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SUMMARY

Type 1 diabetes (T1D) is an autoimmune disease
caused by T cell-mediated destruction of insulin-pro-
ducing b cells in the islets of Langerhans. In most
cases, reversal of disease would require strategies
combining islet cell replacementwith immunotherapy
that are currently available only for the most severely
affected patients. Here, we demonstrate that immu-
notherapies that target T cell costimulatory pathways
block the rejection of xenogeneic human embryonic-
stem-cell-derived pancreatic endoderm (hESC-PE) in
mice. The therapy allowed for long-term develop-
ment of hESC-PE into islet-like structures capable
of producing human insulin and maintaining nor-
moglycemia. Moreover, short-term costimulation
blockade led to robust immune tolerance that could
be transferred independently of regulatory T cells.
Importantly, costimulation blockade prevented the
rejection of allogeneic hESC-PE by human PBMCs
in a humanized model in vivo. These results support
the clinical development of hESC-derived therapy,
combined with tolerogenic treatments, as a sustain-
able alternative strategy for patients with T1D.

INTRODUCTION

Type 1 diabetes (T1D) is a human autoimmune disease resulting

from the destruction of insulin-producing b cells within the

pancreatic islets of Langerhans by autoreactive T cells (Blue-

stone et al., 2010). Currently, the disease is managed by multiple

daily injections of insulin that imperfectly control blood glucose

levels in many diabetic patients, often leading to complications

and a reduced quality of life (Kilpatrick et al., 2009). Any therapy

for T1D patients with long-term disease will need to include islet

replacement strategies. However, there are two major obstacles

to making islet replacement therapies widely available, namely

the lack of satisfactory immunotherapies in islet transplantation

and the paucity of available donor organs.

During the last 15 years, islet cell transplantation has emerged

as one of the most promising insulin replacement therapies for

diabetic patients (Shapiro et al., 2000; Barton et al., 2012). The

outcome of islet transplantation has steadily improved over

time as the overall percentage of recipients who were insulin in-

dependent at 3 years posttransplantation increased from 27% in

the 1999–2002 era to 44% in the 2007–2010 era (Barton et al.,

2012; Bellin et al., 2012; Tiwari et al., 2012). Success rates for

islet transplantation average 50%–70% insulin independence

at 5 years in some transplant centers (Barton et al., 2012; Bellin

et al., 2012; Shapiro and Ricordi, 2014). Nevertheless, current

success rates suggest that available induction and maintenance

immunosuppression regimens are unable to completely block

islet cell loss in transplant recipients. In addition, continuous

and indefinite immunosuppression can result in significant

morbidity, including increased risks of cancer and infections,

making islet transplantation a less than ideal option for most dia-

betic patients. Immunotherapies targeting T cell costimulation or

adhesion pathways have been effective in inducing long-term

tolerance in animal models of islet xenograft transplantation

(Arefanian et al., 2010; Lenschow et al., 1992; Thompson et al.,

2011) and have yielded promising results in small clinical trials

in T1D patients (Posselt et al., 2010a, 2010b).

Recent progress in the capability to manufacture stem-cell-

derived pancreatic endoderm cells that develop into fully func-

tional b cells after in vivo transplantation has generated tremen-

dous enthusiasm (Hebrok, 2012; Van Hoof et al., 2009). D’Amour

et al. showed that in vitro culture conditions that mimicked

embryonic pancreas development resulted in differentiation of

human embryonic stem cells (hESCs) into definitive endoderm

and subsequently into insulin-producing b-like cells (D’Amour

et al., 2005, 2006). This multistep approach, corroborated by

other groups (Eshpeter et al., 2008; Jiang et al., 2007; Rezania

et al., 2012), showed that these cells released C peptide in

response to a variety of stimuli but failed to respond to glucose

stimulation. Recently, two groups showed that functional b cells

that resemble adult mature b cells and produce insulin upon

glucose stimulation could be generated in vitro using improved

culture and differentiation protocols (Pagliuca et al., 2014; Reza-

nia et al., 2014). Importantly, transplantation of hESC-derived

pancreatic endoderm (hESC-PE) or more functional b cells

into immunodeficient mice promoted its differentiation into

glucose-responsive, single hormone-positive endocrine cells

that produced insulin at levels similar to transplanted human is-

lets upon glucose stimulation (Kroon et al., 2008) (Pagliuca et al.,

2014; Rezania et al., 2014).
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In this study,we show that hESC-PE transplanted into immuno-

competent mice is rejected. Costimulation blockade prevented

the rejection of the hESC-PE and led to regulatory T cell-indepen-

dent immune tolerance. Costimulation blockade further pre-

vented human peripheral blood nonnuclear cells (PBMCs) from

rapidly destroying allogeneic hESC-derived insulin-producing

cells, resulting in their ability to regulate blood glucose in the

absence of endogenous islets. These data show that despite their

immunogenicity, hESC-PE is a self-replenishing source of cells

that could potentially represent an attractive option for patients

with T1D in the context of tolerogenic immunotherapy.

RESULTS

hESC-Derived Pancreatic Endoderm Generates
Functional Insulin-Producing Cells In Vivo Regardless
of the Presence of Innate Lymphoid Cell Elements
hESCs could be directed to differentiate into hESC-PE in vitro,

which efficiently gave rise to functional islet-like structures in vivo

after their implantation into immunodeficient SCID-Bg and nude

mice on nonautoimmune backgrounds (Kroon et al., 2008).

Innate lymphoid cell (ILC) populations (ILC1, ILC2, and ILC3)

have been implicated in both inflammatory responses and tissue

repair (Hazenberg and Spits, 2014). One subset, natural killer

(NK) cells, has been shown to influence the in vivo growth or dif-

ferentiation of ESCs and ESC-derived cells (Dressel et al., 2010;

Frenzel et al., 2009; Ma et al., 2010; Nussbaum et al., 2007).

Thus, we determined if the presence or absence of ILCs would

alter the differentiation of hESC-derived endocrine progeni-

tors after implantation. Human ESC-PEs were transplanted

into immunodeficient NOD.SCID mice (which contain ILCs) or

NOD.SCID.IL-2Rgammanull (NSG)mice (deficient in ILCs). Ninety

days postengraftment, high levels of human C peptide were de-

tected in NSG mice upon glucose challenge (Figure 1A). Histo-

logical examination showed islet-like clusters of cells in the graft

surrounded by connective tissue (Figure 1B) producing endo-

crine hormones, including insulin, somatostatin, and glucagon

in the graft (data not shown). There were no differences in the

generation of functional islet-like structures in B6-TCRa�/�,
B6-RAG�/�, NOD-SCID, and NSG mice (Figures 1 and S1 avail-

able online).

To examine graft function, we treated NSG mice transplanted

with hESC-PE with streptozotocin (STZ), which specifically de-

stroys mouse, but not human, b cells (Hosokawa et al., 2001),

for over 90 days. hESC-PE grafts effectively regulated blood

glucose (BG) independently of endogenous insulin-secreting b

cells in most STZ-treated NSG mice (Figure 1C) and did so to

a similar extent in NOD-SCID mice (Figure 2B). Thus, differentia-

tion of fully functional islet-like clusters in vivo was not affected

by NK or other ILC subsets.

Figure 1. Human ESC-Derived Pancreatic Endoderm Differentiates into Fully Functional Insulin-Producing Cells in Immunodeficient Mice

(A) Human ESCs were differentiated into pancreatic endoderm (hESC-PE) in vitro and transplanted under the kidney capsule into immunodeficient NOD.SCID

mice (n = 16) or NOD.SCID.IL-2Rgammanull (NSG) mice (n = 20). Human C peptide levels were measured in the serum after glucose or arginine stimulation at least

80 days postengraftment and did not significantly differ between NOD-SCID and NSG recipients (t test, p > 0.05).

(B) Indicated recipients of hESC-PE were euthanized around 100 days posttransplantation and histological analysis was performed by H&E staining of hESC-PE

grafts.

(C) NSG mice were left untreated (NSG controls, n = 1, left panel), treated with STZ (n = 2, middle panel), or implanted with hESC-PE and treated with STZ

>90 days after implantation (n = 5, right panel). BG levels were measured at indicated time points after STZ treatment.

See also Figure S1.
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hESC-PE Graft Rejection in Immunocompetent Mice
Can Be Blocked by a Combination of CTLA4Ig and
anti-CD40L mAbs
To directly test the potential rejection of hESC-PE by the adap-

tive immune system, we compared the engraftment of hESC-

PE in immunocompetent C57BL/6 (B6) and immunodeficient

(B6.RAG�/� or NOD.SCID) mice. After 90 days of engraftment,

the amount of human C peptide detected after glucose chal-

lenge was significantly lower in B6 mice as compared to

immunodeficient mice, indicating an active role of the adaptive

immune system in the rejection of the hESC-PE grafts

(Figure 2A).

In vivo blockade of costimulatory pathways has previously

been shown to block rejection of allografts and xenografts in

various transplantation settings (Salomon and Bluestone,

2001). Hence, we investigated the effect of various costimula-

tory blockade regimens on the rejection of hESC-PE in B6

mice. B6 mice were transplanted with hESC-PE, treated with

different combinations of costimulation-blocking monoclonal

antibodies (mAbs) for 2 weeks at the time of transplantation,

and assessed for graft function after 90 days. Mice treated

with a combination of CTLA4Ig and anti-CD40L mAbs (MR-1)

demonstrated significantly improved graft function compared

with untreated controls (Figure 2A). This combination of immu-

noregulatory proteins was the most effective at preserving graft

function as compared to CTLA4Ig alone, MR-1 alone, and a

combination of anti-LFA-1 + MR-1 (Figure 2A and data not

shown). Indeed, human C peptide levels were not significantly

different in B6 mice treated with CTLA4Ig + MR-1 as compared

to immunodeficient NOD-SCID recipients. CTLA4Ig alone was

only marginally effective, with graft function not significantly

improved in B6 mice treated with CTLA4Ig alone compared to

untreated B6 mice (Figure 2A). Treatment with anti-LFA-1 +

MR-1 provided a certain level of protection for hESC-PE based

on C peptide levels compared to untreated B6 mice (t test, p =

0.001), but graft function was significantly reduced as compared

to NOD-SCID mive (t test, p = 0.02). Of note, treatment of B6

mice with a combination of rapamycin and anti-CD3 mAbs or

FK506 completely failed to protect hESC-PE from immune

rejection in B6 mice (data not shown). Upon treatment with

STZ, only the CTLA4Ig + MR-1-treated group was able to regu-

late BG in the absence of endogenous murine islets, although

normoglycemia was not maintained in all treatedmice (Figure 2B

and data not shown). Furthermore, nephrectomies were per-

formed in a small group of STZ-treated, hESC-PE transplanted,

CTLA4Ig + MR-1 treated mice to confirm that glycemic control

was due the transplanted hESC-PE tissue (data not shown)

and further show that transplanted tissue was effectively regu-

lating BG.

Histological analysis of graft sections revealed the presence

of intact graft structures surrounded by mouse connective tis-

sues in all groups at day 3 (Figure 3). However, hESC-PE grafts

were heavily infiltrated in B6 mice by day 14 posttransplanta-

tion, resulting in loss of structural integrity and failure to pro-

duce endocrine hormones (Figure 3 and data not shown). In

Figure 2. Differential Effectiveness of Costimulation Blockade

Targeting Distinct Pathways in Preventing Rejection of hESC-PE

(A) Immunodeficient NOD-SCID controls (n = 16) and immunocompetent B6

mice were transplanted with hESC-PE on day 0 and were left untreated (n = 14)

or treated with CTLA4Ig only (n = 10), anti-LFA-1 + MR-1 (n = 4), or CTLA4Ig +

MR-1 (n = 21). Human C peptide levels were analyzed after >80 days.

(B) Mice were treated with STZ >90 days after implantation and BG levels were

measured. In the top left panel, two out of the six mice at day 18 were

NOD.RAG�/� and were grouped with NOD-SCID mice since they are similar,

i.e. T and B cell-deficient mice on the NOD background that can be used

interchangeably in our studies.
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contrast, grafts in mice treated with the costimulation blockade

regimen (CTLA4Ig + MR-1) maintained structural morphology

for 90+ days. Immunofluorescence analyses (day 3) showed

that hESC-PE grafts in all groups exhibited large clusters of

human nuclear antigen (HNA)+ PDX1+ cells with occasional in-

sulin staining. By day 14, most of the PDX1+ cells had disap-

peared and only remnants of grafts were present in B6 mice,

whereas clusters of PDX1+ cells were readily detectable in

control NOD-SCID mice and B6 mice treated with CTLA4Ig +

MR-1 (Figures 3 and S2). At later time points (over 90 days),

grafts in the immunodeficient and immunosuppressed groups

exhibited large clusters of HNA+ insulin+ cells, consistent

with glucose-stimulated C peptide levels (Figure 2A). Taken to-

gether, these results indicate that hESC-PE xenografts were

rejected in B6 mice, but blocking the CD28 and CD40L-

CD40 costimulatory pathways protected hESC-PE grafts

from rejection.

Figure 3. Histological Analysis of hESC-PE

Tissue Transplanted with or without Costi-

mulatory Blockade

NOD-SCID and B6 mice were transplanted with

hESC-PE on day 0 and left untreated or treated

with CTLA4Ig +MR-1 for 2 weeks. Recipients were

euthanized at day 3, 14, or >90 posttransplantation

and histological analysis was performed by H&E

staining and immunofluorescence. Immunofluo-

rescence staining was as follows. Days 3 and 14:

red, Human Nuclear Antigen (HNA); green,

Pancreatic and Duodenal Homeobox 1 (PDX1);

blue, insulin (Ins); and day >90: red, glucagon

(GCG); green, Somatostatin (SST); blue, insulin

(Ins). Representative sections are shown. Immu-

nofluorescence is shown as 103 pictures in which

a higher magnification inset (403) provides a

detailed view of the area indicated by a white

rectangle. See also Figure S2.

CTLA4Ig in Combination with MR-1
Induces Long-Term Immune
Tolerance
We next determined whether the short

course of immunosuppressive treatment

led to long-term tolerance in B6 mice

treated with CTLA4Ig +MR-1. To evaluate

if tolerance was established, we utilized

an experimental protocol in which sple-

nocytes from B6 mice that received

hESC-PE in the absence or presence of

costimulation blockade (groups A and B,

respectively) were adoptively transferred

into B6-RAG�/� recipients of functional

hESC-PE grafts in the absence of immu-

nosuppressive treatment (groups C and

D, respectively) (Figure S3). The endo-

crine function of cells differentiated from

hESC-PE grafts in B6-RAG�/� recipients

was demonstrated upon glucose chal-

lenge at day >150 prior to the adoptive

transfer (Figure 4, day 0). B6-RAG�/� re-

cipients bearing fully functional hESC-PE grafts received spleno-

cytes from untreated B6 mice (group A) that had earlier rejected

the same hESC-PE graft (Figure 4, group C). Not surprisingly,

B6-RAG�/� recipients showed a dramatic reduction in C peptide

levels after adoptive transfer of splenocytes from group A mice

(Figure 4, group C). In fact, human C peptide levels became un-

detectable within 4 weeks after the adoptive transfer (Figure 4,

group C, day 28). In contrast, when splenocytes from B6 mice

treated with costimulation blockade at the time of transplanta-

tion (group B) were transferred into B6-RAG�/� recipients

bearing fully functional hESC-PE grafts (Figure 4, group D), C

peptide levels were maintained at similar levels after 4 weeks

in most mice despite the absence of any immunosuppressive

treatment in these B6-RAG�/� recipients (Figure 4, group D,

day 28). Of note, C peptide levels increased in some of these

mice between day 0 and day 28 due to the fact that the hESC-

derived tissue develops further during this time in some mice,
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although it is possible that there is some rejection in some indi-

vidual animals in the context of a strong xenogeneic immune

response (as in group C). The difference between groups C

and D could not be attributed to differences in T cell numbers

in the transferred splenocytes because there were similar per-

centages of CD3+ T cells in the blood of mice in groups C and

D after adoptive transfer (Figure S4). Thus, costimulation

blockade not only prevented the rejection of hESC-PE xeno-

grafts but further induced a true state of immune tolerance in

B6 mice. This tolerance could be adoptively transferred into

graft-bearing immunodeficient recipients and confer protection

from rejection in the absence of immunosuppression.

Tolerance to hESC-PE Grafts Does Not Require
Regulatory T Cells
CD4+CD25+ regulatory T cells (Tregs) have been shown to play a

crucial role in the maintenance of tolerance to self-antigens in

homeostatic conditions and have been implicated in many

models of transplantation tolerance. To determine if Tregs

were involved in tolerance to hESC-PE grafts in B6 mice that

were treated with costimulation blockade, we depleted CD25+

cells from splenocytes of group B mice before their adoptive

transfer into B6-RAG�/� recipients bearing fully functional

hESC-PE grafts (Figure S3, group E). Treg depletion did not

affect the outcome: four out of five B6-RAG�/� recipients of

CD25-depleted splenocytes from tolerant B6 mice maintained

relatively unchanged human C peptide levels 4 weeks after

adoptive transfer (Figure 4, group E), similar to recipients of total

splenocytes (i.e. those containing Tregs) from tolerant B6 mice

(Figure 4, group D). Taken together, these results suggest that

a short course of costimulation blockade induced a state of

long-term immunological tolerance in B6 mice receiving hESC-

PE grafts that is maintained independently of Tregs.

CTLA4Ig Combined withMR-1 Prevents the Rejection of
hESC-PE Allografts by Human PBMCs
Next, the rejection of hESC-PE allografts in a humanized mouse

model of transplantation was examined. NSG mice were trans-

planted with hESC-PE grafts and endocrine function was

confirmed after at least 100 days when we measured human C

peptide levels in the serum upon glucose stimulation (data not

shown) and engaging in the adoptive transfer of human PBMCs

from a healthy donor with or without costimulation blockade

(CTLA4Ig + anti-human CD40LmAbs) (Figure S5). Five weeks af-

ter adoptive transfer, mice were treated with STZ and monitored

for BG levels. As expected, BG levels rose rapidly in control NSG

mice that received no hESC-PE graft, confirming that endo-

genous mouse b cells were destroyed by the STZ treatment

(Figure 5A). BG levels increased by day 7 in four out of five

STZ-treated mice bearing a functional hESC-PE graft that

received human PBMCs alone (Figure 5B, left panel), indicating

that hESC-PE-derived islet-like cells were destroyed by the

adoptively transferred allogeneic PBMCs. In contrast, hESC-

PE graft recipients that were treated with costimulation blockade

at the time of adoptive transfer of human PBMCs remained eu-

glycemic after STZ treatment (Figure 5B, right panel), indicating

that hESC-derived islet-like cells were still present and func-

tional. Immunofluorescence analyses of the grafts showed large

clusters of HNA+ insulin+ cells in control NSG mice that received

the hESC-PE graft but did not receive PBMCs (Figure 5C, left

panel). In the PBMC alone group, hESC-PE grafts were infiltrated

with large numbers of CD45+ human leukocytes and had very

few insulin+ cell clusters (Figure 5C, middle panel). By compari-

son, insulin+ cells were largely intact in the group that received

PBMCs plus costimulation blockade and grafts completely

lacked infiltration by CD45+ human cells (Figure 5C, right panel).

Thus, rejection of allogeneic hESC-derived islet-like cells by hu-

man PBMCs can be prevented by costimulation blockade in this

humanized model.

DISCUSSION

In this study, we found that transplantation of hESC-PE in immu-

nodeficient animals resulted in the generation of fully functional

b-like cells irrespective of the background strain and the pres-

ence or absence of ILCs. Progenitor cells transplanted into

immunocompetent C57BL/6 mice failed to produce detectable

amounts of human C peptide but costimulation blockade pre-

vented the rejection of these hESC-PE xenografts. Human insu-

lin secretion was preserved most effectively with CTLA4Ig +

anti-CD40L mAb combination therapy with islet-like structures

persisting over 100 days in mice receiving a short course at the

time of transplantation. Importantly, this costimulation blockade

regimen led to a state of immune tolerance that could be trans-

ferred to secondary recipients and resulted in preservation of

Figure 4. Costimulation Blockade Induces Long-Term Tolerance to

hESC-PE in B6 Mice

Two groups of B6mice (groups A and B) and three groups of immunodeficient,

B6.RAG�/�, or B6.TCRa�/� mice (groups C–E) were transplanted with hESC-

PE on day 0 (see Figure S3). B6 mice were left untreated (group A) or treated

with CTLA4Ig + MR-1 for 2 weeks (group B). After >150 days, splenocytes

were isolated from B6 mice in rejecting group A and accepting group B and

adoptively transferred into groups C and D (respectively) of immunodeficient

recipients that had been transplanted with the same hESC-PE on day 0. Group

E received splenocytes from accepting group B that were depleted of Tregs

prior to adoptive transfer (AT). Human C peptide levels were measured in

immunodeficient recipients just before and 28 days after AT (D+0 and D+28).

Results were similar between B6.RAG�/� or B6.TCRa�/� recipients and were

pooled. See also Figure S4.
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human islet-like function in the absence of immunosuppression.

Moreover, the transfer of immune tolerance did not require

the presence of Tregs, suggesting clonal elimination of the

potentially reactive T cells. Finally, we showed that human

PBMC-mediated destruction of allogeneic hESC-derived insu-

lin-producing cells was blocked using costimulation blockade

and preserved the ability of the hESC-derived insulin-producing

cells to effectively regulate BG.

Despite initial hope that ESCs would experience an immune-

privileged status, their differentiated derivatives have been

shown to elicit potent immune responses in allogeneic and xeno-

geneic transplantation settings. However, susceptibility to im-

mune rejection and the immune cells involved appear to differ

between distinct types of stem cell products (de Almeida et al.,

2013). Moreover, other innate lymphoid populations (ILC1,

ILC2, and ILC3) have been recently identified and implicated in

both inflammatory responses and tissue repair (Hazenberg and

Spits, 2014), which might alter the in vivo differentiation process

aswell as immune rejection, thought this has not been studied as

of yet. We observed that T and B cell-sufficient B6 mice, but not

T cell-deficient B6-TCRa�/� mice or T and B cell-deficient NOD-

SCID, B6-RAG�/�, or NSG mice, promptly rejected xenogeneic

hESC-PE grafts generated from hESCs in vitro, consistent with

previous reports that xenogeneic hESC products were rejected

in immunocompetent animals (Deuse et al., 2011a; Pearl et al.,

2011; Swijnenburg et al., 2008). Moreover, the finding that

Figure 5. Costimulation Blockade Prevents theRejection of Allogeneic hESC-Derived Insulin-ProducingCells byHumanPBMCs in aHuman-

ized Model In Vivo

(A and B) NSG negative controls did not receive hESC-PE or PBMCs (A). Other NSG mice were transplanted with hESC-PE on day 0 and adoptively transferred

with 153 106 human PBMCs after >150 days (B). Recipientswere either left untreated or treatedwith CTLA4Ig + anti-humanCD40LmAbs on days 7, 9, 12, and 14

after AT (see Figure S5). Five weeks later, NSG mice were treated with STZ and BG levels were measured (n = 5 in each group).

(C) Recipients all received hESC-PE plus indicated cells/treatment for each group. Recipients were euthanized at day 11 after STZ treatment and an immu-

nofluorescence analysis was performed. Top panels: red, Human Nuclear Factor (HNA); green, insulin. Bottom panels: red, human CD45; green, insulin.

Representative sections are shown.
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differentiation of hESC-PE into fully functional islet-like cells was

unaffected by the presence or absence of NK cells and ILCs sug-

gests that the adaptive immune system is central to hESC-PE

rejection and that therapeutic strategies should be focused on

this arm of the immunity.

Immunogenicity of hESC-PE grafts was not limited to the

xenogeneic setting because the tissue was rapidly rejected by

allogeneic human PBMCs in a humanized model in vivo. The ki-

netics of rejection were comparable to those observed after

transplantation of allogeneic adult islet grafts in a similar human-

ized model (Wu et al., 2013), suggesting that hESC-derived

pancreatic tissues are fully immunogenic, similar to observations

with murine ESCs products in allogeneic settings (Nussbaum

et al., 2007; Pearl et al., 2011; Swijnenburg et al., 2008). Of

note, earlier studies had concluded that hESCs benefited from

an immune-privileged status in vitro and in vivo (Drukker et al.,

2006; Li et al., 2004). In fact, Drukker et al. reported that alloge-

neic hESCs and their derivatives were not rejected in ‘‘Trimera’’

humanized mice generated by adoptive transfer of human

PBMCs into irradiated recipient mice that were reconstituted

with bone marrow cells from immunodeficient mice (Drukker

et al., 2006). However, Rong et al. (2014) recently showed that

allogeneic hESC-derived teratomas, as well as fibroblast and

cardiomyocyte derivatives, were promptly rejected in humanized

mice established by the engraftment of human fetal thymus and

CD34+ fetal liver cells into NSG mice. These discrepancies may

be due to the robustness of the direct versus indirect pathways

of allorecognition in distinct humanized models combined with

the nature of the transplanted hESC derivatives, notably their

ability to function as nonprofessional antigen-presenting cells

(Shultz et al., 2012). For example, antigen-specific activation of

T cells has been more difficult to achieve than allogeneic or

xenogeneic responses in humanized mice reconstituted with

mature lymphoid cells, possibly due to limited engraftment of hu-

man APCs. Thus, allogeneic responses to hESC products in vivo

may vary depending on the types of hESC derivatives and hu-

manized mouse models, which has implications for future in vivo

studies of hESCs and their differentiated progeny in allogeneic

settings.

Murine ESC derivatives require minimal immunosuppression

for the prevention of rejection in allogeneic settings as compared

to fully differentiated tissues, suggesting that they may be less

immunogenic, even after differentiation (Lui et al., 2010; Ma-

gliocca et al., 2006; Robertson et al., 2007). This is important in

regards to hESC-based islet cell replacement therapy because

heavy immunosuppressionmay be perceived as a strong imped-

iment to their clinical application in T1D. Indeed, benefits from

this therapy must outweigh adverse side effects of immunosup-

pression as in the debate surrounding islet transplantation.

Moreover, ethical considerations regarding hESC products

have generated interest in other sources of islet-like cell progen-

itors that preclude the use of human embryos (Hebrok, 2012).

The generation of ‘‘induced pluripotent stem cells’’ (iPSCs) by

somatic cell reprogramming brought the promise of patient-spe-

cific syngeneic sources of cells that could be differentiated into

any given lineage, and iPSCs that generate insulin-producing

cells were successfully derived from T1D patients (Maehr

et al., 2009; Thatava et al., 2013). However, iPSC-derived cells

can display genetic, epigenetic, and transcriptional abnormal-

ities that may make them immunogenic in syngeneic recipients

(Holditch et al., 2014). Furthermore, ongoing autoimmunity in

T1D patients will likely result in similar immunogenicity. Indeed,

memory autoreactive T cells alter graft survival of pancreas or

islet allografts in T1D recipients even when alloreactive re-

sponses were effectively controlled (Vendrame et al., 2010).

Thus, stem-cell-based islet cell replacement approaches will

likely require immunotherapy to hinder autoimmune responses,

making the use of allogeneic hESCs together with immunosup-

pressive or tolerogenic treatments that control both alloreactivity

and autoreactivity a good option for T1D patients.

Therefore, we determined whether rejection of hESC-PE could

be prevented by costimulation blockade regimens that have

been among the most successful in islet transplantation, notably

those targeting two primary pathways of costimulation, CD28

and CD40L. Indeed, blockade of CD28 and CD40L pathways

prolonged islet xenograft and allograft survival and induced

long-term tolerance in rodent models, and it even showed prom-

ising results in nonhuman primates (Benda et al., 2002; Kenyon

et al., 1999; Lenschow et al., 1992; Levisetti et al., 1997). Impor-

tantly, we recently showed that calcineurin inhibitor-free immu-

nosuppressive protocols based on CTLA4Ig therapy gave prom-

ising results in T1D recipients of islet allografts (Posselt et al.,

2010a). Here, we found that short-term costimulatory blockade

usingCTLA4Ig +MR-1 resulted in long-term survival of fully func-

tional hESC-derived insulin-producing cells. MR-1 was more

effective in combination with CTLA4Ig than anti-LFA-1 mAbs,

and CTLA4Ig alone only marginally improved xenogeneic hESC

graft survival. This is a notable report of successful engraftment

of xenogeneic hESC-derived islet-like cells in immunocompetent

animals. CTLA4Ig/anti-CD40L/anti-LFA-1 tritherapy was shown

to allow indefinite survival of hESCs in the immune-privileged

environment of the testis (Grinnemo et al., 2008) but also in

immunocompetent sites (Ljung et al., 2013; Pearl et al., 2011).

Monotherapy failed to provide sustained protection from rejec-

tion, in agreement with our data on the marginal effect of

CTLA4Ig alone on hESC-PE. Of note, costimulation blockade

was found to bemore effective at preventing rejection of xenoge-

neic hESCs than standard immunosuppressive regimens were

(Huber et al., 2013; Swijnenburg et al., 2008). This is consistent

with our data that showed no effect of anti-CD3mAbs + rapamy-

cin or FK-506 + rapamycin on rejection of hESC-PE (data not

shown) and with reports that FK-506 + rapamycin interferes

with engraftment and islet regeneration (Chatenoud, 2008).

Importantly, we observed that treatment with CTLA4Ig +MR-1

successfully prevented the rejection of allogeneic hESC-PE in a

humanized mouse model. This is a noteworthy report of short-

term costimulatory blockade preventing the rejection of fully

functional allogeneic hESC-derived insulin-producing cells by

human PBMCs in vivo, demonstrating the potential therapeutic

value of this approach for T1D patients because these hESC-

derived cells effectively controlled BG levels in the absence of

endogenous islets. However, as mentioned above, it will be

necessary to control autoimmune responses in addition to allo-

geneic responses for hESC-based therapy to become a viable

therapeutic option for large numbers of T1D patients. Protection

of hESC-PE allografts was associated with reduced leukocyte

numbers and infiltration in the graft, in agreement with reduced

infiltration by human T cells in knockin hESC-derived cells
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constitutively expressing CTLA4Ig and PD-L1 (Rong et al., 2014),

as well as with clinical data showing that lymphocyte-depleting

induction therapy promotes long-term insulin independence in

TID patients after islet transplantation (Bellin et al., 2012). Of

note, clinical trials usingMR-1 were halted early on due to throm-

boembolic events, but new reagents targeting the CD40/CD40L

pathway have shown promising results in experimental models

without thromboembolic complications (Adams et al., 2005;

Kanmaz et al., 2004; Thompson et al., 2011). Finally, Rong

et al. recently showed that knockin hESC derivatives that consti-

tutively expressed CTLA4Ig and PD-L1 were protected from

rejection after transplantation into humanized mice (Rong

et al., 2014), suggesting that this costimulation blockade combi-

nation is worth pursuing for clinical purposes as well.

Our study showed that a short course of treatment with

CTLA4Ig + MR-1 not only prolonged hESC-PE graft survival

but also resulted in the establishment of immune tolerance.

This is in contrast with the report that expression of CTLA4Ig

and PD-L1 on knockin hESC derivatives could achieve immune

protection of transplanted cells without inducing immune toler-

ance (Rong et al., 2014). This discrepancy could be due to differ-

ences in the type of hESC-derived tissue and targeted pathways.

We found that depletion of CD4+CD25+ Tregs did not affect the

transfer of tolerance, suggesting that Tregs were dispensable for

the maintenance of tolerance to hESC-derived islet-like cells.

This was unexpected because Tregs have been implicated in

many experimental models of transplantation tolerance (Tang

et al., 2012). However, Tregs may play a more prominent role

in early posttransplantation in induction of tolerance than their

role in maintenance of long-term tolerance, at which point other

regulatory mechanisms or cell populations may become domi-

nant. Thus, the lack of a need for Tregs in the transfer of tolerance

in our study does not preclude a role of Tregs in induction of the

tolerant state to hESC-PE by costimulatory blockade. Previous

reports have shown that Tregs were locally enriched in murine

models that achieved acceptance of undifferentiated hESCs,

including after costimulation blockade, but the potential role of

Tregs in transplantation of differentiated hESC-derived tissues

that are more immunogenic has not been elucidated (Deuse

et al., 2011b; Grinnemo et al., 2008; Ljung et al., 2013). Tregs

were also enriched and even required in mouse models of spon-

taneous acceptance of allogeneic mESC-derived tissues (Lui

et al., 2010; Robertson et al., 2007). Other immunomodulatory

mechanisms may be involved as well. For example, long-term

survival of hESC endothelial cells (hESC-ECs after treatment

with CTLA4Ig + anti-LFA-1 was associated with upregulation of

T cell immunoglobulin and mucin domain 3 (Tim-3) and PD-1

(Huber et al., 2013; Swijnenburg et al., 2008), two inhibitory re-

ceptors implicated in transplantation tolerance (Fife and Blue-

stone, 2008). In addition to reduced T cell infiltration, acceptance

of CTLA4Ig/PD-L1 knockin hESC derivatives was associated

with increased intragraft levels of immunosuppressive cytokines

TGFb and IL-10 (Rong et al., 2014).

Lastly, these results may have implications for preclinical

development of human cell therapies. For the purposes of inves-

tigating allometric dosing relationships, product scaling, and

clinical safety/toxicity concerns, traditional preclinical drug

development involves testing in multiple species, including

larger nonrodent species, such as rabbits, dogs, or nonhuman

primates. However, this has not been possible for human cell

therapies because cells are rejected in immunocompetent ani-

mals; therefore testing can only be performed in genetically

immunocompromised animals that are limited to rodents. If the

reagents used in the present study were found to be protective

and tolerogenic in larger animals, preclinical testing of candidate

human cell therapies in such species might be possible. This

could represent a substantial breakthrough in preclinical testing

of human cell therapies.

In conclusion, our study showed that a short course of costi-

mulation blockade led to long-term survival and immune toler-

ance to hESC-PE xenografts and prevented the rejection of

allogeneic hESC-derived insulin-producing cells in a humanized

model in vivo. Moreover, this short course of immunotherapy did

not interfere with the development and differentiation of hESC

prepancreatic endoderm into functioning islet-like PE. Thus,

transplantation of allogeneic hESC-derived pancreatic progeni-

tors in the context of tolerogenic immunotherapy is an option

worth pursuing for islet cell replacement in T1D.

EXPERIMENTAL PROCEDURES

Mice

NOD.SCIDandNSGmicewere bred in house. B6,B6.RAG�/�, andB6.TCRa�/�

mice were purchased from Jackson Laboratories. All mice were housed in

a pathogen-free facility at the University of California, San Francisco. All exper-

iments complied with the Animal Welfare Act and the National Institutes of

Health guidelines for the ethical care and use of animals in biomedical research

and were approved by the UCSF Institutional Animal Care and Use Committee.

Transplantation of hESC-PE, Analysis of Graft Tissue, Adoptive

Transfers, and In Vivo Treatments

Cell culture and differentiation protocols to generate hESC-PEwere performed

as described (D’Amour et al., 2006; Kroon et al., 2008; Schulz et al., 2012). For

transplantation, 10–25 ml of cell aggregate slurry (representing 3–73 106 cells)

was implanted below the kidney capsule with a PE-50 catheter (Szot et al.,

2007). For histology, 5 mm sections of formalin-fixed (10%) and paraffin-

embedded graft tissues were stained with hematoxylin and eosin. Immunoflu-

orescence analyses were performed on 10 mm sections of frozen graft tissues

as previously described (Kroon et al., 2008). To assess graft function >90 days

after implantation, serum human C peptide produced in response to glucose

administration was measured by performing glucose- or arginine-stimulated

insulin secretion assays as previously described (Kroon et al., 2008). BG levels

were measured with a Lifescan glucose meter (One Touch II; Lifescan). Mice

with BG levels >250 mg/dl were considered diabetic. For adoptive transfers,

single-cell suspensions were prepared from the spleen of B6 mice and

depleted of CD4+CD25+ Tregs using anti-CD25 mAbs (7D4) and rabbit com-

plement. Depending on experiments, 18 3 106 or 34 3 106 total or CD25-

depleted spleen cells were injected i.v. in B6.RAG�/� or TCRa�/� recipient

mice. Results were similar with different cell numbers or immunodeficient

strains (B6.RAG�/� or TCRa�/�) and pooled. For the humanized model,

PBMCs were prepared from a healthy donor and 15 3 106 PBMCs were in-

jected i.v. into NSG recipients >150 days after transplantation of hESC-PE.

For immunosuppression, CTLA4Ig (Repligen) was administered at 500 mg/

mouse on days 0, 2, 4, and 6 posttransplant in combination with 500 mg/mouse

anti-CD154 mAbs (MR-1, UCSF Hybridoma Core) on days 0, 2, and 4. Anti-

LFA-1 mAbs (gift from Ron Gill) were administered at 200 mg/mouse on days

0, 1, 7, and 14 in combination with 250 mg/mouse MR-1 on days �1 and 1

and twice a week for 4 weeks. In the humanized mouse model, mice received

20 mg/kg CTLA4Ig and 10 mg/kg anti-human CD40L mAbs (5C8) on days 7, 9,

12, and 14 after the adoptive transfer of human PBMCs. To destroy endoge-

nous mouse islet cells, we treated mice with STZ via i.p. injection, using either

a single dose of 8 mg/mouse or five doses of 50 mg/kg administered over 5

consecutive days. Additional details are available in Supplemental Experi-

mental Procedures.

8 Cell Stem Cell 16, 1–10, February 5, 2015 ª2015 Elsevier Inc.

Please cite this article in press as: Szot et al., Tolerance Induction and Reversal of Diabetes in Mice Transplanted with Human Embryonic-Stem-Cell-
Derived Pancreatic Endoderm, Cell Stem Cell (2015), http://dx.doi.org/10.1016/j.stem.2014.12.001



SUPPLEMENTAL INFORMATION

Supplemental Information for this article includes five figures and Supple-

mental Experimental Procedures and can be found with this article online at

http://dx.doi.org/10.1016/j.stem.2014.12.001.

AUTHOR CONTRIBUTIONS

G.L.S. and E.K. designed experiments, performed experiments, and analyzed

data; M.Y. designed experiments, performed experiments, analyzed data, and

wrote the manuscript; J.L., J.K., and K.K. performed experiments; E.P.B. and

E.E.B. designed experiments and analyzed data; H.B.J. and J.A.B. designed

experiments, analyzed data, and wrote the manuscript.

ACKNOWLEDGMENTS

We thank Dorothy Fuentes for animal care and Matthias Hebrok and members

of the Bluestone and Hebrok laboratories for discussions. We thank Holly

Young and Laura Martinson for technical assistance in preparing hESC-PE

for implant. This research was supported by CIRM grants RM1-01703 and

DR1-01423. J.A.B. is a consultant for ViaCyte, Inc., and E.K., J.K., K.K.,

E.P.B., and E.E.B. are employed or formerly employed by, and are share-

holders of, ViaCyte, Inc., which is developing ESC-based products.

Received: August 13, 2014

Revised: October 30, 2014

Accepted: December 2, 2014

Published: December 18, 2014

REFERENCES

Adams, A.B., Shirasugi, N., Jones, T.R., Durham,M.M., Strobert, E.A., Cowan,

S., Rees, P., Hendrix, R., Price, K., Kenyon, N.S., et al. (2005). Development of

a chimeric anti-CD40 monoclonal antibody that synergizes with LEA29Y to

prolong islet allograft survival. J. Immunol. 174, 542–550.

Arefanian, H., Tredget, E.B., Rajotte, R.V., Gill, R.G., Korbutt, G.S., and Rayat,

G.R. (2010). Short-term administrations of a combination of anti-LFA-1 and

anti-CD154 monoclonal antibodies induce tolerance to neonatal porcine islet

xenografts in mice. Diabetes 59, 958–966.

Barton, F.B., Rickels, M.R., Alejandro, R., Hering, B.J., Wease, S., Naziruddin,

B., Oberholzer, J., Odorico, J.S., Garfinkel, M.R., Levy, M., et al. (2012).

Improvement in outcomes of clinical islet transplantation: 1999-2010.

Diabetes Care 35, 1436–1445.

Bellin, M.D., Barton, F.B., Heitman, A., Harmon, J.V., Kandaswamy, R.,

Balamurugan, A.N., Sutherland, D.E., Alejandro, R., and Hering, B.J. (2012).

Potent induction immunotherapy promotes long-term insulin independence

after islet transplantation in type 1 diabetes. Am. J. Transplant. 12, 1576–1583.

Benda, B., Ljunggren, H.G., Peach, R., Sandberg, J.O., and Korsgren, O.

(2002). Co-stimulatory molecules in islet xenotransplantation: CTLA4Ig treat-

ment in CD40 ligand-deficient mice. Cell Transplant. 11, 715–720.

Bluestone, J.A., Herold, K., and Eisenbarth, G. (2010). Genetics, pathogenesis

and clinical interventions in type 1 diabetes. Nature 464, 1293–1300.

Chatenoud, L. (2008). Chemical immunosuppression in islet transplantation—

friend or foe? N. Engl. J. Med. 358, 1192–1193.

D’Amour, K.A., Agulnick, A.D., Eliazer, S., Kelly, O.G., Kroon, E., and Baetge,

E.E. (2005). Efficient differentiation of human embryonic stem cells to definitive

endoderm. Nat. Biotechnol. 23, 1534–1541.

D’Amour, K.A., Bang, A.G., Eliazer, S., Kelly, O.G., Agulnick, A.D., Smart, N.G.,

Moorman, M.A., Kroon, E., Carpenter, M.K., and Baetge, E.E. (2006).

Production of pancreatic hormone-expressing endocrine cells from human

embryonic stem cells. Nat. Biotechnol. 24, 1392–1401.

de Almeida, P.E., Ransohoff, J.D., Nahid, A., and Wu, J.C. (2013).

Immunogenicity of pluripotent stem cells and their derivatives. Circ. Res.

112, 549–561.

Deuse, T., Seifert, M., Phillips, N., Fire, A., Tyan, D., Kay, M., Tsao, P.S., Hua,

X., Velden, J., Eiermann, T., et al. (2011a). Human leukocyte antigen I knock-

down human embryonic stem cells induce host ignorance and achieve pro-

longed xenogeneic survival. Circulation 124, S3–S9.

Deuse, T., Seifert, M., Tyan, D., Tsao, P.S., Hua, X., Velden, J., Eiermann, T.,

Volk, H.D., Reichenspurner, H., Robbins, R.C., and Schrepfer, S. (2011b).

Immunobiology of naı̈ve and genetically modified HLA-class-I-knockdown hu-

man embryonic stem cells. J. Cell Sci. 124, 3029–3037.

Dressel, R., Nolte, J., Elsner, L., Novota, P., Guan, K., Streckfuss-Bömeke, K.,
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