compared with sampling at 0:00 and 12:00. The CTS technique, 
which averages the data in each time step (but with time steps of vari
able lengths), also systematically underestimated the needed capacity 
expansion, but with substantially less error than for the fixed-time-step 
calculations that used a similar number of time steps. 

The CTS technique’s ability to model grids with lower levels of solar 
electricity was assessed by modeling the capacity expansion starting in 
2030. The calculated error increased when <35% of the operational 
power of the energy system was solar. For solar fractions >35%, the CTS 
technique gave errors of less than 7%, suggesting that the discussed 
technique may also work well for a wind-driven grid as long as the solar 
power is enough to have the maximum and minimum state-of-charge of 
the storage system around sunset and sunrise. The observed error 
consistently underestimated the needed capacity expansion, enabling 
the technique to detect trends when the inputs were varied. Specifically, 
the changes in the capacity expansions obtained by the hourly simula
tions identified for three weather years correlated well with the 
observed changes in the CTS results. 
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